

"আমরা, ভারতের জনগণ, ভারতকে সার্বভৌম, সমাজতান্ত্রিক, ধর্মনিরপেক্ষ, গণতান্ত্রিক, সাধারণতন্ত্ররূপে গড়ে তুলতে এবং তার সকল নাগরিকই যাতে সামাজিক, অর্থনৈতিক ও রাজনৈতিক, ন্যায়বিচার, চিন্তা, মতপ্রকাশ, বিশ্বাস, ধর্ম এবং উপাসনার স্বাধীনতা, সামাজিক প্রতিষ্ঠা অর্জন ও সুযোগের সমতা প্রতিষ্ঠা এবং তাদের সকলের মধ্যে ব্যক্তির মর্যাদা এবং জাতীয় ঐক্য ও সংহতি সুনিশ্চিতকরণের মাধ্যমে তাদের মধ্যে যাতে ভ্রাতৃত্বের ভাব গড়ে ওঠে তার জন্য সত্যনিষ্ঠার সঙ্গো শপথ গ্রহণ করে, আমাদের গণপরিষদে আজ, ১৯৪৯ সালের ২৬ নভেম্বর, এতদ্বারা এই সংবিধান

Constitution of India Part IV A (Article 51 A)

Fundamental Duties

- (a) to abide by the Constitution and respect its ideals and institutions, the National Flag and the National Anthem;
- (b) to cherish and follow the noble ideals which inspired our national struggle for freedom;
- (c) to uphold and protect the sovereignty, unity and integrity of India;
- (d) to defend the country and render national service when called upon to do so;
- (e) to promote harmony and the spirit of common brotherhood amongst all the people of India transcending religious, linguistic and regional or sectional diversities; to renounce practices derogatory to the dignity of women;
- (f) to value and preserve the rich heritage of our composite culture;
- (g) to protect and improve the natural environment including forests, lakes, rivers, wildlife and to have compassion for living creatures;
- (h) to develop the scientific temper, humanism and the spirit of inquiry and reform;
- (i) to safeguard public property and to abjure violence;
- (j) to strive towards excellence in all spheres of individual and collective activity so that the nation constantly rises to higher levels of endeavour and achievement;
- *(k) who is a parent or guardian, to provide opportunities for education to his child or, as the case may be, ward between the age of six and fourteen years.
- Note: The Article 51A containing Fundamental Duties was inserted by the Constitution (42nd Amendment) Act, 1976 (with effect from 3 January 1977).

*(k) was inserted by the Constitution (86th Amendment) Act, 2002 (with effect from 1 April 2010).

একাদশ শ্রেণি

জাতীয় শিক্ষা গবেষণা ও প্রশিক্ষণ পর্ষদ, নতুন দিল্লি। **অনুবাদ ও অভিযোজন** রাজ্য শিক্ষা গবেষণা ও প্রশিক্ষণ পর্ষদ, ত্রিপুরা সরকার।

© এন সি ই আর টি কর্তৃক সর্বস্বত্ব সংরক্ষিত পদার্থবিদ্যা একাদশ শ্রেণির পাঠ্যবই (এন সি ই আর টি-র Physics Part-I পাঠ্যবইয়ের ২০১৭ সালের অনূদিত সংস্করণ)

প্রকাশক : অধিকর্তা, রাজ্য শিক্ষা গবেষণা ও প্রশিক্ষণ পর্যদ ত্রিপুরা

> প্রচ্ছদ ও অক্ষর বিন্যাস লক্ষ্মণ দেবনাথ, শিক্ষক মনতোষ সাহা

এন সি ই আর টি অনুমোদিত প্রথম বাংলা সংস্করণ

> **প্রথম প্রকাশ :** মার্চ, ২০১৯ **পুনর্মুদ্রণ :** মার্চ, ২০২০

মূ**ল্য : ১**৫০.০০ (দেড়শত টাকা) মাত্র

মুদ্রণ : সত্যযুগ এমপ্লয়িজ কো-অপারেটিভ ইন্ডাস্ট্রিয়াল সোসাইটি লিমিটেড ১৩ প্রফুল্ল সরকার স্ট্রিট, কলকাতা-৭২

মিকা

২০০৬ সাল থেকে রাজ্য শিক্ষা গবেষণা ও প্রশিক্ষণ পর্যদ প্রথম থেকে অন্টম শ্রেণি পর্যন্ত প্রাথমিক ও উচ্চপ্রাথমিক স্তরের পাঠ্যপুস্তকের মুদ্রণ ও প্রকাশের দায়িত্ব পালন করে আসছে।

রাজ্যের বিদ্যালয়স্তরে উন্নত ও সমৃদ্ধতর পাঠ্যক্রম চালু করার লক্ষ্যে ত্রিপুরা রাজ্য শিক্ষা দপ্তরের প্রচেস্টায় প্রথম থেকে অস্টম, নবম ও একাদশ শ্রেণির জন্য ২০১৯ শিক্ষাবর্ষ থেকে জাতীয় শিক্ষা গবেষণা ও প্রশিক্ষণ পর্ষদের (এন সি ই আর টি) পাঠ্যপুস্তকসমূহ গ্রহণ করার সিদ্ধান্ত নেওয়া হয়।

বাংলা বিষয় ছাড়া অন্যান্য বিষয়গুলোর জন্য জাতীয় শিক্ষা গবেষণা ও প্রশিক্ষণ পর্ষদের প্রকাশিত পুস্তকগুলোর অনূদিত ও অভিযোজিত সংস্করণ ২০১৯ সালে প্রথম প্রকাশ করা হয় এবং এ বছর ওইসব পুস্তকগুলোর পুনর্মুদ্রণ করা হল। পাশাপাশি দশম ও দ্বাদশ শ্রেণির বাংলা বিষয় ছাড়া অন্যান্য বিষয়গুলোর জন্য জাতীয় শিক্ষা গবেষণা ও প্রশিক্ষণ পর্ষদের প্রকাশিত পুস্তকগুলোর অনূদিত ও অভিযোজিত সংস্করণ ২০২০ শিক্ষাবর্ষে প্রথম প্রকাশ করা হয়। এখানে উল্লেখ্য যে, বাংলা বিষয়ে পাঠ্যপুস্তক রচনা ও প্রকাশনার দায়িত্বও রাজ্য শিক্ষা গবেষণা ও প্রশিক্ষণ পর্যদের প্রকাশিক স্র্যন্ত আসছে।

বিশাল এই কর্মকাণ্ডে যেসব শিক্ষক-শিক্ষিকা, অধ্যাপক-অধ্যাপিকা, শিক্ষাবিদ, অনুবাদক, অনুলেখক, মুদ্রণকর্মী ও শিল্পীরা আমাদের সঙ্গে থেকে নিরলসভাবে অক্লান্ত পরিশ্রমে এই উদ্যোগ বাস্তবায়িত করেছেন তাদের সবাইকে সকৃতজ্ঞ ধন্যবাদ জানাচ্ছি।

প্রকাশিত এই পাঠ্যপুস্তকটির উৎকর্ষ ও সৌন্দর্য বৃদ্ধির জন্য শিক্ষানুরাগী ও গুণীজনের মতামত ও পরামর্শ বিবেচিত হবে।

আগরতলা মার্চ, ২০২০ **উত্তম কুমার চাকমা** অধিকর্তা রাজ্য শিক্ষা গবেষণা ও প্রশিক্ষণ পর্ষদ ত্রিপুরা

ড. অর্ণব সেন, সহঅধ্যাপক, এন ই আর আই ই (এন সি ই আর টি), শিলং ড. অরূপ কুমার সাহা, সহঅধ্যাপক, আর আই ই (এন সি ই আর টি), ভুবনেশ্বর

পাঠ্যপুস্তকটি অনুবাদে যাঁরা সহায়তা করেছেন :

- ড. পিনাকী পাল, অ্যাসোসিয়েট প্রফেসার
- শ্রী সুবীর কুমার দেবনাথ, অবসরপ্রাপ্ত সহকারী প্রধান শিক্ষক
- শ্রী পরিমল মজুমদার, অবসরপ্রাপ্ত প্রধান শিক্ষক (ভারপ্রাপ্ত)
- শ্রী মলয় ভৌমিক, প্রধান শিক্ষক
- শ্রী দিব্যেন্দু বিকাশ সেন, শিক্ষক
- শ্রী স্বপন মজুমদার, রাষ্ট্রপতি পুরস্কার প্রাপ্ত শিক্ষক
- শ্রী অমল চন্দ্র নাথ, শিক্ষক
- শ্রী পঙ্কজ কুমার দাস, শিক্ষক
- শ্রী সঞ্জয় দেবনাথ, শিক্ষক
- শ্রী শীর্ষেন্দু চৌধুরী, শিক্ষক
- শ্রীমতি সবিতা ভৌমিক, শিক্ষিকা

ভাষা- পরিমার্জনায়

শ্রী ইন্দুমাধব চক্রবর্তী, প্রাক্তন শিক্ষক শ্রী সৌমিত্র কিশোর সরকার, শিক্ষক শ্রী প্রবুদ্ধসুন্দর কর, শিক্ষক শ্রী বিশ্বনাথ রায়, শিক্ষক শ্রীমতি সোনালি ভট্টাচার্য্য, প্রাক্তন শিক্ষিকা

প্রাক্কথন

জাতীয় পাঠ্যক্রমের রূপরেখা (২০০৫)-এর নির্দেশ অনুযায়ী, শিশুদের স্কুলজীবন ও স্কুলের বাইরের জীবনের মধ্যে একটি বিশেষ সম্পর্ক থাকা খুব প্রয়োজন। তার কারণ, শিশুদের শিক্ষা যদি শুধুমাত্র স্কুল এবং পাঠ্যবইয়ের গণ্ডির মধ্যে সীমিত থাকে, তাহলে সেইসব শিশুদের স্কুল, বাড়ি এবং সম্প্রদায়— এই তিন জায়গার শিক্ষায় একটি বড়ো ফাঁক থাকার সম্ভাবনা রয়ে যায়। মূলত এই শূন্যস্থানটাকে পূরণ করার লক্ষ্যেই জাতীয় পাঠ্যক্রমের রূপরেখার উপর ভিত্তি করে নতুন পাঠ্যক্রম ও নতুন ধরনের পাঠ্যবই তৈরি করার উদ্যোগ নেওয়া হয়েছে। এর ফলে শিশুদের মুখস্থ করা এবং চারদেয়ালের মধ্যে তীব্রভাবে আবন্ধ করে বিভিন্ন বিষয়ে শিক্ষার প্রবণতা বন্ধ হবে বলে মনে করা হচ্ছে। পাশাপাশি এটাও আশা করা হচ্ছে যে, এই পরিবর্তন জাতীয় শিক্ষানীতির (১৯৮৬) শিশুকেন্দ্রিক শিক্ষার লক্ষ্যকে উল্লেখযোগ্যভাবে এগিয়ে নিয়ে যাবে।

তবে এই ধরনের প্রচেন্টার সাফল্য অনেকটাই নির্ভর করছে স্কুলের প্রধান শিক্ষক এবং অন্যান্য শিক্ষক/শিক্ষিকাদের উপরে, যাঁরা শিশুদের শিখন সম্পর্কে প্রশ্ন করতে এবং বিভিন্ন কাজে শিশুদের কল্পনাশন্তির প্রয়োগ করতে উৎসাহিত করবেন। আমাদের এটা মনে রাখা খুব জরুরি, শিশুরা যদি সময়, স্থান এবং স্বাধীনভাবে কাজ করার সুযোগ পায়, তাহলে বড়োদের কাছ থেকে প্রাপ্ত জ্ঞান নিয়ে তারা নতুন অনেক কিছু সৃষ্টি করতে পারবে। একমাত্র পাঠ্যবই পড়েই পরীক্ষায় পাস করা যায় - মূলত এই ধারণার ফলেই শিক্ষার অন্যান্য দিকগুলো সর্বদা উপেক্ষিত হয়ে থাকে। আমাদের ভুলে গেলে চলবে না, শিশুদের মধ্যে সৃজনশীলতার বিকাশ তখনই সম্ভব, যখন আমরা ওদের এই গোটা শিখন প্রক্রিয়ার কেবলমাত্র গ্রহীতা না ভেবে একটা পূর্ণ অংশীদার মনে করব।

তবে এই লক্ষ্যপূরণ করতে গেলে স্কুলের দৈনন্দিন কার্যসূচি ও ব্যবস্থাপনায় অনেক ধরনের পরিবর্তন আনা অনিবার্য। স্কুলের দৈনন্দিন সময় সূচি যেমন নমনীয় হওয়া উচিত, ঠিক তেমনই বার্ষিক কার্যসূচি এমনভাবে তৈরি হওয়া প্রয়োজন যাতে শিক্ষাদানের দিনগুলোর সংখ্যায় কোনো পরিবর্তন না আসে। তবে বাস্তবে এই নতুন পাঠ্যবই শিশুদের কতটুকু কাজে লাগবে, ওদের স্কুলজীবন কতটা সমৃদ্ধ করবে কিংবা ওদের স্কুলজীবনকে দুর্বিষহ করে তুলবে না, সবটাই নির্ভর করছে শিক্ষক/শিক্ষিকারা কী পদ্ধতি অবলম্বন করে এই বইটি স্কুলে পড়াবেন এবং কীভাবে সেই পড়ার মৃল্যায়ন করবেন তার উপর। বিগত দিনগুলোর ন্যায় শিশুদের যাতে পাঠ্যবইয়ের বোঝা বইতে না হয়, এই নতুন পাঠ্যক্রম তৈরি করার সময় এই ব্যাপারে বিশেষ নজর দেওয়া হয়েছে। তার জন্য শিক্ষাদানের প্রদন্ত সময় এবং শিশুদের মানসিক বিকাশের কথা মাথায় রেখে প্রতিটি স্তরের পাঠ্যবইয়ে অন্তর্ভুক্ত শিক্ষার বিষয়বস্তুগুলো এক নতুন দৃষ্টিভঞ্চি নিয়ে পুনর্গঠন করা হয়েছে। এই প্রচেষ্টাকে আরো এগিয়ে নিয়ে যাবার জন্য এই পাঠ্যবইয়ের মাধ্যমে শিশুদের নানারকম প্রশ্ন করা, নতুন বিষয় নিয়ে ভাবনা-চিন্তা, তর্ক-বিতর্ক, ছোটো ছোটো গ্রুপ বানিয়ে আলোচনা করা এবং হাতে-কলমে শিক্ষা এইসব কিছুর উপর গুরুত্ব আরোপ করা হয়েছে।

পাঠ্যবই উন্নয়ন কমিটির দায়িত্বপ্রাপ্ত সকল ব্যক্তিবর্গ যাঁরা কঠোর পরিশ্রম করে এই বইটি রূপায়ন করেছেন তাঁদেরকে এন সি ই আর টি প্রশংসা জানাচ্ছে। এই কমিটির কার্যকলাপকে সঠিক পথে চালিত করার জন্য বিজ্ঞান ও গণিত বিষয়ের উপদেন্টা কমিটির চেয়ারপার্সন অধ্যাপক জে ভি নারলিকর এবং এই পাঠ্য বইয়ের মুখ্য উপদেন্টা অধ্যাপক এ ডব্লিও যোশী মহোদয়গণের প্রতি আন্তরিক কৃতজ্ঞতা এবং ধন্যবাদ জ্ঞাপন করছি। এই পাঠ্যবই পুনর্গঠনের পিছনে বহু শিক্ষক/শিক্ষিকার অবদান অনস্বীকার্য।

আমরা সেইসব স্কুলের প্রধান শিক্ষকদেরও বিশেষভাবে ধন্যবাদ জানাচ্ছি। এই পাঠ্যবই তৈরির ক্ষেত্রে যেসব প্রতিষ্ঠান এবং সংগঠন তাঁদের বহুমূল্য সম্পদ, উপাদান এবং লোকবল নিয়ে কাজ করার অনুমতি দিয়ে উদার মনের পরিচয় দিয়েছেন, তাঁদের সবার প্রতি আমরা বিশেষভাবে কৃতজ্ঞতা স্বীকার করছি এবং ধন্যবাদ জানাচ্ছি। মানব সম্পদ উন্নয়ন মন্ত্রকের (এম এইচ আর ডি) চেয়ারপার্সন অধ্যাপক মৃণাল মিরি এবং অধ্যাপক জি পি দেশপান্ডের তত্ত্ববধানে মাধ্যমিক এবং উচ্চতর শিক্ষা বিভাগ দ্বারা নিযুক্ত জাতীয় পর্যবেক্ষণ সমিতির সদস্যদের বহুমূল্য সময় ও অবদানের জন্য পর্যদের পক্ষ থেকে তাঁদের বিশেষ ধন্যবাদ জ্ঞাপন করছি। নিজেদের প্রকাশনা এবং ব্যবস্থাপনার গুণগত মান সংস্কারের কাজে নিরস্তর নিয়োজিত থাকা এন সি ই আর টি কর্তৃপক্ষ সর্বদা পাঠকদের মতামত এবং পরামর্শকে স্বাগত জানায়, যাতে ভবিষ্যতে পাঠ্যবই সংশোধনী প্রক্রিয়াগুলো সফলভাবে সম্পন্ন হতে পারে।

নিউ দিল্লি ২০ ডিসেম্বর ২০০৫ অধিকর্তা রাষ্ট্রীয় শিক্ষা গবেষণা এবং প্রশিক্ষণ পরিষদ (এন সি ই আর টি)

TEXTBOOK DEVELOPMENT COMMITTEE

CHAIRPERSON, ADVISORY GROUP FOR TEXTBOOKS IN SCIENCE AND MATHEMATICS

J.V. Narlikar, *Emeritus Professor*, Chairman, Advisory Committee, Inter University Centre for Astronomy and Astrophysics (IUCAA), Ganeshkhind, Pune University, Pune

CHIEF ADVISOR

A.W. Joshi, *Professor*, Honorary Visiting Scientist, NCRA, Pune (Formerly at Department of Physics, University of Pune)

Members

Anuradha Mathur, PGT, Modern School, Vasant Vihar, New Delhi

Chitra Goel, *PGT*, Rajkiya Pratibha Vikas Vidyalaya, Tyagraj Nagar, Lodhi Road, New Delhi

Gagan Gupta, Reader, DESM, NCERT, New Delhi

H.C. Pradhan, *Professor*, Homi Bhabha Centre of Science Education, Tata Institute of Fundamental Research, V.N. Purav Marg, Mankhurd, Mumbai

N. Panchapakesan, *Professor* (Retd.), Department of Physics and Astrophysics, University of Delhi, Delhi

P.K. Srivastava, Professor (Retd.), Director, CSEC, University of Delhi, Delhi

P.K. Mohanty, PGT, Sainik School, Bhubaneswar

P.C. Agarwal, *Reader*, Regional Institute of Education, NCERT, Sachivalaya Marg, Bhubaneswar

R. Joshi, Lecturer (S.G.), DESM, NCERT, New Delhi

S. Rai Choudhary, *Professor*, Department of Physics and Astrophysics, University of Delhi, Delhi

S.K. Dash, Reader, DESM, NCERT, New Delhi

Sher Singh, PGT, NDMC Navyug School, Lodhi Road, New Delhi

S.N. Prabhakara, PGT, DM School, Regional Institute of Education, NCERT, Mysore

Thiyam Jekendra Singh, Professor, Department of Physics, University of Manipur, Imphal

V.P. Srivastava, Reader, DESM, NCERT, New Delhi

Member-Coordinator

B.K. Sharma, Professor, DESM, NCERT, New Delhi

ACKNOWLEDGEMENTS

The National Council of Educational Research and Training acknowledges the valuable contribution of the individuals and organisations involved in the development of Physics textbook for Class XI. The Council also acknowledges the valuable contribution of the following academics for reviewing and refining the manuscripts of this book: Deepak Kumar, Professor, School of Physical Sciences, Jawaharlal Nehru University, New Delhi; Pankaj Sharan, Professor; Jamia Millia Islamia, New Delhi; Ajoy Ghatak, Emeritus Professor, Indian Institute of Technology, New Delhi; V. Sundara Raja, Professor; Sri Venkateswara University, Tirupati, Andhra Pradesh; C.S. Adgaonkar, *Reader (Retd)*, Institute of Science, Nagpur, Maharashtra; D.A. Desai, Lecturer (Retd), Ruparel College, Mumbai, Maharashtra; F.I. Surve, Lecturer, Nowrosjee Wadia College, Pune, Maharashtra; Atul Mody, Lecturer (SG), VES College of Arts, Science and Commerce, Chembur, Mumbai, Maharashtra; A.K. Das, PGT, St. Xavier's Senior Secondary School, Delhi; Suresh Kumar, PGT, Delhi Public School, Dwarka, New Delhi; Yashu Kumar, PGT, Kulachi Hansraj Model School, Ashok Vihar, Delhi; K.S. Upadhyay, PGT, Jawahar Navodaya Vidyalaya, Muzaffar Nagar (U.P.); I.K. Gogia, PGT, Kendriya Vidyalaya, Gole Market, New Delhi; Vijay Sharma, PGT, Vasant Valley School, Vasant Kunj, New Delhi; R.S. Dass, Vice Principal (Retd), Balwant Ray Mehta Vidya Bhawan, Lajpat Nagar, New Delhi and Parthasarthi Panigrahi, PGT, D.V. CLW Girls School, Chittranjan, West Bengal.

The Council also gratefully acknowledges the valuable contribution of the following academics for the editing and finalisation of this book: A.S. Mahajan, Professor (*Retd*), Indian Institute of Technology, Mumbai, Maharashtra; D.A. Desai, *Lecturer* (*Retd*), Ruparel College, Mumbai, Maharashtra; V.H. Raybagkar, *Reader*, Nowrosjee Wadia College, Pune, Maharashtra and Atul Mody, *Lecturer* (SG), VES College of Arts, Science and Commerce, Chembur, Mumbai, Maharashtra.

The council also acknowledges the valuable contributions of the following academics for reviewing and refining the text in 2017: A.K. Srivastava, DESM, NCERT, New Delhi; Arnab Sen, NERIE, Shillong; L.S. Chauhan, RIE, Bhopal; O.N. Awasthi (*Retd.*), RIE, Bhopal; Rachna Garg, DESM, NCERT, New Delhi; Raman Namboodiri, RIE, Mysuru; R.R. Koireng, DCS, NCERT, New Delhi; Shashi Prabha, DESM, NCERT, New Delhi; and S.V. Sharma, RIE, Ajmer.

Special thanks are due to M. Chandra, *Professor and Head*, DESM, NCERT for her support.

The Council also acknowledges the efforts of Deepak Kapoor, *Incharge*, Computer Station, Inder Kumar, *DTP Operator*; Saswati Banerjee, *Copy Editor*; Abhimanu Mohanty and Anuradha, *Proof Readers* in shaping this book.

The contributions of the Publication Department in bringing out this book are also duly acknowledged.

মুখবন্ধ

এক দশকেরও সময় পূর্বে, জাতীয় শিক্ষানীতির (NPE-1986) ভিত্তিতে জাতীয় শিক্ষা গবেষণা ও প্রশিক্ষণ পর্ষদ (NCERT), অধ্যাপক টি ভি রামকৃষ্ণাণ, এফ আর এস এর সভাপতিত্বে একদল জ্ঞানী সহযোগী লেখকের সহায়তায় একাদশ ও দ্বাদশ শ্রেণির পদার্থবিদ্যা বিষয়ে পাঠ্যপুস্তক প্রকাশ করে। এই পুস্তকগুলোকে শিক্ষক ও ছাত্রসমাজ সমানরৃপে সাদরে গ্রহণ করেছিল। বাস্তবে এই পুস্তকগুলো একটি মাইল ফলক তথা নতুন ধারার দিশারীরূপে প্রতিভাত হয়েছে, তথাপি পাঠ্যপুস্তক বিশেষ করে বিজ্ঞানের বইয়ের বিকাশ, পরিবর্তনীয় উপলব্ধি, প্রয়োজনীয়তা, পুনর্নিবেশ তথা শিক্ষার্থী, শিক্ষাবিদ এবং সমাজের অভিজ্ঞতার দৃষ্টিিতে এক গতিশীল প্রক্রিয়া। বিদ্যালয় শিক্ষার জন্য জাতীয় পাঠ্যক্রম এর রূপরেখা - 2000 এর উপর ভিত্তি করে সংশোধিত পাঠ্যক্রম এর মতো পদার্থবিদ্যার বই-এর আরেক সংস্করণ প্রফেসর সুরেশ চন্দ্রের নেতৃত্বে প্রকাশিত হয় যা এতদিন পর্যস্ত চলে আসছে। সম্প্রতি এন সি ই আর টি জাতীয় পাঠ্যক্রম এর রূপরেখা, 2005 (NCF-2005) প্রকাশিত করে এবং বিদ্যালয় স্তরে পাঠ্যসুচি নবীকরণের প্রক্রিয়ার সময় পাঠ্যক্রমের সে অনুসারে সংশোধন করা হয়েছে। উচ্চতর মাধ্যমিক স্তরের পাঠ্যসুচি এই অনুসারে বিকশিত হয়েছিল।

একাদশ শ্রেণির পাঠ্যপুস্তকে দুইভাগে মোট 15 টি অধ্যায় আছে। প্রথম ভাগে আটটি অধ্যায় এবং দ্বিতীয় ভাগে পরবর্তী সাতটি অধ্যায় আছে। বর্তমানে এই বইটি পাঠ্যপুস্তক উন্নয়ন দলের একটি নতুন প্রচেস্টার ফসল এবং শিক্ষার্থীরা পদার্থবিদ্যার সৌন্দর্য এবং যুক্তিগুলোকে গ্রহণ করবে, এই আশা করে। উচ্চ মাধ্যমিকের পর শিক্ষার্থীরা পদার্থবিদ্যার অধ্যয়ন বজায় রাখতে পারে আবার নাও রাখতে পারে, কিন্ডু আমরা মনে করি তারা অন্য কোনো বিষয় বা শাখা যেমন অর্থ ব্যবস্থা, প্রশাসন, সমাজ বিজ্ঞান, পরিবেশ, কারিগরী বিদ্যা, প্রযুক্তি বিদ্যা, জীববিদ্যা বা চিকিৎসাবিদ্যা এর যে-কোনো একটি নিয়ে অগ্রসর হোক না কেন পদার্থবিদ্যার চিন্তন পদ্ধতির উপযোগিতা তারা অনুভব করবে। আর যে সকল শিক্ষার্থীরা পদার্থবিদ্যা নিয়ে এই স্তরের পরে অধ্যয়ন বজায় রাখবে, এই বইয়ের মধ্যে বিভিন্ন উল্লিখিত বিষয়বস্তুগুলো নিশ্চিতরূপে তাদের সুদৃঢ় ভিত্তি প্রদান করবে।

পদার্থবিদ্যা হল, বিজ্ঞান এবং প্রযুক্তিবিদ্যার মোটামুটি সব শাখাগুলোকে বুঝতে প্রয়োজনীয় ভিত্তি স্বরূপ। এটা খুব আকষর্ণীয় যে অন্যান্য শাখা যেমন অর্থনীতি, বাণিজ্য এবং আচরণগত বিজ্ঞানের ক্ষেত্রে পদার্থবিদ্যার চিস্তা ধারণার ব্যবহার ক্রমবর্ধমান। আমরা এই বিষয়ে অবগত যে মৌলিক পদার্থবিদ্যার কিছু সাধারণ নীতি প্রায়ই ধারণাগতভাবে জটিল। আমরা এই বইয়ে ধারণাগত সঙ্গতি আনার চেন্টা করেছি। বিষয়ের কাঠিন্যতাকে উপেক্ষা না করে শিক্ষণ কৌশল এবং সহজ সরল ভাষা ব্যবহার করা আমাদের চেন্টার মূল বিষয় ছিল। পদার্থবিদ্যার প্রকৃতি এরূপ যে উহাতে নির্দিন্ট ন্যূনতম কিছু গণিতের ব্যবহার আবশ্যক। আমরা যতদুর পর্যন্ত সম্ভব গাণিতিক সূত্রগুলোর যৌন্তিক কায়দায় বিকশিত করার চেন্টা করেছি।

পদার্থবিদ্যার ছাত্ররা এবং শিক্ষকরা নিশ্চয়ই উপলব্ধি করেন পদার্থবিদ্যা বিষয়টি কেবল স্মৃতিতে রাখাই নয় অনুধাবনেরও প্রয়োজন। মাধ্যমিক থেকে উচ্চ মাধ্যমিক এবং এরও উচ্চস্তরের পদার্থবিদ্যায় মূলত 4 টি উপাদান : (a) গণিতের পর্যাপ্ত সুদৃঢ় ভিত্তি (b) পরিভাষাগত শব্দাবলি এবং শর্তাবলি যার সাধারণ ইংরেজি অর্থ সম্পূর্ণ ভিন্নও হতে পারে (c) নতুন জটিল ধারণা এবং (d) পরীক্ষামূলক ভিত। আমরা আমাদের চারপাশের পরিবেশের যথার্থ বিবরণের উন্নতি সাধনে এবং আমাদের পর্যবেক্ষণ সমূহকে পরিমেয় রাশিমালার আকারে প্রকাশ করতে চাই, তাই পদার্থবিদ্যায় গণিতের একান্ত প্রয়োজন। পদার্থবিদ্যা কণাসমূহের নতুন নতুন ধর্মাবলির আবিষ্কার করে এবং প্রতিটি কণার একটি করে নামকরণ করে। এই নামগুলো সাধারণত ইংরেজি, লাটিন অথবা গ্রিক ভাষা হতে চয়ন করা হয়েছে, কিন্ডু পদার্থবিদ্যা এদেরকে সম্পূর্ণ ভিন্ন অর্থ দিয়েছে। এটা বোঝার জন্য তুমি ক্ষমতা, বল, শক্তি, আধান, স্পিন এবং অন্যান্য শব্দগুলোকে যে-কোনো নির্ভরযোগ্য ইংরেজি অভিধানে দেখতে পারো এবং তাদের আভিধানিক অর্থের সঞ্চো পদার্থবিদ্যার অর্থের তুলনা করতে পারে। কণাসমূহের আচরণ ব্যাখ্যা করতে

পদার্থবিদ্যা জটিল এবং প্রায়ই রহস্যময় ধারণার অবতারণা করে। পরিশেষে মনে রাখতে হবে যে, সমগ্র পদার্থবিদ্যা পর্যবেক্ষণ ও পরীক্ষার ভিত্তির ওপর দাঁড়িয়ে আছে, যা ব্যতিত কোনো তত্ত্ব পদার্থবিদ্যার পরিধিতে গৃহীত হবে না।

এই বইয়ের কিছু বৈশিষ্ট্য আছে এবং আমরা আন্তরিকভাবে আশা করি যে, এগুলো ছাত্রছাত্রীদের কাছে বইটির উপযোগিতা বাড়াবে। অধ্যায়ের বিষয়বস্তুর উপর দ্রুততার সঙ্গো নিরীক্ষণের জন্য প্রতিটি অধ্যায়ের শেষে সারাংশ দেয়া হয়েছে। এরপর ভেবে দেখার বিষয় সমূহ দেওয়া হয়েছে যা বিদ্যার্থীদের মনে উৎপন্ন সম্ভাব্য ভ্রান্ত ধারণার নিরসনে, অধ্যায়ের কোনো নির্দিষ্ট বিবৃতি/নীতির অন্তর্নিহিত অর্থ অনুধাবনে এবং লস্ব জ্ঞানের ব্যবহারের ক্ষেত্রে প্রয়োজনীয় সতর্কতার দিকে ইঞ্চািত করবে। এগুলো কিছু চিন্তন-উদ্দীপক প্রশ্ন জাগিয়ে তোলে যা একজন শিক্ষার্থীকৈ পদার্থবিদ্যার বাইরের জীবনকেও ভাবতে শেখায়। এসব বিষয়গুলোর উপর মনোনিবেশ করতে এবং এগুলো নিয়ে চিন্তা করতে শিক্ষার্থীরা আনন্দ পাবে। এছাড়া, বিষয়বস্তু সমূহের স্পন্টীকরণের জন্য এবং প্রাত্যহিক বাস্তব জীবনের পরিস্থিতিতে এসব ধারণাগুলোর প্রয়োগকে ব্যাখ্যা করতে ব্যাপক সংখ্যক সমাধানকৃত উদাহরণকে অন্তর্ভুক্ত করা হয়েছে। পদার্থবিদ্যা বিষয়টির ক্রমিক উন্নয়নের উদ্দীপনাকে প্রকাশ করতে কখনো-কখনো ঐতিহাসিক পরিপ্রেক্ষিতে অন্তর্ভুক্ত করা হয়েছে। অনেক অধ্যায়ে হয়তো এই উদ্দেশ্যে অথবা কিছু বিষয়বস্তু, যেগুলোতে শিক্ষার্থাদের অতিরিক্ত মনোযোগ দেওয়া আবশ্যক, সেগুলোর কিছু বিশেষ বৈশিষ্ট্যকে দৃন্টিগোচর করার জন্য, বাক্সে রাখা হয়েছে। বইয়ের শেষে, বইতে ব্যবহৃত মুখ্য শব্দসমূহের একটি বিষয়সূচি দেওয়া হয়েছে।

পদার্থবিদ্যার বিশেষ প্রকৃতিতে ধারণাগত উপলব্ধি ছাড়াও নির্দিষ্ট প্রচলিত জ্ঞানসমূহ, মূল গাণিতিক সূত্রাবলি, পম্বতিও কৌশল, গুরুত্বপূর্ণ প্রাকৃতিক ধ্রুবক সমূহের সংখ্যাগত মান এবং অতিক্ষুদ্র থেকে অতিবৃহৎ পাল্লার মধ্যে পরিমাপের এককের বিভিন্ন পম্বতিসমূহ অন্তর্ভুক্ত। ছাত্রছাত্রীদের সমৃন্ধ করার জন্য এই বইয়ের শেষের দিকে পরিশিষ্ট A-1 থেকে A-9 এ প্রয়োজনীয় সূত্রাবলি, পম্বতি, কৌশল এবং ডাটাবেস দেওয়া হল। আবার কিছু কিছু অধ্যায় শেষে প্রদন্ত পরিশিষ্টগুলোতে অতিরিক্ত তথ্যসমূহ বা এ অধ্যায়ে আলোচিত বিষয়সমূহের প্রয়োগের উল্লেখ করা আছে।

ব্যাখ্যামূলক চিত্রগুলো দেওয়ার সময় বিশেষ নজর দেওয়া হয়েছে। স্পন্টতা বৃদ্ধির জন্য চিত্রগুলোকে দুটি রঙে অঞ্চন করা হয়েছে। প্রত্যেকটি অধ্যায়ের শেষে প্রচুর সংখ্যায় অনুশীলনী দেওয়া হয়েছে। তাদের মধ্যে কিছু কিছু দৈনন্দিন জীবনে ঘটমান পরিস্থিতির সঙ্গো সম্পর্কযুক্ত। ছাত্রছাত্রীদেরকে এগুলো সমাধান করার জন্য প্ররোচিত করতে হবে, এভাবে অভ্যাসের ফলে তারা দেখবে যে এগুলো অত্যধিক শিক্ষামূলক। তাছাড়া কিছু অতিরিক্ত অনুশীলনী দেওয়া হয়েছে যেগুলো তুলনামূলকভাবে অধিক চিন্তনীয়। এগুলোর উত্তর এবং সমাধান করার জন্য কিছু কিছু ক্ষেত্রে স্বাজিতগুলোও দেওয়া হয়েছে যেগুলো তুলনামূলকভাবে অধিক চিন্তনীয়। এগুলোর উত্তর এবং সমাধান করার জন্য কিছু কিছু ক্ষেত্রে স্বাজিতগুলোও দেওয়া হয়েছে। সম্পূর্ণ বইয়ে S I একক ব্যবহার করা হয়েছে। পদার্থবিদ্যার উদ্দেশ্য সাধনের লক্ষ্যে এবং নির্ধারিত পাঠ্যসূচি/পাঠ্যক্রমের অংশ হিসাবে দ্বিতীয় অধ্যায়ে "একক এবং পরিমাপনের" একটি বিস্তৃত বিবরণ দেওয়া হয়েছে। একটি দীর্ঘ বর্করেখার দৈর্ঘ্যের পরিমাপের মতো একটি সহজ ক্ষেত্রে অসুবিধাগুলোকে বক্সে আবন্ধ বিষয়ের মাধ্যমে তুলে ধরা হয়েছে। বর্তমানে গ্রহণযোগ্য সংজ্ঞাগুলোকে প্রকাশ করার জন্য এবং বর্তমানে সম্ভবপর বিভিন্ন পরিমাপনের উচ্চমাত্রার নির্ভূলতাকে সূচিত করার জন্য S I মূল এককের সারণি এবং এর সঞ্চো সম্পর্কিত অন্যান্য এককগুলো দেওয়া হয়েছে। এখানে প্রদন্ত সাংখ্যিক মানগুলো মনে রাখার প্রয়োজন নেই অথবা পরীক্ষাতে জিজ্ঞাসা করা হবে না।

ছাত্রছাত্রী, শিক্ষক-শিক্ষিকা এবং সাধারণ জনগণের মধ্যে একটি ধারণা বম্বমূল আছে যে, মাধ্যমিক থেকে উচ্চমাধ্যমিক স্তরের বিষয়বস্তুর কাঠিন্যতে একটি তীব্র ফারাক রয়েছে। একটু চিস্তা করলেই বুঝা যায় যে, বর্তমান শিক্ষা ব্যবস্থায় এমন হওয়ারই কথা। মাধ্যমিক স্তর পর্যস্ত শিক্ষা ব্যবস্থা একটি সাধারণ শিক্ষা ব্যবস্থা যেখানে শিক্ষার্থীগণকে প্রাথমিক স্তরে কতগুলো বিষয় সম্পর্কে শিক্ষা লাভ করতে হয়, যেমন বিজ্ঞান, সমাজবিজ্ঞান, গণিত, ভাষা। উচ্চতর মাধ্যমিক এবং এর পরবর্তী স্তরে পছন্দ মতো উদ্যোগক্ষেত্রে পেশাগত পারদর্শিতা অর্জন করতে হয়। তোমরা এটাকে নিম্নের অবস্থার সক্ষো তুলনা করতে পারো। শিশুরা রাস্তার গলিতে বা ঘরের বাইরে (বা ভেতরে) ছোটো জায়গায় ক্রিকেট বা ব্যাডমিন্টন খেলে। তারপর তাদের মধ্য থেকে কেউ কেউ পর পর স্কুল টিম, জেলা স্তরের টিম, রাজ্য ভিত্তিক টিম হয়ে জাতীয় টিমে সেই খেলা খেলতে চায়। প্রতি পর্যায়ে অবশ্যই ক্রমান্বয়ে বেশি প্রতিযোগিতার সম্মুখীন হতেই হয়। কোনো শিক্ষার্থী যদি বিজ্ঞান, সাহিত্য, ভাষা, সংগীত, কলা, বাণিজ্য, অর্থশাস্ত্র, স্থাপত্যবিদ্যা এক্ষেত্রগুলো নিয়ে পড়তে চায় বা তারা যদি খেলোয়াড় বা ফ্যাশন ডিজাইনার হতে চায় তবে তাদেরকে কঠোর পরিশ্রম করতে হবে।

এই বইটি অনেকের স্বতঃস্ফূর্ত এবং নিয়মিত সাহায্যের ফলে সম্পূর্ণ করা সম্ভব হয়েছে। পাঠ্যপুস্তক উন্নয়নে গঠিত দল, ড. ভি এইচ রায়বাগকারের কাছে, চার নম্বর অধ্যায়ে তাঁর বক্সের বিষয়গুলো ব্যবহারের অনুমতি প্রদানের জন্য এবং ড. এফ আই সার্ভের কাছে, 15 নং অধ্যায়ে তাঁর দুটি বক্সের বিষয়গুলো ব্যবহারের অনুমতির জন্য কৃতজ্ঞ। বিজ্ঞান শিক্ষার উন্নতির জন্য রাষ্ট্রীয় প্রচেস্টার এক অংশ হিসেবে আমাদেরকে এই পাঠ্যপুস্তক তৈরি করার কাজ অর্পণের জন্য জাতীয় শিক্ষা গবেষণা ও প্রশিক্ষণ পর্যদের অধিকর্তার কাছেও আমরা কৃতজ্ঞতা ব্যক্ত করছি। এন সি ই আর টি এর বিজ্ঞান ও গণিত শিক্ষা বিভাগের প্রধান আমাদের এই উদ্যমকে যে-কোনো ভাবে সহায়তার ক্ষেত্রে তৎপর ছিলেন। বিগত কয়েক বছর যাবৎ পূর্বের পাঠ্যপুস্তকের উন্নতিকল্পে শিক্ষক-শিক্ষিকা, ছাত্রছাত্রী এবং বিষয় বিশেষজ্ঞদের কাছ থেকে বিভিন্ন শিক্ষামূলক পরামর্শ আন্তরিকভাবে পাওয়া গেছে। এন সি ই আর টি কে যাঁরা যাঁরা পরামর্শ দিয়েছেন তাঁদের সকলের কাছে আমরা কৃতজ্ঞ। আমরা প্রথম পাঙুলিপির ওপর চর্চা এবং পরিমার্জনের জন্য আয়োজিত সম্পাদন কর্মশালা এবং সমীক্ষা কর্মশালার সদস্যদের প্রতিও কৃতজ্ঞতা প্রকাশ করছি। আমরা সভাপতি এবং ওনার লেখকমণ্ডলী যাঁদের দ্বারা 1988 সালে পাঠ্যপুস্তক লেখা হয়েছিল যা 2002 এর সংস্করণে এবং বর্তমান পাঠ্যপুস্তক বিকাশ করার ক্ষেত্রে মূল ভিত্তি এবং সহায়িকারুপে সাহায্য করেছিল, তাদেরকে ধন্যবাদ জানাই। কখনো-কখনো আগের সংস্করণের সারবত্তা অংশগুলো যেগুলো বিশেষ করে শিক্ষার্থী, শিক্ষক-শিক্ষিকা দ্বারা প্রশংসিত হয়েছে, ভবিষ্যৎ প্রজন্মের শিক্ষার্থীদের উপকারের জন্য এই পাঠ্যপুস্তকে গ্রহণ করে রেখে দেওয়া হয়েছে। আমরা শ্রদ্ধেয় পাঠকবৃন্দ, বিশেষত ছাত্রছাত্রী এবং শিক্ষক-শিক্ষিকাদের থেকে প্রয়োজনীয় পরামর্শ এবং তাঁদের মতামতকে স্বাগত জানাচ্ছি। আমরা আমাদের তরুণ পাঠক-পাঠিকাদেরকে পদার্থবিদ্যার রোমাঞ্চকর কার্যক্ষেত্রে আনন্দময় সফরের জন্য শুভেচ্ছা জানাচ্ছি।

> এ ডব্লু যোশী মুখ্য পরামর্শদাতা পাঠ্যপুস্তক উন্নয়ন কমিটি

শিক্ষক-শিক্ষিকাদের জন্য লক্ষনীয় বিষয়াবলি

এই পাঠ্যক্রমকে শিক্ষার্থীকেন্দ্রিক করার জন্য, শিক্ষার্থীদেরকে সরাসরি এই শিক্ষণ পম্বতিতে অংশগ্রহণ এবং পারস্পরিক আলোচনা করা উচিত। প্রতি সপ্তাহে একবার অথবা প্রতি ছয় শ্রেণি পাঠে অন্তত একটি শ্রেণি পাঠে এই রকম সেমিনার এবং পারস্পরিক আলোচনা সভার আয়োজন প্রয়োজন। অংশগ্রহণকারী শিক্ষার্থীগণের মধ্যে আলোচনা পর্যালোচনা করার জন্য, এই পুস্তকের কিছু বিশেষ বিশেষ অংশের উল্লেখ করে কিছু পরামর্শ নীচে দেওয়া হল।

ছাত্রছাত্রীদেরকে পাঁচ থেকে ছয়টি দলে ভাগ করা যেতে পারে। যদি আবশ্যিক হয় তবে এই দলগুলোর সদস্য পদ সম্পূর্ণ শিক্ষণ বৎসর পর্যন্ত ক্রমাবর্তন করা যেতে পারে। আলোচনার বিষয়বস্তু বোর্ডে বা কাগজে লিখে উপস্থাপন করতে হবে। শিক্ষার্থীদেরকে নির্দেশ দেওয়া হবে, প্রদত্ত কাগজে দেওয়া প্রশ্নগুলোর উত্তর অথবা প্রতিক্রিয়া কাগজে লিখে রাখতে। এরপর এগুলো নিয়ে নিজ নিজ দলে আলোচনা করতে হবে এবং সংশোধন অথবা মন্তব্য ওই সব কাগজে লিখতে হবে। এইগুলো নিয়ে একই শ্রেণি পাঠে অথবা বিভিন্ন শ্রেণি পাঠে আলোচনা করা যেতে পারে। এই লিখিত পৃষ্ঠাসমূহকে মূল্যায়ন করা যেতে পারে।

এই পুস্তক থেকে তিনটি সম্ভাব্য বিষয়কে আমরা প্রস্তাব করি। বস্তুত প্রথম দুইটি প্রস্তাবিত বিষয়গুলো খুবই সাধারণ তথা পূর্বের চার বা এর অধিক শতাব্দী ধরে বিজ্ঞানের বিকশিত হওয়ার সঙ্গে সম্পর্কযুক্ত। শিক্ষার্থী এবং শিক্ষক শিক্ষিকারা এমন অনেক বিষয় নিয়ে ভাবনা চিন্তা করতে পারেন।

1. এমন ধারণা যা সভ্যতাকে বদলে দিয়েছে (Ideas that Changed Civilization)

ধরে নাও, মানব জাতি ধীরে ধীরে বিলুপ্তির পথে এগোচ্ছে। ভবিষ্যৎ প্রজন্ম বা অন্য গ্রহাদি থেকে আগন্ডুকদের উদ্দেশ্যে কোনো বার্তা ছেড়ে যেতে হবে। প্রসিদ্ধ পদার্থবিদ আর.পি ফিন্ম্যান পরবর্তি প্রজন্মের জন্য নীচের বার্তাটি ছেড়ে যেতে চেয়েছিলেন। "পদার্থ পরমাণর সমন্বয়ে গঠিত।"

একজন ছাত্রী এবং কলা বিষয়ের শিক্ষক নীচের বার্তা ছেডে যেতে চেয়েছেন :

জল বিদ্যমান যতক্ষণ, মানব জাতির অস্তিত্ব থাকাবে ততক্ষণ।"

জলা বিশ্যমান বৃত্তমণ, মান্ব জাতির আতপ্থ বাবদৰে তত্য

আরেকজন ব্যক্তি ভাবল, এটা এমন হওয়া উচিত : "গতির জন্য চাকার ধারণা"।

তোমরা প্রত্যেক ভবিষ্যৎ প্রজন্মের জন্য কী কী বার্তা ছেড়ে যেতে চাও - তা লিখ। এরপর এইগুলো নিয়ে নিজেদের দলে আলোচনা কর এবং তোমাদের ভাবনায় যদি পরিবর্তন হয়, তবে এতে যোগ করো বা সংশোধন করো। এইগুলো তোমার শিক্ষকের কাছে দাও এবং যে-কোনো আলোচনার জন্য এতে অংশগ্রহণ করো।

2. লঘুকরণ (Reductionism)

গ্যাসের গতীয় তত্ত্ব "বৃহতের সঞ্চো ক্ষুদ্রতর", "ম্যাক্রার সঞ্চো মাইক্রোর" সম্পর্ক স্থাপন করে। একটি গ্যাস এমন একটি সংস্থা যা এর গঠনগত উপাদান, অণুগুলোর সঞ্চো সম্পর্কযুক্ত। উপাদানগুলোর বিভিন্ন বৈশিষ্ট্যের উপর ভিত্তি করে কোনো সংস্থাকে এইভাবে বর্ণনা করাকেই সাধারণত লঘুকরণ বা Reductionism বলে। এটি কোনো একটি গোষ্ঠির পৃথক পৃথক উপাদানগুলোর সরল ও আনুমানিক আচরনের সাহায্যে ওই গোষ্ঠিটির আচরনকে ব্যাখ্যা করে। এই পাম্বতির ক্ষেত্রে স্থূলদর্শী (Macroscopic) পর্যবেক্ষণ এবং অতি সূক্ষ্মদর্শী (microscopic) ধর্মাবলির মধ্যে একটি পারস্পরিক নির্ভরতা থাকবে। এই পাম্বতিটি কি ব্যবহারযোগ্য ?

পদার্থবিজ্ঞান ও রসায়ণবিজ্ঞান ছাড়া অন্য বিষয়েও এই পম্বতিগত ধারণাগুলোর কিছু সীমাবন্ধতা থাকে। একটি ক্যানভাসের চিত্রিত ছবিকে, এতে ব্যবহৃত বিভিন্ন রাসায়নিক পদার্থের ধর্মাবলি এবং চিত্রের সমন্বয় হিসাবে ভাবা যেতে পারে না। বাস্তবিকে ইহা গঠনগত উপাদানগুলোর সমষ্টি থেকে বেশি কিছু হয়ে ওঠে।

প্রশ্ন : তুমি কী এমন কোনো ক্ষেত্র ভাবতে পারো যেখানে এই পম্থা ব্যবহৃত হয়েছে ?

এমন একটি সংস্থার সংক্ষেপে উল্লেখ করো যেখানে গঠনগত উপাদানগুলোর পদের মাধ্যমে এটাকে সম্পূর্ণভাবে বর্ণনা করা যায়। অন্য একটি উদাহরণ দাও যেখানে ইহা সম্ভবপর নয়। দলের অন্যান্যদের সঙ্গো এই নিয়ে আলোচনা করো এবং তোমার মতামত দাও। এইগুলো তোমার শিক্ষককে দাও এবং এর সঙ্গো সম্পর্কিত আলোচনায় অংশগ্রহণ করো।

3. তাপের আণবিক ব্যাখ্যা (Molecular approach to heat)

নিচের ক্ষেত্রে কী ঘটবে তোমরা ভেবে আলোচনা করো। একটি আবন্ধ পাত্র ছিদ্রযুক্ত প্রাচীর দ্বারা দুইটি অংশে বিভক্ত করা হল। একটি অংশ নাইট্রোজেন গ্যাস (N₂) এবং অপর অংশটি CO₂ গ্যাস দ্বারা পূর্ণ করা হল। গ্যাসগুলো এক পাশ থেকে অপর পাশে ব্যপিত হবে। প্রশ্ন 1: উভয় গ্যাস কি একই হারে ব্যপিত হবে? যদি না হয়, তবে কোন্টির ব্যাপন বেশি হবে। কারণ দেখাও।

প্রশ্ন 2 : চাপ ও উম্নতা কি অপরিবর্তিত থাকবে ? যদি না হয়, তবে উভয় ক্ষেত্রে কী কী পরিবর্তিত হবে ? কারণ দেখাও।

তোমার উত্তর লিপিবম্ধ করো। এই নিয়ে দলের অন্যান্যদের সঙ্গে আলোচনা করো এবং সংশোধন করো অথবা মন্তব্য যোগ করো। এইগুলো শিক্ষককে দাও এবং আলোচনায় অংশগ্রহণ করো।

ছাত্রছাত্রী এবং শিক্ষক শিক্ষিকারা দেখতে পাবে, এই রকম সেমিনার ও আলোচনা করার ফলে শুধুমাত্র পদার্থবিজ্ঞানে সহায়ক হয় এমন নয়, বিজ্ঞান ও সমাজ বিজ্ঞান বিষয়েও অভাবনীয় বোঝাপড়ার সৃষ্টি হয়। এটা শিক্ষার্থীদের অনেক পরিপঞ্চতা আনে।

অধ্যায় : প্রথম প্রাকৃতিক জগৎ পদার্থবিদ্যা কী? 1.1 1 পদার্থবিদ্যার বিস্তৃতি এবং চমৎকারিত্ব 1.2 2 পদার্থবিদ্যা, প্রযুক্তি বিদ্যা এবং সমাজ 1.3 5 প্রকৃতির বলসমূহ 1.4 6 প্রাকৃতিক সূত্রাবলির প্রকৃতি 1.5 10

অধ্যায় : দ্বিতীয়

একক এবং পরিমাপ

2.1	ভূমিকা	16
2.2	এককের আন্তর্জাতিক পম্বতি	16
2.3	দৈর্ঘ্যের পরিমাপ	18
2.4	ভরের পরিমাপ	21
2.5	সময়ের পরিমাপ	22
2.6	যন্ত্রের সঠিকতা, যথার্থতা বা সূক্ষ্মতা এবং পরিমাপের ত্রুটি সমূহ	22
2.7	তাৎপর্যপূর্ণ অঙ্জ্ঞ সংখ্যা	27
2.8	ভৌত রাশিগুলোর মাত্রা	31
2.9	মাত্রাসূত্র এবং মাত্রা সমীকরণ	31
2.10	মাত্রা বিশ্লেষণ এবং এর প্রয়োগ	32

অধ্যায় : তৃতীয়

সরলরেখা বরাবর গতি

3.1	ভূমিকা	39
3.2	অবস্থান, পথের দৈর্ঘ্য এবং সরণ	39
3.3	গড়বেগ এবং গড় দ্রুতি	42
3.4	তাৎক্ষণিক বেগ এবং দ্রুতি	43
3.5	ত্বরণ	45
3.6	সমত্বরণে গতিশীল বস্তুর গতির সমীকরণ	47
3.7	আপেক্ষিক বেগ	51

অধ্যায় : চতুর্থ

সমতলীয়	গতি	
4.1	ভূমিকা	65
4.2	স্কেলার এবং ভেক্টর	65
4.3	বাস্তব সংখ্যা দ্বারা ভেক্টরকে গুণন	67

4.4	ভেক্টরের যোগ এবং বিয়োগ — লৈখিক পম্বতি	67
4.5	ভেক্টরের বিভাজন	69
4.6	ভেক্টরের সংযোজন - বিশ্লেষণাত্মক পদ্ধতি	71
4.7	সামতলিক গতি	72
4.8	বিন্দু ত্বরণে সমতলীয় গতি	75
4.9	দ্বিমাত্রিক আপেক্ষিক বেগ	76
4.10	প্রাসের গতি	77
4.11	সুযম বৃত্তীয় গতি	79

অধ্যায় : পঞ্জম

গতীয় সূত্রাবলি ভূমিকা 5.1 89 5.2 এরিস্টোটলের হেত্বাভাস 90 5.3 জড়তার সূত্র 90 5.4 নিউটনের প্রথম গতিসূত্র 91 নিউটনের দ্বিতীয় গতিসূত্র 5.5 93 নিউটনের তৃতীয় গতিসূত্র 5.6 96 5.7 ভরবেগের সংরক্ষণ 98 **5.8** একটি কণার সম্যাবস্থা 99 বলবিদ্যাতে সাধারণ বলসমূহ 5.9 100 5.10 বৃত্তিয় গতি 104 বলবিদ্যায় সমস্যাগুলোর সমাধান 5.11 105

অধ্যায় : ষষ্ঠ

কাৰ্য, শক্তি ও ক্ষমতা

61		114
6.1	ভূমিক।	114
6.2	কার্য ও গতিশক্তির ধারণা : কায-শক্তির উপপাদ্য	116
6.3	কার্য	116
6.4	গতিশক্তি	117
6.5	পরিবর্তনশীল বলের জন্য কার্য	118
6.6	পরিবর্তনশীল বলের জন্য কার্য-শক্তির উপপাদ্য	119
6.7	স্থিতিশক্তির ধারণা	120
6.8	যান্ত্রিক শক্তির সংরক্ষণ	121
6.9	স্প্রিং এর স্থিতিশক্তি	123
6.10	শক্তির বিভিন্ন রূপ : শক্তির সংরক্ষণ সূত্র	126
6.11	ক্ষমতা	128
6.12	সংঘৰ্ষ	129

অধ্যায় : সপ্তম

কণা সংস্থা এবং আবর্ত গতি

7.1	ভূমিকা	141
7.2	ভরকেন্দ্র	144

7.3	ভরকেন্দ্রের গতি	148
7.4	একটি কণা-সংস্থার রৈখিক ভরবেগ	149
7.5	দুটি ভেক্টরের ভেক্টর গুণ	150
7.6	কৌণিক বেগ এবং এর সঙ্গো রৈখিক বেগের সম্পর্ক	152
7.7	টর্ক এবং কৌণিক ভরবেগ	154
7.8	একটি দৃঢ় বস্তুর সাম্যাবস্থা	158
7.9	জড়তা ভ্রামক	163
7.10	উল্লম্ব এবং সমান্তরাল অক্ষ সমূহের উপপাদ্য	164
7.11	একটি স্থির অক্ষ সাপেক্ষে আবর্তগতির সৃতি বিজ্ঞান	167
7.12	একটি স্থির অক্ষ সাপেক্ষে আবর্তগতির গতিবিদ্যা	169
7.13	একটি স্থির অক্ষ সাপেক্ষে ঘূর্ণনের ক্ষেত্রে কৌণিক ভরবেগ	171
7.14	গড়িয়ে চলা / ঘূর্ণায়মান গতি	173

অধ্যায় : অস্টম

মহাকৰ্ষ

8.1	ভূমিকা	183
8.2	কেপলারের সূত্রাবলি	184
8.3	সার্বজনীন মহাকর্ষ সূত্র	185
8.4	মহাকর্ষ ধ্রুবক	189
8.5	পৃথিবীর অভিকর্ষজ ত্বরণ	189
8.6	পৃথিবীর অভ্যন্তরে এবং পৃথিবীপৃষ্ঠের বাইরে অভিকর্ষজ ত্বরণ	190
8.7	অভিকর্যজ স্থিতিশন্তি	191
8.8	মুক্তি দুতি	193
8.9	পৃথিবীর উপগ্রহসমূহ	194
8.10	কক্ষপথে ঘূর্ণনরত একটি কৃত্রিম উপগ্রহের শক্তি	195
8.11	ভূসমলয় এবং মেরু উপগ্রহ	196
8.12	ভারহীনতা	197

পরিশিষ্ট	20

উত্তরমালা

223

প্রাকৃতিক জগৎ (Physical World)

1.1 পদার্থবিদ্যা কী? (What is physics?)

মানুষ তার চারপাশের জগৎ নিয়ে সর্বদাই কৌতৃহলী। অরণাতীত কাল থেকেই রাত্রির আকাশের উজ্জ্বল অপার্থিব বস্তুসমূহ মানুষকে মোহিত করেছে। দিনরাত্রির পর্যায়ক্রমিক পরিবর্তন, বার্ষিক ঋতুচক্র, গ্রহণ, জোয়ার, আগ্নেয়গিরি, রামধনু প্রভৃতি সর্বদাই ছিল আশ্চর্যের বিষয়। পৃথিবীতে প্রচুর বিস্ময়কর বিচিত্র পদার্থ বর্তমান এবং জীবনের ও আচরণের বৈচিত্র্যতাও অনেক। জিজ্ঞাসু ও কল্পনাপ্রবণ মানব-মন এইর্প আশ্চর্যজনক বিষয়গুলোতে বিভিন্নভাবে সাড়া দিত। প্রাচীনকাল থেকেই মানুযের স্বাভাবিক প্রতিক্রিয়া ছিল প্রাকৃতিক পরিবেশকে যত্ন সহকারে পর্যবেক্ষণ করে প্রাকৃতিক ঘটনাবলির অর্থবহ বিন্যাস ও তাদের সম্পর্ক বের করা এবং প্রকৃতির সাথে সংযোগ স্থাপনকারী যন্ত্রাদি নির্মাণ ও ব্যবহার করা। সময়ের সাথে সাথে এই প্রয়াসে আধুনিক বিজ্ঞান ও প্রযুস্তির অগ্রগতির বিকাশ ঘটে।

বিজ্ঞান শব্দটির উৎপত্তি ল্যাটিন ক্রিয়া পদ 'সাইনশিয়া' (Scientia) থেকে যার অর্থ 'জানা'। সংস্কৃত শব্দ 'বিজ্ঞান' (Vijnan) এবং আরবি শব্দ 'ইল্ম' (Ilm) একই অর্থ বহন করে, যা হল 'জ্ঞান' (knowledge) বৃহৎ অর্থে বিজ্ঞান মানব প্রজাতির মতোই প্রাচীন। মিশর, ভারত, চীন, গ্রিস, মেসোপটেমিয়া এবং অন্যান্য অনেক দেশের প্রাচীন সভ্যতা বিজ্ঞানের অগ্রগতিতে গুরুত্বপূর্ণ অবদান রেখেছিল। যোড়শ শতাব্দী থেকে ইউরোপে বিজ্ঞান চর্চায় ব্যাপক পদক্ষেপ নেওয়া হয়েছিল। বিংশ শতাব্দী মাঝামাঝি সময়ে, বিভিন্ন সংস্কৃতিকে নিয়ে বিজ্ঞান এক সত্যিকারের আন্তর্জাতিক উদ্যোগ ক্ষেত্রে হয়ে উঠে এবং বিভিন্ন দেশ এর দ্বুত বিকাশে ভূমিকা রাখে।

বিজ্ঞান কী এবং তথাকথিত বৈজ্ঞানিক পম্বতি কী ? বিজ্ঞান হল প্রাকৃতিক ঘটনাবলিকে বিশদভাবে এবং যতটা সম্ভব গভীরত্বে গিয়ে বোঝার লক্ষ্যে এক সুশৃঙ্খল পদক্ষেপ এবং এভাবে অর্জিত জ্ঞানকে কাজে লাগিয়ে প্রাকৃতিক ঘটনাবলি সম্পর্কে পূর্বানুমান ও পরিবর্তন করা এবং সম্ভবপর ক্ষেত্রে তার নিয়ন্ত্রণ করা। আমরা চারপাশে যে সকল ঘটনাবলি দেখি তার কারণ অনুসন্থান, পরীক্ষণ এবং সিদ্ধান্ত গ্রহণই হল বিজ্ঞান। বিশ্ব সম্পর্কে জানার কৌতৃহল, প্রকৃতির রহস্যের উন্মোচনই হল বিজ্ঞানের আবিষ্কারের লক্ষ্যে প্রথম পদক্ষেপ। বৈজ্ঞানিক পদ্ধতি হল পরস্পর সংযুক্ত কতকগুলো ধাপের সমন্বয় : শৃঙ্খলাবদ্ধ পর্যবেক্ষণ (Systematic observations), নিয়ন্ত্রিত পরীক্ষা (controlled experiments), গুণগত ও পরিমাণগত যুক্তি প্রদর্শন (qualitative and

- 1.1 পদার্থবিদ্যা কী?
- **1.2** পদার্থবিদ্যার বিস্তৃতি ও চমৎকারিত্ব
- 1.3 পদার্থবিদ্যা, প্রযুক্তি এবং সমাজ
- 1.4 প্রকৃতির মৌলিক বলসমূহ
- 1.5 প্রকৃতির সূত্রাবলির স্বরূপ

সারাংশ

অনুশীলনী

2

quantitative reasoning), গাণিতিক নমুনা (mathematical modelling) গঠন, সিম্বান্ত গ্রহণ ও তত্ত্বের সত্যতা অথবা অসত্যতা যাচাই। বিজ্ঞানে প্রত্যাশা ও অনুমানেরও স্থান রয়েছে; কিন্ডু পর্যবেক্ষণসমূহ অথবা পরীক্ষা সমূহের দ্বারা আবশ্যিকভাবে নিরীক্ষণের পরই একটি বৈজ্ঞানিক তত্ত্ব চূড়ান্তভাবে গৃহীত হবে। বিজ্ঞানের প্রকৃতি ও পদ্ধতি সম্পর্কে অনেক দার্শনিক বিতর্ক রয়েছে, এখানে এদের আলোচনার প্রয়োজন নেই।

বিজ্ঞানের অগ্রগতির মূল ভিত্তি হল তত্ত্ব এবং পর্যবেক্ষণ (অথবা পরীক্ষণ) এর মধ্যে পারম্পরিক সম্পর্ক। বিজ্ঞান সর্বদা প্রগতিশীল। বিজ্ঞানে চূড়াস্ত তত্ত্ব বলে কিছু নেই এবং বিজ্ঞানীদের মধ্যেও প্রশ্নাতীতভাবে নির্ভরযোগ্য জ্ঞানীও কেউ নেই। পর্যবেক্ষণসমূহে যেইমাত্র আরও বিশদ ও সুক্ষ্ম উন্নতি ঘটে বা পরীক্ষালব্ধমান নতুন ফল প্রদান করে, প্রয়োজনবোধে পরিবর্তনের মাধ্যমে তত্ত্বসমূহকে তাদের উপযোগী করে তুলতে হয়। কখনও কখনও সংশোধনগুলো বিদ্যমান তত্ত্বের পরিকাঠামোতে থাকতে পারে এবং চূড়ান্ত নাও হতে পারে। উদাহরণ স্বরুপ, জোহান্স্ কেপলার (Johannes Kepler (1571-1630), ট্রাইকো ব্রাহের (Tycho Brahe (1546-1601) দ্বারা সংগৃহীত গ্রহের গতি বিষয়ক বিশদ তথ্যাবলি পরীক্ষা করে তথ্যগুলোকে ভালোভাবে মেলাতে নিকোলাস কোপারনিকাস (Nicolas Copernicus (1473–1543) দ্বারা কল্পিত সৌরকেন্দ্রিক তত্ত্বে থাকা গ্রহগুলোর বৃত্তাকার কক্ষপথকে উপবৃত্তাকার কক্ষপথ দ্বারা প্রতিস্থাপিত করেন। যদিও কদাচিৎ বিদ্যমান তত্ত্ব নতুন পর্যবেক্ষণগুলোকে ব্যাখ্যা করতে অক্ষম। এটাই বিজ্ঞানের উর্দ্ধিগামিতার কারণ। বিংশ শতাব্দীর শুরুতে উপলব্ধি করা গেল যে, যদিও নিউটনের বলবিদ্যা ঐ সময়ের সফল তত্ত্ব ছিল কিন্তু তা সত্ত্বেও পরমাণু বিষয়ক কিছু অতি মৌলিক বিষয় ব্যাখ্যা করতে পারেনি। একইভাবে, তখন গৃহীত আলোকের তরঞ্চারুপ আলোক তড়িৎ ক্রিয়া ব্যাখ্যা করতে ব্যর্থ হয়। এটি পারমাণবিক ও আণবিক ঘটনাবলির চর্চা বিষয়ক একটি সম্পূর্ণ নতুন তত্ত্বের (কণা বলবিদ্যা : Quantum Mechanics) উদ্ভাবনের প্রেরণা যোগায়।

ঠিক যেমন একটি নতুন পরীক্ষা বিকল্প তাত্ত্বিক মডেলের প্রস্তাব করতে পারে, একটি তত্ত্বের অগ্রগতি কিছু কিছু পরীক্ষায় কী লক্ষ্য করতে হবে তার সুপারিশ করতে পারে। 1911 সালে আর্নেস্ট রাদারফোর্ড (Ernest Rutherford : 1871–1937) সোনার পাত দ্বারা আলফা কণার বিক্ষেপণ পরীক্ষায় প্রাপ্ত ফলাফলের সাহায্যে পরমাণুর নিউক্লিয় মডেল প্রতিষ্ঠা করেন যা পরবর্তীতে 1913 সালে নীলস্ বোর (1885–1962) প্রদত্ত হাইড্রোজেন পরমাণুর কোয়ান্টাম তত্ত্বের মূল ভিত্তি হয়ে দাঁড়ায়। অপরদিকে, 1930 সালে পল ডিরাক (1902–1984) সর্ব প্রথম তত্ত্বগতভাবে বিপরীত কণার ধারণা প্রবর্তন করেছিলেন এবং এর দু'বছর পর কাল এন্ডারসন পরীক্ষামূলকভাবে

পজিট্রন বা এন্টি-ইলেকট্রন আবিষ্কারের মাধ্যমে এটি নিশ্চিত করেন। প্রাকৃতিক বিজ্ঞানে পদার্থবিদ্যা একটি মূল শাখা যাতে রসায়নবিদ্যা ও জীববিদ্যার মতো অপরাপর শাখাও অন্তর্ভুক্ত । পদার্থবিদ্যা কথাটি এসেছে একটি গ্রিক শব্দ হতে যার অর্থ প্রকৃতি । সংস্কৃতে সমার্থক শব্দ হল 'ভৌতিকী' যা প্রাকৃতিক জগতের অধ্যয়ন প্রসঙ্গো ব্যবহৃত হয় । এই শাখার যথাযথ সংজ্ঞা দেওয়া সম্ভব নয় বা প্রয়োজনও নেই । আমরা ব্যাপক অর্থে পদার্থবিদ্যাকে প্রকৃতির মূল সূত্র সমূহের অধ্যায়ন এবং বিভিন্ন প্রাকৃতিক ঘটনাবলিতে তাদের প্রকাশরূপে বর্ণনা করা হয়েছে । এখানে পদার্থবিদ্যার দুটি মূল দিক নিয়ে আলোচনা করা হল : **একত্রীকরণ** (unification) এবং স**ংক্ষেপন** (reduction) ।

পদার্থবিদ্যায় আমরা কিছু কিছু ধারণা ও সূত্রের মাধ্যমে বৈচিত্র্যময় প্রাকৃতিক ঘটনাবলির ব্যাখ্যা দেওয়ার চেম্টা করি। বিভিন্ন অঞ্চল এবং শর্তে কিছু কিছু সার্বজনীন সূত্রের প্রকাশরুপে প্রাকৃতিক জগতকে দেখার প্রচেষ্টাও হল পদার্থবিদ্যা। উদাহরণস্বরূপ, (নিউটন প্রদন্ত) একই মহাকর্য সূত্র আপেলের মাটিতে পড়াকে যেমন বর্ণনা করে তেমনি বর্ণনা করে পৃথিবীর চারদিকে চাঁদের গতি এবং সূর্যের চারদিকে গ্রহদের গতি। একইভাবে, তড়িৎ চুম্বকীয় মূল সূত্রাবলির (ম্যাক্সওয়েলের সমীকরণ সমূহ) দ্বারা সকল তাড়িতিক ও চৌম্বকীয় ঘটনাবলিকে ব্যাখ্যা করা যায়। প্রকৃতির মূল বলগুলোকে (1.4 অনুচ্ছেদ) একত্রীকরণের প্রচেষ্টাটি একত্রীকরণের একই উদ্দেশ্যকে প্রতিফলিত করে।

একটি প্রাসঞ্চিক প্রচেষ্টা হল কোনো একটি বৃহৎ ও অধিকতর জটিল সংস্থার উপাদানস্বরূপ সরলতর অংশগুলোর ধর্মাবলি ও তাদের পারস্পরিক ক্রিয়া থেকে সংস্থাটির ধর্মাবলিকে বের করা। পদার্থবিদ্যার মূলে থাকা এরূপ অনুসৃত পদ্ধতিকেই বলা হয় **বিশিষ্টকরণ**। উদাহরণস্বরূপ, উনবিংশ শতান্দীতে উদ্ভাবিত তাপগতিবিদ্যার বিষয়টি আয়তনিক সংস্থার পরীবীক্ষণিক রাশিগুলো যেমন তাপমাত্রা, আন্তঃ শক্তি, এনটুপি প্রভৃতি বিষয় বর্ণনা করে। পরবর্তীতে গতিতত্ত্ব এবং পরিসাংখ্যিক বলবিজ্ঞানের বিষয়সমূহ আয়তনিক সংস্থাটির আণবিক উপাদানসমূহের ধর্মাবলির মাধ্যমে এই রাশিগুলোর তাৎপর্য ব্যাখ্যা করে। বিশেষত, দেখা গেছে কোনো সংস্থার তাপমাত্রা সংস্থাটির অণুগুলোর গড় গতিশক্তির সাথে সম্পর্কযুন্ত।

1.2 পদার্থবিদ্যার বিস্তৃতি এবং চমৎকারিত্ব (Scope and excitement of physics)

পদার্থবিদ্যার বিভিন্ন উপ-শাখার দিকে তাকালে পদার্থবিদ্যার বিস্তৃতি সম্পর্কে আমরা কিছুটা ধারণা পেতে পারি। মূলত এক্ষেত্রে আগ্রহের দুটি অঞ্চল : পরীবীক্ষণিক (macroscopic) ও আণুবীক্ষণিক microscopic)। গবেষণাগার, পার্থিব এবং জ্যোতির্বিজ্ঞানীয় ক্ষেত্রের

পদার্থবিদ্যা

প্রাকৃতিক জগৎ

ঘটনাবলি পরীবীক্ষণিক অঞ্চলের অন্তর্গত। অপরদিকে আণবিক, পারমাণবিক ও নিউক্লিয় ঘটনাবলি আণুবীক্ষণিক অঞ্চলের অন্তর্গত।* সনাতন পদার্থবিদ্যা মূলত পরীবীক্ষণিক ঘটনাবলি নিয়ে চর্চা করে এবং বলবিদ্যা, তড়িৎগতিবিদ্যা, আলোকবিজ্ঞান এবং তাপগতিবিদ্যার মতো বিষয়গুলো এর অন্তর্ভুক্ত। কণাসমূহ, দৃঢ় ও বিকৃতিযোগ্য বস্তুসমূহ এবং সাধারণ কণাসংস্থার গতি (এবং সাম্যাবস্থা) বিষয়ক নিউটনের গতীয় সূত্রাবলি এবং মহাকর্ষীয় সূত্রের উপরই বলবিদ্যা প্রতিষ্ঠিত। গ্যাস জেট নির্গমনের দ্বারা রকেটের উৎক্ষেপণ, জলতরঙ্গা অথবা বায়ুতে শব্দতরঙ্গোর বিস্তার, তারের অধীনে বাঁকানো রডের সাম্যাবস্থা প্রভৃতি হল বলবিদ্যার সমস্যাসমূহ। আহিত এবং চৌম্বক পদার্থের সাথে জড়িত তাড়িতিক এবং চৌম্বকীয় পরিবর্তন নিয়ে আলোচনা করে। তাপীয় ইঞ্জিন ও হিমায়ক সমূহের দক্ষতা, ভৌত ও রাসায়নিক প্রক্রিয়া সমূহের অভিমুখীনতা প্রভৃতি হল তাপগতিবিদ্যার আগ্রহের বিষয়।

পদার্থবিদ্যার আণুবীক্ষণিক অঞ্চলটিতে পারমাণবিক ও নিউক্লিয় পরিসরে (এবং এমনকি তার চেয়েও ক্ষুদ্র পরিসরে) পদার্থের সংযুতি ও গঠন এবং ইলেকট্রন, ফোটন ও অন্যান্য প্রাথমিক কণাসমূহের সাথে তাদের পারস্পরিক ক্রিয়া বিষয়ক রহস্যময় বিষয়াবলি আলোচিত হয়। এই অঞ্চলটির ব্যাখ্যায় সনাতন পদার্থবিদ্যা অসমর্থ এবং তাই বর্তমানে কোয়ান্টাম তত্ত্বকেই আনুবীক্ষণিক ঘটনাবলির ব্যাখ্যায় যথার্থ কার্যকর কাঠামো রূপে ধরে নেওয়া হয়েছে। সর্বোপরি, পদার্থবিদ্যা নামক ইমারতটি বড়োই সুন্দর ও মনোরম এবং তুমি বিষয়টিকে যত

চিত্র 1.1 পদার্থ বিদ্যায় তত্ত্ব ও পরীক্ষা পরস্পর হাত মিলিয়ে এগোয় এবং পরস্পর পরস্পরের অগ্রগতিতে সাহায্য করে। রাদারফোর্ডের আলফা কণা বিক্ষেপণ পরীক্ষা পরমাণুর নিউক্লিয় মডেল প্রদান করে।

ঘটনাবলি হল তড়িৎ গতিবিদ্যার আলোচ্য বিষয়। এর মূল সূত্রাবলি কুলস্ব, ওরস্টেড, অ্যাম্পিয়ার ও ফ্যারাডে দ্বারা প্রদন্ত এবং ম্যাক্সওয়েল এদেরকে তাঁর বিখ্যাত সমীকরণের সেটে সমস্বিত করেন। কোনো চৌম্বকক্ষেত্রে তড়িৎবাহী পরিবাহীর গতি, তড়িৎ বর্তনীতে পরিবর্তী বিভব (সংকেত) প্রয়োগের প্রভাব, এন্টেনার ক্রিয়া, আয়নমণ্ডলে বেতার তরঙ্গের বিস্তার প্রভৃতি হল তড়িৎ গতিবিদ্যার সমস্যাবলি। আলোকবিজ্ঞান আলোবিষয়ক ঘটনাবলি নিয়ে আলোচনা করে। নতোবীক্ষণ (telescope) ও অণুবীক্ষণ (microscope) যন্ত্রের কার্যনীতি, পাতলা ঝিল্লি দ্বারা রঙের প্রদর্শন প্রভৃতি হল আলোকবিজ্ঞানের বিষয়। তাপগতিবিদ্যা বলবিদ্যার ন্যায় বস্তুর সামগ্রিক গতি নিয়ে আলোচনা করে না। বরং তাপগতিবিদ্যা পরীবীক্ষণিক সাম্যাবস্থায় থাকা সংস্থা এবং বাহ্যিক কার্য ও তাপ সঞ্জালনের দরুন সংস্থার অন্তঃশক্তি, তাপমাত্রা, এনট্রপি প্রভৃতির বেশি অনুধাবন করবে তত বেশি প্রশংসা করবে।

তোমরা এখন দেখতে পাবে যে পদার্থবিদ্যার বিস্তৃতি সত্যিই বিশাল। দৈর্ঘ্য, ভর, সময়, শক্তি প্রভৃতির ন্যায় ভৌতরাশিসমূহের মানের এক বিম্বয়কর পাল্লাকে এটি অন্তর্ভুক্ত করে। একদিকে, এটি ইলেকট্রন, প্রোটন প্রভৃতি ঘটিত অতি ক্ষুদ্রমানের দৈর্ঘ্য (10⁻¹⁴ m বা তার চেয়েও ক্ষুদ্র) বিষয়ক ঘটনাবলি চর্চা করে; অপরদিকে এটি নাক্ষত্রিক দূরত্বের জ্যোতির্বিজ্ঞানীয় ঘটনাবলি, এমনকি 10²⁶ m মাত্রা পর্যন্ত বিস্তৃত সমগ্র মহাবিশ্বকে নিয়েও চর্চা করে। দৈর্ঘ্যের ঝেলুটি স্কেলের আনুপাতিক অন্তর 10⁴⁰ বা তারও বেশি। দৈর্ঘ্যের স্কেলকে আলোর গতিবেগ দিয়ে ভাগ করলে সময়ের স্কেলের পাল্লাটি পাওয়া যাবে: 10⁻²² s হতে 10¹⁸ s. ভরের পাল্লাটি হয় 10⁻³⁰ kg (ইলেকট্রনের ভর) হতে 10⁵⁵ kg (পর্যবেক্ষণ যোগ্য জ্ঞাত বিশ্বের ভর)। পার্থিব ঘটনাবলি এই পাল্লার মধ্যবর্তী কোথায়ও থাকে।

* অধৃনা, পরীবীক্ষণিক ও আণুবীক্ষণিক অঞ্চলের অন্তর্বর্তী অঞ্চল (তথাকথিত মেসোস্কোপিতে পদার্থবিদ্যা) যা পারমাণবিক ব্যাসের দশ থেকে একশতগুণ বিস্তৃত অঞ্চল নিয়ে চর্চা করে, তা গবেষণায় এক সাড়া জাগানো ক্ষেত্র হিসাবে উঠে এসেছে। পদার্থবিদ্যা বিভিন্ন দিক দিয়েই চিন্তাকর্ষক। পদার্থবিদ্যার মূল তত্ত্বসমূহের নমনীয়তা ও সর্বজনীনতা এবং কিছু প্রাথমিক ধারণা ও সূত্রের সাহায্যে ভৌত রাশিসমূহের মানের বিস্তীর্ণ পাল্লার ঘটনাবলিকে ব্যাখ্যা করতে পারা কিছু কিছু মানুযের কাছে চিন্তাকর্ষক করে তুলেছে। অন্যদের কাছে প্রকৃতির গূঢ় রহস্য উন্মোচনে তত্ত্বের যথার্থতা ও ভুল প্রমাণে কল্পনাপ্রসূত পরীক্ষা চালানোর দুরূহতা রোমাঞ্চকর। ফলিত পদার্থবিদ্যাও সমভাবে চাহিদাপূর্ণ। উপযোগী যন্ত্রাদির নির্মাণে প্রাকৃতিক সূত্রাবলির প্রয়োগ ও বিকাশ অতীব কৌত্বহল উদ্দীপক ও রোমাঞ্চকর অংশ এবং এ প্রচেন্টায় সুনিপুণ নির্মাণ কৌশলতা ও গভীর অধ্যাবসায় একাস্ত প্রয়োজন।

বিগত কয়েক শতাব্দী ধরে পদার্থবিদ্যার অভূতপূর্ব অগ্রগতির পেছনে কী রয়েছে ? যেকোনো অভাবনীয় উন্নতিই সাধারণত আমাদের মূল ধারণার পরিবর্তনের সাথে জড়িত। প্রথমত, এটি অনুধাবন করা গেছে যে, বিজ্ঞানের উন্নয়নে গুণগত ভাবনাচিন্তা নিঃসন্দেহে গুরুত্বপূর্ণ, কিন্তু ইহাই কেবলমাত্র যথেষ্ট নয়। বিজ্ঞানের, বিশেষত উন্নয়নের মূলে রয়েছে গুণগত পরিমাপ কেননা, প্রকৃতির ঘটমান বিষয় সংক্রান্ত সূত্রাবলিকে সুম্পষ্ট ও নির্ভুল গাণিতিক সমীকরণসমূহের মাধ্যমে প্রকাশ করা যেতে পারে। দ্বিতীয়ত, অতি গুরুত্বপূর্ণ উপলব্ধি হল পদার্থবিদ্যার মূল সূত্রাবলি সার্বজনীন — একই সূত্রাবলিকে ব্যাপকভাবে বিভিন্ন ক্ষেত্রে প্রয়োগ করা যায়। সর্বশেষে, আসন্নায়নের কৌশলকে অতিসফল প্রক্রিয়ারপে প্রতিভাত হয়। দৈনন্দিন জীবনে দেখা বহু ঘটনাবলি নিঃসন্দেহে মূল সুত্রাবলির জটিল প্রকাশ স্বরুপ। বিজ্ঞানীরা কোনো একটি ঘটনার অপেক্ষাকৃত কম তাৎপর্যবহ বৈশিষ্ট্যাবলি থেকে ঘটনাটির অপরিহার্য বৈশিষ্টাবলী অহরণের গুরুত্ব অনুধাবন করেন। কোন ঘটনার সমস্ত জটিলতাকে একসাথে বিবেচনায় আনা বাস্তব সম্মত নয়। একটি উত্তম কৌশল হল প্রথমে অপরিহার্য বৈশিষ্ট্যাবলির উপর লক্ষ্য করা, মূলনীতিগুলো বের করা এবং তারপর সংশোধনের মাধ্যমে ঘটনাটির একটি অধিকতর সংশোধিত তত্ত্ব গঠন করা। উদাহরণস্বরূপ একটি পাথর ও একটি পালককে একই উচ্চতা থেকে ছেড়ে দেওয়া হলে ওরা একই সময়ে ভূমিতে পৌঁছায় না। কারণটি হল, মূলত অভিকর্ষের অধীনে অবাধে পতনের ঘটনার অত্যাবশ্যক বৈশিষ্ট্য বায়ুর বাধাজনিত উপস্থিতি জটিল করে তোলে। অভিকর্ষের অধীনে অবাধে পতনের সূত্রটি পেতে বায়ুর বাধা উপেক্ষণীয় এমন একটি পরিস্থিতির সৃষ্টি করা প্রয়োজন। উদাহরণস্বরূপ আমরা পাথর ও পালকটিকে একটি বায়ুশুন্য দীর্ঘনলে পড়তে দিলাম। সেক্ষেত্রে, দুটি বস্তুই প্রায় সমহারে পড়তে থাকবে যা, অভিকর্ষজ ত্বরণ বস্তুর ভর নিরপেক্ষ — এই মূল সূত্রটিকে প্রতিষ্ঠা করে। এভাবে প্রাপ্ত মূল সূত্রটিতে পালকের ক্ষেত্রে বায়ুর বাধাজনিত সংশোধন এলে প্রচলিত তত্ত্বটি সংশোধন করা যায় এবং অভিকর্ষের প্রভাবে পৃথিবীতে পতনশীল বস্তর তত্ত্রটিকে অধিকতর বাস্তব সম্মতরুপে গঠনের চেস্টা করা যায়।

প্রকল্প, স্বতঃসিম্প সত্য ও মডেল : (Hypothesis, axioms and models)

পদার্থবিদ্যা ও গণিতের সব কিছুই প্রমাণ করা যায় এমনটা ভেবে নেওয়া কারো উচিত নয়। পদার্থবিদ্যার এবং গণিতেরও সকল কিছুই অনুমাণের উপর দাঁড়ানো।এই অনুমাণগুলোর প্রত্যেকটিকে বিভিন্ন রূপে বলা যায় : প্রকল্প স্বতঃসিম্ব বা স্বীকার্য ইত্যাদি।

উদাহরণস্বরূপ নিউটন প্রস্তাবিত মহাকর্ষ সূত্রটি অনুমাণ নির্ভর বা প্রকল্প, যা তিনি তাঁর সৃজনশীল মেধারভিত্তিতে প্রস্তাব করেন। তাঁর পূর্বে সূর্যের চারদিকে গ্রহের আবর্তন, পৃথিবীর চারদিকে চাঁদের গতি, দোলক, পৃথিবীর দিকে পতনশীল বস্তুর গতি প্রভৃতির পর্যবেক্ষণ, পরীক্ষা ও বিভিন্ন তথ্যাবলি সংগৃহীত হয়েছে। এদের প্রত্যেকটি ক্ষেত্রেই পৃথক ব্যাখ্যার প্রয়োজন, যা ছিল অনেকটাই গুণগত আলোচনা। মহাকর্যীয় সূত্রটি কী বোঝায়, যদি আমরা অনুমাণ করি যে, এই বিশ্ব ব্রত্নান্ডের যেকোন দুটি ভর ওদের ভরের গুণফলের সমানুপাতিক এবং ওদের মধ্যবর্তী দূরত্বের বর্গের ব্যস্তানুপাতিক একটি বলের দ্বারা পরস্পর পরস্পরকে আকর্ষণ করে — তবেই এ সকল ঘটনা একই প্রচেন্টায় ব্যাখ্যা করা যায়। এটি কেবলমাত্র এই পর্যবেক্ষণগুলোকেই ব্যাখ্যা করে না, এটি আমাদেরকে ভবিয্যতের বিভিন্ন পরীক্ষাসমূহের ফলাফল সম্পর্কে সিদ্ধাস্ত নিতেও সাহায্য করে।

প্রকল্প হল এমন এক পরিকল্পনা যার সত্যতা আছে কী না এর অনুমান ছাড়াই ধরে নেওয়া হয়। কাউকে সার্বজনীন মহাকর্যসূত্রটি প্রমাণ করতে বলা যুন্তিসন্মত নয়, কেন না এটিকে প্রমাণ করা যাবে না। বিভিন্ন পরীক্ষা ও পর্যবেক্ষণের সাহায্যে যাচাই ও রুপায়ণ করা যাবে।

সতঃসিন্দ হল স্বয়ং প্রমাণিত সত্য যেখানে মডেল হল কোনো দৃশ্যমান ঘটনাকে ব্যাখ্যা করার জন্য একটি প্রস্তাবিত তত্ত্ব। এ পর্যায়ে এসকল শব্দের ব্যবহারে তোমার বিব্রত হওয়ার প্রয়োজন নেই। পরের বছর তুমি হাইড্রোজেন পরমাণুর গঠন সম্পর্কিত 'বোরের মডেল' সম্বন্ধে জানবে, যেখানে নীলস্বোর মনে করে নেন যে হাইড্রোজেন পরমাণুতে ইলেকট্রন কিছু নিয়ম (স্বীকার্য) মেনে চলে। কেন তিনি এমনটা করেছিলেন ? তাঁর কাছে বহুল পরিমাণে বর্ণালি বীক্ষণ সংক্রাস্ত তথ্যাবলি ছিল, যেগুলোকে অন্য কোন সূত্র ব্যাখ্যা করতে পারেনি। তাই বোর বলেছিলেন, যদি আমরা অনুমান করি যে, একটি পরমাণু এমনভাবেই আচরণ করে তবে আমরা মুহূর্তেই এ সকল ঘটনাবলি ব্যাখ্যা করতে পারব।

আইনস্টাইনের বিশেষ আপেক্ষিকতাবাদের তত্ত্বও এমন দুটি স্বীকার্যের উপর প্রতিষ্ঠিত : একটি হল তড়িৎ চুম্বকীয় তরঙ্গের বেগের স্থিরতা এবং অপরটি হল সকল জড়ত্বীয় নির্দেশতন্ত্রে প্রাকৃতিক সূত্রাবলির যথাযথতা। আলোর উৎস ও দর্শক নিরপেক্ষভাবে শূন্য মাধ্যমে আলোর গতিবেগ স্থির কাউকে এটি প্রমাণ করতে বলা বিচক্ষণতা নয়।

গণিতেও প্রতিটি পর্যায়ে আমাদের স্বতঃসিম্ব ও প্রকল্পের প্রয়োজন হয়। 'দুটি সমান্তরাল রেখা কখনোই পরস্পরকে ছেদ করে না' — ইউক্লিডের এই বিবৃতিটি একটি প্রকল্প। এটি বোঝায় যে, এই বিবৃতিটিকে অনুমান করে নিলে সরলরেখা সমূহের বৈশিস্ট্যাবলি, এদের গঠিত দ্বিমাত্রিক ও ত্রিমাত্রিক গঠন ব্যাখ্যা করতে পারি। কিন্তু তুমি এমনটা ধরে না নিয়ে স্বাধীনভাবে অন্য কোনো স্বতঃসিম্ব ব্যবহার কর, তবে এক নতুন জ্যামিতি পাবে, যেমনটা বিগত কিছু শতাব্দী ও দশক ধরে ঘটে চলেছে।

1.3 পদার্থবিদ্যা, প্রযুক্তি বিদ্যা এবং সমাজ (Physics, technology and society)

বিভিন্ন উদাহরণে পদার্থবিদ্যা, প্রযুক্তিবিদ্যা এবং সমাজের মধ্যে সংযোগ দেখা যায়। তাপীয় ইঞ্জিনের কার্যপ্রণালী অনুধাবন এবং এর উন্নতিকল্পে তাপগতিবিদ্যা শাখার উৎপত্তি হয়েছে। আমরা যেমনটা জানি, অন্টাদশ শতাব্দীতে ইংল্যান্ডের শিল্পবিপ্লবের অনুপ্রেরণা প্রসূত বাম্পীয় ইঞ্জিন মানবসভ্যতার অগ্রগতিকে দারণভাবে প্রভাবিত করেছে। কখনো কখনো প্রযুক্তিবিদ্যা নতুন পদার্থবিদ্যার উদ্ভাবন করে, আবার অন্যান্য সময় পদার্থবিদ্যা প্রযুক্তিবিদ্যার সৃষ্টি করে। পরেরটির উদাহরণ হল, ঊনবিংশ শতাব্দীতে তড়িৎ ও চুম্বকের মৌলিক সুত্রাবলীর উপর ভিত্তি করে বেতার যোগাযোগ প্রযুক্তির উদ্ভব ঘটে। পদার্থ বিদ্যার তত্ত্বসমূহের প্রয়োগ সম্পর্কে পূর্বানুমান করা সব সময় সহজ নাও হতে পারে। 1933 সালের শেষদিকে বিখ্যাত পদার্থবিদ আর্নেন্ট রাদারফোর্ড পরমাণু থেকে শক্তি আহরণের সম্ভাবনাকে বাতিল করে দেন। কিন্তু কয়েক বছর পর 1938 সালে বিজ্ঞানী অটো হান এবং মায়েৎনার নিউট্রন ঘটিত ইউরেনিয়ামের কেন্দ্রক বিভাজনের ঘটনা আবিষ্কার করেন, যা নিউক্লিয় শক্তি চুল্লী ও নিউক্লিয় অস্ত্রাদির ভিত্তিস্বরূপ কাজ করে। পদার্থবিদ্যার তত্ত্ব থেকে প্রযুক্তির বিকাশের অপর একটি গুরুত্বপূর্ণ উদাহরণ হল 'সিলিকন চিপ', যা বিংশ শতাব্দীর শেষ তিন দশকে কম্পিউটার বিপ্লবে আলোড়ন সৃষ্টি করে। বিকল্প শক্তি উৎসের মতো গুরুত্বপূর্ণ ক্ষেত্রেও পদার্থবিদ্যার প্রভূত অবদান রয়েছে এবং ভবিষ্যতেও রাখবে। আমাদের গ্রহের জীবাশ্ম জ্বালানী দ্রুত নিঃশেষ হয়ে যাচ্ছে এবং নতুন ও সস্তা শক্তি উৎসের আবিষ্কার অতি প্রয়োজনীয় হয়ে পড়েছে। এসব ক্ষেত্রে কিছু পরিমাণ অগ্রগতি হলেও (যেমন, সৌরশক্তি, ভূ-তাপীয় শক্তি ইত্যাদির বিদ্যুৎ শক্তিতে রূপান্তর) আরো অনেক অগ্রগতির প্রয়োজন।

সারণি 1.1 এ কিছু মহান পদার্থবিদের নাম, তাদের মুখ্য অবদান এবং তাদের দেশের তালিকা দেওয়া হল। তুমি এই সারণি থেকে বিজ্ঞানের বহুমুখী প্রচেষ্টার অধিকারী আন্তর্জাতিক ব্যক্তিদের ভিন্ন ভিন্ন ক্ষেত্রে তাঁদের প্রচেষ্টাকে প্রশংসা করবে। সারণি 1.2 এ কিছু গুরুত্বপূর্ণ প্রযুক্তি এবং পদার্থবিদ্যার যে নীতির উপর প্রযুক্তিগুলো প্রতিষ্ঠিত তার তালিকা দেওয়া হয়েছে। স্বাভাবিকভাবেই তালিকাগুলো সম্পূর্ণ নয়।আমরা তোমাদের বলব, তোমরা বিজ্ঞানের শিক্ষক-শিক্ষিকা, ভাল বই এবং বিজ্ঞানের উপর বিভিন্ন ওয়েব সাইটের সাহায্য নিয়ে এমন অনেক নাম এবং তাদের অবদান এই তালিকায় অন্তর্ভুক্ত করার চেষ্টা করো। তোমরা দেখবে যে এই অনুশীলনীটি খুবই শিক্ষামূলক এবং মজাদার এবং নিশ্চিতভাবেই এর কোনো শেষ নেই। বিজ্ঞানের অগ্রগতি অপ্রতিরোধ্য।

প্রকৃতি ও প্রাকৃতিক ঘটনাবলির অধ্যায়নই হল পদার্থবিদ্যা। পদার্থবিদগণ পর্যবেক্ষণ, পরীক্ষণ এবং বিশ্লেষণের ভিত্তিতে প্রকৃতিতে ক্রিয়াশীল নিয়মাবলি আবিষ্কারের চেস্টা করেন। পদার্থবিদ্যা প্রাকৃতিক জগৎ নিয়ন্ত্রণকারী নির্দিস্ট কিছু নিয়মাবলি /

বিজ্ঞানীর নাম	বিজ্ঞানে অবদান / আবিষ্কার	দেশের নাম
আর্কিমিডিস	প্লাবতার নীতি; লিভারের নীতি	গ্রিস
গ্যালিলিও গ্যালিলি	জাড্যের সূত্র	ইতালী
ক্রিস্টিয়ান হাইগেনস	আলোর তরঞ্চা তত্ত্ব	হল্যান্ড
আইজ্যাক নিউটন	সার্বজনীন মহাকর্যীয় সূত্র, গতিয়সূত্র, প্রতিফলন টেলিস্কোপ	ইউ. কে.
মাইকেল ফ্যারাডে	তড়িৎ চুম্বকীয় আবেশের সূত্রাবলি	ইউ. কে.
জেমস্ ক্লাৰ্ক ম্যাক্সওয়েল	তড়িৎ চুম্বকীয় তত্ত্ব, আলোএক প্রকার তড়িৎ চুম্বকীয় তরঙ্গা	ইউ. কে
হেনরিক রুডল্ফ হার্জ	তড়িৎ চুম্বকীয় তরঞ্চোর উৎপত্তি	জার্মানী
জে. সি. বোস	অতিক্ষুদ্র রেডিও তরঞ্চা	ভারত
ডব্লিউ. কে. রন্টজেন	এক্স রশ্মি	জার্মানি
জে. জে. টমসন	ইলেকট্রন	ইউ. কে.
মেরি স্কোডস্কা কুরী	রেডিয়াম ও পোলনিয়াম আবিষ্কার, স্বাভাবিক তেজস্ক্রীয়তার অধ্যায়ন	পোলান্ড
আলবার্ট আইনস্টাইন	আলোক তড়িৎক্রিয়ার ব্যাখ্যা, অপেক্ষিকতাবাদ তত্ত্ব	জার্মানি

সারণি 1.1 পৃথিবীর বিভিন্ন দেশের কিছু পদার্থ বিজ্ঞানীর অবদান সমূহ (Some physicists from different countries of the world and their major contributions)

পদার্থবিদ্য

<u>e-9</u>		
বিওরনার নাম	বিজ্ঞানের অবদান / আবিষ্কার	দেশের নাম
ভিক্টর ফ্রানসিস হেস্	মহাজাগতিক বিকিরণ	অস্ট্রিয়া
আর. এ. মিলিকন	ইলেকট্রনের আধান নির্ণয়	ইউ. এস. এ.
আর্নেস্ট রাদারফোর্ড	পরমাণুর নিউক্লিয় মডেল	নিউজিল্যান্ড
নীলস বোর	হাইড্রোজেন পরমাণুর কোয়ান্টাম মডেল	ডেনমার্ক
সি. ভি. রমন	অণু দ্বারা আলোকরশ্মির অস্থিতিস্থাপক বিক্ষেপণ	ভারত
লুইস ভিক্টর ডি ব্রগলী	পদার্থের তরঞ্চা প্রকৃতি	ফ্রান্স
মেঘনাদ সাহা	তাপীয় আয়নায়ন	ভারত
সত্যেন্দ্রনাথ বসু	কোয়ান্টাম পরিসংখ্যান	ভারত
উলফ গ্যাং পাউলি	অপবর্জন নীতি	অস্ট্রিয়া
এনরিকো ফার্মি	নিয়ন্ত্রিত নিউক্লীয় বিভাজন	ইতালি
ওয়ার্নার হাইজেন বার্গ	কোয়ান্টাম বলবিজ্ঞান, অনিশ্চয়তা নীতি	জার্মানি
পল ডিরাক্	ইলেকট্রনের আপেক্ষিকতাবাদ তত্ত্ব;	ইউ. কে
	কোয়ান্টাম পরিসংখ্যান	
এডউইন হাবল	সম্প্রসারণশীল মহাবিশ্ব	ইউ. এস. এ.
আরনেস্ট ওরল্যান্ডো লরেন্স	সাইক্লোট্রোন	ইউ, এস. এ.
জেমস্ চ্যাডউইক	নিউট্রন	ইউ. কে
হিডেকি ইউকাওয়া	নিউক্লীয় বলের তত্ত্ব	জাপান
হোমি জাহাঙ্গীর ভাবা	মহাজাগতিক বিকিরণের কাসকেড পদ্ধতি	ভারত
লেভ ডেভিডওভিচ ল্যানডাউ	ঘনীভূত পদার্থের তত্ত্ব, তরল হিলিয়াম	রাশিয়া
এস. চন্দ্রশেখর	চন্দ্রশেখর সীমামান, নক্ষত্র বা তারার গঠন ও বিবর্তন	ভারত
জন বার্ডিন	ট্রানজিস্টর, অতিপরিবাহীতা তত্ত্ব	ইউ এস এ
সি. এইচ. টাউনস	মেসার, লেসার	ইউ এস এ
আব্দুস সালাম	তড়িৎচুম্বকীয় বল ও দূর্বল বলের	পাকিস্তান
	একত্রীকরণ বা সংযুক্তিকরণ	

সূত্রাবলি নিয়ে চর্চা করে। প্রাকৃতিক সূত্রবলির প্রকৃতি কী? আমরা এখন মৌলিক বলসমূহ এবং প্রাকৃতিক জগতের বৈচিত্র্যময় ঘটনাবলি নিয়ন্ত্রক সূত্রাবলির প্রকৃতি আলোনা করব।

1.4 প্রকৃতির বলসমূহ (Fundamental forces in nature*)

আমাদের সবার বল সম্পর্কে একটি সহজাত ধারণা রয়েছে। আমাদের দৈননিন্দন অভিজ্ঞতা থেকে আমরা জানি, কোনো বস্তুকে ধারুা দেওয়ার জন্য, বহন করার জন্য, ছুঁড়ে ফেলার জন্য, বিকৃত করার জন্য বা ভাঙার জন্য বল প্রয়োজন হয়। আমরা বলের প্রভাব অনুভব করি যখন একটি গতিশীল বস্তু আমাদের আঘাত করে, অথবা যখন আমরা "মেরি গো-রাউন্ডে" বৃত্তাকার পথে ঘুরতে থাকি। বল সম্পর্কিত আমাদের সহজাত ধারণা থেকে সঠিক বৈজ্ঞানিক ধারনায় উপনীত হওয়া খুব একটা সহজ ব্যাপার নয়। এরিস্টটল এর মতো প্রাচীন চিন্তাবিদদেরও এই সম্পর্কিত ধারণা ভুল ছিল। বল সম্পর্কে সঠিক ধারণা নিউটন তাঁর বিখ্যাত গতীয় সমীকরণ সূত্রের মাধ্যমে এনেছিলেন। দুটি বস্তুর ভিতর মহাকর্ষীয় আকর্ষণ বলের সুস্পষ্ট ধারণাও তিনি দিয়েছিলেন। পরবর্তী অধ্যায়গুলোতে আমরা এ সম্পর্কে আরো বিশদভাবে শিখব।

এই বৃহৎ বিশ্বজগতে মহাকর্ষীয় বলের পাশাপাশি আমরা আরো বিভিন্ন প্রকার বলের সম্মুখীন হই : যেমন পেশী বল বিভিন্ন বস্তুর মধ্যে সংস্পর্শ বল, ঘর্ষণ বল (এটি একটি সংস্পর্শ বল যা দুটি তলের স্পর্শতলের সঞ্চো সমান্তরাল হয়), সঞ্জুতি ও প্রসারিত

^{* 1.4} এবং 1.5 অনুচ্ছেদগুলোতে কিছু ধারণা আছে যেগুলো তুমি প্রথমবার পড়ার সময় পুরোপুরি উপলব্দি করতে পারেব না। তথাপি আমরা তোমাদের পরামর্শ দেবো এই অধ্যায়গুলো যত্নসহকারে পড় যাতে পদার্থবিদ্যার মূলদিক সম্পর্কে ধারণাগুলি বিকশিত হয়। এই ক্ষেত্রগুলো হল কিছু ক্ষেত্র যেগুলি আজকাল পদার্থবিদরা ক্রমাগত দখল করে চলেছে।

সারণি 1.2 পদার্থ বিদ্যা ও প্রযুক্তি বিদ্যার যোগসূত্র (Link between technology and physics)

প্রযুক্তি বিদ্যা	বৈজ্ঞানিক নীতি
বাম্পীয় ইঞ্জিন	তাপগতিবিদ্যার সূত্রবলি
পারমাণবিক শক্তিচুল্লী	নিয়ন্ত্রিত নিউক্লীয় বিভাজন
রেডিও ও টেলিভিশন	তড়িৎ চুম্বকীয় তরঙ্গের উৎপত্তি, বিস্তার
	এবং সনাক্তকরণ
কম্পিউটার	দ্বিক্সংখ্যার নীতি বা গণিত
লেসার	বিকিরণের শানিত নিঃস্বরণ দ্বারা
	আলোর বিবর্ধন।
অতি উচ্চমাত্রার চৌম্বক ক্ষেত্র-	অতিপরিবাহিতা
প্রাবল্য উৎপাদন	
রকেট প্রক্ষেপণ	নিউটনের গতিসূত্রাবলি
বিদ্যুৎ উৎপাদক যন্ত্র	ফ্যারাডের তড়িৎ চুম্বকীয় আবেশ সূত্রবলি
জলবিদ্যুৎ শক্তি	অভিকর্ষীয় স্থিতিশক্তির তড়িৎশক্তিতে
	রূপান্তর
উড়ো জাহাজ	প্রবাহী গতিবিদ্যায় বার্নোলির নীতি
কণার ত্বরণ সৃষ্টিকারী যন্ত্র	তড়িৎ চুম্বকীয় বলক্ষেত্রে আহিত কণার গতি
সোনার	শব্দোত্তর তরঙ্গোর প্রতিফলন
আলোকীয় তন্তু	আলোর অভ্যন্তরীণ পূর্ণ প্রতিফলন
অপ্রতিফলক আস্তরণ	শীর্ণ স্বচ্ছ স্তরে আলোর ব্যতিচার
ইলেকট্ৰন অণুবীক্ষণ যন্ত্ৰ	ইলেকট্রনের তরঙ্গা প্রকৃতি
সৌর কোশ	আলোক তড়িৎ ক্রিয়া
নিউক্লিও সংযোজন পরীক্ষার	আহিত মাধ্যমকে চৌম্বকীয় আবন্দ্বিকরণ
চুল্লী (টোকামেক)	
বৃহৎ মিটার বেতার নভোবীক্ষণ যন্ত্র	মহাজাগতিক বেতার তরঙ্গের সনাস্তকরণ
বোস আইনস্টাইন ঘণীভবন	লেসার রশ্মি ও চৌম্বক বলক্ষেত্র দ্বারা পরমাণুগুলোকে
	আবদ্ধ করে উন্নতা হ্রাস করা

স্প্রীং কর্তৃক প্রযুক্ত বল এবং টান করা তার বা দড়ি কর্তৃক বল, প্লবতা বল ও সান্দ্রতা জনিত বল যখন কঠিন বস্তু প্রবাহীর সংস্পর্শে থাকে, প্রবাহির চাপজনিত বল, তরলের পৃষ্ঠটান জনিত বল এবং আরো অনেক। আহিত বস্তুগুলো এবং চৌম্বকীয় বস্তুগুলোর মধ্যেও বল জড়িত থাকে। আবার আণুবীক্ষণিক অঞ্চলে বলগুলো হল : তড়িৎ ও চৌম্বক বল, প্রোটন ও নিউট্রনের জন্য নিউক্লিয় বল, আন্ত-পারমাণবিক বল ও আন্তঃআনবিক বল ইত্যাদি। পরবর্তী অধ্যায়গুলোতে এই বলগুলোর সঞ্চো আমরা পরিচিত হবো।

বিংশ শতাব্দীতে পদার্থ বিজ্ঞানের একটি সফলতম অন্তর্দৃষ্টি হল যে বিভিন্ন পরিমণ্ডলে উৎপন্ন বিভিন্ন প্রকার বলসমূহের উৎপত্তিস্থল মূলত প্রকৃতির কয়েকটি মাত্র মৌলিক বল সমূহ থেকে হয়। উদাহরণস্বরূপ বলা যায়, যখন কোনো স্প্রীংকে সঙ্কুচিত / প্রসারিত করা হয় তখন স্প্রীং এর পাশাপাশি দুটি পরমাণুর মধ্যে মোট আকর্ষণ / বিকর্ষণ বলের জন্য স্প্রীংটিতে স্থিতিস্থাপক বলের সৃষ্টি হয়। এই মোট আকর্ষণ / বিকর্ষণ বল আসলে পরমাণুর অভ্যন্তরস্থ আহিত কণাণুলোর মধ্যে পারস্পরিক স্থির তাড়িতিক বলের (অপ্রতিমিত) যোগফলের সমান। নীতিগতভাবে এটা বোঝা যায় যে লব্ধ বলসমূহের (যেমন স্প্রীং বল, ঘর্ষণ বল) সূত্রণুলো প্রকৃতির মৌলিক বলসমূহের সূত্রণুলো থেকে নিরপেক্ষ নয়। আসলে নির্ণীত বল সমূহের উৎপত্তি খুবই জটিল। আমাদের বর্তমান জ্ঞানের পরিধিতে প্রকৃতিতে চারটি মৌলিক বলের কথা আমরা জানি, যাদের নীচে এখানে সংক্ষেপে বর্ণনা করা হয়েছে।

আলবাৰ্ট আইনস্টাইন (1879-1955)

আলবার্ট আইনস্টাইন 1879 সালে জার্মানির উলম্ শহরে জন্মগ্রহণ করেন এবং তাঁকে সর্বকালের সেরা পদার্থবিজ্ঞানীদের মধ্যে একজন হিসেবে গণ্য করা হয়। 1905 সালে তিনটি যুগান্তকারী গবেষণাপত্রের প্রকাশনার মাধ্যমে তাঁর বিষয়কর বৈজ্ঞানিক কর্মজীবন শুরু হয়। প্রথম গবেষণাপত্রটিতে তিনি 'আলোক কণার (বর্তমানে ফোটন কণাসমূহ) ধারণা উপস্থাপিত করেন এবং তা দিয়ে আলোক তড়িৎ ক্রিয়ার ব্যাখ্যা দেন, যা সনাতন তরঙ্গা তত্ত্ব দ্বারা ব্যাখ্যা করা যায় না। দ্বিতীয় গবেষণাপত্রে তিনি ব্রাউনীয় গতিতত্ত্ব উদ্ভাবন করেন, যা কয়েক বছর পর পরীক্ষামূলকভাবে নিশ্চিত করা হয়, যা পদার্থের পারমাণবিক গঠন চিত্রের নিশ্চিত প্রমাণ দেয়। তৃতীয় গবেষণাপত্রটি বিশেষ আপেক্ষিকতাবাদ তত্ত্বের জন্ম দেয় যা

আইনস্টাইনকে তাঁর জীবদ্দশায়ই কিংবদন্তী করে তোলে। পরবর্তী দশকে তিনি তাঁর নতুন তত্ত্বের পরিপ্রেক্ষিতে যা আবিষ্কার করেছিলেন, তার মধ্যে উল্লেখযোগ্য শস্তি ভরের তুল্যতা, $E = mc^2$ সমীকরণের মধ্যে সমিবেশিত আছে। তিনি আপেক্ষিকতাবাদের সাধারণ সংস্করণ "সাধারণ আপেক্ষিকতাবাদ" সৃষ্টি করেছিলেন, যা মহাকর্যের আধুনিক তত্ত্ব হিসাবে পরিগণিত। পরবর্তীকালে আইনস্টাইনের কিছু গুরুত্বপূর্ণ অবদানগুলোর মধ্যে রয়েছে : শানিত নিঃস্বরণ ধারণার সাহায্যে প্ল্যাঙ্কের কৃষ্ণবস্তু বিকিরণ সূত্রের বিকল্প প্রতিষ্ঠা, ব্রশ্বাঞ্চের স্থৈতিক মডেল যা আধুনিক মহাবিশ্বের সৃষ্টিতত্ত্বের সূচনা করে, ভারী বোসন কণা সমূহের কোয়ান্টাম পরিসংখ্যান, কোয়ান্টাম বলবিদ্যার ভিত্তি স্থাপনে উনার সুক্ষ্ম বিশ্লেষণী চিন্তন। 1905 সালের আইনস্টাইনের পদার্থ বিজ্ঞানে অবদানগুলো আধুনিক পদার্থ বিজ্ঞানের চিন্তা জগতে এক দিকদর্শী বিপ্লব এনে দিয়েছিলো এবং আইনস্টাইনের পদার্থ বিজ্ঞানে ওই চিরস্মরণীয় অবদানের স্বীকৃতি স্বরূপ, 2005 সালকে আন্তর্জাতিক পদার্থ বিজ্ঞান বৎসর হিসেবে ঘোষণা করা হয়।

1.4.1 মহাক্ষ্যীয় বল (Gravitational Force)

দুটি বস্তুর মধ্যে তাদের ভরের জন্য যে পারস্পরিক আকর্ষণ বল ক্রিয়াশীল হয় তাকেই মহাকর্ষীয় বল বলে। এটি একটি সার্বজনীন বল। মহাবিশ্বের প্রত্যেকটি বস্তু অপর প্রত্যেকটি বস্তুর জন্য এই বল অনুভব করে। উদাহরণস্বরূপ বলা যায়, পৃথিবীতে অবস্থিত প্রত্যেকটি বস্তু পৃথিবীর জন্য অভিকর্ষ বল অনুভব করে। বিশেষভাবে বলা যায় মহাকর্ষীয় বলের প্রভাবেই চন্দ্র ও কৃত্রিম উপগ্রহগুলো পৃথিবীকে প্রদক্ষিণ করে, পৃথিবী ও অন্যান্য গ্রহগুলো সূর্যকে প্রদক্ষিণ করে এবং অবশ্যই পৃথিবী অভিমুখে পতনশীল বস্তুগুলো গতিপ্রাপ্ত হয়। এটি বিশ্বব্রত্নাঞ্চের বৃহদাকার ঘটনাবলীতে গুরুত্বপূর্ণ ভূমিকা পালন করে, যেমন নক্ষত্র, ছায়াপথ এবং ছায়াপথমগুলীর সৃষ্টি ও বিবর্তন।

1.4.2 তড়িৎ-চুম্বকীয় বল (Electromagnetic Force)

তড়িৎ-চুম্বকীয় বল হল আধানগ্রস্থ বা আহিত কণাসমূহের মধ্যে ক্রিয়াশীল পারস্পরিক বল। সাধারণত আধানগুলো স্থির থাকলে ক্রিয়াশীল বল কুলম্বের সূত্রানুযায়ী হল : বিপরীতধর্মী আধানে আকর্ষণ বল এবং সমধর্মী আধানে বিকর্ষণ বল ক্রিয়া করে। গতিশীল আধানের জন্য চুম্বকত্বের সৃষ্টি হয় এবং চৌম্বক ক্ষেত্রের প্রাবল্য গতিশীল আধানের উপর বল প্রয়োগ করে। তড়িৎ ও চৌম্বক ক্রিয়া সাধারণত অবিচ্ছেদ্য বিষয় — এ কারণেই তড়িৎ চৌম্বকীয় বল নামাজ্বিত হয়েছে। মহাকর্ষীয় বলের মতো তড়িৎ চুম্বকীয় বলও বৃহৎ দূরত্বের মধ্যে ক্রিয়াশীল হয় এবং মধ্যবর্তী কোন মাধ্যমের প্রয়োজন হয় না। এই বল মহাকর্ষীয় বলের তুলনায় অতিশয় শক্তিশালী। উদাহরণ স্বরূপ বলা যায় নির্দিষ্ট দূরত্বে থাকা দুটি প্রোটনের মধ্যেকার তড়িৎ বলের মান মহাকর্ষীয় বলের 10³⁶ গুণ।

আমরা জানি পদার্থ গঠিত হয় ইলেকট্রন এবং প্রোটন এর মতো মৌলিক আহিত কণার সমন্বয়ে। যেহেতু তড়িৎ চুম্বকীয় বল মহাকর্যীয় বলের তুলনায় অত্যস্ত শক্তিশালী, তাই পারমাণবিক এবং আণবিক পরিমণ্ডলের ঘটনাবলির নিয়ন্ত্রক এই তড়িৎ চুম্বকীয় বল। (আমরা দেখব অপর দুটি শ্রেণির বল নিউক্লীয়ার স্কেলে কাজ করে)। তাই প্রধানত তড়িৎ চুম্বকীয় বলই পরমাণু এবং অণুর গঠন, রাসায়নিক বিক্রিয়ার গতি, যান্ত্রিক, তাপীয় এবং পদার্থের অন্যান্য ধর্মাবলিকে নিয়ন্ত্রণ করে। এই বল টান বল, ঘর্ষণ বল, লম্ব প্রতিক্রিয়া বল, স্প্রীং এর স্থিতিস্থাপক বল ইত্যাদির মতোই বৃহদাকার বলের অধীন।

মহাকর্ষীয় বল সব সময়ই আকর্ষণজনিত বল, কিন্তু তড়িৎ চুম্বকীয় বল আকর্ষণ বা বিকর্ষণ জনিত বল, দুইই হতে পারে। অন্যভাবে বলা যায় : পদার্থের ভর একই প্রকারে হয় (ঋণাত্মক ভর হয় না), কিন্তু আধান ধনাত্মক ও ঋণাত্মক দুই প্রকারের হয়, এটাই এত পার্থক্যের জন্য দায়ী। অধিকংশ ক্ষেত্রে পদার্থের ভর তাড়িতিকভাবে নিস্তরিত (মোট আধান শূন্য)। এজন্যই বৃহৎ ক্ষেত্রে তড়িৎ বলের প্রভাব শূন্য এবং পার্থিব ঘটনাবলিতে মহাকর্ষণীয় বল প্রাধান্য বিস্তার করে। বায়ুমণ্ডলের যে অঞ্চলে আয়নিত পরমাণু থাকে, যার কারণে বজ্রবিদ্যুৎ সৃষ্টি হয় সেখানে তড়িৎ বলের প্রভাবই মুখ্য।

সত্যেন্দ্রনাথ বোস (1894-1974)

সত্যেন্দ্রনাথ বোস 1894 সালে কলকাতায় জন্মগ্রহণ করেন। তিনি ভারতের মহান পদার্থবিদদের মধ্যে অন্যতম। বিংশ শতাব্দীর বিজ্ঞানের অগ্রগতিতে তিনি বিশাল মৌলিক অবদানের স্বাক্ষর রাখেন। বরাবরই খুব মেধাবী ছাত্র বোস 1916 সালে ক্যালকাটা বিশ্ববিদ্যালয়ে একজন অধ্যাপক হিসাবে তাঁর কর্মজীবন শুরু করেন। এখানেই 1924 সালে নিজের প্রতিভাশীল অন্তর্দৃষ্টি দিয়ে বোস প্ল্যাঙ্কের সূত্রকে নতুনভাবে প্রতিষ্ঠা করেন যার মধ্যে উনি বিকিরণকে ফোটনের গ্যাসরুপে ধরে নেন এবং ফোটনের অবস্থাগুলোর গণনায় নতুন সংখ্যাতত্ত্ব পম্বতি ব্যবহার করেন। এ বিষয়ের উপর তিনি একটি ছোটো গবেষণাপত্র লিখেন এবং এটা আইনস্টাইনের কাছে পাঠিয়ে দেন। আইনস্টাইন তৎক্ষণাৎ এর মহান তাৎপর্য উপলব্ধি করেন এবং এই গবেষণাপত্রকে জার্মান ভাষাতে অনুবাদ করে প্রকাশনার জন্য পাঠিয়ে দেন। অতঃপর একই

পদ্ধতি আইনস্টাইন গ্যাসের অণুর ক্ষেত্রে প্রয়োগ করেন।

বোসের তত্ত্বের মূল মতবাদ হল কণাগুলোকে পরস্পর থেকে পার্থক্য করা যায় না এবং কণাগুলো সনাতন ম্যাক্সওয়েল - বোল্টজ্ম্যান পরিসংখ্যানের স্বীকার্য মেনে চলে না। এরপর এটা বোধগম্য হল যে নতুন বোস -আইনস্টাইনের পরিসংখ্যান পম্বতি ওইসব কণাগুলোর ক্ষেত্রে প্রয়োগ করা যাবে যে কণাগুলোর স্বাভাবিক পূর্ণ সংখ্যার স্পিন হয়। যে কণাগুলোর স্পিন অর্ধপূর্ণ সংখ্যার হয় এবং যেগুলো পাউলি অপবর্তন নীতি মেনে চলে, সেগুলোর ক্ষেত্রে একটি নতুন কোয়ান্টাম পরিসংখ্যানের (ফার্মি-ডিরাক পরিসংখ্যান) প্রয়োজন ছিল। বোসের সন্মানার্থে পূর্ণ সংখ্যার স্পিনের কণাগুলোকে 'বোসন' বলা হয়।

বোস-আইনস্টাইন পরিসংখ্যানের একটি গুরুত্বপূর্ণ দিক হল গ্যাসের অণুগুলোর একটি নির্দিষ্ট উয়তার নিচে দশার পরিবর্তন হয়। ঐ নিম্ন উয়তায় অধিকাংশ পরমাণুগুলো একই নিম্ন শক্তিস্তরে বিরাজ করে। বোসের এই দিকদর্শী অনুমানের পর, আইনস্টাইন এটাকে আরো অগ্রগতি দেন এবং প্রায় 70 বছর পর তাদের অনুমান করা পদার্থের নতুন দশা বা অবস্থা নাটকীয়ভাবে পরীক্ষাধীন শীতলীকৃত ক্ষারীয় পরমাণুর গ্যাসীয় দশার সঙ্গে মিলে যায়, যে দশাকে পদার্থের বোস আইনস্টাইন ঘণীয়মান অবস্থা বলে।

> নিউক্লিয় বলের মান অন্য মৌলিক বলগুলোর তুলনায় অনেক বেশি শক্তিশালী, এটি তড়িৎ চুম্বকীয় বলের তুলনায় প্রায় 100 গুণ বেশি শক্তিশালী। এই বল আধান নিরপেক্ষ এবং ইহা একটি প্রোটনও একটি প্রোটন, একটি নিউট্রন ও একটি নিউট্রন, একটি প্রোটন ও একটি নিউট্রনের মধ্যে সমানভাবে ক্রিয়াশীল। এই বলের বিস্তার খুবই নগণ্য, প্রায় নিউক্লিয় মাত্রার (10⁻¹⁵m)। নিউক্লিয়াসের স্থিতিশীলতার জন্য এই বলই দায়ী। লক্ষ্যণীয় যে, পরমাণুর নিউক্লিয়াসের বাইরের ইলেকট্রন এই বল অনুভব করে না।

বর্তমানে নিউক্লিয় পদার্থ বিদ্যার উন্নয়নের ফলে জানা যায় নিউট্রন ও প্রোটনগুলো আরো ক্ষুদ্রাতিক্ষুদ্র কণা কোয়ার্ক দ্বারা গঠিত হয়।

1.4.4 দুর্বল নিউক্লিয় বল (Weak Nuclear Force)

দুর্বল নিউক্লিয় বল শুধুমাত্র নির্দিষ্ট কয়েকটি নিউক্লিয় বিক্রিয়ায় যেমন বিটা বিঘটনে (β-decay) পরিলক্ষিত হয়। বিটা বিঘটনে নিউক্লিয়াসটি একটি ইলেকট্রন এবং একটি অনাহিত কণা-নিউট্রিনো নিঃসরণ করে। দুর্বল নিউক্লিয় বল মহাকর্যীয় বলের মতো দুর্বল নয়, কিন্ডু শক্তিশালী নিউক্লিয় বল এবং তড়িৎ চুম্বকীয় বলের তুলনায় বেশি দুর্বল মানের হয়। দুর্বল নিউক্লিয় বলের পরিসর অতীব ক্ষুদ্র, 10⁻¹⁶ m ক্রমের।

1.4.5 বলসমূহের একত্রীকরণ (Towards Unification of Forces)

আমরা 1.1 অণুচ্ছেদে উল্লেখ করেছিলাম যে পদার্থবিদ্যার অভীষ্ট লক্ষ হল একত্রীকরণ করা। বিভিন্ন তত্তু ও ক্ষেত্রের মধ্যে একত্রীকরণের

আমরা একটু ভাবলেই দেখি যে আমাদের দৈনন্দিন জীবনে মহাকর্ষীয় বলের তুলনায় প্রচণ্ড শক্তিশালী তড়িৎ চুম্বকীয় বলের প্রভাব অনুভূত হয়। যখন আমরা হাতের উপর একটি বই রাখি, তখন পৃথবীর বিশাল ভরের জন্য বইয়ের উপর ক্রিয়াশীল অভিকর্ষজ বলের টানকে হাতের সাহায্যে বইয়ের উপর ক্রিয়াশীল লম্ব প্রতিক্রিয়া বল দ্বারা প্রতিহত করি। এই লম্ব প্রতিক্রিয়া বল আসলে আমাদের হাত ও বইয়ের সংস্পর্শতলে আধানগুলোর মধ্যে পারস্পরিক ক্রিয়াশীল তড়িৎ চুম্বকীয় বলের সমন্টি। যদি তড়িৎ চুম্বকীয় অন্তর্নিহিত বল অভিকর্ষীয় বলের তুলনায় যথেন্ট শক্তিশালী না হত, তবে একটি পালকের ওজনের জন্যও একজন শক্তিশালী ব্যক্তির হাত ভেঙে যেতে পারত। বস্থুত এই পরিস্থিতির সঙ্গে সঙ্গতিপূর্ণ, এমনকি আমরা আমাদের নিজেদের ভরের জন্যও ভেঙে চুরমার হয়ে যেতাম।

1.4.3 শক্তিশালী নিউক্লিয় বল (Strong Nuclear Force)

শক্তিশালী নিউক্লিয় বল নিউক্লিয়াসের ভেতর প্রোটন ও নিউট্রনগুলোকে একসাথে বেঁধে রাখে। এটা স্পফ্ট যে কোন আকর্ষণ বল ছাড়া একটি নিউক্লিয়াসের সুস্থির অবস্থা থাকতে পারে না, কারণ নিউক্লিয়াসের অভ্যন্তরে প্রোটনগুলোর মধ্যে পারস্পরিক বিকর্ষণ বল ক্রিয়া করে। এই আকর্ষণ বলটি মহাকর্ষীয় আকর্ষণ বল হতে পারে না কারণ মহাকর্ষীয় বলের মান তড়িৎ বলের তুলনায় নগণ্য। সুতরাং, একটি নতুন মৌলিক বলের অবতাড়না আবশ্যিক হয়ে পড়ে। শক্তিশালী

	٩	2.1.1	
নাম	আপেক্ষিক শক্তি	পাল্লা	যেখানে কাজ করে
মহাকৰ্ষ বল	10-39	অসীম	বিশ্বব্র্নান্ডের সব বস্তুসমূহে
দুর্বল নিউক্লিয় বল	10-13	খুব ক্ষুদ্র, সাবনিউক্লিয় আকার (~10 ⁻¹⁶ m)	কিছু প্রাথমিক কণাসমূহ, বিশেষ ভাবে ইলেকট্রন ও নিউট্রিনো
তড়িৎ চুম্বকীয় বল	10^{-2}	অসীম	তড়িৎ আহিত কণাসমূহ
শক্তিশালী নিউক্লিয় বল	1	ক্ষুদ্র, নিউক্লিয় আকার (~10 ⁻¹⁵ m)	নিউক্লিয়নসমূহ, ভারী প্রাথমিক কণাসমূহ

সারণি 1.3 প্রকৃতির মৌলিক বলসমূহ (Fundamental forces of nature)

ফলে পদার্থবিদ্যার বিরাট অগ্রগতি সম্ভব হয়েছে। যেমন নিউটন সাধারণ মহাকর্ষীয় সূত্রের সাহায্যে পার্থিব এবং মহাজাগতিক ক্ষেত্রকে একত্রীকরণ করেন। ওরস্টেড এবং ফ্যারাডের পরীক্ষামূলক আবিষ্কার থেকে দেখা যায় তড়িৎ এবং চৌম্বক সংক্রান্ত ঘটনাবলি পরস্পর অবিচ্ছেদ্য। আলোক একটি তড়িৎ চুম্বকীয় তরঙ্গা, এটা আবিষ্কারের মাধ্যমে ম্যাক্সওয়েল আলোক বিজ্ঞান ও তড়িৎ চুম্বকীয় তরঙ্গের একত্রীকরণ করেন। আইনস্টাইন অভিকর্য এবং তড়িৎ চুম্বকীয় তরঙ্গের একত্রীকরণের যে উদ্যোগ নিয়েছিলেন তাতে তিনি সফল হননি। কিন্ডু এসব ঘটনাবলি পদার্থবিদদের বলসমূহের একত্রীকরণের লক্ষ্যে সোঁছতে তৎপরতা নিরস্ত করতে পারেনি।

বর্তমান কয়েক দশকে এই বিভাগে প্রচুর অগ্রগতি লক্ষ করা গেছে। তড়িৎ চুম্বকীয় বল ও দুর্বল নিউক্লিয় বলের একত্রীকরণ বর্তমানে সম্ভব হয়েছে এবং এরা একটি তড়িৎ দুর্বল বলের ভিন্ন রূপ। একত্রীকরণ এর আসল অর্থ এই পরিসরে ব্যাখ্যা করা যাবে না। তড়িৎ দুর্বল বল ও শক্তিশালী বলের একত্রীকরণের প্রয়াস নেওয়া হয়েছে এবং এমনকী মহাকর্ষীয় বলকে (অনান্য) মৌলিক বলের সঙ্গো একত্রীকরণের প্রচেস্টা চলছে। এ সম্পর্কিত ধারণাগুলোর অনেকগুলোই কাল্পনিক এবং অমীমাংসিত। সারণি 1.4 এ মৌলিক বলসমূহের একত্রীকরণ সংক্রান্ত সূত্রের অগ্রগতির মাইলস্টোনের সংক্ষিপ্ত বিবরণী দেওয়া হল।

1.5 প্রাকৃতিক সূত্রাবলির প্রকৃতি

(Nature of physical laws)

পদার্থবিদরা বিশ্বব্রত্নাঙ্ডকে গবেষণা করছেন বৈজ্ঞানিক পদ্ধতির উপর ভিত্তি করে। তাদের অনুসন্ধানের সীমা পরমাণুর চেয়েও ক্ষুদ্রাতিক্ষুদ্র কণা থেকে শুরু করে অতি দূরবর্তী নক্ষত্র পর্যন্ত। পর্যবেক্ষণ ও পরীক্ষার মাধ্যমে প্রাকৃতিক ঘটনাবলির আবিষ্কার করার পাশাপাশি পদার্থবিদরা চেন্টা করেছেন এদের সূত্র নিরূপণের (প্রায়শই গাণিতিক সমীকরণরূপে) যা এ সকল ঘটনাবলির সারাংশ।

বলের অধীন যে কোন প্রাকৃতিক ঘটনায় কতগুলো রাশি সময়ের সঙ্গে পরিবর্তিত হতে পারে। একটি উল্লেখযোগ্য ব্যাপার হল যে কিছু বিশেষ প্রাকৃতিক রাশি সময়ের সঙ্গে অপরিবর্তিত থাকে। তারা প্রকৃতির সংরক্ষিত রাশি। নিরীক্ষিত ঘটনাবলিকে বিশদভাবে ব্যাখ্যার জন্য ঐ সমস্ত সংরক্ষিত নীতিগুলো বুঝা খুবই গুরুত্বপূর্ণ।

বাহ্যিক সংরক্ষিত বলের অধীনে গতিশীল বস্তুর মোট যান্ত্রিকশক্তির পরিমাণ অর্থাৎ গতিশক্তি ও স্থিতিশক্তির যোগফল ধ্রুবক হয়। এর পরিচিত উদাহরণ হল অভিকর্ষের অধীনে বাধাহীনভাবে পতনশীল একটি বস্তু। এক্ষেত্রে গতিশীল বস্তুর গতিশক্তি ও স্থিতিশক্তি উভয়েরই মান সময়ের সাথে সাথে

পদার্থবিদ্দের নাম	সাল	একত্রীকরণের কৃতিত্ব
আইজ্যাক নিউটন	1687	পার্থিব ও মহাজাগতিক বলবিদ্যার একত্রীকরণ : দেখান যে একইভাবে গতীয় সূত্রাবলি এবং
		মহাকর্ষীয় সূত্র দুই ক্ষেত্রেই প্রযোজ্য।
হ্যান্স ক্রিশ্চিয়ান ওরস্টেড	1820	দেখান যে তড়িৎ ও চৌম্বক সংক্রাস্ত ঘটনাবলি একই ক্ষেত্রের অবিচ্ছেদ্য : তড়িৎ চুম্বকীয়
মাইকেল ফ্যারাডে	1830	<u>তত্ত্</u> ব।
জেমস ক্লার্ক ম্যাক্স ওয়েল	1873	তড়িৎ, চৌম্বক ও আলোকীয় তত্ত্বের একত্রীকরণ : দেখান যে আলো তড়িৎচুম্বকীয় তরঙ্গ।
শেলডন গ্ল্যাসো,	1979	দেখান যে দুৰ্বল নিউক্লিয় বল এবং তড়িৎ চুম্বকীয় বল হল একটিমাত্ৰ বল — ''তড়িৎ দুৰ্বল
আবদুস সালাম,		বলের" দুটি ভিন্নরূপ।
স্টীভেন উইনবাৰ্গ		
কার্লো রুবিয়া,	108/	'তড়িৎ দুর্বল বল' তত্ত্বের পরীক্ষামূলক প্রমাণ করেন।
সাইমন ভেন্ডার মীর	1704	

	<u>.</u>					
	~ 1 /					
יוסוא	9 4	୍ର ସହାରସା ସା କଥା ସହ	1 (2) < 1 < 1 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2		Progress in unification of otherent forces/domains in nature)	1
· III • III				- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	I ogi cos in unnecution of uniter ent for ces/ domains in nature of	1

প্রাকৃতিক জগৎ

পরিবর্তিত হয়, কিন্তু এদের সমষ্টি ধ্রুবক থাকে। যদি একটি বস্তুকে স্থিরাবস্থা থেকে অভিকর্ষের প্রভাবে পড়তে দেওয়া হয়, তাহলে প্রাথমিক স্থিতিশস্তি সম্পূর্ণভাবে বস্তুটি ভূমিতে স্পর্শ করার পূর্ব মুহূর্তে গতিশস্তিতে রূপান্তরিত হয়। এই সূত্রটি সংরক্ষী বলের ক্ষেত্রেই শুধুমাত্র প্রযোজ্য এবং কোনো একটি বিচ্ছিন্ন বা পৃথক সংস্থার শস্তির সংরক্ষণের সাধারণ সূত্রের সঙ্গো (যা তাপগতিবিদ্যার প্রথম সূত্রের ভিত্তি) কখনোই জড়ানো যাবে না।

পদার্থবিদ্যায় শস্তির ধারণা মুখ্য এবং প্রত্যেক প্রাকৃতিক ঘটনার জন্য শস্তির রাশিমালা লেখা যায় যখন সব ধরনের শস্তির যেমন তাপশস্তি, যান্ত্রিক শস্তি, তড়িৎ শস্তি ইত্যাদি শস্তিগুলো বিবেচনায় আনা হয়, তখন মোট শস্তির পরিমাণ ধ্রুবক থাকে। শস্তির সংরক্ষণের সাধারণ সূত্রটি সকল প্রকার বলের ক্ষেত্রেই সত্যি এবং শস্তির যেকোনো প্রকার রূপাস্তরের ক্ষেত্রেও প্রযোজ্য। পতনশীল বস্তুর উদাহরণটিতে যদি তুমি বায়ুর বাধাকে অন্তর্ভুক্ত করো তবে দেখবে যে বস্তুটি ভূপতিত হওয়ার পর ভূমিতে পড়েই থাকে, মোট যান্ত্রিক শস্তি সংরক্ষিত হয় না। শস্তির সংরক্ষণের সাধারণ সূত্র কিন্তু তখনও প্রযোজ্য। বস্তুটির প্রাথমিক স্থিতিশস্তি অন্য প্রকার শস্তিতে রূপান্তরিত হয় : তাপশস্তি ও শব্দশস্তি (সবশেষে শব্দশস্তি শোষিত হয়ে তাপশস্তিতে) অর্থাৎ সমগ্র সংস্থার (বস্তু ও পারিপার্শ্বিকের) মোট শস্তি অপরিবর্তিত থাকে।

শস্তির সংরক্ষণ সূত্রটি প্রকৃতির সর্বক্ষেত্রেই যেমন ক্ষুদ্রাতিক্ষুদ্র অঞ্চল থেকে দৃশ্যমান বৃহদাকার সমগ্র অঞ্চলেই প্রযোজ্য। এটি নিয়মিতভাবে পারমাণবিক, নিউক্লিয় ও মৌলিক বলসমূহের পদ্ধতির বিশ্লেষণে প্রয়োগ হয়। অপরদিকে এই মহাবিশ্বে প্রতিনিয়ত প্রচণ্ড বিস্ফোরণমূলক ঘটনা ঘটে চলেছে। তবুও মহাবিশ্বের মোট শক্তি (আদর্শ বিচ্ছিন্ন সংস্থা বিবেচনা করলে) অপরিবর্তিত থাকে বলে ধরা হয়।

আইনস্টাইনের বিশেষ আপেক্ষিকতাবাদ তত্ত্বের আবির্ভাবের পূর্বে, ভরের সংরক্ষণ সূত্রটিকে প্রকৃতির একটি সংরক্ষণ সূত্র বলে বিবেচনা করা হত, যেহেতু তখন পদার্থ অবিনশ্বর বলে বিবেচিত হত। রাসায়নিক বিক্রিয়ার বিশ্লেষণে এই নীতি এখনো ব্যবহৃত হয়ে আসছে। আসলে রাসায়নিক বিক্রিয়ায় বিভিন্ন অণুগুলোর মধ্যে পরমাণুগুলোর পুনর্বিন্যাস হয়। বিক্রিয়াকারী অণুগুলোর মোট বন্ধনশস্তি যদি বিক্রিয়ালব্ধ অণুগুলোর বন্ধনশস্তি অপেক্ষা কম হয় তবে এই বন্ধনশস্তির পার্থক্য তাপশস্তি রূপে আবির্ভূত হয় এবং বিক্রিয়াটি তাপ উৎপাদক (exothermic)। বিপিরীত ঘটনাও সত্যি হয় এবং তাকে তাপগ্রাহী (endothermic) বিক্রিয়া বলে। তৎ সত্ত্বেও যেহেতু পরমাণুগুলোর শুধুমাত্র পুনর্বিন্যাস হয়, কোনো ধ্বংস হয় না, রাসায়নিক বিক্রিয়ায় বিক্রিয়কের মোট ভর বিক্রিয়ালব্ধ্বে মোট ভরের সমান থাকে। এই বন্ধনশস্তির পরিবর্তন খুবই নগণ্য যা ভরের পরিবর্তনের ফলে হয় এবং তা পরিমাপের অযোগ্য।

আইনস্টাইনের তত্ত্বানুযায়ী ভর ও শক্তি পরস্পরের তুল্য। ভর (m) এবং শক্তির (E) তুল্যতা সম্পর্কটি $E = mc^2$, যেখানে c হল শূন্য মাধ্যমে আলোর বেগ।

নিউক্লিয় বিক্রিয়ায় ভর শস্তিতে রূপান্তরিত হয় এবং বিপরীত রূপান্তরও সম্ভব। নিউক্লিয় তাপবিদ্যুৎ শস্তি কেন্দ্রে নিউক্লিয় বিস্ফোরণে এই শস্তিরই নির্গমন হয়।

স্যার সি. ভি. রমন (Sir C.V. Raman) (1888-1970)

চন্দ্রশেখর ভেক্ষটরামন 1888 সালের নভেম্বর মাসে তিরুভানাইক্বাভালে জন্মগ্রহণ করেন। তিনি এগারো বছর বয়সে তাঁর স্কুল জীবন সমাপ্ত করেন। মাদ্রাজের প্রেসিডেন্সী কলেজ থেকে তিনি স্নাতক হন। পড়াশুনা শেষ করার পর তিনি ভারত সরকারের অর্থ দপ্তরে যোগ দেন।

কলকাতায় থাকাকালীন তিনি ইন্ডিয়ান অ্যাসোসিয়েশন ফর কালটিভেশান অফ্ সাইন্স এ সম্যাবেলায় তার আগ্রহের বিষয়ের উপর কাজ শুরু করেন। এই অ্যাসোসিয়েশনের প্রতিষ্ঠাতা ছিলেন ডঃ মহেন্দ্রলাল সরকার। তাঁর আগ্রহের বিষয়গুলো ছিল কম্পন, বিভিন্ন বাদ্যযন্ত্র, শব্দোন্তর শব্দ, আলোর পরিবর্তন ইত্যাদি।

1917 সালে তাঁকে কলকাতা বিশ্ববিদ্যালয়ে অধ্যাপকের পদ দেওয়া হয়। 1924 সালে তিনি লন্ডনের রয়েল সোসাইটির ফ্যালো নির্বাচিত হন। 1930 সালে তিনি তাঁর আবিষ্কারের জন্য পদার্থ বিদ্যায় নোবেল পুরস্কারে ভূষিত হন, যা বর্তমানে রমন ক্রিয়া নামে পরিচিত।

রমন ক্রিয়া হল — কোন মাধ্যমের উত্তেজিত অণুগুলো কম্পিত হয়ে উচ্চ শক্তিস্তরে থাকা অবস্থায় আলোর বিক্ষেপণ ক্রিয়া। এই আবিষ্কারটি ভবিষ্যতে গবেষণার নতুন দিগস্ত উন্মোচিত করে দিয়েছিল।

তিনি তাঁর শেষ জীবন ব্যাঙ্গালোরে, প্রথমে 'ইন্ডিয়ান ইন্স্টিটিউট অফ্ সায়েন্স' এবং পরবর্তীতে 'রমন রিসার্চ ইনস্টিটিউটে' অতিবাহিত করেছিলেন। তাঁর কাজ তরুণ ছাত্রছাত্রীদের অনুপ্রাণিত করেছিল।

শস্তি একটি স্কেলার রাশি। কিন্তু সকল সংরক্ষিত রাশিই স্কেলার হবে, এমনটি নয়। কোন পৃথক সংস্থার মোট রৈখিক ভরবেগ এবং মোট কৌণিক ভরবেগ (উভয়ই ভেক্টর) সংরক্ষিত থাকে। বলবিজ্ঞানের নিউটনের সূত্র থেকে এই সংরক্ষণ সূত্র দুটি উদ্ভুত হয়। কিন্তু সূত্র দুটির বৈধতা বল বিজ্ঞান ছাড়িয়ে অন্য ক্ষেত্রেও প্রযোজ্য। এরা প্রকৃতির সর্বক্ষেত্রে প্রযোজ্য মৌলিক সংরক্ষণ সূত্র, এমনকি যেখানে নিউটনের সূত্র প্রযোজ্য নয়, সেখানেও বৈধ।

প্রকৃতির সংরক্ষণ সূত্রগুলো সরল ও সাধারণ হওয়ার পাশাপাশি প্রয়োগেও সহজ। এটা প্রায়শই ঘটে যে বিভিন্ন কণা ও ক্রিয়াশীল বলের সমন্বয়ে গঠিত কোনো জটিল সমস্যার গতিবিদ্যার সমাধান অসম্ভব হয়ে পড়ে। তথাপিও সংরক্ষণ সূত্রগুলো প্রয়োজনীয় ফলাফল দেয়। উদাহরণস্বরূপ বলা যায় দুটো গাড়ির সংঘর্ষের সময় ক্রিয়ারত জটিল বলগুলো সম্পর্কে নাও জানতে পারি তবুও ভরবেগের সংরক্ষণ সূত্র এই জটিলতা থেকে বেরিয়ে আসতে সাহায্য করে এবং সংঘর্ষের সম্ভাব্য ফলাফল সম্পর্কে ধারণা দিতে পারে। নিউক্লিয় ও মৌলিক কণা সমূহের বিশ্লেষণেও সংরক্ষণ সূত্রাবলি গুরুত্বপূর্ণ উ পাদান। β- বিঘটনের বেলায় শস্তি ও ভরবেগের সংরক্ষণ সূত্র সঠিকভাবে অনুমান করেন যে, বিটা বিঘটনের সময় ব্যবহার করে উল্ফগ্যাঙ্গা পাউলী (1900-1958) 1931সালে ইলেকট্রনের সঞ্চো অপর একটি কণা নির্গত হয় (বর্তমানে ওই কণাটি নিউট্রিনো নামে পরিচিত)।

পদার্থ বিজ্ঞানের আরো উন্নত স্তরের অধ্যয়নে দেখতে পাবে যে সংরক্ষণ সূত্রগুলোর সঙ্গো প্রকৃতির একটি শব্দ গভীর সম্পর্ক রয়েছে। উদাহরণস্বরূপ বলা যায় — একটি গুরুত্বপূর্ণ পর্যবেক্ষণ হলো যে প্রকৃতির সূত্রাবলি সময়ের সঙ্গে পরিবর্তিত হয় না। তুমি পরীক্ষাগারে আজ একটি পরীক্ষা করলে এবং সেই একই পরীক্ষা (একই বস্তুর উপর একই অবস্থায়) এক বছর পর করলেও ফলাফল দুটোই সমান হতে বাধ্য। এটা থেকে বুঝা যায় যে, সময়ের সাপেক্ষে চলনে (সরণে) প্রকৃতির প্রতিসাম্যতা, শক্তির সংরক্ষণ সূত্রের সমতুল্য। অনুরূপে দেশ (space) সমসত্ত্ব এবং মহাবিশ্বে পছন্দের কোনো অবস্থান অন্তর্নিহিতভাবে নেই। আরো সহজভাবে বলতে গেলে প্রকৃতির সূত্রগুলো মহাবিশ্বের সর্বত্র প্রযোজ্য। (সাবধানতা এই ঘটনাটি স্থান ভেদে পরিবর্তিত হতে পারে কারণ স্থান ভেদে পারিপার্শ্বিক অবস্থা ভিন্ন হতে পারে। যেমন চাঁদের পদার্থবিজ্ঞানে সংরক্ষণ সূত্রাবলি (Conservation laws in physics) শক্তির সংরক্ষণ সূত্র, রৈখিক ভরবেগ, কৌণিক ভরবেগ, আধান ইত্যাদির সংরক্ষণ সূত্র হল পদার্থ বিজ্ঞানের মৌলিক সূত্র। এখন এমন অনেক সংরক্ষণ সূত্র আছে। উপরিউক্ত চারটি সংরক্ষণ সূত্র ছাড়া অন্যান্য সংরক্ষণ সূত্র আছে যারা অধিকাংশই এমন রাশি সম্পর্কিত যারা নিউক্লিয় পদার্থবিদ্যা ও কণা পদার্থবিদ্যায় ব্যবহৃত হয়। অন্যান্য সংরক্ষিত রাশিগুলো হল স্পিন, বেরিয়ন সংখ্যা, স্টেঞ্জন্যাস, হাইপার চার্জ ইত্যাদি। কিন্তু তুমি এগুলো নিয়ে বিব্রত হবে না।

সংরক্ষণ সূত্র হল একটি প্রকল্প যা পর্যবেক্ষণ এবং পরীক্ষার উপর প্রতিষ্ঠিত। এটা মনে রাখা খুবই গুরুত্বপূর্ণ যে কোনো সংরক্ষণ সূত্র প্রমাণ করা যায় না। এটাকে পরীক্ষার মাধ্যমে যাচাই করা যায় বা খণ্ডন করা যায়। একটি পরীক্ষার ফলাফল সঠিক হলে এই সূত্রটির সত্যতা যাচাই হয় বা সিন্ধ হয়। কিন্তু এটি সূত্রটিকে প্রমাণ করে না। অন্যদিকে একটিমাত্র পরীক্ষার ফলাফল যদি সূত্রটির বিরুদ্ধে যায় তবে এটাই সূত্রটি খণ্ডিত হওয়ার জন্য যথেন্ট।

কাউকে শস্তির সংরক্ষণ সূত্র প্রমাণ করার কথা বলা ভুল হবে। আমাদের কয়েক শতকের অভিজ্ঞতার নির্যাস হল এই শস্তির নিত্যতা সূত্র এবং বিভিন্ন পরীক্ষার বলবিদ্যায়, তাপগতীয় বিদ্যায়, তড়িৎ চুম্বকীয় পদার্থ বিদ্যায়, আলোক বিদ্যায়, পারমাণবিক ও নিউক্লিয়ার পদার্থ বিদ্যায় এবং অন্যান্য যে কোনো শাখায় এই সূত্রের সত্যতা প্রমাণিত হয়েছে।

কিন্তু ছাত্রছাত্রী মনে করে যে, তারা কোনো পড়ন্ত বস্তুর মোট যাদ্রিক শন্তির সংরক্ষণ সূত্র প্রমাণ করতে পারবে এবং তারজন্য বিভিন্ন বিন্দুর গতিশক্তি ও স্থিতিশন্তি যোগ করে, যোগফল ধ্রুবক হওয়াই পতনশীল বস্তুর যাদ্রিক শক্তির নিত্যতা সূত্রের প্রমাণ। আসলে এটা হল মোট যাদ্রিক শক্তির সংরক্ষণ সূত্রের সত্যতা যাচাই, কোনো প্রমাণ নয়।

পৃষ্ঠে মহাকর্ষজ ত্বরণের মান পৃথিবী পৃষ্ঠের মহাকর্ষজ ত্বরণের মানের ছয় ভাগের এক ভাগ, কিন্তু মহাকর্ষীয় সূত্রটি চাঁদ ও পৃথিবীতে একইভাবে প্রযোজ্য)। দেশ এ চলনের সাপেক্ষে প্রকৃতির প্রতিসাম্যতা রৈখিক ভরবেগের সংরক্ষণ সূত্র সৃষ্টি করে। অনুরূপে দেশ এর সমদৈশিকতার মধ্যে (অন্তর্নিহিতভাবে কোনো দেশের নির্দিষ্ট দিক নেই) কৌণিক ভরবেগের সুংরক্ষণ সূত্র অন্তর্নিহিত রয়েছে।* আধানের সংরক্ষণ সূত্র এবং মৌলিক কণা সমূহের বৈশিষ্টাবলি আরো নির্দিষ্ট কিছু বিমূর্ত প্রতিসাম্যতার সঞ্চেও সম্পর্কযুক্ত করা যেতে পারে। দেশ ও সময়ের প্রতিসাম্য এবং অন্য বিমূর্ত প্রতিসাম্যগুলো প্রকৃতির মৌলিক বল সংক্রান্ত আধুনিক তত্ত্বের উপর প্রধান ভূমিকা পালন করে।

^{*} সপ্তম অধ্যায় দেখোঁ।

সারাংশ

- পদার্থবিজ্ঞানে প্রকৃতির মৌলিক সূত্রাবলি এবং তাদের বিভিন্ন ঘটনার প্রকাশ নিয়ে আলোচনা হয়। পদার্থ বিজ্ঞানের মৌলিক সূত্রগুলো সার্বজনীন এবং এদের বিভিন্ন প্রসঞ্চা ও অবস্থায় বিস্তৃতভাবে প্রয়োগ হয়।
- পদার্থবিজ্ঞানের সুযোগ বিস্তৃত, প্রাকৃতিক রাশির বিশাল পরিমাণের অঞ্চল জুড়ে এর ব্যাপ্তি।
- পদার্থবিজ্ঞান ও প্রযুক্তিবিদ্যা পরস্পর সম্পর্কযুক্ত। কখনো কখনো প্রযুক্তিবিদ্যা পদার্থবিজ্ঞানের জন্ম দেয়, আবার কখনো পদার্থবিজ্ঞান থেকে প্রযুক্তির সৃষ্টি হয়। উভয়েরই সমাজে প্রত্যক্ষ প্রভাব রয়েছে।
- 4. প্রকৃতির চারটি মৌলিক বলই আণুবীক্ষণিক ও দৃশ্যমান পৃথিবীর যাবতীয় ঘটনাবলিকে নিয়ন্ত্রণ করে। এই বলগুলি হল মহাকর্ষীয় বল, তড়িৎ চুম্বকীয় বল, 'প্রবল শক্তিশালী নিউক্লিয় বল' ও দুর্বল নিউক্লিয় বল। এই চারটি মৌলিক বা প্রাথমিক বল বা ক্ষেত্রকে একত্রীকরণ করাই হল পদার্থবিজ্ঞানের মূল লক্ষ বা চাওয়া।
- 5. যে প্রাকৃতিক রাশিগুলি কোন প্রক্রিয়ায় অপরিবর্তিত থাকে সেইগুলোকে সংরক্ষী রাশি বলা হয়। প্রকৃতির কিছু সাধারণ সংরক্ষণ সূত্রাবলি হল — ভরের সংরক্ষণ সূত্র, শন্তির সংরক্ষণ সূত্র, রৈখিক ভরবেগের সংরক্ষণ সূত্র, কৌণিক ভরবেগের সংরক্ষণ সূত্র, আধানের সংরক্ষণ সূত্র, সমতার সংরক্ষণ সূত্র ইত্যাদি। কিছু সংরক্ষণ সূত্র আবার কোনো একটি মৌলিক বলের ক্ষেত্রে প্রযোজ্য হলেও, অপর মৌলিক বলের ক্ষেত্রে প্রযোজ্য নাও হতে পারে।
- প্রকৃতির সাম্যতার সঙ্গে সংরক্ষণ সূত্রগুলোর গভীর সম্পর্ক বর্তমান। দেশ ও কালের সাম্যতা এবং অন্য সাম্যতাগুলোও মৌলিক বল সমূহের আধুনিক তত্ত্বে প্রধান ভূমিকা পালন করে।

অনুশীলনী

ছাত্রছাত্রীদের জন্য লক্ষণীয় বিষয়াবলি —

এই অনুশীলনী দেওয়ার উদ্দেশ্য হল বিজ্ঞান, প্রযুক্তিবিদ্যা এবং সমাজজীবনে যেসব বিভিন্ন ঘটনা ও সমস্যা থাকে, এদের সম্পর্কে তোমাদেরকে সচেতন করা এবং এগুলো সম্পর্কে চিন্তা করে সূত্রাবদ্ধ করার জন্য তোমাদেরকে উৎসাহিত করা এবং এ সম্পর্কে তোমাদের মতামত ও সিদ্ধান্তকে উপস্থাপন করানো। নীচে দেওয়া প্রশ্নগুলোর সরাসরি সুস্পফ সংক্ষিপ্ত উত্তর নাও হতে পারে।

শিক্ষক / শিক্ষিকাদের জন্য লক্ষণীয় বিষয়াবলি :

এখানে যে অনুশীলনীগুলো দেওয়া আছে, সেগুলো প্রচলিত পরীক্ষার জন্য নয়।

- 1.1 বিজ্ঞানের প্রকৃতি সম্পর্কে কিছু উল্লেখযোগ্য বিবৃতি প্রদান করেন মহাবিজ্ঞানী অ্যালবার্ট আইনস্টাইন, যাকে সর্বকালের শ্রেষ্ঠ বিজ্ঞানীদের একজন হিসেবে মানা হয়। "এই মহাবিশ্ব সম্পর্কে সবচেয়ে ধারণাতীত বিষয় হলো যে এই মহাবিশ্ব হলো বোধগম্য" — আইনস্টাইনের এই উক্তিতে তিনি কী বোঝাতে চেয়েছিলেন?
- 1.2 বিজ্ঞানের সকল মহান তত্ত্বই একটি বিশ্বাস বা সিম্ধান্তকে ঘিরে গড়ে উঠে এবং পরিশেষে এটি একটি প্রচলিত মতাবাদে পরিণত হয়। এই উক্তির যথার্থতা সম্পর্কে বিজ্ঞানেরই তিহাস থেকে কয়েকটি উদাহরণের উল্লেখ করো।
- 1.3 রাজনীতি হলো সম্ভব করার কলা কৌশল। অনুরূপভাবে বিজ্ঞান হলো কোনো সমস্যাকে সমাধান করার কলা কৌশল। প্রকৃতি এবং বিজ্ঞান চর্চার এই সুন্দর নীতিকে ব্যাখ্যা করো।
- 1.4 যদি ভারতে এখন বিজ্ঞান চর্চা ও প্রযুক্তি বিদ্যা একটি বৃহৎ শক্তিশালী ভিত্তির উপর প্রতিষ্ঠিত, যা দ্রুত বিস্তৃতি লাভ করেছে তথাপি বিশ্বের দরবারে বিজ্ঞানের শ্রেষ্ঠতম আসনে পৌঁছানোর জন্য প্রয়োজনীয় ক্ষমতাকে বুঝতে আরো অনেক পথ অগ্রসর হতে হবে। তোমার মতে কিছু গুরুত্বপূর্ণ বিষয়ের কথা উল্লেখ কর যেগুলো ভারতবর্ষে বিজ্ঞান সাধনা প্রসারের ক্ষেত্রে অন্তরায়।
- 1.5 পদার্থবিদ কখনোই একটি ইলেকট্রনকে দেখেননি। যদিও সকল পদার্থবিদই ইলেকট্রনের অস্তিত্বে বিশ্বাস করেন, একজন বুদ্বিমান কিন্তু কুসংস্কারছন্ন ব্যক্তি ওপরের যুক্তি অনুসারে ভুতকে না দেখা সত্ত্বেও তার অস্তিত্ব আছে, এ যুক্তি খাড়া করেন। তুমি কীভাবে এটা মিথ্যা প্রমাণ করবে?

- 1.6 জাপানের একটি নির্দিষ্ট স্থানের সমুদ্র সৈকতে এক বিশেষ ধরনের কাঁকড়ার খোলক পাওয়া যায়, যার সাথে একজন কিংবদন্তি স্যামুরাই এর মুখমগুলের মিল আছে। এই পর্যবেক্ষণের দুইটি ব্যাখ্যা নীচে দেওয়া হল। এদের মধ্যে কোন্টিকে তোমরা বৈজ্ঞানিক ব্যাখ্যা হিসাবে মনে হয়?
 - (a) কয়েক শতক আগে একটি বেদনাদায়ক সামুদ্রিক দুর্ঘটনায় একজন তরুণ স্যামুরাই সমুদ্রের জলে তলিয়ে যায়। তার বীরত্বের প্রতি শ্রুম্বা জানিয়ে প্রকৃতি একটি দুর্বোধ্য পদ্ধতির মাধ্যমে, তার মুখমগুলের আদলকে চিরস্মরণীয় করার জন্য ওই অঞ্চলের সমুদ্রের জলে থাকা কাঁকড়ার পৃষ্ঠতলের খোলকে তার মুখমগুলরে আদল মুদ্রিত করে।
 - (b) এই দুঃখজনক ঘটনার পর, ওই অঞ্জলের মৎস্যজীবীরা, তাদের প্রিয় মৃত নায়কের সম্মানার্থে, তারা যে সব কাঁকড়া সমুদ্রের জল থেকে তুলে এনেছিল, এদের মধ্যে যেসব কাঁকড়ার খোলক কাকতালীয়ভাবে ওই স্যামুরাই এর মুখমগুলের সঙ্গো মিলে যায়, ওইগুলোকে পুনরায় সমুদ্রের জলে ছেড়ে দেয়। এর ফলে এই বিশেষ আকারের কাঁকড়ার খোলক দীর্ঘদিন বেঁচে থাকে এবং তাই সময়ের সঙ্গো সঙ্গো এদের বংশের বিস্তার লাভ ঘটে। এটি হলো কৃত্রিম নির্বাচনের মাধ্যমে বিবর্তনের একটি উদাহরণ।

দ্রন্টব্য : এই চিন্তাকর্ষক ঘটনাটি কার্ল স্যাগান এর 'The Cosmos' থেকে নেওয়া। এই পুস্তকে সাধারণত ওই ঘটনাগুলোর উপর জোর দেওয়া হয়েছে, যে ঘটনাগুলোকে প্রথম দর্শনে অতিপ্রাকৃত বলে মনে হয় এবং ব্যাখ্যা করা যাবে না বলে প্রতিয়মান হয়। আসলে ওইগুলোকে খুবই সাধারণ বৈজ্ঞানিক দৃষ্টিভঞ্চিা দিয়ে ব্যাখ্যা করা যায়। এইরকম আরো অন্যান্য উদাহরণকে চিস্তা করতে পারো।

- 1.7 কিছু প্রধান বৈজ্ঞানিক ও প্রযুক্তিগত অগ্রগতির ফলে দুশো বছরের আগে ইংল্যান্ড ও পশ্চিম ইউরোপে শিল্পবিপ্লব হয়েছিল। ওই অগ্রগতিগুলো কী কী?
- 1.8 প্রায়ই বলা হয়ে থাকে, এখন পৃথিবীতে দ্বিতীয় শিল্পবিপ্লব চলছে। যার ফলে সমাজের আমূল পরিবর্তন ঘটবে, যা প্রথম শিল্প বিপ্লব কালেও হয়েছিল। এই বিবর্তনের জন্য দায়ী কিছু সমসাময়িক প্রধান বিজ্ঞান ও প্রযুক্তিগত ক্ষেত্রের তালিকা তৈরি করো।
- 1.9 দ্বাবিংশ শতকের বিজ্ঞান ও প্রযুক্তি বিদ্যার উপর তোমার ভাবনা চিন্তার উপর নির্ভর করে একটি কল্প বিজ্ঞান এক হাজার শব্দের মধ্যে রচনা করো।
- 1.10 বিজ্ঞান সাধনায় তোমার নৈতিক দৃষ্টিভঞ্চিা প্রকাশ করো। কল্পনা করো তুমি একটি নতুন কিছু আবিষ্কারের জন্য খুবই পরিশ্রম করে যাচ্ছ, কিন্তু এর শিক্ষামূলক অবদান ছাড়া আর কিছুই পাওয়ার নেই, এমনকী ইহা মানব সমাজজীবনে বিপদ ডেকে আনতে পারে। তুমি এই উভয় সংকটকে কীভাবে সমাধান করবে?
- 1.11 যে কোনো জ্ঞানের মতো বিজ্ঞানেরও ভাল-খারাপ প্রয়োগ আছে যা নির্ভর করে ব্যবহারকারীর উপর। নীচে বিজ্ঞানের কিছু প্রয়োগের উল্লেখ করা হল। এই নির্দিষ্ট প্রয়োগটি ভাল, খারাপ নাকি সুস্পষ্টভাবে আলাদা করা যাবে না, কোন্টি হবে এর উপর তোমার মতামত প্রকাশ করো।
 - (a) গুটি বসন্ত প্রতিরোধ এবং জনসাধারণ থেকে এ রোগ নির্মূল করার জন্য সামগ্রিক টিকাকরণ কর্মসূচি রূপায়ণ। (ভারতে এটা সফলভাবে প্রয়োগ করা হয়েছে)।
 - (b) নিরক্ষরতা দূরীকরণ এবং জনসংযোগ ব্যবস্থাপনায় খবরাখবর ও পরিকল্পনায় টেলিভিশান।
 - (c) জন্মের আগে লিঙ্গা নির্ধারণ।
 - (d) কাজের দক্ষতা বৃদ্ধি করার জন্য কম্পিউটারের ভূমিকা।
 - (e) পৃথিবীর চারিদিকে একটি নির্দিষ্ট কক্ষপথে কৃত্রিম উপগ্রহের উপস্থাপন।
 - (f) নিউক্লিয়ার অস্ত্র ভাণ্ডারের উন্নতি সাধন করা।

- (g) রাসায়নিক এবং জৈবিক যুদ্ধে নতুন ও খুবই শক্তিশালী প্রযুক্তিবিদ্যার উন্নতিসাধন করা।
- (h) জলকে পানযোগ্য করার জন্য পরিশোধন করা।
- (i) প্লাস্টিক সার্জারী।
- (j) ক্লোনিং।
- 1.12 ভারতবর্ষে গণিতবিদ্যা, জ্যোর্তিবিদ্যা, ভাষাবিদ্যা, তর্কশাস্ত্র ও নীতিশাস্ত্রে এক সুপ্রাচীন এবং অটুট পান্ডিত্যের ঐতিহ্য আছে। তথাপি আমাদের সমাজে সমান্তরালভাবে বহু কুসংস্কার এবং অস্পন্ট ধারণা প্রচলিত ছিল। এমনকি আজকালও সমাজের বিশিন্ট ব্যক্তিবর্গের মধ্যে দুর্ভাগ্যজনকভাবে এইসব কুসংস্কার চলে আসছে। তুমি তোমার বিজ্ঞানের জ্ঞানকে ব্যবহার করে কী নীতি তৈরি করবে যাতে সমাজের এই মনোভাবগুলোকে প্রতিরোধ করা যাবে?
- 1.13 যদিও ভারতবর্ষে মহিলাদের সম-অধিকার আইন বলবৎ আছে, তারপরও অনেক ব্যক্তিবর্গ মহিলাদের সহজ প্রবৃত্তি, দক্ষতা ও বুদ্ধিমত্তা সম্পর্কে অবৈজ্ঞানিক দৃষ্টিভঙ্গি পোষণ করেন এবং তাদেরকে গৌণ ভূমিকায় রাখেন। বৈজ্ঞানিক যুক্তি সহকারে এই দৃষ্টিভঙ্গিকে নস্যাৎ করো এবং বিজ্ঞান ও অন্যান্য ক্ষেত্রের কিছু মহান মহিয়সী নারীদের উদাহরণ উল্লেখ করো। নিজেকে ও অন্যান্যদেরকে এমনভাবে আশ্বস্ত কর যাতে মহিলারাও পুরুষদের মতো সমান সুযোগ পায়।
- 1.14 বিখ্যাত ইংরেজ পদার্থবিদ পি. এ. এম. ডিরাকের মতে, পরীক্ষার ফলাফলের সঙ্গো সামঞ্জস্য রাখা অপেক্ষা পদার্থ বিজ্ঞানের সমীকরণের সৌন্দর্য রক্ষা করা অনেকবেশি গুরুত্বপূর্ণ। এই বিবৃতি সম্পর্কে আলোচনা করো। এই পুস্তকের এমন কিছু সমীকরণ ও ফলাফলের উল্লেখ করো যা তোমার কাছে অনেক বেশি চিত্তাকর্যক বলে মনে হয়েছে।
- 1.15 যদিও উপরিউক্ত বিবৃতিটি বিতর্কিত, তবুও অধিকাংশ পদার্থবিদ মনে করেন পদার্থ বিদ্যায় সব মহান সূত্রগুলো অনেক বেশি সহজ সরল ও চিন্তাকর্যক। ডিরাক ব্যতীত এমন অনেক বিখ্যাত পদার্থবিদ ছিলেন যারা এই ধারণাটি পোষণ করতেন। তাঁরা হলেন আইনস্টাইন, বোর, হাইজ্যানবার্গ, চন্দ্রশেখর এবং ফিন্ম্যান। এইসব মহান পদার্থবিদ দ্বারা রচিত গ্রন্থ এবং অন্যান্য বই পড়ার ক্ষেত্রে তোমাকে বিশেষ মনোযোগ দেওয়ার জন্য বলা হচ্ছে। (এই বইয়ের শেষে গ্রন্থপঞ্জী দেখো)। তাদের লেখা সত্যিকারের অনুপ্রেরণা সৃষ্টি করে!
- 1.16 বিজ্ঞানের পাঠ্যপুস্তক পড়ার সময় তোমাদের এমন সব ভুল ধারণা হতে পারে যে বিজ্ঞান নিয়ে পড়াশোনা হল রসহীন, গুরুগন্তীর এবং ওইসব বিজ্ঞানীরা খুবই অন্যমনস্ক এবং অন্তর্মুখী যারা কখনো হাসে না। বিজ্ঞান ও বিজ্ঞানীদের সম্পর্কে এই ধারণাগুলো সম্পূর্ণ ভুল। বিজ্ঞানীরা যেকোনো সাধারণ মানুযের মতো হাস্যকৌতুক প্রিয় হয় এবং তাদের মধ্যে অনেকে ভীষণ মজা করতে ভালোবাসে ও ভ্রমণ প্রিয় হয়। তারপরও তারা তাদের বিভিন্ন বৈজ্ঞানিক কর্মকাণ্ড খুবই মনোযোগ সহকারে সম্পাদন করে। এধরনের দুইজন বিখ্যাত পদার্থবিদ হলেন গ্যামো এবং ফিন্ম্যান। এই বইয়ের শেষে গ্রন্থপঞ্জীতে উল্লেখিত তাদের রচিত বই পড়ে তুমি আনন্দ লাভ করতে পারবে।

অধ্যায় : দ্বিতীয়

একক এবং পরিমাপ (Units and Measurement)

2.1 ভূমিকা (Introduction)

কোনো ভৌত রাশির পরিমাপ এক নিশ্চিত ভিত্তিস্বরূপ, স্বেচ্ছায় নির্বাচিত, আন্তর্জাতিক মান্যতাপ্রাপ্ত, নির্দেশিত মানকের সঙ্গো রাশিকে তুলনা করতে হয়। এই মানকে একক বলা হয়। একটি প্রাকৃতিক রাশির পরিমাপের ফলাফল (result) একটি এককসহ সংখ্যা দিয়ে প্রকাশ করা হয়। প্রাকৃতিক রাশিগুলোর সংখ্যা অধিক হলেও, যেহেতু প্রাকৃতিক রাশিগুলো পরস্পরের সঙ্গো সম্পর্ক যুক্ত, এজন্য এসকল প্রাকৃতিক রাশিগুলোকে প্রকাশ করার ক্ষেত্রে কেবলমাত্র সীমিত সংখ্যক এককের প্রয়োজন হয়। মৌলিক বা মূল রাশিগুলোর এককগুলোকে মৌলিক বা মূল একক বলে। এই মূল এককগুলোর সমন্বয়ে অন্যান্য সব প্রাকৃতিক রাশির এককগুলোকে প্রকাশ করা যায়। এরকম এককগুলোকে লব্ধ রাশির লব্ধ একক বলা হয়। মূল একক ও লব্ধ এককগুলো নিয়ে সম্পূর্ণ সমুদায়, একক পম্বতি (System of Units) হিসেবে পরিচিত।

2.2 এককের আন্তর্জাতিক পম্থতি (The International System of Units)

প্রাচীনকালে বিভিন্ন দেশের বিজ্ঞানীরা পরিমাপের জন্য বিভিন্ন একক পম্বতি ব্যবহার করতেন। এরকম তিনটি পম্বতি- সি জি এস, এফ পি এস (অথবা ব্রিটিশ) পম্বতি এবং এম কে এস পম্বতি বর্তমানকাল পর্যন্ত ব্যাপকভাবে ব্যবহৃত হচ্ছে।

এই পদ্ধতিগুলোর দৈর্ঘ্য, ভর এবং সময়ের একক নিম্নরূপ :

- CGS পম্বতিতে যথাক্রমে সেন্টিমিটার, গ্রাম এবং সেকেন্ড
- FPS পদ্ধতিতে যথাক্রমে ফুট, পাউন্ড এবং সেকেন্ড
- MKS পদ্ধতিতে যথাক্রমে মিটার, কিলোগ্রাম এবং সেকেন্ড।

পরিমাপের ক্ষেত্রে বর্তমানে আন্তর্জাতিকভাবে স্বীকৃত, এককের এই পম্বতিটি হল Systeme Internationale d'unites — (French for International System of Units), সংক্ষেপে SI। বিজ্ঞান, প্রযুক্তি, শিল্প এবং বাণিজ্যিক কাজের ক্ষেত্রে আন্তর্জাতিকভাবে ব্যবহারের জন্য, 1971 সালে ওজন ও পরিমাপ বিষয়ক সাধারণ সভায় চিহ্নগুলোর প্রমাণ তালিকা, এককগুলো এবং সংক্ষিপ্ত রুপ সমূহসহ আন্তর্জাতিক পম্বতিটি উন্নীত এবং অনুমোদিত হয়েছিল। কারণ SI এককগুলোতে

2.1 ভূমিকা

- 2.2 এককের আন্তর্জাতিক পম্বতি
- 2.3 দৈর্ঘ্যের পরিমাপ
- 2.4 ভরের পরিমাপ
- 2.5 সময়ের পরিমাপ
- 2.6 পরিমাপের সূক্ষ্মতা, যন্ত্রের যথার্থতা এবং পরিমাপের ত্রুটি
- 2.7 তাৎপর্যপূর্ণ অঙ্ক সংখ্যা
- 2.8 প্রাকৃতিক রাশির মাত্রা
- 2.9 মাত্রা সূত্র এবং মাত্রা সমীকরণ
- 2.10 মাত্রা বিশ্লেষণ এবং এর প্রয়োগ

সারসংক্ষেপ অনুশীলনী অতিরিস্ত অনুশীলনী ব্যবহৃত দশমিক পম্ধতিগুলোর মধ্যে রূপান্তরগুলো অতিসহজ এবং সুবিধাজনক হয়।

SI পম্ধতিতে 7টি মূল একক আছে, যা সারণি 2.1এ প্রদন্ত। সাতটি মূল এককের সঙ্গো আরও দুটি একক আছে যেগুলো হল— (a) কোণ (plane angle), dθ=চাপের দৈর্ঘ্য (ds) : ব্যাসার্ধ (r) এবং (b) ঘনকোণ (solid angle), dΩ = গোলীয় পৃষ্ঠের ছেদিত ক্ষেত্রফল (dA) : ব্যাসার্ধের বর্গ (r²)। এদের যথারুমে চিত্র 2.1(a) এবং (b) এ দেখানো হয়েছে। সামতলিক কোণের একক রেডিয়ান, যার প্রতীক rad এবং ঘনকোণের একক স্টেরাডিয়ান যার প্রতীক sr । উভয়ই মাত্রাবিহীন রাশি।

	SI একক		
মূলরাশি	নাম	প্রতীক	সংজ্ঞা
দৈর্ঘ্য	মিটার	m	শূন্য মাধ্যমে আলো 1/299,792,458 সেকেন্ডে যে দূরত্ব অতিক্রম করে তাকে এক মিটার বলে (1983)
ভর	কিলোগ্রাম	kg	ফ্রান্সের প্যারিসের কাছে Sevres এ 'আন্তর্জাতিক ব্যুরো অফ ওয়েটস অ্যান্ড মেজারস' এ রাখা একটি প্ল্যাটিনিয়ম-ইরিডিয়ামের শংকর ধাতুর তৈরি একটি নিরেট চোঙের ভর এক কিলোগ্রামের সমান।(1889)
সময়	সেকেন্ড	S	সিজিয়াস -133 পরমাণুটির অতিসূক্ষ্ম ব্যবধান স্মিত দুইটি ভৌমস্তরের মধ্যে রূপান্তরজনিত বিকিরণের 9,192,631,770 পর্যায়ের স্থিতিকাল হল 1 সেকেন্ড। (1967)
তড়িৎপ্ৰবাহ	অ্যাম্পিয়ার	А	শূন্য মাধ্যমে এক মিটার দূরত্বে অবস্থিত অসীম দৈর্ঘ্যের দুটি সমান্তরাল ও খুব সামান্য প্রস্থচ্ছেদ যুক্ত তড়িৎ পরিবাহী তারের মধ্যে যে পরিমাণ তড়িৎ প্রতি মিটারে 2×10 ⁻⁷ নিউটন বল উৎপন্ন করে সেই পরিমাণ তড়িৎকে এক অ্যান্পিয়ার বলে। (1948)
তাপগতীয় তাপমাত্রা	কেলভিন	К	জলের ত্রেধ বিন্দুর (Tripple point) তাপগতীয় উন্নতার 1/273.16 অংশ হল এক কেলভিন। (1967)
পদার্থের পরিমাণ	মোল	mol	কার্বন - 12 পরমাণু 0.012 কিলোগ্রাম পরিমাণে যে পরিমাণ প্রাথমিক কণা (elementary entities) আছে সেই পরিমাণ কণা অন্য কোন পদার্থের যে পরিমাণ পদার্থে থাকে তাকে মোল বলে।
দীপন প্রাবল্য	ক্যান্ডেলা	cd	ক্যান্ডেলা হল একটি নির্দেশিত দিকে একটি উৎসের দীপন প্রাবল্য, যা 540×10 ¹² Hz কম্পাঙ্কের একবর্ণী বিকিরণ নির্গত করে এবং ঐ দিকে এর বিকিরণ প্রাবল্য 1/683ওয়াট প্রতি স্টেরাডিয়ান। (1979)

Table 2.1 SI পম্ধতির মূলরাশি ও একক (SI Base Quantities and Units*)

ি এখানে উল্লেখিত মানগুলো মনে রাখতে হবে না অথবা পরীক্ষায় জিঞ্জেস করা হবে না। কেবলমাত্র এদের পরিমাপগত সঠিকতার বিস্তৃতি নির্দেশ করতে এদেরকে এখানে দেওয়া হয়েছে। প্রযুক্তির উন্নয়নের সাথে পরিমাপ পম্বতির উন্নতি হয়েছে। ফলে অধিকতর নির্ভুলতার সঙ্গে পরিমাপ করা যায়। এই উন্নয়নের নিরিখে মৌলিক একক সমূহের সংখ্যাগুলোকে সংশোধিত করা হয়েছে।

নাম	Symbol	Value in SI Unit
মিনিট	min	60 s
ঘণ্টা	h	60 min = 3600 s
দিন	d	24 h = 86400 s
বছর	у	$365.25 \text{ d} = 3.156 \times 10^7 \text{ s}$
ডিগ্রি	0	$1^{\circ} = (\pi / 180)$ rad
লিটার	L	$I dm^3 = 10^{-3} m^3$
টন	t	10 ³ kg
ক্যারেট	с	200 mg
বার	bar	$0.1 \text{ MPa} = 10^5 \text{ Pa}$
কুরি	Ci	$3.7 \times 10^{10} \text{ s}^{-1}$
রন্জেন (roentgen)	R	$2.58 \times 10^{-4} \text{ C/kg}$
কুইন্ট্যাল	q	100 kg
বার্ন	b	$100 \text{ fm}^2 = 10^{-28} \text{ m}^2$
আর	а	$1 \text{ dam}^2 = 10^2 \text{ m}^2$
হেক্টর	ha	$1 \text{ hm}^2 = 10^4 \text{ m}^2$
প্রমাণ বায়ুমণ্ডলীয়	atm	$101325 \text{ Pa} = 1.013 \times 10^5 \text{ Pa}$

সারণি 2.2 সাধারণ ব্যবহারে প্রয়োজনীয় একক (SI বহির্ভুক্ত)

মনে রাখতে হবে যে, যখন মোল ব্যবহৃত হয় তখন প্রাথমিক সত্ত্বা অবশ্যই উল্লেখ করতে হয়।এই সত্তাগুলো পরমাণু, অণু, আয়ন, ইলেকট্টন অন্যান্য কণা অথবা বিশেষ দলবদ্ধ এই কণাগুলো হতে পারে।

আমরা কিছু প্রাকৃতিক রাশির একক ব্যবহার করবো যা 7টি মূল একক দিয়ে গঠন করা যায়। (পরিশিষ্ট A 6) এ প্রদন্ত। (পরিশিষ্ট A 6.1) এ কিছু সংখ্যক লব্ধ এককে SI মূল এককের সাপেক্ষে দেওয়া হল। কিছু SI লব্ধ একককে বিশেষ নাম দেওয়া হয়েছে (পরিশিষ্ট A 6.2তে) এবং এই বিশেষ নাম সহকারে দেওয়া লব্ধ এককগুলো ও 7টি মূল এককের সাহায্যে অন্য আরও কিছু লব্ধ SI একককে সারণি A 6.3তে দেখানো হয়েছে। পরিশিষ্ট A 6.2 এবং A 6.3 তে এগুলো তোমাদের তাৎক্ষণিক প্রস্তুতির জন্য দেওয়া হয়েছে। সাধারণ ব্যবহারের জন্য অপর এককগুলো সারণি 2.2 তে অবস্থান করছে।

গুণিতক ও উপ-গুণিতকগুলোর জন্য SI উপসর্গ (prefixes) এবং প্রতীকগুলো পরিশিষ্ট A2 এ দেওয়া আছে। প্রাকৃতিক রাশি, রাসায়নিক মৌল এবং নিউক্লিয়াসগুলোর জন্য ব্যবহৃত প্রতীক চিহ্নগুলোর সাধারণ নির্দেশাবলী পরিশিষ্ট A7 এ দেওয়া আছে এবং SI এককগুলো ও অন্য কিছু সংখ্যক এককগুলোর তোমাদের পথপ্রদর্শন এবং তাৎক্ষণিক প্রস্তুতির জন্য পরিশিষ্ট A8 এ রাখা হয়েছে।

2.3 দৈর্ঘ্যের পরিমাপ (Measurement of Length)

তোমারা আগে থেকেই দৈর্ঘ্য পরিমাপের জন্য কিছু সংখ্যক প্রত্যক্ষ পম্বতির সজ্যে অতি পরিচিত। উদাহরণস্বরূপ, একটি মিটার স্কেল দিয়ে 10⁻³ m থেকে 10² m পর্যন্ত দৈর্ঘ্য পরিমাণ করা যায়। একটি ভার্নিয়ার ক্যালিপার্স স্কেল সঠিকতার সঙ্গে 10⁻⁴ m দৈর্ঘ্য পর্যন্ত পরিমাপ করতে পারে। একটি স্কু গ্যাজ এবং একটি স্ফেরোমিটার 10⁻⁵ m দৈর্ঘ্য পর্যন্ত পরিমাপ করতে পারে। এই পাল্লার নাগালের বাইরের দৈর্ঘ্য ও আমরা কিছু সংখ্যক বিশেষ পরোক্ষ পম্বতি ব্যবহার করে পরিমাপ করতে পারি।

2.3.1 খুব বড় দূরত্বের পরিমাপ (Measurement of Large Distances)

পৃথিবী থেকে একটি গ্রহের অথবা একটি নক্ষত্রের দূরত্ব মিটার স্কেল দিয়ে প্রত্যক্ষভাবে পরিমাপ করা যায় না। এরকম ক্ষেত্রে লম্বন পদ্ধতি (parallax method) একটি গুরুত্বপূর্ণ পদ্ধতি।

সামনের (দেওয়ালের) কোন বিন্দুর সাপেক্ষে তোমার সামনে একটি পেনসিল ধরো। প্রথমে (ডান চোখ বন্থ রেখে) বাম চোখ (A) দিয়ে পেনসিলটিকে দেখ এবং একইভাবে এবার (বাম চোখ বন্থ রেখে) ডান চোখ (B) দিয়ে ওই একই পেনসিলটির দিকে তাকাও। দেখে মনে হবে দেওয়ালে আগের নির্দিষ্ট বিন্দুর অবস্থান সাপেক্ষে পেনসিলটির অবস্থান পরিবর্তন হয়ে গেছে। একে বলা হয় লম্বন (parallax)। পর্যবেক্ষণের দুটি বিন্দুর মধ্যবর্তী দূরত্বকে বলা হয় ভিত্তি (basis)। এক্ষেত্রে 2টি চোখের মধ্যবর্তী দূরত্বই হল ভিত্তি (basis)।

লম্বন পদ্ধতিতে অনেক দুরের একটি গ্রহ S এর দূরত্ব D পরিমাপ করতে আমরা পৃথিবীর দুটি ভিন্ন অবস্থান A ও B (পর্যবেক্ষণিকা) থেকে একই সময়ে গ্রহটিকে পর্যবেক্ষণ করি, যেখানে AB = b (চিত্র 2.2)। ওই দুটি বিন্দু থেকে গ্রহটিকে পর্যবেক্ষণ করে ওই দুটি অভিমুখের মধ্যবর্তী কোণ পরিমাপ করা হয়। (2.2) চিত্রে প্রদর্শিত \angle ASB কে θ দিয়ে চিহ্নিত করা হয়েছে এবং ইহাই হল লম্বন কোণ (parallactic angle)।

যেহেতু গ্রহটি অনেক দূরে, $\frac{b}{D} << 1$, এবং এজন্য θ খুবই ক্ষুদ্র, তখন আমরা আনুমানিকভাবে AB কে S কেন্দ্রিক একটি বৃত্তের b দৈর্ঘ্যের একটি বৃত্তচাপ ভাবতে পারি, যেখানে D হল বৃত্তটির ব্যাসার্ধ। AS = BS=D, ∴ AB = $b = D \theta$ যেখানে θ রেডিয়ানে।
$D = \frac{b}{\theta}$ S $D = \frac{b}{\theta}$ $D = \frac{b}{\theta}$

D নির্ণয়ের পর একই পম্বতি অবলম্বনে আমরা গ্রহটির আকার অথবা কৌণিক ব্যাস নির্ণয় করতে পারি। যদি গ্রহের ব্যাস d এবং এর কৌণিক আকার α (গ্রহটির ব্যাস d দ্বারা পৃথিবীর পর্যবেক্ষণ বিন্দুতে উৎপন্ন কোণ) হয়, আমরা পাই

$$\alpha = d/D \tag{2.2}$$

পৃথিবীর একই অবস্থান থেকে α কোণকে মাপা যায়। এটি হল দুই অভিমুখের মধ্যবর্তী কোণ যখন গ্রহটির ব্যাস বরাবর দুটি বিপরীত বিন্দুকে দূরবীক্ষণ দিয়ে দেখা হয়। যেহেতু D জ্ঞাত, গ্রহটির ব্যাস dকে (2.2) সমীকরণ ব্যবহার করে নির্ণয় করা যায়।

- (b) $1^{0} = 60' = 1.745 \times 10^{-2}$ rad $1' = 2.908 \times 10^{-4}$ rad $\simeq 2.91 \times 10^{-4}$ rad (c) $1' = 60'' = 2.908 \times 10^{-4}$ rad
 - $1'' = 4.847 \times 10^{-4} \text{ rad} \simeq 4.85 \times 10^{-6} \text{ rad}$

উদাহরণ 2.2 একজন লোকের ইচ্ছে হল তার থেকে নিকটবর্তী একটি টাওয়ারের দূরত্ব গণনা করা। তিনি C টাওয়ারটির সামনের দিকে একটি বিন্দু A তে দাঁড়িয়ে আছেন এবং AC সরলরেখায় খুবই দূরবর্তী একটি স্পস্ট বস্তু Oকে চিহ্নিত করেন। তারপর তিনি AC এর সঙ্গে লম্বভাবে 100 m দূরত্বের B বিন্দুতে হেঁটে গেলেন এবং পুনরায় O এবং C এর দিকে তাকালেন। যেহেতু O খুবই দুরের বস্তু, কার্যত BO ও AO অভিমুখদ্বয় একই; কিন্তু তিনি দেখতে পান C এর দৃষ্টিরেখা প্রকৃত দৃষ্টি রেখা থেকে $\theta = 40^{\circ}$ কোণে সরেছে। (θ লম্বন কোণ নামে পরিচিত) তার প্রকৃত অবস্থান A থেকে টাওয়ার C এর দূরত্ব নির্ণয় করো।

উত্তর : প্রদন্ত লম্বন কোণ $\theta = 40^{\circ}$ চিত্র 2.3 থেকে AB = AC tan θ AC = AB/tan θ = 100 m/tan 40° = 100 m/0.8391 = 119 m

উদাহরণ 2.3 ব্যাস বরাবর পৃথিবীর উপর দুটি বিপরীত বিন্দু A এবং B থেকে চাঁদকে পর্যবেক্ষণ করা হল। পর্যবেক্ষণের দুটি দিক চাঁদে θ = 1°54' কোণ উৎপন্ন করে। প্রদত্ত পৃথিবীর ব্যাস প্রায় 1.276 × 10⁷ m, পৃথিবী থেকে চাঁদের দূরত্ব গণনা করো।

উত্তর : প্রদন্ত heta = 1° 54' = 114'

$$= (114 \times 60)'' \times (4.85 \times 10^{-6}) \text{ rad}$$
$$= 3.32 \times 10^{-2} \text{ rad},$$

$$\therefore 1'' = 4.85 \times 10^{-6} \, rad$$

আবার b = AB = $1.276 \times 10^7 m$

সুতরাং (2.1) সমীকরণ থেকে আমরা পাই পৃথিবী-চাঁদের দূরত্ব,

$$D = b/\theta$$

$$=\frac{1.276\times10^{7}}{3.32\times10^{-2}}$$

 $= 3.84 \times 10^8 \,\mathrm{m}$

উদাহরণ 2.4 সূর্যের কৌণিক ব্যাসের পরিমাপ হল 1920'' এবং পৃথিবী থেকে সূর্যের দূরত্ব 1.496 × 10¹¹ m । সূর্যের ব্যাস কত ?

(2.1)

~

<u>পদার্থবিদ্য</u>

এই দ্রবণ নেবো এবং অ্যালকোহল ব্যবহার করে 20 cm³ লঘু দ্রবণ তৈরি করবো। সুতরাং, দ্রবণের গাঢ়ত্ব (concentration) প্রতি cm³ দ্রবণের ওলিক অ্যাসিডের $\left(\frac{1}{20 \times 20}\right)$ cm³ এর সমান। এরপর আমরা একটি বড় পাত্রে (trough) রাখা জলের উপরিতলে হাল্কাভাবে কিছু লাইকোপোডিয়াম পাউডার ছড়িয়ে দেব এবং এক ফোঁটা দ্রবণটি জলের মধ্যে ফেলব। ওলিক অ্যাসিডের ফোঁটাটি একটি সরু, বৃহৎ আকার এবং প্রায় বৃত্তাকার আণবিক পুরুত্বের পর্দার (film) মত জলের উপরিতলে ছড়িয়ে পড়ে। তারপর, আমরা সরু পর্দার ক্ষেত্রফল *A* কে পাওয়ার জন্য তাড়াতাড়ি করে এর ব্যাস পরিমাণ করব। ধরি, আমরা *n* সংখ্যক ফোঁটা জলে ফেলেছি। প্রথমে আমরা প্রতি ফোঁটার আয়তন (*V* cm³) আসন্নভাবে নির্ণয় করবো।

দ্রবণের n সংখ্যক ফোঁটার আয়তন

$$= nV \text{ cm}^3$$

ঐ দ্রবণে অলিক অ্যাসিডের পরিমাণ

$$= nV\left(\frac{1}{20\times 20}\right) cm^3$$

অলিক অ্যাসিডের এই দ্রবণ খুব দ্রুত জলের উপরিতলে ছড়িয়ে পড়ে এবং *t* পুরুত্বের একটি খুব সরু স্তর গঠন করে। যদি এভাবে ছড়ানো পর্দার ক্ষেত্রফল *A* cm² হয় তবে পর্দার পুরুত্ব

$$t = \frac{9 \text{ দাথের আয়তন}}{9 \text{ দার্থের ক্ষেত্রফল}}$$

অথবা $t = \frac{nV}{20 \times 20 A} \text{ cm}$ (2.3)

যদি ধরে নেওয়া হয় যে পর্দাটির এক-আনবিক পুরুত্ব রয়েছে, তবে এটি হবে ওলিক অ্যাসিডের একটি অণুর আকার বা ব্যাস। এই পর্দাটির পুরুত্বের মানটি10⁻⁹ m ক্রমে পাওয়া যাবে।

• উদাহরণ 2.5 যদি একটি তীক্ষ্ম পিনের অগ্রভাগে একটি নিউক্লিয়াসের আকার (পাল্লা 10⁻¹⁵ থেকে 10⁻¹⁴ m) অংশাজ্জিত হয় তবে একটি পরমাণু আকৃতি আনুমানিকবাবে কি হবে ? ধরাযাক পিনের অগ্রভাগের পাল্লা 10⁻⁵m থেকে 10⁻⁴m. ।

উত্তর : নিউক্লিয়াসের আকারের পাল্লা 10⁻¹⁵ m এবং 10⁻¹⁴ m এর মধ্যে। তীক্ষ্ণ পিনটির অগ্রভাগের পাল্লা 10⁻⁵ m এবং 10⁻⁴ m এর মধ্যে নেওয়া হল। অতএব, আমরা 10¹⁰এর একটি গুণক দ্বারা রেখাঙ্কিত করবো। প্রায় 10⁻¹⁰ m আকারের একটি পরমাণুকে 1 m আকার হিসেবে রেখাঙ্কিত করা হবে। কাজেই একটি পরমাণুর নিউক্লিয়াসটি আকারে এমন ক্ষুদ্র যে প্রায় 1 m ব্যাসার্ধের গোলকের কেন্দ্রে একটি তীক্ষ্ণ পিনের অগ্রভাগকে রাখার মতো।

সূর্যের ব্যাস

$$d = \alpha D = (9.31 \times 10^{-3}) \times (1.496 \times 10^{11}) n$$

 $= 1.39 \times 10^9 \,\mathrm{m}$

2.3.2 খুব ক্ষুদ্র দূরত্বের গণনা : অণুর আকার (Estimation of Very Small Distances : Size of a Molecule)

একটি অনুর (10⁻⁸ m থেকে 10⁻¹⁰ m) মতো খুব ক্ষুদ্র আকারকে পরিমাপ করতে আমাদের বিশেষ পদ্ধতি অবলম্বন করতে হবে। এর জন্য আমরা একটি স্কু গ্যাজ বা সদৃশ কোন যন্ত্র ব্যবহার করতে পারি না। এমন কি অণুবীক্ষণ যন্ত্রেও কিছু সীমাবন্ধতা রয়েছে। পর্যবেক্ষণের অধীন সংস্থাকে দেখার ক্ষেত্রে আলোকীয় অণুবীক্ষণ (optical microscope) যন্ত্রে দৃশ্যমান আলো ব্যবহার করে। আলোর তরঙ্গা বৈশিষ্ট থাকায় বিশ্লেষণটির যে বিস্তার পর্যন্ত আলোকীয় অণুবীক্ষণটি ব্যবহার করা যেতে পারে তাহলো আলোটির তরঙ্গ দৈর্ঘ্য (দ্বাদশ শ্রেণির পদার্থবিদ্যা পাঠ্য বইতে এর বিস্তারিত বিবরণ পাওয়া যাবে)। দৃশ্যমান আলোকের তরঙ্গা দৈর্ঘ্যের পাল্লা প্রায় 4000 Å থেকে 7000 Å (1 অ্যাংস্ট্রম = 1 Å = 10⁻¹⁰ m) কাজেই, একটি আলোকীয় অনুবীক্ষণ যন্ত্র এর থেকে ক্ষুদ্র আকারের কণাকে বিশ্লেষণ করতে পারে না। দৃশ্যমান আলোর পরিবর্তে আমরা একগুচ্ছ ইলেকট্রন ব্যবহার করতে পারি। যথোপযুক্তভাবে পরিকল্পিত তড়িৎক্ষেত্র এবং চৌম্বক ক্ষেত্র দ্বারা ইলেকট্রন গুচ্ছকে ফোকাস করা যায়। ইলেকট্রন তরঞ্চোর মত আচরণ করে, এই তত্ত্বটির উপর ভিত্তি করে এরপ ইলেকট্রন অণুবীক্ষণের বিশ্লেষণটি চূড়ান্তভাবে সীমায়িত হয়। (এ বিষয় আরও জানতে পারবে দ্বাদশ শ্রেণিতে) একটি ইলেকট্রনের তরঙ্গা দৈর্ঘ্য এক অ্যাংস্ট্রমের ভগ্নাংশেরও কম হতে পারে। 0.6 Å বিশ্লেষণ ক্ষমতা সম্পন্ন এরকম ইলেকট্রন-অণুবীক্ষণ যন্ত্রগুলো তৈরি করা হয়েছে। এরা পদার্থের অণু এবং পরমাণুগুলোকে প্রায় বিশ্লেষণ করতে পারে। সম্প্রতিকালে সুরঙ্গম-অণুবীক্ষণ (tunnelling microscopy) প্রস্তুত করা গেছে, যার বিশেলষণ সীমা 1Å এর চেয়েও সূক্ষ্ম। এর দ্বারা অণুগুলোর আকারের গণনা করা সম্ভব হয়েছে।

ওলিক অ্যাসিডের আণবিক আকার গণনা করার একটি সহজ পদ্ধতি নীচে দেওয়া হল। ওলিক অ্যাসিড,10⁻⁹m ব্রমের বড় আণবিক আকার বিশিষ্ট সাবানের মত একটি তরল।

ধারণা করা হয় যে প্রথমে জলের উপর ওলিক অ্যাসিডের এক অণুবিশিষ্ট আণবিক স্তর গঠিত হয়।

আমরা 20cm³ পরিমাণে একটি দ্রবণ তৈরি করার জন্য অ্যালকোহলে 1 cm³ ওলিক অ্যাসিড দ্রবীভূত করবো। তারপর 1 cm³ পরিমানে

2.3.3 দৈর্ঘ্যের পাল্লা (Range of Lengths)

এই বিশ্বব্রাগ্নাঙে আমরা বস্তুর আকারকে অনেক বিস্তৃত পাল্লা পর্যস্ত দেখতে পাই। এগুলোর আকারের পাল্লা বিস্তৃত একটিপরমাণুর ক্ষুদ্র নিউক্লিয়াসের আকারের ক্রম10⁻¹⁴ m থেকে দৃশ্যমান বিশ্বব্রগ্নাণ্ডের আকারের ক্রম 10²⁶ m পর্যস্ত হয়। এইসব বস্তুগুলির দৈর্ঘ্যের পাল্লা, ক্রম এবং আকারের সারণি 2.3 এ দেওয়া আছে।

আমরা ক্ষুদ্র ও বৃহৎ দৈর্ঘ্যের জন্য একটি নির্দিষ্ট বিশেষ দৈর্ঘ্য-একক ব্যবহার করে থাকি। এগুলো হল

 1 ফার্মি
 = 1 f = 10⁻¹⁵ m

 1 অ্যাংস্ট্রম
 = 1 Å = 10⁻¹⁰ m

 1 জ্যোতিবিজ্ঞান একক = 1 AU (পৃথিবী থেকে সূর্যের গড় দূরত্ব)
 = 1.496 × 10¹¹ m

 1 আলোকবর্ষ
 = 1 ly = 9.46×10¹⁵ m (1বছরে 3×10⁸ m s⁻¹)

 বেগে আলোক দ্বারা অতিক্রান্ত দূরত্ব)

 1 পারসেক
 = 3.08 × 10¹⁶ m (পারসেক হল সেই দূরত্ব

 যখন পৃথিবীর কক্ষপথের গড় ব্যাসার্ধ 1arc second কোণ উৎপন্ন

 করে)

2.4 ভরের পরিমাপ (Measurement of mass)

ভর পদার্থের একটি মূল ধর্ম। এটি তাপমাত্রা, চাপ অথবা বস্তুর অবস্থানের উপর নির্ভর করে না। ভরের SI একক কিলোগ্রাম (kg)। আন্তর্জাতিক ওজন ও পরিমাপ দপ্তর (International Bureau of Weights and Measures - BIPM) কর্তৃক সরবরাহিত আন্তর্জাতিক মানক 1 kg ভরের প্রতিরূপ বিভিন্ন দেশের জাতীয় পরীক্ষাগারে পাওয়া যায়। ভারতের নিউ দিল্লির জাতীয় প্রাকৃতিক পরীক্ষাগারে (NPL) এটি পাওয়া যায়।

পরমাণু ও অণুর ভর পরিমাপে কিলোগ্রাম একটি অনুপযোগী একক। এক্ষেত্রে unified atomic mass unit (u) (একত্রিভূত পারমাণবিক ভর একক) নামে ভরের একটি গুরুত্বপূর্ণ প্রমাণ একক রয়েছে, যা পরমাণুর ভরকে প্রকাশ করতে প্রতিষ্ঠিত হয়, যেমন

1 একত্রিত পারমাণবিক ভর একক = 1u

= ইলেকটনগুলোর ভরসহ C-12 সমস্থানিক $\binom{12}{6}C$) এর একটি পরমাণুর ভরের (1/12)

 $= 1.66 \times 10^{-27} \text{ kg}$

সাধারণ তুলাযন্ত্রের সাহায্যে সচরাচর লক্ষ্য বস্তুগুলোর ভর নির্ণয় করা যায়, যেমনটা মুদি দোকানে করা হয়। অভিকর্ষীয় পম্বতি (অধ্যায় 8 দেখো) ব্যবহার করে বিশ্বব্রত্নান্ডের বৃহৎ ভরসমূহ যেমন গ্রহ, নক্ষত্র ইত্যাদির ভরকে নিউটনের মহাকর্ষীয় সূত্রের ভিত্তিতে পরিমাপ করা যায়। পারমাণবিক / উপপারমাণবিক কণাসমূহ ইত্যাদির ক্ষুদ্র ভর পরিমাপের জন্য আমরা ভর বর্ণালী (mass spectrograph) ব্যবহার করি যেখানে সুযম তড়িৎ ক্ষেত্র ও চৌম্বক ক্ষেত্রে গতিশীল আহিত কণার সঞ্জার পথটির ব্যাসার্ধ উহার ভরের সঞ্চো সমাণুপাতিক।

2.4.1 ভরের পাল্লা (Range of Masses)

বিশ্ব ব্রশ্নান্ডের বস্তুগুলোর ভর খুবই বৃহৎ পাল্লায় বিস্তৃত। এগুলো 10⁻³⁰ kg ক্রম সম্পন্ন ক্ষুদ্র ভরের একটি ইলেক্ট্রন হতে আমাদের জানা বিশ্বব্রগ্নাণ্ডের প্রায় 10⁵⁵ kg ক্রম সম্পন্ন বৃহৎ ভরের মধ্যে পরিবর্তিত হতে পারে। বিভিন্ন বস্তুর নমুনাস্বরূপ ভরের পাল্লা ও ক্রম সরণি 2.4 থেকে জানা যায়।

বস্তুর আকার অথবা দূরত্ব	टेनचें m	
প্রোটনের আকার	10-15	
পরমাণুর কেন্দ্রকের আকার	10 ⁻¹⁴	
হাইড্রোজেন পরমাণুর আকার	10 ⁻¹⁰	
নমুনা ভাইরাসের দৈর্ঘ্য	10-8	
আলোকের তরঙ্গা দৈর্ঘ্য	10-7	
লোহিত রক্ত কণিকার আকার	10 ⁻⁵	
কাগজের বেধ	10-4	
সমুদ্র তল থেকে মাউন্ট এভারেস্টের উচ্চতা	10^{4}	
পৃথিবীর ব্যাসার্ধ	10 ⁷	
পৃথিবী থেকে চাঁদের দূরত্ব	10^8	
পৃথিবী থেকে সূর্যের দূরত্ব	1011	
সূর্য থেকে প্লটৌর দূরত্ব	10 ¹³	
আমাদের গ্যালাস্কির আকার	10 ²¹	
অ্যান্ড্রোমেডা গ্যালাস্কির দূরত্ব	10^{22}	
দশ্যমান মহাবিশ্বের দিগঅসীমা	1026	

সারণি 2.3 দৈর্ঘ্যের পাল্লা ও ক্রম

সারণি 2.4 ভরের পাল্লা ও ক্রম (Range and order of masses)

বস্তু	ভর (kg)
ইলেক্ট্রন	10-30
প্রোটন	10-27
ইউরেনিয়াম পরমাণু	10-25
লোহিত রক্ত কোষ	10-13
ধুলি কণা	10-9
বৃষ্টি ফেঁটা	10-6
মশা	10-5
আঙুর	10-3
মানুষ	102
মোর্টর গাড়ি	10 ³
উড়োজাহাজ Boeing 747	108
চাঁদ	1023
পৃথিবী	1025
সূর্য	1030
আকাশগঙ্গা ছায়াপথ	1041
দৃশ্যমান মহাবিশ্ব	1055

2.5 সময়ের পরিমাপ (Measurement of time)

যে-কোনো সময়ের অবকাশ পরিমাপে ঘড়ির প্রয়োজন। এখন আমরা সময়ের পারমাণবিক মানক (atomic standard of time) ব্যবহার করি যা একটি সিজিয়াম পরমাণুর মধ্যে উৎপন্ন পর্যাবৃত্ত কম্পনের উপর ভিত্তি করে প্রতিষ্ঠিত। এটি হল সিজিয়াম ঘড়ির মূল ভিত্তি। কখনো কখনো এই ঘড়িকে পারমাণবিক ঘড়ি বলা হয়, যা জাতীয় সময় মানক রূপে ব্যবহৃত। এরকম মানকগুলো অনেক পরীক্ষাগারেই লভ্য। সিজিয়াম-133 পরমাণুর অতি সূক্ষ্ম 2টি ভৌমস্তরের মধ্যে 9,192,631,770 বার কম্পনের জন্য প্রয়োজনীয় সময়কে পারমাণবিক ঘড়িতে 1 সেকেন্ড ধরা হয়েছে। যেমন একটি তুলন চক্রের কম্পন একটি সাধারণ হাত্যড়িকে নিয়ন্ত্রণ করে অথবা একটি ক্ষুদ্র কোয়ার্টজ স্ফটিকের (quartz crystal) কম্পন একটি কোয়ার্টজ হাত্যড়িকে নিয়ন্ত্রণ করে তেমনই সিজিয়াম পারমাণবিক কম্পন এই সিজিয়াম পারমাণবিক ঘড়ির হারকে নিয়ন্ত্রণ করে।

সিজিয়াম পারমাণবিক ঘড়ি খুবই সঠিক পাঠ দেয়। নীতিগতভাবে এরা সুবিধাজনক (Portable) প্রমাণ মান দেয়। চারটি সিজিয়াম পারমাণবিক ঘড়িসমূহ দ্বারা জাতীয় প্রমাণ সেকেন্ড সময় অবকাশ ও কম্পাজ্ক বজায় রাখা হয়। নিউ দিল্লির জাতীয় প্রাকৃতিক পরীক্ষাগারে National Physical Laboratory (NPL) রাখা সিজিয়াম পারমাণবিক ঘড়িটি ভারতীয় প্রমাণ সময়কে বজায় রাখতে ব্যবহৃত হয়।

আমাদের দেশে সময়, কম্পাঞ্চ ইত্যাদি প্রাকৃতিক মানকগুলোর রক্ষণাবেক্ষণ এবং উন্নতি সাধন NPL এর দায়িত্ব রয়েছে। লক্ষ্যণীয় যে ভারতীয় প্রমাণ সময় (IST) পারমাণবিক ঘড়ি সমষ্টির (set) সঞ্চো সংযুক্ত। দক্ষ সিজিয়াম পারমাণবিক ঘড়িগুলো এত সঠিক যে এদের সময় সম্পর্কিত অনিশ্চয়তা ± 1 × 10⁻¹³ অর্থাৎ 10¹³এর এক অংশ। এটি বোঝায় যে এরুপ যন্ত্র দ্বারা সময় ভিত্তিক অর্জিত অনিশ্চয়তা 10¹³ এর এক অংশ অপেক্ষা কম; এরা এক বৎসরে 3 µs অপেক্ষা বেশি স্লো বা ফাস্ট যায় না। সময়ের পরিমাপগত সুনিপুণ সঠিকতার ভিত্তিতে, দৈর্ঘ্যের SI এককটিকে নির্দিষ্ট সময়ের অবকাশে (1/299, 792, 458 s) আলোর অতিক্রান্ত পথের দৈর্ঘ্য দ্বারা প্রকাশ করা হয়।

বিশ্বে আমরা যে সকল ঘটনার সম্মুখীন হই, তাদের সময়ের অবকাশ এক বিস্তুর্ণ পাল্লায় পরিবর্তিত হয়। 2.5 সারণিটিতে বিশেষ কিছু সময় অবকাশের বিস্তৃতি ও মাত্রা দেওয়া হয়েছে।

তোমরা লক্ষ করো যে, সারণি 2.3 এবং 2.5 এর সংখ্যাগুলোর মধ্যে একটি চিত্তাকর্ষক সমাপতন রয়েছে। লক্ষণীয় যে, আমাদের বিশ্বের বস্তুসমূহের বৃহত্তম ও ক্ষুদ্রতম দৈর্ঘ্যের অনুপাত 10⁴¹ এর মতো। যথেষ্ট চমকপ্রদ, আমাদের বিশ্বের ঘটনাসমূহ ও বস্তু সমূহের সঙ্গে সম্পর্কিত সময়ের বৃহত্তম ও ক্ষুদ্রতম পাল্লার অনুপাতও 10⁴¹ এর মতো। এই সংখ্যা, 10⁴¹ কে আবার সারণি 2.4 এ দেখা যায়, যেখানে বিশেষ বস্তু সমূহের ভরগুলো তালিকাভুক্ত রয়েছে। আমাদের বিশ্বের বস্তু সমূহের বৃহত্তম ও ক্ষুদ্রতম ভরের অনুপাত (10⁴¹)² এর মতো। এই বৃহৎ সংখ্যাগুলোর মধ্যে কৌতৃহল জনক এই সমাপতন কী সম্পূর্ণ আকস্মিক ?

2.6 যন্ত্রের সঠিকতা, যথার্থতা বা সূক্ষ্মতা এবং পরিমাপের ত্রুটি সমূহ : (Accuracy, precision of instruments and errors in measurement)

সব পরীক্ষামূলক বিজ্ঞান ও প্রযুক্তিতে পরিমাপন হল মূল ভিত্তি। যে কোন পরিমাপক যন্ত্রের দ্বারা প্রতিটি পরিমাপের ফলাফলে কিছু অনিশ্চয়তা থাকে। এই অনিশ্চয়তাকেই ত্রুটি বলে। পরিমাপ করা মানের ভিত্তিতে গণনাকৃত প্রতিটি রাশিতেও ত্রুটি থাকে। আমরা সঠিকতা যথার্থতা— এই দুটি বিষয়ের একটিকে অপরটি থেকে পৃথক করব। পরিমাপের সঠিকতা হল পরিমাপকৃত মান, রাশিটির সঠিক মানের কতটা নিকটবর্তী তারই পরিমাপ। যথার্থতা থেকে জানা যায়, রাশিটি কতটা বিশ্লেষণ বা সীমার মধ্যে পরিমাপ করা হয়েছে।

পরিমাপক যন্ত্রের সীমা ও বিশ্লেষণ (resolution) সহ অনেক বিষয়ের উপর পরিমাপের সঠিকতা নির্ভর করে। উদাহরণস্বরূপ, ধরা যাক কোন নির্দিন্ট দৈর্ঘ্যের প্রকৃতমান 3.678 cm. এর নিকটবর্তী। একটি পরীক্ষায় 0.1 cm বিশ্লেষণ সম্পন্ন একটি পরিমাপক যন্ত্র দিয়ে পরিমিত মান পাওয়া গেল 3.5 cm, যেখানে অপর একটি উচ্চতর বিশ্লেষণ, ধরা যাক 0.01 cm, সম্পন্ন পরিমাপক যন্ত্র দিয়ে ওই দৈর্ঘ্য 3.38 cm নির্ণয় করা গেল।প্রথম পরিমাপটি অনেক বেশি সঠিক

সারণি 2.5 সময় অবকাশের পাল্লা ও ক্রম

ঘটনা	সময়াবকাশ (s)
সবচেয়ে অস্থায়ী কণার জীবনকাল	10-24
একটি পরমাণু কেন্দ্রকের দূরত্ব অতিক্রম করতে আলোর প্রয়োজনীয় সময়	10-22
এক্স রশ্মির পর্যায়কাল	10-19
পারমাণবিক কম্পনের পর্যায়কাল	10-15
আলোক তরজোর পর্যায়কাল	10-15
একটি পরমাণুর উত্তেজিত স্তরের জীবনকাল	10-8
বেতার তরজোর পর্যায়কাল	10-6
শব্দ তরঞ্জের পর্যায়কাল	10-3
চোখের পলক	10-1
মানুযের পরপর হৃদস্পন্দনের মধ্যবর্তী সময়	10°
চাঁদ থেকে পৃথিবীতে আলো পৌঁছার সময়	10°
সূর্য থেকে পৃথিবীতে আলো পৌঁছার সময়	102
একটি উপগ্রহের পর্যায়কাল	104
পৃথিবীর প্রদক্ষিণ কাল	105
চাঁদের আবর্তন এবং পরিক্রমণ কাল	106
পৃথিবীর পরিক্রমণ কাল	107
নিকটবর্তী নক্ষত্র থেকে আলো পৌঁছার সময়	10 ⁸
মানুষের গড় আয়ুষ্কাল	109
মিশরের পিরামিডের বয়স	1011
ডায়নোসুরের অবলুপ্তি থেকে সময়	1015
মহাবিশ্বের বয়স	1017

(কারণ এটি প্রকৃত মানের খুবই কাছে) কিন্তু কম যথার্থতা সম্পন্ন (এর বিশ্লেষণ মাত্র 0.1 cm)। আবার দ্বিতীয় পরিমাপটির সঠিকতা কম কিন্তু এর যথার্থতা বেশি। কাজেই পরিমাপে ত্রুটির জন্য সব পরিমাপই আসন্ন। সাধারণভাবে, পরিমাপের ত্রুটিকে মূলত দুটি শ্রেণিতে বিভক্ত করা হয় যেমন, (a) শৃঙ্খলাবদ্ধ বা নিয়মিত ত্রুটি (systematic errors) এবং (b) অনিয়মিত ত্রুটি (random errors)।

শৃঙ্খলাবন্ধ ত্রুটি (Systematic errors)

শৃঙ্খলাবন্ধ ত্রুটি হল ওই সব ত্রুটি যাদের ধনাত্মক কিংবা ঋণাত্মক -একমুখী প্রবণতা থাকে। শৃঙ্খলাবন্দ্র ত্রুটির কিছু উৎস হল :

- (a) যান্ত্রিক ত্রুটি : এর্প ব্রুটি পরিমাপক যন্ত্রের ব্রুটিপূর্ণ গঠন অথবা যন্ত্রের অংশাঙ্কন (calibration) জনিত, যন্ত্রের শূন্য ব্রুটি ইত্যাদির কারণে আসে। উদাহরণস্বরূপ, একটি থার্মোমিটারের তাপমাত্রার ক্রমবিন্যাস ইচ্ছেমত অংশাঙ্কন করা যায় (STPতে জলের স্ফুটনাঙ্কের পাঠ 104°C হতে পারে, কিন্তু এই পাঠ 100°C হওয়া উচিত); ভার্নিয়ার ক্যালিপার্সের ভার্নিয়ার স্কেলের শূন্য দাগ মূলস্কেলের শূন্য দাগের সঙ্গো সমাপতিত নাও হতে পারে, অথবা একটি সাধারণ মিটার স্কেলের এক প্রান্ত ক্ষয় পেতে পারে।
- (b) পরীক্ষার কৌশলগত অথবা পদ্ধতিগত ত্রুটি : মানব দেহের তাপমাত্রা নির্ণয়ে বগলের নীচে রাখা একটি

থার্মোমিটার সর্বদা শরীরের প্রকৃত তাপমাত্রা থেকে কম দেখায়। পরীক্ষা চলাকালীন সময়ে অন্যান্য বাহ্যিক শর্তগলো (যেমন উন্নতার পরিবর্তন, আর্দ্রতা, বায়ুর গতিবেগ ইত্যাদি) পরীক্ষার পরিমাপের উপর নিয়মিত প্রভাব ফেলতে পারে।

(c) ব্যক্তিগত বুটি (Personal errors) : একজনের ব্যক্তিগত প্রভাব, যন্ত্রাদির সঠিক বিন্যাসের অভাব অথবা যথোপযুক্ত সতর্কতা অবলম্বন না করে পর্যবেক্ষণে ব্যক্তিগত অসাবধানতা ইত্যাদি কারণে এই ত্রুটি আসে। উদাহরণ স্বরূপ, কোন স্কেলের উপর সূচকের (Needle) অবস্থানের পাঠ নেওয়ার সময় যদি অভ্যাসবশত সর্বদাই তুমি তোমার মাথাকে খানিকটা ডানদিকে হেলিয়ে রাখ তবে সেক্ষেত্রে লম্বন জনিত একটি ত্রুটি আসে।

পরীক্ষার কৌশলগত উন্নতিসাধন, উন্নততর যন্ত্রাদির নির্বাচন এবং ব্যক্তিগত প্রভাব যতটা সম্ভব কমিয়ে এই ত্রুটি কমানো যায়। একটি নির্দিন্ট পরীক্ষা ব্যবস্থাপনায় একটি নির্দিন্ট সীমা পর্যন্ত এই ত্রুটিগুলোর হিসেব করে পাঠগুলোর প্রয়োজনীয় সংশোধন করা যেতে পারে।

অনিয়মিত ত্রুটি :- (Random errors)

অনিয়মিত ব্রুটি হল ঐ সকল ব্রুটি যা অনিয়মিত ভাবে আসে, কাজেই চিহ্ন ও আকারের সাপেক্ষে অনিয়মিত হয়। পরীক্ষা বিষয়ক শর্তাবলির (যেমন তাপমাত্রা ও ভোল্টেজের উঠা-নামা, পরীক্ষা পরিকাঠামোতে যান্ত্রিক কম্পন) অনিয়মিত ও অনিশ্চিত উঠা-নামা, পাঠ নেওয়া কালীন ব্যক্তিগত (প্রভাবযুক্ত) ত্রুটি প্রভৃতি কারণে এসকল ত্রুটি আসে। উদাহরণ স্বরূপ যখন একই ব্যক্তি একই পর্যবেক্ষণের পুনরাবৃত্তি করেন তখন সচরাচর তার বিভিন্ন পাঠ পাওয়ার সম্ভাবনা থাকে।

লঘিষ্ট ধ্রুবক ত্রুটি (Least count error)

কোন পরিমাপক যন্ত্রের সাহায্যে যে ক্ষুদ্রতম মান পরিমাপ করা যায় তাকে ঐ যন্ত্রের লঘিষ্ঠ ধ্রুবক বলে। সকল পাঠ এবং পরিমিত মানসমূহ ঐ ক্ষুদ্রতম মান পর্যন্ত সঠিক হয়।

যন্ত্রের বিশ্লেষণ বা বিভেদন (resolution) এর সঞ্চো সংযুক্ত ত্রুটিটি লঘিস্ট ধ্রুবক ত্রুটি। উদাহরণ স্বরূপ, একটি ভার্নিয়ার ক্যালিপার্সের লঘিস্ট ধ্রুবক 0.01 cm; একটি স্ফেরোমিটারের লঘিষ্ঠ ধ্রুবক 0.001 cm. হতে পারে। লঘিষ্ঠ ধ্রুবক ত্রুটি অনিয়মিত ত্রুটির পর্যায়ের কিন্ডু এটি সীমিত মানের মধ্যে থাকে; নিয়মিত ত্রুটি ও অনিয়মিত ত্রুটি ভার্টের ক্ষেত্রেই এটি আসে। যদি আমরা দৈর্ঘ্য পরিমাপে মিটার স্কেল ব্যবহার করি, তবে এর মধ্যে 1 mm ব্যবধান বিশিস্ট অংশাঙ্কন থাকবে।

উচ্চতর সূক্ষ্মতার (precision) যন্ত্রাদি ও পরীক্ষা ব্যবস্থার কৌশলগত উন্নতি সাধন ইত্যাদির মাধ্যমে আমরা লঘিষ্ট ধ্রুবক ব্রুটিকে কমাতে পারি। পর্যবেক্ষণসমূহের অনেকবার পুনরাবৃত্তি করে, প্রাপ্ত মানসমূহের গাণিতিক গড় নিলে ঐ গড়মান পরিমেয় রাশিটির প্রকৃতমানের খুবই কাছাকাছি হয়।

2.6.1পরম জুটি (Absolute Error), আপেক্ষিক জুটি (Relative
Error) এবং শতকরা জুটি (Percentage Error)

 (a) ধরা যাক, অনেকবার পরিমাপের ফলে কোন একটি রাশির প্রাপ্ত মানগুলো a₁, a₂, a₃...., a_n । এই মানগুলোর গানিতিক গড় পরিমাপের প্রদন্ত শর্তাধীনে ওই রাশিটির সবচেয়ে উত্তম সম্ভাব্য মানরূপে গৃহীত হয়। যেমন :

$$a_{mean} = (a_1 + a_2 + a_3 + \dots + a_n) / n$$
(2.4)

অথবা

$$a_{mean} = \sum_{i=1}^{n} a_i / n \tag{2.5}$$

এর কারণ, পূর্বের ব্যাখ্যা অনুসারে, ধরে নেওয়া যুক্তিসংগত হবে যে পরিমাপে প্রাপ্ত পৃথক পৃথক মানগুলো রাশিটির প্রকৃত মানের চেয়ে বেশি বা কম হওয়াই স্বাভাবিক। কোন রাশির পৃথক পৃথক পরিমাপে প্রাপ্ত মান ও ওর প্রকৃতমানের পার্থক্যের পরমমানকেই রাশিটির পরিমাপের পরম ব্রুটি বলে। একে | Δa | দ্বারা সূচিত করা হয়। প্রকৃত মান জানার অন্য কোন পম্বতি না থাকায়, আমরা গাণিতিক গড়কে প্রকৃত মানরূপে ধরে থাকি। তাহলে প্রকৃত মান থেকে প্রতিটি পরিমিত মানের ব্রুটিগুলো হল যথাক্রমে —

$$\Delta a_1 = a_1 - a_{mean}$$

$$\Delta a_2 = a_2 - a_{mean}$$

...

$$\Delta a_n = a_n - a_{mean}$$

উপরোক্ত গণনায় ∆a কিছু কিছু ক্ষেত্রে ধনাত্মক এবং অন্য কিছু কিছু ক্ষেত্রে ঋণাত্মক হতে পারে। কিন্তু পরম ত্রুটি।∆a| সর্বদা ধনাত্মক হবে।

(b) সব পরম ত্রুটিগুলোর গাণিতিক গড়কে প্রাকৃতিক রাশিটির
 (a) চূড়ান্ত বা গড় পরম ত্রুটিরূপে গণ্য করা হয়। একে Δa_{mean}.
 দ্বারা সূচিত করা হয়।

কাজেই,

$$\Delta a_{mean} = \left(|\Delta a_1| + |\Delta a_2| + |\Delta a_3| + \dots + |\Delta a_n| \right) / n$$
(2.6)

$$=\sum_{i=1}^{n} |\Delta a_i|/n \tag{2.7}$$

আমরা যদি একবার মাত্র পরিমাপ করি, তবে আমরা যে মান পাবো তার পাল্লা $a_{mean} \pm \Delta a_{mean}$ এর মধ্যে সীমাবন্দ্র থাকবে।

অৰ্থাৎ
$$a = a_{mean} \pm \Delta a_{mean}$$

অথবা,
 $a_{mean} - \Delta a_{mean} \le a \le a_{mean} + \Delta a_{mean}$
(2.8)

এরদ্বারা বোঝায় যে, প্রাকৃতিক রাশিটির পরিমাপ $(a_{mean}+\Delta a_{mean})$ এবং $(a_{mean}-\Delta a_{mean})$ - এর মধ্যে থাকবে।

(c) আমরা প্রায়শই পরম ত্রুটির পরিবর্তে আপেক্ষিক ত্রুটি বা শতকরা ত্রুটি(δa) ব্যবহার করি। গড়পরম ত্রুটি Δa_{mean} এবং পরিমেয় রাশিটির গড় a_{mean}মানের অনুপাত হল পরিমাপের আপেক্ষিক ত্রুটি।

<u>একক এবং পরিমাপ</u>

আপেক্ষিক ত্রুটি = $\Delta a_{mean}/a_{mean}$ (2.9)

যখন আপেক্ষিক ত্রুটি শতকরায় প্রকাশ করা হয় তখন তাকে শতকরা ত্রুটি (১৫) বলা হয়।

তাই, শতকরা বুটি $\delta a = (\Delta a_{mean}/a_{mean}) \times 100\%$ (2.10)

এখন আমরা একটি উদাহরণ বিবেচনা করব —

▶ উদাহরণ : 2.6 জাতীয় প ⁵	রীক্ষাগারে রাখা	একটি মানক ঘড়ির
সাপেক্ষে দুটি ঘড়িকে পরী	াক্ষা করা হল। হ	মানক ঘড়িতে দুপুর
12:00:00 টায় দুটি ঘড়ির	পাঠ :	
	ঘড়ি -1	ঘড়ি - 2
সোমবার	12:00:05	10:15:06
মঙ্গলবার	12:01:15	10:14:59
বুধবার	11:59:08	10:15:18
বৃহস্পতিবার	12:01:50	10:15:07
শুক্রবার	11:59:15	10:14:53
শনিবার	12:01:30	10:15:24
রবিবার	12:01:19	10:15:11
তুমি এমন একটি পরী পরিমাপের সূক্ষ্মতা প্রয়ো পছন্দ করবে ?	ক্ষা করছ যেখ জন।সেক্ষেত্রে	ানে সময় অবকাশ তুমি কোন্ ঘড়িটিকে

উত্তর : 7 দিনের পর্যবেক্ষণের উপর পরিবর্তনের পাল্লা ঘড়ি-1, এর ক্ষেত্র 162s এবং ঘড়ি-2 এর থেকে 31s। ঘড়ি-2 এর গড় পাঠের চেয়ে ঘড়ি-1 এর গড় পাঠ মানক ঘড়ির খুব নিটকবর্তী। গুরুত্বপূর্ণ বিষয় হল সূক্ষ্মতার কাজে একটি ঘড়ির পরিবর্তনের পাল্লার ন্যায় শূন্য ত্রুটি ততটা তাৎপর্যপূর্ণ নয়, কারণ সর্বদা 'শূন্য ত্রুটি'কে সহজে সংশোধিত করা যায়। কাজেই ঘড়ি-1 এর চেয়ে ঘড়ি- 2 অধিকতর পছন্দের।

উদাহরণ 2.7 আমরা একটি সরল দোলকের দোলনকাল পরিমাপ করবো। পরপর পরিমাপে পাওয়া পাঠগুলো 2.63 s, 2.56 s, 2.42 s, 2.71s and 2.80 s। চরম ত্রুটি, আপেক্ষিক ত্রুটি বা শতকরা ত্রুটি গণনা করো।

উত্তর : দোলকটির দোলনের গড় দোলন কাল $T = \frac{(2.63 + 2.56 + 2.42 + 2.71 + 2.80)s}{5}$ $= \frac{13.12}{5}s$ = 2.624 s= 2.62 s

যেহেতু পর্যায়গুলোকে 0.01 s বিশ্লেষণ অবধি পরিমাপ করা হয় এবং সকল সময়গুলো দুই দশমিক স্থান পর্যন্ত রাখা হয়। এই গড় পর্যায়কেও দুই দশমিক স্থান পর্যন্ত রাখা শ্রেয়।

পরিমাপের ব্রুটিগুলো — 2.63 s - 2.62 s = 0.01 s 2.56 s - 2.62 s = - 0.06 s 2.42 s - 2.62 s = - 0.20 s 2.71 s - 2.62 s = 0.09 s 2.80 s - 2.62 s = 0.18 s

> বিশেষভাবে লক্ষণীয় যে, পরিমেয় রশির একক ও ত্রুটিগুলোর একক একই হয়।

> সব চরম ত্রুটিগুলোর গাণিতিক গড় (গাণিতিক গড় এর ক্ষেত্রে, আমরা কেবলমাত্র মানগুলো নেবো) হল

 $\Delta T_{mean} = [(0.01+0.06+0.20+0.09+0.18)s]/5$ = 0.54 s/5 = 0.11 s

এ থেকে বোঝা যায়, সরল দোলকটির দোলনকাল (2.62 ± 0.11) s অর্থাৎ এটি (2.62 + 0.11) s এবং (2.62 – 0.11) s তথা 2.73 s এবং 2.51 s এর মধ্যে থাকে। চরম ত্রুটিগুলোর গাণিতিক গড় 0.11 s হওয়ায় এবং ইতিমধ্যেই সেকেন্ডের এক দশাংশ ত্রুটি রয়েছে; কাজেই পর্যায়ের মানে সেকেন্ডের শতাংশ নেওয়ার কোন প্রয়োজন নেই।

 $T = 2.6 \pm 0.1 \text{ s}$ লেখাই অধিক সঠিক পদ্ধতি হবে।

লক্ষ্যণীয় যে শেষ অঞ্চ 6 অনির্ভরযোগ্য কারণ এটি 5 এবং 7 এর মধ্যে যা কিছু হতে পারে। আমরা এই বলে ইণ্ডিাত করতে পারি যে পরিমাপের দুটি তাৎপর্যপূর্ণ অঞ্চ্ব সংখ্যা আছে। এক্ষেত্রে তাৎপর্যপূর্ণ অঞ্চ সংখ্যা দুটি, নির্ভরযোগ্য অঞ্চ 2 এবং অপরটি 6, যেটি ব্রুটি যুক্ত। তোমরা অনুচ্ছেদ 2.7 এ তাৎপর্যপূর্ণ অঞ্চ্বসংখ্যাগুলি সম্বন্ধে আরও জানতে পারবে।

এই উদাহরণের ক্ষেত্রে, আপেক্ষিক ত্রুটি বা শতকরা ত্রুটি হল

$$\delta a = \frac{0.1}{2.6} \times 100 = 4\%$$

2.6.2 ত্রুটির সমবায় (Combination of Errors)

যদি আমরা এমন একটি পরীক্ষা করি যেখানে অনেকগুলো পরিমাপন করতে হয়, তবে অবশ্যই আমাদেরকে সব পরিমাপনগুলোতে ঘটা ত্রুটিগুলোর সমবায়কে জানতে হবে। উদাহরণ স্বরূপ পদার্থের ভরকে আয়তন দিয়ে ভাগ করে ঘনত্ব পাওয়া যায়। যদি ভর এবং আকারের বা

কোন রেখার দৈর্ঘ্য তুমি কিভাবে পরিমাপ করবে ? (How will you measure the length of a line?)

এই পর্যায়ে আসার পর তুমি অবশ্যই বলবে এটি কি শিশুসুলভ প্রশ্ন ! কিন্তু এই রেখা যদি সরলরেখা না হয়, তবে কী হবে? তোমার খাতায় বা ব্ল্যাক বোর্ডে একটি আঁকাবাঁকা (zigzag) রেখা আঁক। ঠিক আছে, এর দৈর্ঘ্য মাপাও খুব কঠিন নয়। তুমি একটি সূতা নেবে, একে রেখার উপর রাখবে, সুতাটিকে খুলে এর দৈর্ঘ্য মেপে নেবে।

এখন কল্পনা কর যে তোমাকে জাতীয় রাজপথ বা কোন নদী বা দুটি রেল স্টেশনের মধ্যবর্তী রেলপথ (railway track) বা দুটি রাজ্য অথবা দুটি দেশের মধ্যে সীমানার দৈর্ঘ্য মাপতে হবে। এর জন্য যদি তুমি 1m বা 100m দড়ি নাও, একে রেখা বরাবর রাখ, বার বার অবস্থান পাল্টিয়ে সামনে নিয়ে যাওয়া হয় তবে এতে শ্রমিকের যে শ্রম, সময় ও খরচ হবে তা উপলব্ধির অনুপাতে অনেক বেশি হবে। অধিকন্তু, এই বিশাল কাজে ত্রুটি হতে বাধ্য। এই সম্পর্কিত একটি মজাদার ঘটনা আছে। ফ্রান্স ও বেলজিয়াম উভয়ের আন্তর্জাতিক সাধারণ সীমানা আছে কিন্তু দুই দেশের সরকারি দলিলপত্রে উল্লেখিত এই দৈর্ঘ্যে পার্থক্য বিস্তর।

একটু এগিয়ে চিন্তা করো, সমুদ্রের তটরেখা অর্থাৎ যে রেখায় ডাঙ্গা ও সমুদ্র পরস্পর মিলিত হয়, একে কল্পনা করি। তটরেখার তুলনায় রাস্তা এবং নদীর ক্ষেত্রে বস্তুত অল্প বাঁক থাকে। তা সত্ত্বেও আমাদের স্কুলের বই সহ সব নথিপত্রে গুজরাট বা অন্ধ্রপ্রদেশের সমুদ্র তটরেখার বা দুই রাজ্যের মধ্যবর্তী সীমানা ইত্যাদি দৈর্ঘ্য সম্পর্কিত তথ্য দেওয়া আছে। রেল টিকেটের উপর স্টেশনের সঙ্গে মধ্যবর্তী দূরত্বও ছাপা হয়। আমাদের রাস্তার ধারে ধারে মাইল ফলক আছে এইগুলি বিভিন্ন শহরের দরত্ব নির্দেশ করে। তাহলে এটি কিভাবে করা হয় ?

সিম্বাস্ত নিতে হবে কতটুকু পর্যন্ত বুটি একজন গ্রহণ করতে পারে এবং পরিমাপের কাজে অধিকতম কত খরচ করা যাবে। যদি তুমি কম ত্রুটি চাও, তবে তাতে উচ্চ প্রযুক্তিবিদ্যা ব্যবহার করতে হবে এবং এতে খরচ বেশি হবে। বলা যায় এর জন্য উচ্চস্তরের পদার্থবিদ্যা, গণিত, পূর্তবিদা এবং প্রযুক্তিবিদ্যার প্রয়োজন। এটি ফ্র্যাক্টালের (fractals) তাত্ত্বিক পদার্থবিদ্যার অন্তর্গত এবং পরবর্তীকালে খুব জনপ্রিয় হয়। এত কিছুর পরও যে সংখ্যা পাওয়া যায় এর উপর কতটা বিশ্বাস করা যাবে তা বলা কঠিন। যেমন ফ্রান্স ও বেলজিয়ামের দৃষ্টান্ত থেকে এটা স্পষ্ট হয়। প্রসঞ্চাক্রমে ফ্রান্স-বেলজিয়ামের এই দৃষ্টান্তের অসঙ্গতি, ফ্র্যাক্টালস (fractals) এবং কেওয়াস (chaos) বিষয় সম্পর্কিত উচ্চ পদার্থবিদ্যার কোনো এক বইয়ের প্রথম পৃষ্ঠায় স্থান পেয়েছে।

মাত্রার পরিমাপনে ত্রুটি থাকে তবে আমরা ঐ পদার্থের ঘনত্বের পরিমাপনে ত্রুটি অবশ্যই জানব। এরকম 'হিসাবে' আমাদের বিভিন্ন গাণিতিক ক্রিয়ার (operation) ত্রুটিগুলোর সমবায়কে অবশ্যই জানতে হবে। এরজন্য আমরা নিম্নের পদ্ধতি ব্যবহার করব।

(a) একটি যোগ বা একটি বিয়োগের ত্রুটি (Error of a sum or a difference)

ধরা যাক, দুটি প্রাকৃতিক রাশি A এবং B এর পরিমিত মানগুলি যথাক্রমে A ± ΔA এবং B ± ΔB যেখানে ΔA এবং ΔB তাদের পরম ত্রুটি। Z = A + B এই যোগের ত্রটি ΔZ নির্ণয় করতে চাই।

যোগ করে আমরা পাই,
$$Z \pm \Delta Z$$

 $= (A \pm \Delta A) + (B \pm \Delta B).$
 Z এর সর্বোচ্চ সম্ভাব্য ত্রুটি
 $\Delta Z = \Delta A + \Delta B$
 $Z = A - B$ র জন্য আমরা পাই
 $Z \pm \Delta Z = (A \pm \Delta A) - (B \pm \Delta B)$
 $= (A - B) \pm \Delta A \pm \Delta B$
অথবা, $\pm \Delta Z = \pm \Delta A \pm \Delta B$
সুতরাং, ΔZ ত্রুটির সর্বোচ্চ মান হল $\Delta A + \Delta B.$

অতএব, নিয়মটি : যখন দুটি রাশির যোগ বা বিয়োগ করা হয় তখন চূড়ান্ত ফলাফলের পরম ত্রুটি হয় স্বতন্ত্র রাশিগুলোর পরম ত্রুটির যোগফল।

▶ উদাহরণ 2.8 একটি থার্মোমিটার দিয়ে দুটি বস্তুর তাপমাত্রা পরিমাপ করে পাওয়া গেল t₁ = 20 °C ± 0.5 °C এবং t₂ = 50 °C ± 0.5 °C. তাপমাত্রার পার্থক্য এবং তাতে ত্রুটি নির্ণয় করো।

উত্তর
$$t' = t_2 - t_1 = (50 \,^{\circ}\text{C} \pm 0.5 \,^{\circ}\text{C}) - (20^{\circ}\text{C} \pm 0.5 \,^{\circ}\text{C})$$

 $t' = 30 \,^{\circ}\text{C} \pm 1 \,^{\circ}\text{C}$

(b) একটি গুণ বা একটি ভাগের ত্রুটি (Error of a product or a quotient)

ধরাযাক $Z\!=\!AB$ এবংA ও B এর পরিমিত মান যথাক্রমে $A\pm\Delta A$ ও $B\pm\Delta B$ । তাহলে

$$Z \pm \Delta Z = (A \pm \Delta A) \ (B \pm \Delta B)$$

 $= AB \pm B \Delta A \pm A \Delta B \pm \Delta A \Delta B.$

বামপক্ষকে Z এবং ডানপক্ষকে AB দ্বারা ভাগ করে আমরা পাই—

 $1 \pm (\Delta Z/Z) = 1 \pm (\Delta A/A) \pm (\Delta B/B) \pm (\Delta A/A)(\Delta B/B).$

যেহেতু ΔA ও ΔB ছোট (ক্ষুদ্র), আমরা তাদের গুনফলকে উপেক্ষা করবো।

সুতরাং সর্বোচ্চ পরম ত্রুটি

 $\Delta Z/Z = (\Delta A/A) + (\Delta B/B).$

তোমরা সহজে যাচাই করে বলতে পারো এটি ভাগের জন্যও সত্য।

অতএব নিয়মটি : যখন দুটি রাশির গুণ বা ভাগ করা হয় তখন ফলাফলে আপেক্ষিক ত্রুটি হল গুণকগুলোর আপেক্ষিক ত্রুটির যোগফল।

উত্তর *V* এর শতকরা ত্রুটি 5% এবং I এ এটি 2% । অতএব *R* এর মোট ত্রুটি হবে 5% + 2% = 7%.

• উদাহরণ 2.10 $R_1 = 100 \pm 3$ ওহম এবং $R_2 = 200 \pm 4$ ওহম রোধ সম্পন্ন দুটি রোধক (a) শ্রেণি, (b) সামন্তরাল সমবায় যুক্ত (a) শ্রেণি সমবায় ও (b) সমান্তরাল সমবায়ের তুল্য রোধ নির্ণয় কর। সম্পর্ক (a) এর জন্য $R = R_1 + R_2$ ও (b) এর জন্য $\frac{1}{R'} = \frac{1}{R_1} + \frac{1}{R_2}$ এবং $\frac{\Delta R'}{{R'}^2} = \frac{\Delta R_1}{{R_1}^2} + \frac{\Delta R_2}{{R_2}^2}$ ব্যবহার করো।

উত্তর (a) শ্রেণি সমবায়ে তুল্য রোধ

$$R = R_1 + R_2 = (100 \pm 3)$$
 ohm $+ (200 \pm 4)$ ওহম

= 300 ± 7 ওহম

(b) সমান্তরাল সমবায়ে তুল্য রোধ

$$R' = \frac{R_1 R_2}{R_1 + R_2} = \frac{200}{3} = 66.7$$
 ওহম

তাহলে
$$\frac{1}{R'} = \frac{1}{R_1} + \frac{1}{R_2}$$
 থেকে

আমরা পাই,

$$\frac{\Delta R'}{R'^2} = \frac{\Delta R_1}{R_1^2} + \frac{\Delta R_2}{R_2^2}$$
$$\Delta R' = \left(R'^2\right) \frac{\Delta R_1}{R_1^2} + \left(R'^2\right) \frac{\Delta R_2}{R_2^2}$$
$$= \left(\frac{66.7}{100}\right)^2 3 + \left(\frac{66.7}{200}\right)^2 4$$
$$= 1.8$$

 $R' = 66.7 \pm 1.8$ ওহম

(তাৎপর্যপূর্ণ অঙ্জ সংখ্যার নিয়মের সঙ্গে সঙ্গতি রাখতে গিয়ে ∆R কে 2 এর পরিবর্তে 1.8 দ্বারা প্রকাশ করা হয়)

(c) একটি ঘাতযুক্ত পরিমিত রাশির ত্রুটির জন্য (Error in case of a measured quantity raised to a power)

ধরা যাক, $Z = A^2$,

তাহলে,

 $\Delta Z/Z = (\Delta A/A) + (\Delta A/A) = 2 (\Delta A/A).$ সুতরাং A^2 এর আপেক্ষিক ত্রুটি A এর ত্রুটির দ্বিগুণ হয়।

সাধারণভাবে, যদি $Z = A^p B^q/C^r$ তাহলে, $\Delta Z/Z = p (\Delta A/A) + q (\Delta B/B) + r (\Delta C/C).$

অতএব নিয়মটি : k ঘাতে উন্নীত প্রাকৃতিক রাশির আপেক্ষিক ত্রুটি হল স্বতন্ত্র রাশির আপেক্ষিক ত্রুটির k গুন।

► উদাহরণ 2.11 যদি Z = A⁴B^{1/3}/CD^{3/2}.হয় তবে Z এর আপেক্ষিক ত্রুটি নির্ণয় কর।

উত্তর Z এর আপেক্ষিক ত্রুটি হল $\Delta Z/Z = 4(\Delta A/A) + (1/3)(\Delta B/B) + (\Delta C/C) + (3/2)(\Delta D/D)$ ।

উদাহরণ 2.12 একটি সরল দোলকের দোলনের পর্যায়কাল $T = 2\pi\sqrt{L/g}$ । 1 mm জ্ঞাত সঠিকতায় L এর পরিমিত মান 20.0 এবং 1s বিশ্লেষণ সম্পন্ন একটি হাত ঘড়ির 100টি দোলনের সময় 90s পাওয়া গেল। g এর মান নির্ণয়ে সঠিকতা কত ?

উত্তর
$$g = 4\pi^2 L/T^2$$

এখানে,
$$T = \frac{t}{n}$$
 এবং $\Delta T = \frac{\Delta t}{n}$.

অতএব, $\frac{\Delta T}{T} = \frac{\Delta t}{t}$. L এবং t উভয়ের ত্রুটিগুলো লঘিষ্ঠ ধ্রুবক ত্রুটি অতএব,

$$(\Delta g/g) = (\Delta L/L) + 2(\Delta T/T)$$

$$= \frac{0.1}{20.0} + 2\left(\frac{1}{90}\right) = 0.027$$

2.7 তাৎপর্যপূর্ণ অজ্ঞ সংখ্যা (Significant figures)

উপরোক্ত আলোচনা অনুসারে প্রত্যেক পরিমাপ ত্রুটিযুক্ত। কাজেই পরিমাপের ফলাফলকে এমনভাবে প্রকাশ করতে হবে যাতে পরিমাপ সূক্ষতা সূচিত করে। সাধারণভাবে, পরিমাপের প্রকাশিত পাঠটি একটি সংখ্যা যার মধ্যে সব অঞ্চগুলি অন্তর্ভুক্ত হয়, এরা নির্ভরযোগ্য এবং প্রথম অঞ্চটিতে অনিশ্চয়তা থাকে। নির্ভরযোগ্য অংকগুলোর সংখ্যা এবং প্রথম অনিশ্চিত অঞ্চ মিলে মোট সংখ্যাকে তাৎপর্যপূর্ণ অঞ্চ বা সার্থক সংখ্যা বলে। আমরা যদি বলি একটি সরল দোলকের দোলনকাল 1.62 s তবে অঞ্চগুলোর মধ্যে 1 ও 6 হবে নির্ভরযোগ্য ও নিশ্চিত। যদিও 2 হল অনিশ্চিত। কাজেই পরিমিত মানের তিনটি তাৎপর্যপূর্ণ অঙ্কসংখ্যা আছে। একটি বস্তুর দৈর্ঘ্য পরিমাপের পর 287.5 দ্বারা প্রকাশ করা হলে তাতে 4টি তাৎপর্যপূর্ণ অঙ্ক থাকে — যদিও 5 অঙ্কটি অনিশ্চিত কিন্ডু 2, 8, 7 অঙ্কগুলো নিশ্চিত। স্পন্টত : পরিমাপের পাঠ প্রকাশে তাৎপর্যপূর্ণ অঙ্ক সংখ্যার চেয়ে বেসি অঙ্ক অনাবশ্যক এবং এছাড়া ভুল পথে চালিত হবে কারণ এটি সুক্ষ্মতা পরিমাপে একটি ভুল ধারণা দেবে।

নিম্নের উদাহরণগুলো তাৎপর্যপূর্ণ অঙ্কসংখ্যার সংখ্যা নির্ণয়ের নিয়মগুলোকে বুঝতে সাহায্য করবে। পূর্বে উল্লেখিত যে, তাৎপর্যপূর্ণ অঙ্ক সংখ্যা সূচিত করে পরিমাপের সূক্ষ্মতাকে যা পরিমাপ যন্ত্রের লঘিন্ট ধ্রুবক এর উপর নির্ভরশীল। একটি পরিমাপে এক একক থেকে অন্য এককে পরিবর্তনে তাৎপর্যপূর্ণ অঙ্ক সংখ্যার পরিবর্তন হয় না। এই গরুত্বপূর্ণ মন্ত্রব্য নিম্নের বেশিরভাগ পর্যবেক্ষণকে স্পন্ট করে:

 ডিদাহরণস্বরূপ, 2.308cm দৈর্ঘ্যের 4টি তাৎপর্যপূর্ণ অঙ্ক আছে। কিন্তু বিভিন্ন এককে, এই মানকে লেখা যাবে 0.02308 m বা 23.08 mm বা 23080 µm রূপে।

প্রতিটি সংখ্যার তাৎপর্যপূর্ণ অঙ্জ্ঞ সংখ্যা চারটি (অংখগুলো হল 2, 3, 0, 8) । এখানে দেখা যায় যে দশমিক বিন্দুর অবস্থান কোনো তাৎপর্যপূর্ণ অঙ্ক সংখ্যা নির্ণয়ে প্রভাব ফেলে না।

উদাহরণটি থেকে নিম্নের নিয়মগুলি পাওয়া যায় :

- সমস্ত অশূন্য অঙ্কগুলি তাৎপর্যপূর্ণ।
- দশমিক বিন্দু যেখানেই থাক না কেন, দুইটি অশূন্য অঙ্কের মধ্যবর্তী সমস্ত শূন্যগুলি তাৎপর্যপূর্ণ।
- 1 এর চেয়ে ক্ষুদ্র কোনো সংখ্যাতে দশমিক বিন্দুর ডানদিকে প্রথম অশূন্য অঙ্কের আগের শূন্যগুলি তাৎপর্যহীন। [0.00 2308 সংখ্যায় নিচে রেখাঙ্কিত শূন্যগুলো তাৎপর্যপূর্ণ অঙ্ক নয়।].
- দশমিক বিন্দু ব্যতীত কোনো সংখ্যার অন্তিম শূন্য বা শূন্যগুলো তাৎপর্যপূর্ণ হয় না।

[তাই 123 m = 12300 cm = 123000 mm এর তিনটি তাৎপর্যপূর্ণ অঙ্ক সংখ্যা, অন্তিম শূন্য(গুলো) তাৎপর্যপূর্ণ নয়।] তোমারা পরের পর্যবেক্ষণগুলোও দেখে রাখো। দশমিক বিন্দু যুক্ত কোনো সংখ্যার শেষের শূন্য বা শূন্যগুলো তাৎপর্যপূর্ণ।

[3.500 অথবা 0.06900 সংখ্যাগুলির প্রত্যেকটিতে 4টি করে তাৎপর্যপূর্ণ অঙ্গ্রু সংখ্যা রয়েছে।]

(2) শেষের দিকের শূন্য বা শূন্যগুলো নিয়ে কিছু বিশ্রান্তি সৃষ্টি হতে পারে। ধরা যাক একটি দৈর্ঘ্যকে 4.700 m দ্বারা প্রকাশ করা হল। এটা স্পষ্টত প্রতীয়মান যে এখানের শূন্যগুলি পরিমাপের সূক্ষ্মতা (precision) অর্থে ব্যবহৃত এবং তাই এরা তাৎপর্যপূর্ণ। [যদি এগুলো না হয়, তবে এদের বিশদভাবে লেখা অনাবশ্যক, প্রকাশিত পরিমাপটি সহজভাবে 4.7 m হবে।] আমরা এখন এককগুলি পরিবর্তন করি, তাহলে 4.700 m=470.0 cm=4700 mm=0.004700 km

যেহেতু দশমিক ব্যতীত কোনো সংখ্যায় শেষের দিকের অঙ্জগুলো শূন্য হওয়ায় উপরোক্ত পর্যবেক্ষণ (1) থেকে আমরা ভুলরুমে সিদ্ধান্ত করতে পারি যে সংখ্যাটির দুটি তাৎর্যপূর্ণ অঙ্ক সংখ্যা; যদিও এতে 4টি তাৎপর্যপূর্ণ অঙ্ক সংখ্যা আছে এবং কেবলমাত্র এককের পরিবর্তনে তাৎপর্যপূর্ণ অঙ্কসংখ্যার পরিবর্তন হয় না।

(3) তাৎপর্যপূর্ণ অংক সংখ্যার সংখ্যা নির্ণয়ে এরূপ অস্পন্টতা দূর করতে সবচেয়ে ভালো পম্বতি হল প্রত্যেক পরিমাপকে বৈজ্ঞানিক সংকেত দিয়ে প্রকাশ করা (10 এর ঘাতে)। এই সংকেতে প্রত্যেক সংখ্যাকে প্রকাশ করা হয় $a \times 10^b$ রূপে যেখানে a হল 1 ও 10 এর মধ্যবর্তী একটি সংখ্যা এবং b হল10 এর ধনাত্মক বা ঋণাত্মক কোন এক সূচক (অথবা ঘাত)। কোন সংখ্যার একটি আনুমানিক ধারণা পাওয়ার জন্য আমরা aসংখ্যাকে 1 ($a \le 5$ এর জন্য) দ্বারা এবং 10 দ্বারা ($5 < a \le 10$) রাউন্ড অফ্ করে নেবো। তাহলে সংখ্যাকে আসন্নভাবে প্রকাশ করা যেতে পারে 10^b দ্বারা, যেখানে10 এর সূচক (বা ঘাত) b কে বলা হয় প্রাকৃতিক রাশির মানের ক্রম। যখন কেবলমাত্র একটি অনুমান প্রয়োজন হয় তখন রাশিটি 10^b এর ক্রমে হবে। উদাহরণস্বরূপ, পৃথিবীর ব্যাসের (1.28×10⁷m) ক্রম10⁷m যার মধ্যে মানের ক্রম 7। হাইড্রোজেন পরমাণুর ব্যাসের (1.06 ×10⁻¹⁰m) ক্রম 10⁻¹⁰m, যার মধ্যে মানের ক্রম –10। তাই পৃথিবীর ব্যাসের মানের ক্রম হাইড্রোজেনের চেয়ে 17 বড়।

সাধারণত প্রথানুযায়ী দশমিক লেখা হয় প্রথম অঙ্কের পর। এখন (a) তে উল্লেখিত বিভ্রান্তি থাকে না :

 $4.700 \text{ m} = 4.700 \times 10^2 \text{ cm}$ = $4.700 \times 10^3 \text{ mm} = 4.700 \times 10^{-3} \text{ km}$

তাৎপর্যপূর্ণ অঙ্জ্ঞ সংখ্যা নির্ণয় করতে 10 এর ঘাত অপ্রাসঞ্চিাক। তথাপি বৈজ্ঞানিক সংকেতের নিধানে থাকা সব শূন্যগুলো তাৎপর্যপূর্ণ। এক্ষেত্রে প্রতিটি সংখ্যায় 4টি করে তাৎপর্যপূর্ণ অঙ্ক সংখ্যা আছে। তাই বৈজ্ঞানিক সংকেতের নিধান (a) এর শেষের দিকের শূন্য (গুলো) কোন বিভ্রান্তি সৃষ্টি করে না। এরা সর্বদা তাৎপর্যপূর্ণ।

(4) পরিমাপকে প্রকাশের জন্য বৈজ্ঞানিক সংকেত যথাযথ। কিন্তু যদি একে গ্রহণ না করা হয় তবে আমরা আগের উদাহরণে গৃহীত নিয়মগুলো ব্যবহার করব :

- কো দশমিক ব্যতীত 1 এর চেয়ে বড়ো একটি সংখ্যার শেষের দিকের শূন্য (গুলো) তাৎপর্যপূর্ণ নয়।
- দশমিক যুক্ত সংখ্যার শেষের দিকের শূন্য(গুলো) তাৎপর্যপূর্ণ।

(5) 1 এর চেয়ে ক্ষুদ্র সংখ্যার (যেমন 0.1250) দশমিক বিন্দুর বামদিকে 0 অঙ্ক প্রথানুসারে রাখা হয় যা কখনও তাৎপর্যপূর্ণ নয়। কিন্তু এরকম সংখ্যার শেষের শূন্যগুলো পরিমাপে তাৎপর্যপূর্ণ।

(6) গুন বা ভাগের গুননীয়কগুলো (factors) যারা রাউন্ডিং সংখ্যা নয় বা পরিমাপ করা মান নয় তারা নির্ভুল এবং এদের অসংখ্য তাৎপর্যপূর্ণ অঙ্ক সংখ্যা থাকে। উদাহরণ স্বরূপ r = d/2 অথবা s = 2πr এ গুননীয়ক 2 একটি নির্ভুল সংখ্যা এবং একে 2.0, 2.00 বা 2.0000 যখন যা প্রয়োজন তা লেখা যেতে পারে। একইভাবে T = t/n এ n একটি নির্ভুল সংখ্যা।

2.7.1 তাৎপর্যপূর্ণ অঙ্কসহ পাটিগণিতের প্রক্রিয়াগুলোর নিয়ম (Rules for Arithmetic Operations with Significant Figures)

কোন রাশির অনুমানের উপর ভিত্তিকরে পাওয়া গণনার ফলাফলে (অর্থাৎ যে মানের মধ্যে তাৎপর্যপূর্ণ অঙ্ক সংখ্যা সীমিত) প্রকৃত পরীক্ষালব্ধ মানে কতটুকু অনিশ্চয়তা আছে তা অবশ্যই প্রতিফলিত হওয়া উচিত। ইহা মূল পরিমিত মান থেকে বেশি সঠিক হতে পারে না যার উপর উত্তরটি ভিত্তি করে আছে। সাধারণত চূড়ান্ত ফলাফলটিতে সার্থক অঙ্ক সংখ্যা গৃহীত মূল পরিমিত সংখ্যা থেকে বেশি হতে পারে না। এভাবে, কোন বস্তুর পরিমিত ভার যদি 4.237 g হয় (সার্থক অঙ্ক 4) এবং এর পরিমিত আয়তন 2.51 cm³ হয় তখন কেবলমাত্র গণিতের ভাগ দ্বারা এর ঘনত্ব হয় 1.68804780876 g/cm³ যা 11 দশমিক স্থান পর্যন্ত। ঘনত্ব পরিমাপের ভিত্তিগুলোর সূক্ষতা বাস্তবে অনেক কম বলে এত সূক্ষ্মতা নিয়ে ঘনত্ব গণনা স্পন্টতই অসম্ভব এবং অপ্রাসজ্গিক। সার্থক অঙ্ক সংখ্যাসহ পাটিগণিত প্রক্রিয়ায় নিম্নলিখিত নিয়মগুলো সুনিশ্চিত করে যে, কোন গণনার ফলাফল এত যথার্থতোর সজ্যে দেখানো হয় যা নিবেশিত পরিমিত মানের যথার্থতার সঙ্গে সঙ্গতিপূর্ণ :

 গুণ বা ভাগে প্রাপ্ত ফলাফলের মধ্যে এতটা সার্থক অঙ্ক রাখা উচিত যা সবচেয়ে কম সার্থক অঙ্কবিশিষ্ট মূল সংখ্যার মধ্যে রয়েছে।

তাই উপরোক্ত উদাহরণে ঘনত্বকে তিন সার্থক অঙ্চ্ক পর্যস্ত লেখা উচিত।

ঘনত্ব =
$$\frac{4.237g}{2.51cm^3} = 1.69gcm^{-3}$$

একইভাবে, যদি দেওয়া হয় আলোর গতিবেগ 3.00 × 10⁸ m s⁻¹ (তিনটি সার্থক অঙ্জ বিশিষ্ট) এবং এক বছরে (1y = 365.25 d) আছে 3.1557 × 10⁷ s (পাঁচটি সার্থক অঙ্জ বিশিষ্ট) এক আলোক বর্ষে হয় 9.47 × 10¹⁵ m (তিনটি সার্থক অঙ্জবিশিষ্ট)।

(2) যোগ বা বিয়োগে প্রাপ্ত চূড়ান্ত ফলাফলের মধ্যে দশমিকের পর ততটা অঙ্ক রাখা উচিত যা যোগ বা বিয়োগ প্রক্রিয়াতে থাকা সংখ্যাগুলোর মধ্যে যে সংখ্যাটিতে দশমিকের পর সবচেয়ে কম অঙ্ক থাকে, তার সমান (অঙ্ক বিশিষ্ট)।

উদাহরণস্বরূপ, পাটিগণিতের যোগের দ্বারা 436.32 g, 227.2 g এবং 0.301 g সংখ্যাগুলোর যোগফল হয় 663.821 g । কিন্তু পরিমাপের ন্যূনতম যথার্থতা (227.2 g) এক দশমিক স্থানে সঠিক। এজন্য অন্তিম ফলকে 663.8 g পর্যস্ত round off করা উচিত।

একইভাবে, দৈর্ঘ্যের অন্তরকে নিম্নলিখিতভাবে প্রকাশ করা যায় :

 $0.307 \,m - 0.304 \,m = 0.003 \,m = 3 \times 10^{-3} \,m.$

লক্ষণীয় যে, গুন ও ভাগের ক্ষেত্রে প্রযোজ্য (1) নং নিয়মটি যোগ ও বিয়োগের ক্ষেত্রে আমরা প্রয়োগ করব না এবং যোগের উদাহরণটিতে 664 g বিয়োগের উদাহরণটিতে 3.00 × 10⁻³ m কে ফলাফল হিসাবে লিখব। এরা পরিমাপের যথার্থতাকে সঠিকভাবে বহন করে না। যোগ ও বিয়োগের ক্ষেত্রে এই নিয়ম দশমিক স্থানে থাকে।

2.7.2 অনিশ্চিত অঙ্ক্ণ্যুলোর রাউন্ডিং (Rounding off the Uncertain Digits)

যে সংখ্যার মধ্যে একের বেশি অনিশ্চিত অঙ্জ থাকে তাদের গণনার ফল পূর্ণসংখ্যার গুণিতকে পরিণত করে নেওয়া উচিত (rounded off)। পূর্ণ সংখ্যার গুণিতকের নিয়মানুযায়ী (rules for rounding off numbers) সংখ্যাগুলোকে যথাযথ সার্থক অংকসংখ্যা পর্যন্ত নেওয়া অধিকাংশ ক্ষেত্রেই অত্যাবশ্যক।2.746 কে তিন সার্থক অঙ্জ পর্যন্ত পূর্ণসংখ্যার গুণিতকে পরিণত করার পর 2.75 হয় যেখানে 2.743 সংখ্যাটি হবে 2.74. প্রথা অনুসারে নিয়মটি হল যদি উপেক্ষণীয়

অঙ্জ (উল্লেখিত সংখ্যার রেখাঙ্কিত অঙ্জ) 5 এর বেশি হয় তবে পূর্ববর্তী অঞ্চ্রুটি 1 বাড়িয়ে দেওয়া হয়, আর যদি এই উপেক্ষণীয় অঞ্চ 5 এর কম হয়, তবে পূর্ববর্তী অঞ্চ অপরিবর্তিত রাখা হয়। কিন্তু যদি সংখ্যাটি 2.745 হয় তার মধ্যে উপেক্ষণীয় অঞ্চ 5, তবে কি হবে ? এখানে প্রথা এই যে যদি পূর্ববর্তী অঞ্চন যুগ্ম হয় তবে উপেক্ষণীয় অঙ্ককে ছেড়ে দেওয়া হয় এবং যদি এটি অযুগ্ম হয় তবে পূর্ববর্তী অঞ্চ 1 বেড়ে যায়। তখন সংখ্যা 2.745, তিন সার্থক অঞ্চ পর্যন্ত পুর্ণসংখ্যার গুনিতকে পরিণত করার পর দাঁড়ায় 2.74। অপরপক্ষে সংখ্যা 2.735, তিন সার্থক অঙ্ধ্ব পর্যন্ত পূর্ণসংখ্যার গুনিতকে পরিণত করার পর 2.74 হয়, কারণ পূর্ববর্তী অঙ্ক অযুগা।

কোন বহুপদী জটিল গণনায়, মধ্যবর্তী পদগুলোর মধ্যে সার্থক অঙ্ক থেকে এক অঙ্ক বেশি রাখা উচিত, যাতে গণনার শেষে সঠিক সার্থক অঙ্জ পর্যন্ত পূর্ণসংখ্যার গুণিতকে পরিণত করে দেওয়া যায়। একইভাবে, একটি সংখ্যা যার অনেক সার্থক অঞ্চ পর্যন্ত জানা যেমন শুন্য মাধ্যমে আলোকের গতিবেগ প্রায় 2.99792458× 10⁸ m/s যার পুর্ণ সংখ্যার গুণিতকের আসন্ন মান 3×10⁸ m/s , যা গণনার ক্ষেত্রে প্রায়াই ব্যবহৃত হয়। শেষ পর্যন্ত মনে রাখতে হবে সুত্রের মধ্যে ব্যবহৃত যথার্থ সংখ্যা যেমন

 $T=2\pi\sqrt{rac{L}{g}}$ এ 2π এর সার্থক অঙ্কের সংখ্যা অনেক বেশি

(অসীম) π = 3.1415926.... এর মান অনেক বেশি সার্থক অঞ্চ পর্যন্ত হয়। কিন্তু ক্ষেত্র বিশেষে সীমিত সংখ্যক সার্থক অঙ্কের প্রয়োজনে তোমরা π এর মান 3.142 বা 3.14 নিতে পারো।

উদাহরণ 2.13 কোন ঘনকের প্রত্যেক বাহুর মাপ 7.203m। সঠিক সার্থক অঙ্জ পর্যন্ত ঘনকের সমগ্রতলের ক্ষেত্রফল এবং আয়তন নির্ণয় কর।

উত্তর : পরিমিত দৈর্ঘ্যের সার্থক অঙ্কের সংখ্যা 4। এজন্য গণনায় প্রাপ্ত ক্ষেত্রফল এবং আয়তনকে 4 সার্থক অঙ্চ্চে পূর্ণসংখ্যার গুণিতকে (round off) করা উচিত।

ঘনকের পৃষ্ঠতলের ক্ষেত্রফল

 $=6(7.203)^2 m^2$ $=311.299254 \,\mathrm{m}^2$ $=311.3 \text{ m}^2$ $=(7.203)^3$ m³ $= 373.714754 \,\mathrm{m}^3$

 $= 373.7 \,\mathrm{m}^3$

ঘনকের আয়তন

এই উদাহরণ অনুসারে আমরা অন্তিম ফল এভাবে লিখতে পারি $l b = 164 \pm 3 \text{ cm}^2$

এখানে 3cm² হল আয়তকার পাতের ক্ষেত্রফলের গণনায় প্রাপ্ত ত্রুটি অথবা অনিশ্চয়তা।

(2) যদি পরীক্ষালন্ধ তথ্যের একটি সেটে n সংখ্যক সার্থক অঙ্কের উল্লেখ থাকে তবে তথ্যের সংযোজনে প্রাপ্ত ফলও n সার্থক অঙ্জ পর্যন্ত বৈধ হবে।

তথাপি, যদি তথ্যের বিয়োগ করা হয় তবে সার্থক অঙ্ক্রে সংখ্যা কমানো যায়।

উদাহরণ 2.14 কোন পদার্থের ভর 5.74 g এর আয়তন 1.2 cm³। সার্থক অঞ্চকে লক্ষ্য রেখে এর ঘনত্বকে প্রকাশ কর।

উত্তর : পরিমিত ভরের 3 টি সার্থক অঞ্চ, পক্ষান্তরে পরিমিত আয়তনের কেবলমাত্র 2টি সার্থক অধ্ব্রু আছে। তাই ঘনত্বকে কেবলমাত্র দুটি সার্থক অঙ্চ্ব পর্যন্ত প্রকাশ করা দরকার।

ঘনত্ব =
$$\frac{5.74}{1.2} g cm^{-3}$$

= 4.8 g cm⁻³.

পাটি গণিতের গণনাগুলোর ফলাফলের অনিশ্চয়তা 2.7.3 নির্ধারণের নিয়ম : (Rules for Determining the Uncertainty in the Results of Arithmatic **Calculations**)

পাটি গণিতের প্রক্রিয়াগুলোতে সং াশির অনিশ্চয়তা বা ত্রটি নির্ধারণ সম্পর্কিত নিয়মগলোকে নিম্নলিখিত উদাহরণের দ্বারা বোঝা যেতে পারে।

(1) কোন পাতলা আয়তকার পাতের দৈর্ঘ্য ও প্রস্থ একটি মিটার স্কেল দিয়ে মাপার পর যথাক্রমে 16.2 cm ও 10.1 cm হল। এখানে প্রত্যেক মাপে তিনটি করে সার্থক অঙ্চ্চ আছে। এর অর্থ এই যে দৈৰ্ঘ্য *৷* কে লেখা যায়

$$l = 16.2 \pm 0.1 \text{ cm}$$

= 16.2 cm ± 0.6 %.

একইভাবে প্রস্থ b কে লেখা যায়

$$b = 10.1 \pm 0.1 \text{ cm}$$

= 10.1 cm ± 1 %

তখন ত্রুটির সংযোজন নিয়ম প্রয়োগ করে দুই (বা ততোধিক) পরীক্ষালব্ধ মানের গুণফলের ত্রুটি

 $lb = 163.62 \text{ cm}^2 + 1.6\%$ $= 163.62 \pm 2.6 \text{ cm}^2$

উদাহরণস্বরূপ 12.9 g – 7.06 g, উভয়ই তিন সার্থক অঞ্চ পর্যন্ত সুনির্দিন্ট করা, কিন্তু একে 5.84 g রূপে মৃল্যায়ন করা যায় না কেবলমাত্র 5.8 g, লেখা যাবে। কারণ যোগ বা বিয়োগ সমন্বয়ের মধ্যে অনিশ্চিয়তাগুলি এক ভিন্ন প্রকারে সংযুক্ত হয় (যোগ বা বিয়োগে থাকা সার্থক অঞ্চযুক্ত সংখ্যাগুলোর পরিবর্তে দশমিক স্থানযুক্ত সংখ্যা)।

(3) কোন সংখ্যার মানে আপেক্ষিক ত্রুটি, যা সুনির্দিষ্ট সার্থক অঙ্ক পর্যন্ত দেওয়া হয়, কেবলমাত্র n এর উপর নয়, বরং প্রদত্ত সংখ্যার উপরও নির্ভর করে।

উদাহরণস্বরূপ, ভর 1.02 g এ পরিমাপের যথার্থতা ±0.01 g এবং অপর পরিমাপ 9.89 g এর যথার্থতা ±0.01 g.

∴ 1.02 g এর আপেক্ষিক ব্রুটি

$$= (\pm 0.01/1.02) \times 100\%$$
$$= \pm 1\%$$

একইভাবে 9.89 g এর আপেক্ষিক ত্রুটি =(±0.01/9.89)×100% =±0.1%

অবশেষে মনে রাখবে যে অনেক ধাপসম্পন্ন গণনার মধ্যবর্তী গণনার ফলগুলোর প্রত্যেকটি পরিমাপে, ন্যূনতম শুদ্ধ পরিমাপ থেকে একটি বেশি সার্থক অঙ্ক রাখা উচিত। তথ্য অনুসারে এগুলো যথার্থতা যাচাই করে তারপর পাটিগণিত প্রক্রিয়াগুলো সম্পন্ন করতে হবে, তা না হলে রাউন্ডিং ত্রুটি উৎপন্ন হয়ে যাবে। উদাহরণ স্বরূপ, 9.58 এর অন্যোন্যকের একই সার্থক অঙ্ক সংখ্যা (3) এ গণনার (রাউন্ডিং) পর হয় 0.104 এর অন্যোন্যকের তিন সার্থক অঙ্ক সংখ্যায় গণনার পর 9.62। তথাপি, যদি আমরা 1/9.58 = 0.1044 লিখতাম এবং তখন এর অন্যোন্যক তিন সার্থক অঙ্ক সংখ্যায় নেওয়া হলে মূল মান 9.58 এর পুনরুদ্ধার হোত।

এই উদাহরণ, জটিল ধাপ সম্পন্ন গণনার মধ্যবর্তী গণনায় (ন্যূনতম শুন্ধ পরিমাপের অঙ্জ সংখ্যা থেকে) একটি অতিরিক্ত অঙ্জ রাখার ধারণা দেয়, যাতে সংখ্যাগুলোর রাউন্ডিং প্রক্রিয়ায় অতিরিক্ত ত্রুটি এড়ানো যায়।

2.8 ভৌত রাশিগুলোর মাত্রা : (Dimensions of physical quantities)

কোনো ভৌত রাশির প্রকৃতি এর মাত্রা দ্বারা প্রকাশ করা হয়। লব্ধ এককগুলো দ্বারা নির্দেশিত সব ভৌত রাশিগুলো, সাতটি প্রাথমিক বা মূল রাশির সংযোগে প্রকাশ করা যেতে পারে। এই মূল রাশিগুলোকে আমরা প্রাকৃতিক জগতের সাতটি মাত্রা বলব, যাদের তৃতীয় বন্ধনী [] দিয়ে প্রকাশ করা হয়। এভাবে দৈর্ঘ্যের মাত্রা হয় [L], ভরের [M], সময়ের [T], তড়িৎ প্রবাহমাত্রা [A], তাপগতীয় তাপমাত্রার [K], দীপন প্রাবল্য [cd], এবং পদার্থের পরিমানের মাত্রা [mol] । কোন ভৌত রাশির মাত্রা বলতে বোঝায় ঐ রাশিকে ব্যক্ত করতে মূল রাশিগুলো যে ঘাতসমূহে (বা সূচক সমূহে) উন্নীত হয়। লক্ষ রাখবে, কোন রাশির চারদিকে তৃতীয় বন্ধনী দেওয়ার অর্থ এই যে আমরা ঐ রাশির মাত্রাকে ব্যবহার করছি।

বলবিদ্যায় সব ভৌত রাশিগুলিকে [L], [M] এবং [T] মাত্রা দিয়ে লেখা যায়। উদাহরণ স্বরূপ, বস্তু দ্বারা অধিকৃত আয়তনকে দৈর্ঘ্য, প্রস্থ ও উচ্চতা অথবা তিনটি দৈর্ঘ্যের গুণফল দিয়ে প্রকাশ করা হয়। এজন্য আয়তনের মাত্রা সূত্র = [L] × [L] × [L] = [L]³ = [L³] । যেহেতু আয়তন, ভর ও সময়ের উপর নির্ভর করে না, এজন্য বলা যায় এতে ভরের মাত্রা শূন্য [M°], সময়ের মাত্রা শূন্য [T°] এবং দৈর্ঘ্যের মাত্রা তিন।

একইভাবে, বলকে ভর ও ত্বরনের গুনফলরূপে এভাবে প্রকাশ করা যায় —

বল = ভর × ত্বরণ

= ভর × (দৈর্ঘ্য)/(সময়)²

বলের মাত্রা হল [M] [L]/[T]² = [M L T⁻²]। কাজেই বলে (Force) ভরের মাত্রা 1, দৈর্ঘ্যের মাত্রা 1 এবং সময়ের মাত্রা –2 এখানে অন্যসব মূলরাশির মাত্রা শূন্য।

লক্ষ্যণীয় যে, এধরনের বিবৃতিতে মানগুলো বিবেচিত হয় না। এতে ভৌত রাশিগুলোর গুণগত প্রকারের সমাবেশ ঘটে। তাই বেগের পরিবর্তন, প্রারম্ভিক বেগ, গড়বেগ, অন্তিম বেগ ও দ্রুতি — এসবই মাত্রা বিশ্লেষণের ক্ষেত্রে তুল্য রাশি, কারণ এইসবগুলোকে দৈর্ঘ্য / সময় রূপে প্রকাশ করা যায় এবং এদের মাত্রা [L]/[T] বা [L T-1]।

2.9 মাত্রাসূত্র এবং মাত্রা সমীকরণ (Dimensional formulae and dimensional equations)

কোন ভৌত রাশির মাত্রা সূত্র হল ঐ ব্যঞ্জক (expression) যা দেখায় কোন রাশিতে কোন্ মূলরাশি কত মাত্রায় আছে। উদাহরণ স্বরূপ আয়তনের মাত্রা সূত্র [M° L³ T°] এবং বেগ বা দ্রুতির [M° L T⁻¹]।একইভাবে, [M° L T⁻²] ত্বরণের তথা [M L⁻³ T°] ভর ঘনত্বের মাত্রা সূত্র।

কোন ভৌতরাশিকে তার মাত্রীয় সূত্রের সঙ্গো সমতায় এনে যে সমীকরণ পাওয়া যায় তাকে ঐ রাশির মাত্রা সমীকরণ বলা হয়। তাই মাত্রীয় সমীকরণ হল ওই সমীকরণ যার মধ্যে কোনো ভৌত রাশির মূল রাশিগুলি ও তাদের মাত্রাগুলি নির্দেশিত করা যায়। উদাহরণ রূপে, আয়তন [V], দ্রুতি [৩], বল [F] এবং ভর ঘনত্ব [ho] এর মাত্রীয় সমীকরণকে এভাবে প্রকাশ করা যেতে পারে :

$$[V] = [M^{0} L^{3} T^{0}]$$
$$[\upsilon] = [M^{0} L T^{-1}]$$
$$[F] = [M L T^{-2}]$$
$$[\rho] = [M L^{-3} T^{0}]$$

ভৌত রাশিগুলোর মধ্যে সম্পর্ক নির্দেশ করে এমন সমীকরণ থেকে মাত্রা সমীকরণ পাওয়া যেতে পারে। বিভিন্ন ভৌত রাশিগুলোর সম্পর্ককে নির্দেশ করে এমন সমীকরণ থেকে উৎপন্ন এবং মূল রাশিগুলোর দ্বারা প্রকাশিত বিভিন্ন প্রকারের অনেক ভৌতরাশির মাত্রাসূত্র পরিশিন্ট -9 এ দেওয়া হয়েছে যেগুলো তোমাদের অধ্যায়নে সহায়তা করবে এবং তাৎক্ষণিক প্রয়োগে কাজে লাগবে।

2.10 মাত্রা বিশ্লেষণ এবং এর প্রয়োগ (Dimensional analysis and its applications)

ভৌত আচরণ বর্ণনার জন্য মাত্রা ধারণার স্বীকৃতির প্রধান গুরুত্বটি হল কেবলমাত্র সমমাত্রিক ভৌত রাশিগুলোর মধ্যেই যোগ বা বিয়োগ করা যেতে পারে। মাত্রা বিশ্লেষণের ব্যাপক জ্ঞান, বিভিন্ন ভৌত রাশিগুলোর মধ্যে কোন সম্পর্ক প্রতিষ্ঠা করতে সাহায্য করে এবং বিভিন্ন গাণিতিক সমীকরণ প্রতিষ্ঠা, সঠিকতা তথা মাত্রা সঞ্চাতি বা সমসত্ত্বতা পরীক্ষার সহায়ক।

যখন দুই বা ততোধিক ভৌত রাশির মানকে গুন করা হয় তখন তাদের এককগুলোকে সেরকমে ব্যবহার করা উচিত যেমন আমরা বীজগণিতীয় প্রতীকের সঙ্গে করে থাকি। লব এবং হরে থাকা অভিন্ন এককগুলোকে আমরা বিলুপ্ত করতে পারি। একটি ভৌত রাশির মাত্রার ক্ষেত্রেও এটি সত্য। একইভাবে, কোন গাণিতিক সমীকরণে উভয় পক্ষে প্রতীক দ্বারা প্রকাশিত ভৌত রাশিগুলোর মাত্রা একই হওয়া আবশ্যক।

2.10.1 সমীকরণের মাত্রীয় সঙ্গতির পরীক্ষা করা (Checking the Dimensional Consistency of Equations)

ভৌত রাশিগুলির মানের কেবল তখনই পরস্পর যোগ বা বিয়োগ করা যাবে যখন তাদের মাত্রা একই হয়। অন্যভাবে বলা যায় আমরা কেবলমাত্র সমজাতীয় রাশিগুলো যোগ বা বিয়োগ করতে পারি। তাই বেগকে বলের সঙ্গে যোগ কিংবা তাপগতীয় তাপমাত্রা থেকে তড়িৎ প্রবাহ বিয়োগ করা যায় না। এই সরল নীতিকে মাত্রার সমমাত্রিক নীতি বলা হয় এবং এর সাহায্যে যে কোন সমীকরণের নির্ভুলতা পরীক্ষা করা যায়। যদি কোন সমীকরণের সব পদের মাত্রা সমান না হয় তবে ঐ সমীকরণটি ভুল হবে। অতএব, যদি আমরা কোন একটি বস্তুর দৈর্ঘ্য (বা দূরত্ব) এর জন্য কোন ব্যঞ্জক উৎপন্ন করি, তাতে যে কোন সম্মিলিত প্রতীক থাকতে পারে, তবে স্বতন্ত্রভাবে মাত্রাগুলোকে সরল করার পর অবশিষ্ট মাত্রা অবশ্যই হবে দৈর্ঘ্যের। একইভাবে যদি আমরা দ্রুতির জন্য সমীকরণ উৎপন্ন করি, তবে এর সরলীকরণের পর উভয় পক্ষের মাত্রা অবশ্যই হবে দৈর্ঘ্য / সময় বা [L T⁻¹].

যদি কোন সমীকরণের নির্ভুলতা বা শুম্বতা (correctness) নিয়ে সন্দেহ হয় তবে ঐ সমীকরণের সঙ্গতির প্রাথমিক পরীক্ষার জন্য প্রথা অনুসারে মাত্রার ব্যবহার করা হয়। কিন্তু, মাত্রা সঙ্গতি কোন সমীকরণের সঠিক হওয়ার প্রতিশ্রুতি দেয় না। এটি মাত্রাহীন রাশি বা অপেক্ষকের ক্ষেত্রে পর্যন্ত অনিশ্চিত হয়। বিশেষ অপেক্ষকের কোনাঙ্ক যেমন ত্রিকোণমিতিক, লগারিদমিক এবং সূচকীয় অপেক্ষকের মত বিশেষ অপেক্ষকগুলো মাত্রাহীন হওয়া দরকার। একটি শুদ্ব সংখ্যা, এই প্রকার ভৌত রাশির অনুপাত, যেমন কোণের ক্ষেত্রে অনুপাত (দৈর্ঘ্য/দৈর্ঘ্য), অনুপাতরূপে প্রতিসরাঙ্ক (শূন্যে আলোকের গতিবেগ / কোন মাধ্যমে আলোকের গতিবেগ) ইত্যাদির কোনো মাত্রা থাকে না।

এখন আমরা নিম্নলিখিত সমীকরণের মাত্রীয় সঙ্গতি বা সমসত্ত্বতা পরীক্ষা করব

$$x = x_0 + v_0 t + (1/2) a t^2$$

যেখানে x হল কোনো কণা বা বস্তু দ্বারা t s এ অতিক্রান্ত দূরত্ব যেখানে বস্তুটি t = 0 সময়ে অবস্থান x_o থেকে প্রারম্ভিক বেগ v_o নিয়ে যাত্রা শুরু করে এবং তার গতির দিকে সমত্বরণের মান a। প্রত্যেক পদের মাত্রা সমীকরণগ্রলো নিম্নরুপ

$$\begin{aligned} [x] &= [L] \\ [x_{o}] &= [L] \\ [v_{o}t] &= [L T^{-1}] [T] \\ &= [L] \\ [(1/2) a t^{2}] &= [L T^{-2}] [T^{2}] \\ &= [L] \end{aligned}$$

যেহেতু এই সমীকরণের ডানদিকের প্রতিটি পদের মাত্রা যা বামদিকের পদের মাত্রার সমান (দৈর্ঘ্যের), সুতরাং মাত্রীয়ভাবে এই সমীকরণটি নির্ভুল বা সঠিক সমীকরণ।

লক্ষণীয় যে, একক সঙ্গতির পরীক্ষা আমাদেরকে মাত্রা সঙ্গতির

পরীক্ষা তার চেয়ে কম বা বেশি কিছু জানায় না। কিন্তু এর লাভ এই যে আমরা কোন বিশেষ একক নির্বাচনের জন্য বাধ্য নই এবং এককের পারস্পরিক গুণিতক বা উপগুণিতক এরমধ্যে রূপান্তরের চিন্তা আমাদের করার কোন প্রয়োজন হয় না। আমাদের মনে রাখতে হবে যে যদি কোনো সমীকরণ এই সঙ্গতি পরীক্ষায় অসফল হয় তবে এটি ভুল বলে সিন্ধ হবে; কিন্তু যদি পরীক্ষায় সফল হয় তবে এটি শুন্ধ বলে সিন্ধ হয় না। এভাবে কোনো মাত্রীয়ভাবে শুন্ধ সমীকরণ যথার্থ সমীকরণ হয় না; কিন্তু মাত্রীয়ভাবে ভুল বা অসঞ্চাত সমীকরণ অবশ্যই ভুল হবে।

উদাহরণ 2.15 আমরা নিচের সমীকরণটি বিবেচনা করি

$$\frac{1}{2}mv^2 = mgh$$

যেখানে *m* বস্তুর ভর *v* এর গতিবেগ, *g* অভিকর্ষজ ত্বরণ এবং *h* উচ্চতা। পরীক্ষা করে দেখ এই সমীকরণটি মাত্রীয়ভাবে নির্ভুল বা সঠিক কিনা।

উত্তর : বামপক্ষের মাত্রা [M] [L T⁻¹]² = [M] [L²T⁻²] = [M L²T⁻²] ডানপক্ষের মাত্রা [M][L T⁻²] [L] = [M][L²T⁻²] = [M L²T⁻²] বামপক্ষ ও ডানপক্ষের মাত্রা সমান, তাই এই সমীকরণ মার্ট

বামপক্ষ ও ডানপক্ষের মাত্রা সমান, তাই এই সমীকরণ মাত্রীয়ভাবে সঠিক।

উদাহরণ 2.16 SI পম্বতিতে শক্তির একক J = kg m² s⁻²; গতিবেগ ৩ এর m s⁻¹ এবং ত্বরণ a এর m s⁻² । গতিশন্তি (K) এর জন্য সূত্রগুলোর মধ্যে তুমি কোন্ কোনটিকে মাত্রীয়ভাবে ভুল বলবে ? (m বস্তুর ভর) : (a) $K = m^2 v^3$ (b) $K = (1/2)mv^2$ (c) K = ma(d) $K = (3/16)mv^2$ (e) $K = (1/2)mv^2 + ma$

উত্তর : প্রত্যেক সঠিক সূত্র বা সমীকরণের উভয় পক্ষের মাত্রা সমান থাকা আবশ্যক। আবার, কেবল সমান মাত্রা সম্পন্ন রাশিগুলির যোগ বা বিয়োগ করা যায়। ডানপক্ষের রাশির মাত্রা (a) এর জন্য [M² L³ T⁻³] (b) এবং (d) এর জন্য [M L² T⁻²] এবং (c) এর জন্য [M L T⁻²] । সমীকরণ (e) এর ডানপক্ষের রাশির কোনো সঠিক মাত্রা নেই, কারণ এক্ষেত্রে ভিন্ন মাত্রার দুটি রাশি যোগ করা হয়েছে। যেহেতু *K* এর মাত্রা [M L² T⁻²], সুতরাং সূত্র (a), (c) and (e) মাত্রীয়ভাবে সঞ্চাত নয়। লক্ষণীয় যে মাত্রীয় যুক্তি থেকে বলা যায় না (b) বা (d) এর মধ্যে কোন্টি সঠিক সূত্র। এর জন্য গতিশক্তির প্রকৃত সংজ্ঞা (অধ্যায় 6) দেখতে হবে। গতিশক্তির সঠিক সূত্র (b) এ দেওয়া আছে।

2.10.2 বিভিন্ন ভৌত রাশির মধ্যে সম্পর্ক উৎপন্ন করা : (Deducing Relation among the Physical Quantities)

কখনো কখনো বিভিন্ন ভৌত রাশিগুলোর মধ্যে সম্পর্ক প্রতিষ্ঠা করতে মাত্রার পদ্ধতিগুলো ব্যবহার করা যেতে পারে। এজন্য আমাদের জানতে হবে একটি ভৌত রাশি কোন্ কোন্ অন্যান্য ভৌত রাশির উপর নির্ভর করে (সর্বাধিক তিনটি ভৌত রাশি অথবা একঘাত স্বতন্ত্র চলরাশিগুলো) এবং একে নির্ভরশীল রাশিগুলোর বিভিন্ন ঘাতের একটি গুনফলরূপে ভাবতে হবে। একটি উদাহরণ নেওয়া যাক।

উদাহরণ 2.17 একটি সরলদোলক নেওয়া যাক যার মধ্যে একটি গোলককে সূতো দিয়ে বেঁধে ঝুলিয়ে দেওয়া হল এবং ইহা অভিকর্যজ ত্বরণের অধীনে দোলে। ধর, সরলদোলকটির দোলন কাল তার দৈর্ঘ্য (*l*), পিণ্ডের ভর (*m*) এবং অভিকর্যজ ত্বরণ (*g*) এর উপর নির্ভর করে। মাত্রার পম্বতি ব্যবহার করে এর দোনকালের সূত্র প্রতিষ্ঠা করো।

উত্তর : দোলনকাল T এর l, g এবং m রাশিগুলোর উপর নির্ভরশীলতাকে এভারে গুণফল রূপে লেখা যায় :

T = k l^x g^y m^z যেখানে k মাত্রাহীন ধ্রুবক এবং x, y ও z হলো সূচক। উভয় পক্ষের মাত্রা সূত্র লেখার পর, আমরা পাই [L^o M^oT¹]=[L¹]^x [L¹ T⁻²]^y [M¹]^z = L^{x+y} T^{-2y} M^z উভয় পক্ষের মাত্রা তুলনা করে আমরা পাই

a)
$$x = \frac{1}{2}, y = \frac{1}{2}, z = 0$$

∴ $T = k l^{\frac{1}{2}} g^{-\frac{1}{2}}$

বা,
$$T = k \sqrt{\frac{l}{g}}$$

লক্ষ করো যে ধ্রুবক k এর মান মাত্রীয় পম্বতিতে পাওয়া যায় না। এই সূত্রের ডানদিকে যে-কোনো সংখ্যা দিয়ে গুন করলে কোনো অসুবিধা হবে না। কারণ এতে মাত্রার উপর কোনো প্রভাব পড়ে না।

প্রকৃতপক্ষে,
$$k=2\pi$$
 । অতএব, $T=2\pi\sqrt{rac{l}{g}}$

পরস্পর সম্পর্কযুক্ত রাশিগুলোর মধ্যে সম্পর্ক প্রতিষ্ঠা করতে মাত্রা বিশ্লেষণ খুব উপযোগী হয়। যদিও মাত্রাহীন ধ্রুবকগুলোর মান এই পম্বতিতে নির্ণয় করা যায় না। মাত্রীয় পম্বতি দ্বারা কোনো সমীকরণের কেবল মাত্রীয় বৈধতার (validity) পরীক্ষা করা যায়, কোনো সমীকরণের মধ্যে বিভিন্ন ভৌতরাশিগুলোর সঠিক সম্পর্ক পরীক্ষা করা যায় না। এটি একই মাত্রা সম্পন্ন বিভিন্ন রাশিগুলোর মধ্যে পার্থক্য করতে পারে না।

এই অধ্যায়ের শেষে অনুশীলনীর প্রশ্নগুলো তোমার মাত্রা বিশ্লেষণের দক্ষতাকে বিকশিত করতে সাহায্য করবে।

সার সংক্ষেপ

- পদার্থবিদ্যা হল ভৌত রাশিগুলোর পরিমাপের ভিত্তিতে এক পরিমেয় বিজ্ঞান। কিছু কিছু ভৌত রাশি যেমন দৈর্ঘ্য, ভর, সময়, তড়িৎপ্রবাহ, তাপ গতীয় তাপমাত্রা, পদার্থের পরিমাণ এবং দীপন প্রাবল্যকে প্রাথমিক বা মৌলিক রাশি রূপে বাছাই করা হয়।
- প্রত্যেক মৌলিক রাশি কোন মূল একক (যেমন মিটার, কিলোগ্রাম, সেকেন্ড, অ্যাম্পিয়ার, কেলভিন, মোল এবং ক্যান্ডেলা) দিয়ে নির্ধারণ করা হয়। মূল একক হল পছন্দমতো বাছাই করা কিন্তু প্রমাণ মানক দ্বারা সঠিকভাবে নির্দেশিত। মূল রাশিগুলোর এককগুলোকে বলা হয় প্রাথমিক বা মূল একক।
- অন্যান্য ভৌত রাশি যারা মূল রাশিগুলো থেকে উৎপন্ন, তারা মূল এককগুলোর সংযোগে প্রকাশিত হয় এবং তাদের এককগুলোকে লব্দ একক বলা হয়। মূল এবং লব্দ উভয় এককের সমাবেশকে একক পদ্ধতি বলা হয়।
- সাতটি মূল এককের উপর ভিত্তি করে এককের আন্তর্জাতিক পম্বতি (SI) হল বর্তমানে আন্তর্জাতিক স্তরে একটি স্বীকৃত পম্বতি এবং এই পম্বতি সারা পৃথিবীতে ব্যাপকভাবে ব্যবহৃত হয়।
- 5. মূল রাশি এবং মূল রাশি থেকে প্রাপ্ত লব্ধ রাশির বিভিন্ন ভৌত পরিমাপে SI একক ব্যবহৃত হয়। কিছু লব্ধ এককের SI এককগুলো বিশেষ নামে (যেমন জুল, নিউটন, ওয়াট ইত্যাদি) ব্যক্ত করা হয়।
- 6. SI এককগুলো সুসংজ্ঞায়িত এবং আন্তর্জাতিকস্তরে স্বীকৃত প্রতীক (যেমন মিটারের জন্য m, কিলোগ্রামের জন্য kg, সেকেন্ডের জন্য S, অ্যাম্পিয়ারের জন্য A, নিউটনের জন্য N ইত্যাদি) আছে।
- 7. ছোট এবং বড় রাশিগুলোর ভৌত পরিমাপকে 10 এর ঘাতসাহ বৈজ্ঞানিক সংকেত দিয়ে প্রকাশ করা হয়। সংখ্যাগুলোর যথার্থতা নির্দেশের জন্য পরিমাপের সংকেত এবং সাংখ্যিক গণনা সরলীকৃত করতে বৈজ্ঞানিক সংকেত এবং উপসর্গ প্রয়োগ করা হয়।
- ভৌত রাশিগুলোর সংকেত ও SI এককের প্রমাণ প্রতীক, কিছু অন্য একক, এবং ভৌত রাশিগুলো এদের মাপগুলোর SI উপসর্গের মাধ্যমে সঠিকভাবে ব্যক্ত করার জন্য কিছু সাধারণ নিয়ম ও নির্দেশাবলী অনুসরণ করা আবশ্যক।
- যে কোন ভৌত রাশির গণনায় এর সঙ্গে যুক্ত সমীকরণে যে লব্ধ রাশিগুলোর একক থাকে এদেরকে বীজগাণিতিক রাশি হিসাবে বিবেচনা করতে হবে যতক্ষণ না পর্যন্ত অভীষ্ট একক পাওয়া যায়।
- 10. ভৌত রাশিগুলোর পরিমাপের জন্য প্রত্যক্ষ এবং পরোক্ষ পঙ্ঘতি ব্যবহার করতে হয়। পরিমিত রাশিগুলোর ফলকে ব্যক্ত করতে মাপক যন্ত্রের যথার্থতা ও সঠিকতাসহ যান্ত্রিক ত্রুটি বিবেচনা করতে হবে।
- 11. পরিমিত এবং গণনাকৃত রাশিগুলোর মধ্যে কেবল সঠিক সার্থক অঙ্চ্বগুলোকে রাখা উচিত। যে কোন সংখ্যার মধ্যে সার্থক অঙ্চ্বের সংখ্যার নির্ধারণ, এর সঙ্গে পাটিগণিতের প্রক্রিয়াগুলো ব্যবহার করা এবং অনিশ্চিত অঙ্চ্বের রাউন্ডিং করার নিয়মগুলোর অনুসরণ করা উচিত।
- 12. মূল রাশিগুলোর মাত্রা এবং মাত্রাগুলোর সমবায় প্রাকৃতিক রাশিগুলোর প্রকৃতিকে বর্ণনা করে। সমীকরণগুলোর মাত্রা সঙ্গাতির পরীক্ষা এবং ভৌত রাশিগুলির মধ্যে সম্পর্ক নির্ণয় করতে মাত্রা বিশ্লেষণের প্রয়োগ করা যায়। কোন মাত্রা সঙ্গাত সমীকরণ বাস্তবে নির্ভুল হবে এর কোন আবশ্যকতা নেই। কিন্ডু মাত্রাগতভাবে ভুল বা অসঙ্গাত সমীকরণ অবশ্যই ভুল হবে।

একক এবং পরিমাপ

অনুশীলনী (EXERCISES)

- দ্রন্টব্য : সংখ্যাগত উত্তর লেখার সময়, সার্থক অঙ্চ্বের দিকে লক্ষ রাখবে।
- 2.1 শূন্যস্থান পূরণ করো :
 - (a) 1cm বাহুবিশিষ্ট একটি ঘনকের আয়তন —— m³ এর সমান।
 - (b) 2.0 cm ব্যাসার্ধ এবং 10.0 cm উচ্চতার একটি নিরেট চোঙের পৃষ্টতলের ক্ষেত্রফল —— (mm)² এর সমান।
 - (c) 18 km h⁻¹ দ্রুতিতে গতিশীল একটি যান 1s এ অতিক্রম করে —— m।
 - (d) সীসার আপেক্ষিক ঘনত্ব 11.3। এর ঘনত্ব —— g cm⁻³ বা —— kg m⁻³।
- 2.2 এককের উপযুক্ত রূপান্তর (conversion) দ্বারা শূন্যস্থান পূরণ কর।
 - (a) 1 kg m² s⁻² = --- g cm² s⁻²
 - (b) 1 m = -- ly
 - (c) $3.0 \text{ m s}^{-2} = -- \text{ km } \text{ h}^{-2}$
 - (d) $G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ (kg)}^{-2} = --- \text{ (cm)}^3 \text{ s}^{-2} \text{ g}^{-1}$.
- 2.3 তাপ বা শক্তির একক ক্যালরি এবং এটি প্রায় 4.2 J এর সমান যেখানে 1J = 1 kg m² s⁻² l ধরা যাক আমরা এককের এমন পদ্ধতি অবলম্বন করব যার মধ্যে ভরের একক α kg এর সমান, দৈর্ঘ্যের একক β m এর সমান, সময়ের একক হয় γ s l দেখাও যে নতুন এককগুলোর সাপেক্ষে এক ক্যালরির মান 4.2 α⁻¹ β⁻² γ² l
- 2.4 স্পষ্টভাবে এই বিবৃতি ব্যাখ্যা করো : তুলনার মানকের বিশেষ উল্লেখ না করে "কোনো মাত্রীয় রাশিকে বড়ো বা ছোটো বলা অর্থহীন"। এই প্রেক্ষাপটে নিম্নের বিবৃতিগুলোকে প্রয়োজন অনুসারে পুনরায় গঠন করো :
 - (a) পরমাণুগুলো খুব ছোটো বস্তু হয়।
 - (b) জেট উড়োজাহাজ অত্যধিক গতিবেগে চলে।
 - (c) বৃহস্পতির ভর অনেক বেশি।
 - (d) কোনো একটি কক্ষের ভিতরের বায়ু অনেক বেশি সংখ্যায় অনু ধারণ করে।
 - (e) একটি প্রোটন একটি ইলেকট্রনের চেয়ে অনেক ভারী।
 - (f) শব্দের গতিবেগ আলোকের গতিবেগের চেয়ে অনেক কম হয়।
- 2.5 দৈর্ঘ্যের একটি নতুন একক এমনভাবে বাছাই করা হল যাতে শূন্য মাধ্যমে আলোকের গতিবেগ এক একক। দৈর্ঘ্যের এই নতুন এককে সূর্য ও পৃথিবীর মধ্যে দূরত্ব কত হবে যদি আলোক 8 min 20 s এ এই দূরত্ব অতিক্রম করে ?
- 2.6 দৈঘ্য পরিমাপের জন্য নিম্নলিখিত যন্ত্রগুলোর মধ্যে কোনটি সর্বাপেক্ষা সঠিক যন্ত্র ?
 - (a) একটি ভার্নিয়ার ক্যালিপার্স যার স্লাইডিং স্কেলে 20টি ঘর সংখ্যা আছে।
 - (b) একটি স্কু গেজ যার পিচ (pitch) 1mm এবং চক্রাকার স্কেলে 100টি ঘর সংখ্যা আছে।
 - (c) একটি আলোকীয় যন্ত্র যা আলোকতরঞ্জোর মধ্যবর্তী দৈর্ঘ্য পরিমাপ করতে পারে।
- 2.7 কোনো ছাত্র 100 বিবর্ধনের একটি অণুবীক্ষণযন্ত্র দিয়ে একটি মানব চুলের বেধ পরিমাপ করে। সে 20টি পর্যবেক্ষণ করে এবং দেখতে পায় যে অণুবীক্ষণ যন্ত্রটির দৃষ্টিক্ষেত্রে চুলের বেধ 3.5 mm। চুলের বেধ গণনা কী হবে?
- 2.8 নিম্নলিখিত প্রশ্নগুলির উত্তর করো :
 - (a) তোমাকে একটি সুতা ও একটি মিটার স্কেল দেওয়া হল। তুমি কীভাবে সুতার ব্যাস নির্ণয় করবে ?
 - (b) একটি স্কু গেজের পিচ হল 1.0 mm এবং এর চক্রাকার স্কেলের ঘর সংখ্যা হল 200। তুমি কি ভাবতে পারো যে চক্রাকার স্কোলের ঘর সংখ্যা স্বেচ্ছায় বাড়িয়ে দিলে স্কু গেজের সূক্ষ্মতা বাড়ানো সম্ভব হবে?
 - (c) ভার্নিয়ার ক্যালিপার্স দ্বারা একটি পাতলা পিতলের দণ্ডের গড় ব্যাস মাপতে হবে। ব্যাসের পরিমাপের ক্ষেত্রে কেবল 5টি মাপের একটি সেটের (set) তুলনায় 100টি মাপের একটি সেট দ্বারা অধিক বিশ্বাসযোগ্য গণনা পাওয়ার সম্ভাবনা থাকে কেন?
- 2.9 কোনো একটি ঘরের ফোটোগ্রাফ 35mm স্লাইডের উপর 1.75cm² ক্ষেত্রফল দখল করে। স্লাইডটিকে কোন পর্দার উপর প্রক্ষেপিত করা হল এবং পর্দার উপর ঘরের ক্ষেত্রফল 1.55m²। প্রক্ষেপক পর্দার ব্যবস্থায় রৈখিক বিবর্ধন কত ?
- 2.10 নিম্নলিখিত পরিমাপের সার্থক অঙ্কের সংখ্যা লেখো :
 - (a) $0.007 \, m^2$

- (b) 2.64×10^{24} kg
- (c) $0.2370 \,\mathrm{g}\,\mathrm{cm}^{-3}$
- (d) 6.320 J
- (e) 6.032 N m^{-2}
- (f) $0.0006032 \, \text{m}^2$
- 2.11 একটি আয়তাকার ধাতব চাদরের দৈর্ঘ্য, প্রস্থ ও বেধ যথাক্রমে 4.234 m, 1.005 m, এবং 2.01 cm । চাদরটির ক্ষেত্রফল এবং আয়তন সঠিক তাৎপর্যপূর্ণ অঙ্কে প্রকাশ করো ।
- 2.12
 মুদির দাঁড়িপাল্লার দ্বারা মাপা একটি বাক্সের ভর 2.300 kg হয়। 20.15 g এবং 20.17 g ভরের দুটি সোনার টুকরোকে বাক্সে রাখা হয়। (a) বাক্সের মোট ভর কত ? (b) সঠিক সার্থক অঞ্চ্ব পর্যন্ত দুই টুকরোর ভরের অন্তর কত ?
- 2.13 একটি প্রাকৃতিক রাশি P চারটি পর্যবেক্ষণের উপযোগী (observables) রাশি a, b, c এবং d এর সঙ্গে নিম্নের মতো সম্পর্ক যুক্ত : P = a³b²/(√c d) | a, b, c এবং d পরিমাপের ত্রুটি যথাক্রমে 1%, 3%, 4% এবং 2% | P রাশির পরিমাপের শতকরা ত্রুটি কত ? যদি উপরিউক্ত সম্পর্ক ব্যবহার করে P এর গণনাকৃত মান 3.763 হয় তবে তুমি ফলকে কত মান পর্যন্ত রাউন্ডিং করবে ?
- 2.14 কোনো বইয়ে যার মধ্যে ছাপার অনেক ত্রুটি আছে, পর্যায়বৃত্তগতিতে গতিশীল একটি কণার সরণ y এর নীচের 4 টি ভিন্ন সূত্র আছে :

(a) $y = a \sin 2\pi t/T$ (b) $y = a \sin vt$ (c) $y = (a/T) \sin t/a$

(d) $y = (a\sqrt{2}) (\sin 2\pi t/T + \cos 2\pi t/T)$

(a = কণাটির সর্বোচ্চ সরণ, v = কণার দ্রুতি, T = গতির পর্যায়কাল) মাত্রা সাপেক্ষে ভুল সূত্রগুলো বাদ দাও।

2.15 পদার্থবিদ্যার একটি বিখ্যাত সম্পর্ক, কোনো কণার 'গতিশীল ভর (moving mass) *m* ও স্থির ভর (rest mass) *m*_o এর মধ্যে তার গতিবেগ υ ও আলোকের গতিবেগ *c* দ্বারা প্রকাশিত (এই সম্পর্ক সবার আগে আলবার্ট আইনস্টাইন এর বিশেষ আপেক্ষিকতার সিদ্ধান্তের পরিণাম স্বরূপ উৎপন্ন হয়েছিল।) একজন ছাত্র এই সম্পকর্কে প্রায় সঠিকভাবে

মনে করতে পারে কিন্তু ধ্রুবক c কে বসাতে ভুল করে। সে লিখে : $m = \frac{m_0}{\left(1 - v^2\right)^{1/2}}$ । অনুমান করো যে ভুলে যাওয়া cকোথায় বসবে ?

- 2.16 পারমাণবিক স্কেলে দৈর্ঘ্যের সুবিধাজনক একক হল অ্যাংস্ট্রম এবং একে Å দ্বারা নির্দেশিত করা হয়। 1 Å = 10⁻¹⁰ m। হাইড্রোজেনের 1টি পরমাণুর আকার প্রায় 0.5 Å, হাইড্রোনের পরমাণুর এক মোলের m³ এ মোট পারমাণবিক আয়তন কত হবে?
- 2.17 প্রমাণ তাপমাত্রা ও চাপে কোনো আদর্শ গ্যাসের এক মোলের আয়তন হল 22.4 L (আণবিক আয়তন) । হাইড্রোজেনের 1মোলের আণবিক আয়তন ও পারমাণবিক আয়তনের অনুপাত কত হবে (হাইড্রোজেনের একটি অণুর আকার প্রায় 1Å) ? এই অণুপাত এত অধিক কেন ?
- 2.18 এই সাধারণ পর্যবেক্ষণকে স্পন্টভাবে ব্যাখ্যা করো : যদি তুমি দ্রুতগতিতে গতিশীল কোনো রেলগাড়ির জানালা থেকে বাইরে দেখ তবে নিকটবর্তী গাছ, ঘরবাড়ি ইত্যাদি রেলগাড়ির গতির বিপরীত দিকে দ্রুত গতিশীল বলে মনে হয়, কিন্তু দুরের বস্তুগুলো (পাহাড়ের চূড়া, চাঁদ, নক্ষত্র ইত্যাদি) স্থির বলে মনে হয়। (যেহেতু তুমি জান তুমি গতিশীল, তাই এ দুরের বস্তুগুলো তোমার সঙ্গে গতিশীল বলে মনে হয়।)
- 2.19 খুব দুরের নক্ষ্ত্রগুলোর দূরত্ব জানার জন্য অনুচ্ছেদ 2.3.1 এ দেওয়া লম্বননীতি (principle of parallax) প্রয়োগ করা হয়। সূর্যের চারিদিকে নিজ কক্ষে ছয় মাস অন্তরে পৃথিবীর নিজের দুটি স্থানের সংযোগকারী রেখা হল ভূমিরেখা। অর্থাৎ ভূমিরেখা পৃথিবীর কক্ষের ব্যাস বরাবর = 3 × 10¹¹m। তথাপি, নিকটতম নক্ষত্রের দূরত্ব এত বেশি হয় যে এত লম্বা ভূমিরেখা হওয়া সত্ত্বেও ঐ চাপ মাত্র 1'' (সেকেন্ড চাপের) ক্রমের লম্বন প্রদর্শন করে। জ্যোতির্বিদ্যার স্কেলে দ্রেয় তার বরাবর দের্ঘ্বে এক দের্ঘ্যের একটি সুবিধাজনক একক হল পারসেক। এটি কোনো বস্থুর ঐ দুরত্ব যা পৃথিবী থেকে সূর্য পর্যন্ত দুরত্ব বরাবর

ভূমি রেখার দুই বিপরীত প্রান্ত থেকে চাপের 1'' এর লম্বন প্রদর্শন করে। মিটার এককে 1 পারসেক কত হয় ?

- 2.20 আমাদের সৌরমগুল থেকে নিকটতম তারা 4.29 আলোকবর্ষ দুরে আছে। পারসেক এককে এই দূরত্ব কত ? এই তারা (আলফা সেঞ্ডুয়ারি নামক) তখন কত লম্বন প্রদর্শন করবে যখন একে সূর্যের চারদিক নিজের কক্ষে, পৃথিবীর দুই স্থান থেকে যা ছয় মাস অন্তরে হয়, দেখা যাবে ?
- 2.21 প্রাকৃতিক রাশিগুলোর যথাযথ পরিমাপ বিজ্ঞানে আবশ্যক। উদাহরণস্বরূপ, কোনো উড়োজাহাজের গতিবেগ সুনিশ্চিত করার জন্য খুবই ছোটো সময় অবকাশের পর এর অবস্থান নির্ণয় করতে অবশ্যই কোনো সঠিক পদ্ধতি গ্রহণ করতে হবে। দ্বিতীয় বিশ্বযুদ্বে রেডারের আবিষ্ণারের পিছনে এই ছিল প্রকৃত উদ্দেশ্য (motivation)। আধুনিক বিজ্ঞানের বিভিন্ন উদাহরণগুলোর কথা ভেবে উল্লেখ করো যাদের মধ্যে দৈর্ঘ্য, সময়, ভর ইত্যাদির যথাযথ পরিমাপের প্রয়োজন হয়। সম্ভাব্য অন্য যে-কোন প্রয়োজনীয় যথাযথ পরিমাণাত্মক ধারণা উল্লেখ করো।
- 2.22 যেভাবে বিজ্ঞানে যথাযথ পরিমাপের প্রয়োজন হয়, ঠিক সেভাবে প্রাথমিক ধারণা এবং সাধারণ পর্যবেক্ষণ প্রয়োগ করা যায় এমন রাশিগুলোর স্থৃল গণনা করাও ততটা গুরুত্বপূর্ণ। ঐসব উপায়গুলো ভেবে বলো যাদের দ্বারা তুমি নিম্নলিখিত বিষয়গুলো অনুমান করতে পারো (যেখানে অনুমান করা কঠিন সেখানে রাশির ঊর্ধ্বসীমা পাওয়ার জন্য চেষ্টা করতে হয়।)
 - (a) মৌসুমি বায়ুকালে ভারতের উপর বৃষ্টিবাহী মেঘের মোট ভর,
 - (b) একটি হাতির ভর,
 - (c) কোনো ঝড়ের সময়ে বায়ু প্রবাহের বেগ,
 - (d) তোমার মাথার চুলের সংখ্যা,
 - (e) তোমার শ্রেণিকক্ষের বায়ুর অণুসংখ্যা
- 2.23 সূর্য এক উয় প্লাজমা (আয়নকৃত পদার্থ) যার অভ্যন্তরীণ স্থলে (core) তাপমাত্রা 10⁷K উপরে এবং বাইরের পৃষ্ঠের তাপমাত্রা প্রায় 6000 K হয়। এত অধিক তাপমাত্রায় কোনো পদার্থ কঠিন বা তরল অবস্থায় থাকতে পারে না। কঠিন এবং তরল বা গ্যাসের ঘনত্বের পরিসরের সঙ্গো তুলনা করে সূর্যের ভর ঘনত্ব কোন্ পরিসরে হবে বলে তুমি আশা কর। যদি তোমার অনুমান সঠিক হয় তবে নিম্নলিখিত তথ্য থেকে পরীক্ষা করতে পারো : সূর্যের ভর = 2.0 ×10³⁰ kg, সূর্যের ব্যাসার্ধ = 7.0 × 10⁸ m.
- 2.24 যখন বৃহস্পতি গ্রহ পৃথিবী থেকে 824.7 লক্ষ কিলোমিটার দূরে থাকে তখন এর কৌণিক ব্যাসের পরিমাপ 35.72'' চাপ। বৃহস্পতির ব্যাস গণনা করো।

অতিরিক্ত অনুশীলনী : (Additional Exercises)

- 2.25 বর্ষার সময়ে কোনো ব্যক্তি υ গতিবেগে দ্রুত চলে, তখন তাকে উল্লম্ব রেখার সঙ্গে θ কোণে আনত করে ছাতাকে সামনে ধরতে হয়। একজন ছাত্র θ এবং υ এর মধ্যে নিম্নলিখিত সম্পর্ক নির্ণয় করে : tan θ = υ এবং পরীক্ষা করে পায় যে এই সম্পর্কের সঠিক সীমা আছে, যেমন আশা করা হয়েছে υ → 0, θ →0, (আমরা ধরে নিচ্ছি যে জোরে হাওয়া বইছে না এবং একজন স্থির ব্যক্তির উপর বৃষ্টি উল্লম্বভাবে পড়ছে।) তুমি কি মনে কর এই সম্পর্কটি সঠিক ? যদি এরকম না হয় তবে সঠিক সম্পর্কটি অনুমান করো।
- 2.26 এটা দাবি করা যায় যে যদি গোলমাল ছাড়া 100 বছর ধরে দুটি সিজিয়াম ঘড়িকে চলতে দেওয়া যায় তবে এদের সময়ের মধ্যে কেবল 0.02s এর অন্তর হতে পারে। এ তথ্য থেকে প্রমাণ সিজিয়াম ঘড়ি দিয়ে 1s সময় অবকাশ মাপার সঠিকতার কী অর্থ প্রকাশ করে?
- 2.27 একটি সোডিয়াম পরমাণুর আকার প্রায় 2.5 Å ধরে নিয়ে তার গড় ভর ঘনত্বের গণনা করো। (সোডিয়ামের পারমাণবিক ভর ও অ্যাভোগাড্রো সংখ্যার জানা মান প্রয়োগ করো)। একে কেলাসিত দশায় সোডিয়ামের ঘনত্ব 970 kg m⁻³ এর সঙ্গো তুলনা করো। এই দুই ঘনত্বের মানের ক্রম কি সমান হয় ? যদি হ্যা হয় তবে কেন ?
- 2.28 নিউক্লিয়ার স্কেলে দৈর্ঘ্যের সুবিধাজনক একক হল ফার্মি : 1 f = 10⁻¹⁵ m। নিউক্লিয়ার আকার মোটামুটি নিম্নলিখিত স্থৃল (empirical) সম্পর্ক মেনে চলে :

$r = r_0 A^{1/3}$

যেখানে r কেন্দ্রকের (nucleus) ব্যাসার্ধ। A এর ভরসংখ্যা এবং r_o হল একটি ধ্রুবক সংখ্যা যা প্রায় 1.2 f এর সমান। দেখাও যে এই নিয়মের অর্থ হল বিভিন্ন নিউক্রিয়াসের জন্য নিউক্রিয়ার ভর-ঘনত্ব প্রায় ধ্রুবক হয়। সোডিয়াম কেন্দ্রকের ভর-ঘনত্বের গণনা করো। প্রশ্ন 2.27 থেকে প্রাপ্ত সোডিয়াম পরমাণুর গড় ভরো ঘনত্বের সঙ্গো একে তুলনা করো।

- 2.29 লেজার (LASER) হল অত্যধিক তীব্র, একবর্ণী এবং একমুখী আলোক রশ্মির স্রোত। লেজারের এই ধর্মগুলোকে বিস্তীর্ণ দূরত্ব মাপার কাজে লাগানো হয়। লেজারকে আলোকের উৎসরূপে ব্যবহার করে পূর্বেই চাঁদের দূরত্ব পৃথিবী থেকে নির্ণয় করা হয়েছে। কোনো লেজার আলোকরশ্মি গুচ্ছ চাঁদের পৃষ্ঠ থেকে 2.56 s এ প্রতিফলিত হয়ে ফিরে আসে। পৃথিবীর চারিদিকে চাঁদের কক্ষের ব্যাসার্ধ কত?
- 2.30 জলের নীচের বস্তুগুলোর খোঁজ করতে এবং অবস্থান নির্ণয় করতে সোনার (sound navigation and ranging) এ শব্দোত্তর তরঙ্গের ব্যবহার হয়। ডুবোজাহাজ সোনারে সুসজ্জিত, এর দ্বারা উৎপন্ন অনুসন্ধানী তরঙ্গা এবং শত্রুর ডুবোজাহাজ থেকে প্রতিফলিত প্রতিধ্বনির প্রাপ্তির মধ্যবর্তী সময় ব্যবধান 77.0 s পাওয়া গেল। শত্রুর ডুবোজাহাজের দূরত্ব কত ? (জলে শব্দের গতিবেগ = 1450 m s⁻¹)।
- 2.31 আমাদের বিশ্বব্রত্নান্ডে আধুনিক জ্যোতির্বিদদের দ্বারা আবিষ্ণৃত সবচেয়ে দূরের বস্তু এত স্পন্ট যে এদের দ্বারা নিঃসৃত আলো পৃথিবীতে পৌঁছাতে কোটি কোটি বছর লাগে। এই বস্তুগুলোর (যারা কোয়াসর নামে পরিচিত) কতগুলো রহস্যময় লক্ষণ আছে যাদের এখন পর্যন্ত সন্তোযজনক ব্যাখ্যা দেওয়া যায়নি। এরকম যে-কোনো কোয়াসরের km এ দূরত্ব নির্ণয় করো যা থেকে আলোক আমাদের কাছে পৌঁছাতে 300 কোটি বছর লাগে।
- 2.32 এটি একটি বিখ্যাত তথ্য এই যে পূর্ণ সূর্যগ্রহণের সময় চাঁদের চাকতি সূর্যের চাকতিকে প্রায় সম্পূর্ণভাবে ঢেকে ফেলে। এই তথ্য এবং উদাহরণ 2.3 ও 2.4 এর একত্রিত তথ্য থেকে চাঁদের ব্যাস আসন্ন মানে নির্ণয় করো।
- 2.33 এই শতান্দির একজন মহান পদার্থবিদ (পি. এ. এম. ডিরাক) প্রকৃতির মূল ধ্রুবকগুলোর সাংখ্যিক মাসের সঙ্গে খেলা করতে ভালো বাসতেন। এর সাহায্যে তিনি এক আকর্ষণীয় পর্যবেক্ষণ করেন। পারমাণবিক পদার্থ বিদ্যার মূল ধ্রুবকগুলো (যেমন ইলেক্ট্রনের ভর, প্রোটনের ভর এবং মহাকর্ষীয় ধ্রুবক G) দ্বারা ডিরাক জানতে পারেন যে তিনি এমন এক সংখ্যায় পৌঁছেছেন যার মাত্রা হল সময়ের মাত্রা। সঙ্গে এও জানেন যে এটি একটি খুব বড় সংখ্যা ছিল এবং এর মান মহাবিশ্বের বর্তমান গণনাকৃত বয়স প্রায় 1500 কোটি বছর) এর কাছাকাছি। এই বইয়ের মূল ধ্রুবকগুলোর সারণি থেকে তুমি চেন্টা করে দেখো, তুমি কি এই সংখ্যা গঠন করতে পারো। (অথবা অন্য কোনো চিত্তাকর্ষক সংখ্যা যা তুমি ভাবতে পারো)? যদি মহাবিশ্বের বয়স এবং এই সংখ্যার সমান হওয়া গুরুত্বপূর্ণ হয়, তবে মূল ধ্রুবকগুলোর স্থিরতা কীভাবে প্রভাবিত হবে?

সরলরেখা বরাবর গতি (Motion in a Straight Line)

3.1 ভূমিকা (INTRODUCTION)

3.1) ভূমিকা

- 3.2 অবস্থান, পথের দৈর্ঘ্য এবং সরণ
- 3.3 গড় গতিবেগ এবং গড় দ্বুতি
- 3.4 তাৎক্ষণিক বেগ এবং দ্রুতি
- 3.5 ত্বরণ
- 3.6 সমত্বরণে গতিশীল কণার গতীয় সমীকরণ
- 3.7 আপেক্ষিক বেগ

সারাংশ ভেবে দেখার বিষয়সমূহ অনুশীলনী অতিরিক্ত অনুশীলনী পরিশিষ্ট 3.1 এই বিশ্বব্রন্নান্ডে সমস্ত কিছুই গতিশীল। আমরা হাঁটি, দৌড়াই এবং বাইসাইকেল চালাই। এমনকি যখন আমরা ঘুমাই, আমাদের ফুসফুসে বায়ু প্রবেশ করে এবং বাহির হয় এবং শিরা ও ধমনীর মধ্যে দিয়ে রক্ত প্রবাহিত হয়। আমরা দেখি গাছ থেকে পাতা খসে পড়ে, জল বাঁধ থেকে নিচের দিকে প্রবাহিত হয়। মোটর গাড়ি এবং বিমান মানুষদের একস্থান থেকে অন্যস্থানে নিয়ে যায়। পৃথিবী চব্বিশ ঘণ্টায় নিজ অক্ষের চারদিকে একবার ঘুরপাক খায় এবং প্রতি এক বছরে একবার সূর্যের চারদিকে ঘুরে আসে। সূর্য নিজেও ছায়াপথে গতিশীল, যেটি আবার নিজস্ব গোলাক্সি গোষ্ঠীর মধ্যে গতিশীল।

সময়ের স্বাপেক্ষে কোন বস্তুর অবস্থান পরিবর্তনকে বলে গতি। সময়ের স্বাপেক্ষে কীভাবে বস্তুর অবস্থান পরিবর্তিত হয় ? এই অধ্যায়ে আমরা শিখব কীভাবে গতির বর্ণনা করা যায়। এজন্য আমরা গতিবেগ ও ত্বরণের ধারণাকে সমৃষ্ধ করব।

আমরা বস্তুর সরলরেখা বরাবর গতি অধ্যয়নে আমাদেরকে সীমাবন্ধ রাখব এবং এই গতি ঋজুরেখ গতি (rectilinear motion) নামেও পরিচিত। সমত্বরণে ঋজুরেখ গতির ক্ষেত্রে কয়েকটি সরল সমীকরণ পাওয়া যেতে পারে। পরিশেষে, গতির আপেক্ষিক প্রকৃতি বোঝার জন্য আমরা আপেক্ষিক বেগের ধারণাকে উপস্থাপিত করব।

আমাদের আলোচনায় আমরা গতিশীল বস্তুকে বিন্দু-বস্তু (point-object) হিসাবে বিবেচনা করব। এই আসন্নায়নটি (approximation) যথার্থ হবে যখন বস্তুর আকার কোনো গ্রহণযোগ্য সময়ের অবকাশে বস্তু কর্তৃক অতিক্রান্ত দূরত্ব অপেক্ষা অনেক কম হয়। বাস্তব জীবনে প্রায় ক্ষেত্রেই বস্তুর আকার উপেক্ষা করা যেতে পারে এবং তাদেরকে বিন্দু সদৃশ বস্তু হিসাবে ধরলে বিশেষ কিছু ত্রুটি হয় না।

গতিবিদ্যায় (kinematics) আমরা বস্তুর গতি বর্ণনায় বিভিন্ন উপায়গুলো নিয়ে অধ্যয়ন করি কিন্তু কি কারণে গতি সৃষ্টি হয় সে বিষয় নিয়ে আলোচনা করি না। এ অধ্যায় এবং পরবর্তী অধ্যায়ে আলোচিত "কি কারণে গতির সৃষ্টি হয়" তা হলো পঞ্চম অধ্যায়ের বিষয়বস্তু।

3.2 অবস্থান, পথের দৈর্ঘ্য এবং সরণ (Position, path length and displacement)

পূর্বে তোমরা শিখেছ যে গতি হচ্ছে সময়ের সঙ্গে বস্তুর অবস্থান পরিবর্তন। অবস্থান নির্ণয়ে আমাদের প্রয়োজন নির্দেশক বিন্দু (reference point) এবং অক্ষসমূহ (set of axes)। এরজন্য সুবিধাজনক হল আয়তাকার স্থানাজ্ঞ্ব সংস্থা (rectangular coordinate system) যা তিনটি পরস্পর লম্ব অক্ষ, যথা X — অক্ষ, Y — অক্ষ ও Z — অক্ষ নিয়ে গঠিত। এই তিনটি অক্ষের ছেদ বিন্দুকে বলা হয় মূলবিন্দু (O) যা নির্দেশক বিন্দুর ভূমিকা পালন করে। কোনো একটি বস্তুর স্থানাঙ্ক (x, y, z) এই নির্দেশক সংস্থার স্বাপেক্ষে (respect to co-ordinate system) তার অবস্থান নির্দেশ করে। সময় পরিমাপের জন্য এই সংস্থায় একটি ঘড়িকে ব্যবহার করা হয়। ঘড়িসহ এই স্থানাঙ্ক সংস্থাটি (co-ordinate system) একটি নির্দেশতন্ত্র (frame of reference) গঠন করে।

যদি সময়ের স্বাপেক্ষে কোনো বস্তুর এক বা একাধিক স্থানাঙ্ক পরিবর্তিত হয় তবে আমরা বস্তুটিকে গতিশীল বলব। অন্যথায় এই নির্দেশতন্ত্রের স্বাপেক্ষে বস্তুটি স্থির আছে বলা হবে।

পরিস্থিতির উপর নির্ভর করে কোন একটি নির্দেশতন্ত্রের অক্ষ-সংস্থা নির্বাচন করা হয়। উদাহরণ হিসাবে বলা যেতে পারে যেমন একমাত্রিক গতির বর্ণনায় আমাদের একটি মাত্র অক্ষ প্রয়োজন, দ্বি-মাত্রিক / ত্রি-মাত্রিক গতি বর্ণনায় আমাদের দুটি/তিনটি অক্ষের প্রয়োজন।

কোনো একটি ঘটনার বর্ণনা নির্ভর করে তা কোন্ নির্দেশতন্ত্রের স্বাপেক্ষে ঘটনাটি বর্ণনা করা হচ্ছে। উদাহরণ হিসাবে বলা যায়, যখন তুমি বলো যে একটি গাড়ি রাস্তায় চলছে, তখন তুমি তোমার সাথে জড়িত নির্দেশতন্ত্র বা ভূমির স্বাপেক্ষে গাড়িটির গতি বর্ণনা করছ। কিন্তু গাড়িতে বসে থাকা কোনো ব্যক্তির সঙ্গে যুক্ত নির্দেশতন্ত্রের স্বাপেক্ষে ঐ গাড়িটি স্থির অবস্থায় আছে।

একটি সরলরেখা বরাবর গতির বর্ণনায় আমরা একটি মাত্র অক্ষ নিতে পারি, যেমন X-অক্ষ, যেন ইহা বস্তুর গতিপথের সঙ্গো সমাপতিত হয়। তারপর একটি সুবিধাজনক বাছাই করা মূলবিন্দুর স্বাপেক্ষে বস্তুটির অবস্থান পরিমাণ করি, যেমন 'O' বিন্দুর স্বাপেক্ষে যা 3.1 নং চিত্রে দেখানো হয়েছে। O বিন্দুর ডানদিকের স্থানাঙ্ককে ধনাত্মক এবং বামদিকের বিন্দুকে ঋণাত্মক ধরা হয়। এই প্রথা অনুযায়ী P বিন্দুর এবং Q বিন্দুর স্থানাঙ্ক যথাক্রমে +360m এবং +240m (চিত্র 3.1 এ দেখানো হয়েছে)। একইভাবে R বিন্দুর স্থানাঙ্ক হল -120m।

পথের দৈর্ঘ্য(Path length)

ধরো একটি গাড়ি সরলরেখায় গতিশীল। আমরা X-অক্ষকে এমনভাবে ধরে নিয়েছি যে এটি গাড়ির গতিপথের সঙ্গে সমাপতিত হয় এবং মূল্যবিন্দু হল সেই বিন্দু যেখান থেকে গাড়িটি গতি শুরু করেছে। অর্থাৎ গাড়িটি t=0 সময়ে x=0 বিন্দুতে ছিল (চিত্র 3.1)। ধরো বিভিন্ন মুহূর্তে গাড়ির অবস্থান P, Q ও R দ্বারা নির্দেশিত হচ্ছে। গতির দুটি অবস্থা বিবেচনা করো। প্রথম ক্ষেত্রে গাড়িটি O থেকে P তে গতিশীল। তখন গাড়ি দ্বারা অতিক্রান্ত দূরত্ব হল OP = +360m। এই দূরত্বকে বলা হয় গাড়িদ্বারা অতিক্রান্ত পথের দৈর্য্য (Path length)। দ্বিতীয় ক্ষেত্রে গাড়িটি O থেকে P তে যায় এবং পরে P থেকে Q তে ফিরে আসে। এই গতিপথে অতিক্রান্ত পথের দৈর্ঘ্য হল (OP + PQ) = + 360m + (+ 120m) = + 480m। পথের দৈর্ঘ্য হল "স্কেলার রাশি" — যে রাশির শুধুমাত্র মান আছে এবং কোনো দিক নেই (চতুর্থ অধ্যায় দেখ)।

সরণ (Displacement)

অবস্থানের পরিবর্তন বোঝাতে আরেকটি প্রয়োজনীয় রাশি হল সরণ। ধরো $t_1 ext{ G} ext{ t}_2$ সময়ে কোন একটি বস্তুর অবস্থান যথাক্রমে $x_1 ext{ G} ext{ x}_2$ । তখন $\Delta t = (t_2 - t_1)$ সময়ের পরিবর্তনে বস্তুর সরণ প্রকাশ করা হয় Δx দ্বারা, যা অন্তিম ও প্রারম্ভিক অবস্থানের পার্থক্য বুঝায় এবং এভাবে প্রকাশিত হয় ঃ

$$\Delta x = x_2 - x_1$$

[আমরা রাশির পরিবর্তনকে গ্রিক বর্ণ ভেল্টা (Δ) দ্বারা প্রকাশ করেছি।]

যদি $x_2 > x_1$ হয়, তবে Δx ধনাত্মক হয় এবং $x_2 < x_1$ হলে Δx ঋণাত্মক হয়।

সরণের 'মান' ও 'দিক' উভয়েই আছে। এ ধরনের রাশিকে ভেক্টর রাশি হিসাবে সূচিত করা হয়। পরবর্তী অধ্যায়ে তোমরা ভেক্টর সম্পর্কে অধ্যয়ন করবে। বর্তমানে আমরা শুধুমাত্র সরলরেখা বরাবর গতি নিয়ে আলোচনা করব (যাকে সরল রৈখিক গতি ও বলা হয়)। একমাত্রিক গতিতে দুটি দিকে (সামনে এবং পেছনে, উপরে এবং নিচে) বস্থুর গতি সম্ভব এবং এই দুই দিককে সহজেই + চিহ্ন ও – চিহ্ন দ্বারা প্রকাশ করা যায়। উদাহরণস্বরূপ একটি গাড়ি Q থেকে P বিন্দুতে গেলে গাড়িটির সরণ হবে ঃ

 $\Delta x = x_2 - x_1 = (+360m) - Om = +360m$ এই সরণের মান হল 360m এবং ইহা ধনাত্মক x-অক্ষ বরাবর + চিহ্ন দ্বারা নির্দেশিত। একইভাবে P থেকে Qতে গাড়ি কর্তৃক অতিক্রান্ত সরণ হল 240m-360m = -120m। ঋণাত্মক চিহ্ন সরণের দিক

সরলরেখা বরাবর গতি

নির্দেশ করে। তাই একমাত্রিক গতিতে গতীয় অবস্থা বর্ণনায় ভেক্টর চিহ্ন ব্যবহার আবশ্যক নয়।

বস্তুর সরণের মান বস্তু কর্তৃক অতিক্রান্ত পথ দৈর্ঘ্যের সমান হতেও পারে আবার নাও হতে পারে। উদাহরণ হিসেবে, O থেকে Pতে গাড়িটির গতির ক্ষেত্রে, পথদৈর্ঘ্য হল +360m এবং সরণও হল +360m। এক্ষেত্রে সরণের মান (+360m) পথদৈর্ঘ্যের (360m) এর মান। কিন্তু গাড়িটির গতি O থেকে Pতে এবং পুনরায় P থেকে Q তে ফিরে আসার ক্ষেত্রে পথের দৈর্ঘ্য হল = (+360m) + (+120m) = +480m। যদিও সরণ হল =(+240m) - (0m) = +240m। এজন্যই, বস্তুর সরণের মান (240m) পথ দৈর্ঘ্যের মানের (480m) সমান হয় না।

কোনো একটি গতিপথে সরণের মান শূন্যও হতে পারে কিন্তু একই গতিপথে বস্তুর পথদৈর্ঘ্য **শূন্য নয়**। উদাহরণ হিসেবে, যদি একটি গাড়ি O বিন্দু থেকে যাত্রা শুরু করে P বিন্দুতে পৌঁছে পুনরায় O বিন্দুতে ফিরে যায়, তাহলে যাত্রা শুরুর অবস্থান এবং যাত্রা শেষের অবস্থান মিলে যায় এবং সরণ শূন্য হয়। যদিও এই যাত্রাপথে পথ দৈর্ঘ্য হল OP+PO = 360m + 360m = 720m। তোমরা ইতিমধ্যেই শিখেছ যে বস্তুর গতিকে অবস্থান -

সময় লেখচিত্রের সাহায্যে প্রকাশ করা যায়। কোনো একটি বস্তুর গতির প্রকৃতি বর্ণনা এবং গতির বিভিন্ন মুহূর্ত বিশ্লেষণ করার জন্য এ ধরনের লেখচিত্র খুবই কার্যকরী। সরলরেখা বরাবর গতির ক্ষেত্রে, ধরো x- অক্ষ বরাবর সময়ের সঙ্গে শুধুমাত্র X-এর স্থানাঙ্ফ পরিবর্তিত হয় এবং আমরা একটি x-t লেখচিত্র পাব। প্রথমে আমরা একটি সরল উদাহরণ নেব যেখানে একটি বস্তুর স্থিরাবস্থায় আছে, উদাহরণস্বরূপ একটি গাড়ি x=40m এ দাঁড়িয়ে আছে। অবস্থান -সময় লেখচিত্রটি সময় অক্ষের সমান্তরাল একটি সরলরেখা হবে। [চিত্র 3.2(a)]।

যদি সরলরেখায় গতিশীল একটি বস্তু সমান সময়ের অবকাশে সমান দূরত্ব অতিক্রম করে, তবে তাকে সরলরেখা বরাবর সু**যমগতি বলে**। চিত্র 3.2(b)তে এ ধরনের গতির অবস্থান-সময় লেখচিত্র দেখানো হয়েছে।

এখন মনে করো মূলবিন্দু O থেকে t=os সময়ে একটি গাড়ি স্থিরাবস্থা

থেকে যাত্রা শুরু করে t=10s সময় পর্যন্ত দ্রুতি বাড়তে থাকে এবং তারপর t=18s পর্যন্ত সমবেগে গতিশীল থাকল। অতপর ব্রেক কযে গাড়িটি t=20s-এ ও x=296m এ থামল। এক্ষেত্রে গাড়িটির অবস্থান-সময় লেখচিত্র — চিত্র 3.3 এ দেখানো হয়েছে। আমরা পরবর্তী অনুচ্ছেদগুলোতে এই লেখচিত্রের আলোচনা করব।

3.3 গড়বেগ এবং গড় দ্রুতি (Average velocity and average speed)

যখন একটি বস্তু গতিশীল হয়, সময়ের সঞ্চো এর অবস্থান-এর পরিবর্তন হয়। কিন্তু সময়ের সঞ্চো কত তাড়াতাড়ি এবং কোন্ দিকে অবস্থান-এর পরিবর্তন হচ্ছে? এটা বোঝানোর জন্য আমাদের "**গড়বেগ**" রাশিটি সংজ্ঞায়িত করতে হবে। বস্তুর অবস্থান পরিবর্তন বা সরণের পরিবর্তন (Δx) কে সময়ের অন্তর (Δt) দ্বারা ভাগ করলে গড়বেগ রাশিটি পাওয়া যায়।

অর্থাৎ,
$$\overline{v} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{\Delta x}{\Delta t}$$
 (3.1)

যেখানে x_2 এবং x_1 হল যথাক্রমে t_2 এবং t_1 সময়ে বস্তুর অবস্থান। এখানে গতিবেগের গড়মান বোঝাতে বেগের চিহ্নটির উপর 'বার' প্রমাণ প্রতীকটি ব্যবহৃত হয়েছে। SI পদ্ধতিতে বেগের একক হল m/s বা ms⁻¹ যদিও প্রতিদিনের ব্যবহারে kmh⁻¹ এককটিও বহুল ব্যবহৃত হয়।

সরণের মতো গড়বেগ ও একটি ভেক্টর রাশি। কিন্তু আগেই ব্যাখ্যা করা হয়েছে যে সরলরৈখিক গতিতে ভেক্টরের দিক নির্বাচন + এবং — চিহ্নদ্বারা করা হয়। এ অধ্যায়ে আমরা গতিবেগ প্রকাশে ভেক্টর চিহ্ন ব্যবহার করব না।

Fig. 3.4 P₁P₂ রেখার নতি (slope) হল গড় গতিবেগ। চিত্র 3.3তে দেখানো গাড়ির গতি বিবেচনা করা যাক। x-t

লেখচিত্রের t=0s এবং t=8s এর মধ্যবর্তী অংশকে চিত্র 3.4 এ দেখানো হয়েছে। অঙ্কিত লেখচিত্র থেকে t=5s এবং t=7s এর মধ্যবর্তী গড়বেগ হল:

$$\overline{v} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{(27.4 - 10.0)m}{(7 - 5)s} = 8.7ms^{-1}$$

জ্যামিতিকভাবে, ইহা হল প্রারম্ভিক অবস্থান P_1 ও অন্তিম অবস্থান P_2 এর সংযোগকারী P_1P_2 রেখার নতি (slope) যা চিত্র 3.4 এ দেখানো হয়েছে।

সরণের চিহ্ন অনুযায়ী গড়বেগ ধনাত্মক বা ঋণাত্মক হতে পারে।ইহার মান শূন্য হয় যদি সরণ শূন্য হয়। চিত্র 3.5 এর (a), (b) ও (c) দ্বারা যথাক্রমে ধনাত্মক বেগে, ঋণাত্মক বেগে এবং শূন্য বেগে গতিশীল বস্তুর x-t লেখচিত্র দেখানো হয়েছে।

চিত্র 3.5 : একটি বস্তুর অবস্থান-সময় লেখচিত্র (a)ধনাত্মক বেগে গতিশীল (b) ঋণাত্মক বেগে গতিশীল এবং (c) স্থির।

উপরে বর্ণিত গড়বেগের সংজ্ঞাটি শুধুমাত্র বস্তর সরণ সম্পর্কিত। আমরা আগে দেখেছি যে সরণের মান প্রকৃত 'পথদৈর্ঘ্যের' মান অপেক্ষা ভিন্ন হতে পারে। প্রকৃত পথ বরাবর গতির পরিবর্তনের হার বর্ণনা করার জন্য আমাদের আরেকটি রাশির অবতারণার দরকার যা হল **'গড়দ্রতি'**।

মোট অতিক্রান্ত পথ দৈর্ঘ্যকে মোট সময় অবকাশ দ্বারা ভাগ করলে যে রাশি পাওয়া যায় তাকে ঐ সময় অবকাশের **গড়দ্রুতি** বলা হয়।

গড়দুতির একক স্পষ্টতই বেগের এককের মতো (ms⁻¹)। কিন্তু এথেকে বস্তুটি কোন্ দিক বরাবর গতিশীল তা বোঝা যায় না। তাই ইহা সর্বদা ধনাত্মক (বিপরীতে গড়বেগের মান ধনাত্মক বা ঋণাত্মক দুইই হতে পারে)। যদি একটি বস্তুর গতি সরলরেখা বরাবর হয় এবং একই দিকে হয়, তবে সরণের মান এবং পথদৈর্ঘ্যের মান একই হয়। এক্ষেত্রে গড় বেগের মান ও গড়দুতির

সরলরেখা বরাবর গতি

মান একই হয়। এটা সবক্ষেত্রে খাটে না, তোমরা তা নিম্নলিখিত উদাহরণে দেখতে পাবে।

উদাহরণ 3.1 : একটি গাড়ি সরলরেখা OP বরাবর গতিশীল (চিত্র 3.1)। ইহা O থেকে P তে পৌঁছতে 18s সময় নেয় এবং P থেকে Qতে ফিরে আসে 6.0 s সময়ে। গড়বেগ ও গড়দ্রুতি কি হবে যখন গাড়িটি (a) O থেকে P তে যাবে ? এবং (b) O থেকে P এবং পুনরায় Qতে ফিরে আসে ?

Answer (a)

সরণ গড়বেগ = —-- — সময় অবকাশ

$$\overline{v} = \frac{+360 \text{ m}}{18 \text{ s}} = +20 \text{ m s}^{-1}$$

পথদৈৰ্ঘ্য গডদ্রুতি = -----

সময় অবকাশ

 $=\frac{360 \text{ m}}{18 \text{ s}}=20 \text{ m s}^{-1}$

এক্ষেত্রে গড়দুতি হল গড়বেগের মানের সমান (b) এক্ষেত্রে

সরণ		+240m
গড়বেগ =	=	
সময় অবকাশ		(18+6.0)s

 $= +10 \text{ ms}^{-1}$

এক্ষেত্রে দেখা যাচ্ছে যে গড়দুতির মান গড়বেগের মানের সমান নয়। এটা এরকম হচ্ছে কারণ এখানে গতির সাথে দিকের পরিবর্তনও জড়িত এবং এজন্য পথদৈর্ঘ্যের মান সরণের মান অপেক্ষা বেশি। সুতরাং দেখা যাচ্ছে যে দুতি সাধারণত বেগের মান অপেক্ষা বড়ো।

যদি 3.1 নং উদাহরণের গাড়িটি O থেকে Pতে যায় এবং পুনরায় একই সময়ে O তে ফিরে আসে তবে গড়দ্রুতি হল 20m/s কিন্তু গড়বেগ হল শূন্য।

3.4 তাৎক্ষণিক বেগ এবং দ্রুতি (Instantaneous velocity and speed):

একটি নির্দিষ্ট সময় অবকাশে একটি বস্তু কত দ্রুত গতিশীল তা গড়বেগ থেকে বোঝা যায় কিন্তু ঐ সময় অবকাশের বিভিন্ন মুহূর্তগুলোতে কত দ্রুততায় গতিশীল তা কিন্তু বোঝা যায় না। তারজন্য আমরা নির্দিষ্ট মুহূর্তের তাৎক্ষণিক বেগ বা সাধারণভাবে t মুহূর্তের বেগ U কে সংজ্ঞায়িত করি।

কোন একটি মুহূর্তে বেগকে এভাবে সংজ্ঞা দেওয়া যায়, যে কোনো অতিক্ষুদ্র Δt সময়ে অবকাশে বস্তুর গড়বেগের সীমাস্থ মানকে তাৎক্ষণিক বেগ বলে। অন্যভাবে বলা যায় —

$$\nu = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} \tag{3.3a}$$

$$=\frac{dx}{dt}$$
 (3.3b)

যেখানে $\lim_{\Delta t \to 0}$ চিহ্ন্টি $\Delta t \to 0$ সময়ে ডানপক্ষের রাশির সীমাস্থকরণ বোঝায়। কলনবিদ্যা বা ক্যালকুলাসের ভাষায় (3.3 a) নং সমীকরণের ডানদিকের রাশিটি হল t এর স্বাপেক্ষে x এর অবকলসহগ এবং

যাকে $\frac{dx}{dt}$ দ্বারা প্রকাশ করা হয় (পরিশিষ্ট 3.1 দেখ)। ইহা হল ঐ মুহূর্তে সময়ের সাপেক্ষে অবস্থান পরিবর্তনের হার। গাণিতিকভাবে বা লেখচিত্র থেকে ঐ মুহূর্তে বেগ এর মান পাওয়ার জন্য আমরা 3.3(a) সমীকরণ ব্যবহার করতে পারি। ধরো 3.3 নং চিত্রে প্রদর্শিত গাড়ির বেগ t=4s এ (P বিন্দু) আমরা লৈখিক পম্বতিতে পেতে চাই। সহজভাবে গণনা করার জন্য চিত্রটিকে ভিন্ন স্কেল ব্যবহার করে পুনরায় 3.6 নং চিত্র অঞ্চন করা হল। t=4s কে মধ্যবিন্দু ধরে Δ t=2s সময় নিলাম।

এখন গড়বেগের সংজ্ঞানুযায়ী চিত্র 3.6 এর লেখচিত্রে P_1P_2 রেখার নতি হল 3s থেকে 5s সময়কালের মধ্যে গড়বেগ। আমরা এবার t এর মান 2s থেকে 1sএ কমিয়ে আনলাম। এখন P_1P_2 রেখা Q_1Q_2 তে

লেখচিত্রের সাহায্যে তাৎক্ষণিক বেগ বের করার পম্বতি সর্বদা সুবিধাজনক নয়। এজন্য আমাদের খুব সতর্কভাবে অবস্থান - সময় লেখচিত্র অঞ্জন করতে হয় এবং ক্রমহ্রাসমান Δt এর জন্য গড়বেগ গণনা করতে হয়। যদি বিভিন্ন মুহূর্তে অবস্থানগুলোর তথ্যসমূহ জানা থাকে বা সময়ের স্বাপেক্ষে অবস্থান অপেক্ষকের প্রকৃত রাশিমালা জানা থাকে তাহলে বেগের মান গণনা করা অনেক সুবিধাজনক। তারপর আমরা Δt এর ক্রমহ্রাসমান মানগুলো থেকে $\Delta x/\Delta t$ এর মান নির্ণয় করি এবং 3.1 নং সারণিতে যেভাবে করেছি তার মতো করে সীমাস্থমান বের করি অথবা প্রদেয় সম্পর্কটির ক্ষেত্রে অবকলনবিদ্যা ব্যবহার করে নির্দিন্ট মুহূর্তে $\frac{dx}{dt}$ এর মান গণনা করি যা নিন্নের উদাহরণে করা হয়েছে।

পরিণত হল এবং এর নতি 3.5s থেকে 4.5s সময় কালের মধ্যে গড়বেগের মান প্রদর্শন করে। Δt → 0 সীমায় অবস্থান- সময় লেখচিত্রে P₁P₂ রেখাটি P বিন্দুতে স্পর্শকে রুপান্তরিত হয় এবং t=4s এ গতিবেগ হল ঐ বিন্দুতে স্পর্শকটির নতি। লেখচিত্রের সাহায্যে এই পদ্ধতি দেখানো কম্টকর। কিন্তু আমরা যদি বেগ বের করার জন্য গাণিতিক পদ্ধতি ব্যবহার করি, তাহলে সীমাস্থকরণ প্রক্রিয়ার অর্থ স্পন্ট হয়। 3.6 নং চিত্রে x=0.08t³ এর লেখচিত্র দেখানো হয়েছে। সারণি 3.1 থেকে $\Delta x/\Delta t$ এর মান পাওয়া যায় যখন t=4.0s কে মধ্যবিন্দু ধরে Δt এর মান 2.0s, 1.0s, 0.5s, 0.1s এবং 0.01s ধরা হয়। দ্বিতীয় ও

তৃতীয় স্তম্ভ থেকে $t_1 = \left(t - \frac{\Delta t}{2}\right)$ এবং $t_2 = \left(t + \frac{\Delta t}{2}\right)$ এর মান পাওয়া যায় এবং চতুর্থ ও পঞ্জম স্তম্ভ থেকে আনুষর্জিক x এর মান অর্থাৎ $x(t_1)=0.08t_1^3$ এবং $x(t_2)=0.08t_2^3$ পাওয়া যায়। সারণির যন্ঠ স্তম্ভে $\Delta x = x(t_2) - x(t_1)$ কে লিপিবন্ধ করা হয়েছে এবং সর্বশেষ স্তম্ভে Δx ও Δt এর অনুপাত দেওয়া আছে অর্থাৎ প্রথম স্তম্ভে Δt সময়ের অবকাশে আনুষ্জিক গড়বেগ এর মান দেওয়া আছে।

3.1 নং সারণি থেকে আমরা দেখি যে ∆t এর মান 2.0s থেকে 0.010s এ কমতে থাকলে গড়বেগের মান 3.84ms⁻¹ সীমাস্থমানের দিকে অগ্রসর হয়। যা t=4.0s এ বেগের মান অর্থাৎ t=4.0s এ $\frac{dx}{dt}$ এর মান। একইভাবে আমরা প্রত্যেক মুহূর্তে গাড়ির বেগের মান গণনা করতে পারি, যাকে চিত্র 3.3 নং এ দেখানো হয়েছে। এক্ষেত্রে সময়ের স্থাপেক্ষে বেগের পরিবর্তন চিত্র 3.7এ দেখানো হয়েছে।

সারণি 3.1 $\frac{\Delta x}{\Delta t}$ এর সীমান্তমান যখন t = 4 s

∆ <i>t</i> (s)	t <u>,</u> (s)	t <u>,</u> (s)	x(t,) (m)	x(t _s) (m)	∆ <i>x</i> (m)	$\frac{\Delta x / \Delta t}{(\mathbf{m s}^{-1})}$
2.0	3.0	5.0	2.16	10.0	7.84	3.92
1.0	3.5	4.5	3.43	7.29	3.86	3.86
0.5	3.75	4.25	4.21875	6.14125	1.9225	3.845
0.1	3.95	4.05	4.93039	5.31441	0.38402	3.8402
0.01	3.995	4.005	5.100824	5.139224	0.0384	3.8400

উদাহরণ 3.2 : x অক্ষ বরাবর একটি গতিশীল বস্তুর অবস্থান হল x=a+bt², যেখানে a=8.5m, b=2.5ms⁻² এবং t পরিমাপ করা হয়েছে সেকেন্ড এককে। t=0s এবং t=2.0s এ বেগ কত ? t=2.0s এবং t=4.0s এর মধ্যবর্তী সময়কালে গড়বেগ কত ?

উত্তর : অবকলনের প্রতীক অনুযায়ী, গতিবেগ হল

$$v = \frac{dx}{dt} = \frac{d}{dt}(a+bt^2) = 2bt = 5.0 \ t \ m \ s^{-1}$$

যখন t=0s, $\upsilon = 0 \text{ ms}^{-1}$ এবং যখন t = 2.0s, $\upsilon = 10 \text{ms}^{-1}$.

গড়বেগ =
$$\frac{x(4.0) - x(2.0)}{4.0 - 2.0}$$

= $\frac{a + 16b - a - 4b}{2.0}$ = $6.0 \times b$
= $6.0 \times 2.5 = 15 \text{ m s}^{-1}$

চিত্র 3.7 থেকে আমরা লক্ষ্যকরি যে t=10s থেকে 18s এর মধ্যে গতিবেগ ধ্রুবক। t=18s থেকে t=20s এর মধ্যে সুষমভাবে ক্রমহ্রাসমান এবং t=0 s থেকে t=10s এর মধ্যে গতিবেগ ক্রমবর্ধমান। লক্ষণীয় যে সুষম গতিতে বেগ বিভিন্ন মুহূর্তের গড়বেগের সমান হয়।

তাৎক্ষণিক দ্রুতি বা সংক্ষেপে দ্রুতি হল বেগের মান। উদাহরণ স্বরূপ, +24.0 ms⁻¹ এবং - 24.0 ms⁻¹ বেগদ্বয়ের প্রত্যেকটির দ্রুতি হল 24.0 ms⁻¹। এটি অবশ্যই উল্লেখনীয় যে যদিও কোনো সসীম সময় অবকাশে গড়দ্রুতি গড়বেগের মানের সমান বা বেশি হয়, কোনো মুহুর্তের তাৎক্ষণিক দ্রুতির মান ঐ মুহূর্তের তাৎক্ষণিক বেগের মানের সমান হবে। কেন এমন হয়?

3.5 ত্বরণ (ACCELERATION)

সাধারণত কোনো বস্তুর গতিয় অবস্থায় তার বেগের পরিবর্তন হয়। এই পরিবর্তন কীভাবে বর্ণনা করবে? একে **দূরত্বের সাপেক্ষে** অথবা সময়ের সাপেক্ষে বেগের পরিবর্তনের হার দ্বারা বর্ণনা করা যাবে কি? এমনকি গ্যালিলিও এর সময়েও এই সমস্যা ছিল। প্রথমে চিন্তা করা হয়েছিল যে এই পরিবর্তনকে দূরত্বের সাপেক্ষে বেগের পরিবর্তনের হার দ্বারা বর্ণনা করা যেতে পারে। কিন্তু অবাধে পতনশীল বস্তুর গতি এবং নততল বরাবর পতনশীল বস্তুর গতি পর্যবেক্ষণ করে গ্যালিলিও এই সিদ্ধান্তে উপনীত হয়েছিলেন যে, অবাধে পতনশীল সকল বস্তুর বেলায় সময়ের সাপেক্ষে বেগে পরিবর্তনের হার ধ্রুবক থাকে। অন্যদিকে দূরত্বের সাপেক্ষে বেগের পরিবর্তন ধ্রুবক নয় — পতনের দূরত্ব বৃদ্ধির সঙ্গো এটা হ্রাস পেতে থাকে। এ থেকে এই ধারণাটি আসে যে ত্বরণ হল সময়ের সাপেক্ষে বেগ পরিবর্তনের হার। সময়ের সাপেক্ষে গড়ত্বরণ $\,\overline{a}$ কে এরুপে সংজ্ঞায়িত করা যায় যে গড়ত্বরণ হল বেগের পরিবর্তনকে সময় অবকাশ দ্বারা ভাগ করা :

$$\overline{a} = \frac{v_2 - v_1}{t_2 - t_1} = \frac{\Delta v}{\Delta t}$$
(3.4)

যেখানে $U_2 ও U_1$ হল যথাক্রমে $t_2 ও t_1$ সময়ে তাৎক্ষণিক বেগ বা বেগ।এটা হল একক সময়ে বেগের পরিবর্তনের গড়মান। SI পদ্ধতিতে ত্বরণের একক হল ms⁻²।

বেগ-সময় লেখচিত্র অঞ্চন করে (U₂,t₂) এবং (U₁,t₁) বিন্দুদ্বয়ের সংযোজক সরল রেখার নতি অঞ্চন করলে গড়ত্বরণের মান পাওয়া যায়। 3.7 নং চিত্রে অঞ্চিত 0s - 10s, 10s - 18s এবং 18s - 20s সময় অবকাশের বেগ-সময় লেখচিত্রগুলোর গড়ত্বরণগুলো হল :

$$\begin{array}{l} 0 \text{ s} - 10 \text{ s} \text{ q} \quad \overline{a} = \frac{(24 - 0) \text{ m s}^{-1}}{(10 - 0) \text{ s}} = 2.4 \text{ m s}^{-2} \\ 10 \text{ s} - 18 \text{ s} \text{ q} \quad \overline{a} = \frac{(24 - 24) \text{ m s}^{-1}}{(18 - 10) \text{ s}} = 0 \text{ m s}^{-2} \\ 18 \text{ s} - 20 \text{ s} \text{ q} \quad \overline{a} = \frac{(0 - 24) \text{ m s}^{-1}}{(20 - 18) \text{ s}} = -12 \text{ m s}^{-2} \end{array}$$

চিত্র 3.8 : 3.3 নং চিত্রে প্রদার্শিত গতির ক্ষেত্রে সময়ের অপেক্ষকরূপে ত্বরণ।

তাৎক্ষণিক ত্বরণকে তাৎক্ষণিক বেগের মতোই সংজ্ঞায়িত করা হয় :

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{\mathrm{d}v}{\mathrm{d}t}$$
(3.5)

কোন এক মুহূর্তে U-t লেখচিত্রের স্পর্শকের নতি হল ঐ মুহর্তের ত্বরণ। 3.7 নং চিত্রে দেখানো U-t লেখচিত্র থেকে আমরা প্রতি মুহূর্তের ত্বরণের মান পেতে পারি। প্রাপ্ত a - t লেখচিত্রকে 3.8 নং চিত্রে দেখানো হয়েছে। আমরা দেখি যে 0s থেকে 10s সময়ের মধ্যে ত্বরণ হল অসম। ইহার মান 10s থেকে 18s এর মধ্যে শূন্য এবং আবার 18s 46

থেকে 20s এর মধ্যে ত্বরণের মান ধ্রুবক যার মান -12ms⁻²। যখন ত্বরণের মান সুযম হয়, স্পষ্টত এটি ঐ সময়ব্যাপী গড়ত্বরণের সমান হয়।

যেহেতু বেগ রাশিটির মান এবং দিক উভয়েই আছে, তাই বেগের পরিবর্তন হলে মান বা দিক বা উভয়েরই পরিবর্তন হয়। সুতরাং, ত্বরণ হল দ্রুতির (মান) পরিবর্তন, দিকের পরিবর্তন বা উভয়েরই পরিবর্তন। বেগের মতো ত্বরনের মান ও ধনাত্মক, ঋণাত্মক এবং শৃন্য হতে পারে। চিত্র 3.9 (a), (b) এবং (c) তে অবস্থান-সময় লেখচিত্রে যথাক্রমে ধনাত্মক, ঋণাত্মক এবং শৃন্য তরনের লেখ দেখানো হয়েছে। উল্লিখিত যে লেখচিত্র উর্ধ্বর্গামী বক্ররেখা ধনাত্মক ত্বরণ, নিম্নগামী বক্ররেখা ঋণাত্মক ত্বরণ এবং সরলরেখা শৃন্য ত্বরণেক নির্দেশিত করছে। অনুশীলন হিসাবে চিত্র 3.3 নং এ অঞ্চিত লেখচিত্রের লেখর বিভিন্ন অংশ উল্লিখিত তিন ক্ষেত্রকে চিহ্নিত করে।

যদিও সময়ের সঞ্চো ত্বরণ পরিবর্তিত হয়, কিন্তু এ অধ্যায়ে আমাদের পাঠ সমত্বরণে গতিশীল বস্তুর আলোচনায় সীমাবন্ধ থাকবে। এক্ষেত্রে গড় ত্বরণের মান সময় অবকাশ ব্যাপী নির্দিষ্ট ত্বরণের সমান। যদি একটি বস্তুর বেগ t=0 সময়ে ৩, এবং t সময়ে ৩ হয় তবে

$$\overline{a} = \frac{v - v_0}{t - 0}$$
 or, $v = v_0 + at$ (3.6)

চিত্র 3.9 : অবস্থান-সময় লেখচিত্র যখন (a) ধনাত্মক ত্বরণ (b) ঋণাত্মক ত্বরণ (c) শূন্য ত্বরণ।

চলো এখন আমরা দেখব কিছু সাধারণ ক্ষেত্রগুলোতে বেগ-সময় লেখচিত্র কীরূপ হয়। 3.10 নং চিত্রে নীচের ক্ষেত্রগুলোতে সমত্বরণে গতিশীল বস্তুর বেগ-সময় লেখচিত্র দেখানো হয়েছে :

 (a) একটি বস্তু ধনাত্মক ত্বরণ নিয়ে ধনাত্মক দিক বরাবর গতিশীল, উদাহরণ হিসাবে চিত্র 3.3তে দেখানো t=0s থেকে t=10s সময়ের মধ্যে গাড়ির গতি।

- (b) একটি বস্তু ঋণাত্মক ত্বরণ নিয়ে ধনাত্মক দিক বরাবর গতিশীল, উদাহরণ হিসাবে 3.3 নং চিত্রে দেখানো t = 18s থেকে 20s পর্যন্ত সময়ের মধ্যে গাড়ির গতি।
- (c) একটি বস্তু ঋণাত্মক ত্বরণ নিয়ে ঋণাত্মক দিক বরাবর গতিশীল, উদাহরণ হিসেবে 3.1 নং চিত্রে দেখানো 0 বিন্দু থেকে ঋণাত্মক x- অক্ষ বরাবর ক্রমবর্ধমান দ্রুতিতে গতিশীল গাড়ির গতি।
- (d) একটি বস্তু t₁ সময় ব্যাপী ধণাত্মক দিক বরাবর গতিশীল এবং তারপর একই ঋণাত্মক ত্বরণ নিয়ে ফিরে আসা; উদাহরণ হিসাবে চিত্র 3.1 নং এ দেখানো গাড়ির গতিতে ঋণাত্মক দ্রুতিতে O বিন্দু থেকে Q বিন্দুতে t₁ সময় পর্যন্ত গতি এবং একই ঋণাত্মক ত্বরণ নিয়ে ফিরে আসা।

গতিশীল বস্তুর বেগ-সময় লেখচিত্রের একটি গুরুত্বপূর্ণ বৈশিষ্ট হল যে লেখচিত্রের অন্তর্ভুক্ত ক্ষেত্রফল নির্দিষ্ট সময় অবকাশে অতিক্রান্ত সরণকে নির্দেশ করে। এই বন্তুব্যের সাধারণ প্রমাণের জন্য কলনবিদ্যার

চিত্র : 3.10 সমত্বরণে গতিশীল বস্তুর বেগ-সময় লেখচিত্র যখন বস্তু (a) ধনাত্মক ত্বরণে ধনাত্মক দিকে গতিশীল। (b) ঋণাত্মক ত্বরণে ধনাত্মক দিকে গতিশীল। (c) ঋণাত্মক ত্বরণে ঋণাত্মক দিকে গতিশীল। (d) ঋণাত্মক ত্বরণে t₁ সময় পর দিক পরিবর্তন করে O থেকে t₁ সময়ের মধ্যে ঋণাত্মক x- অক্ষ বরাবর গতিশীল এবং t₁ ও t₂ সময়ের মধ্যে বিপরীত দিকে গতিশীল।

সরলরেখা বরাবর গতি

ব্যবহার প্রয়োজন। যা হোক আমরা দেখি যে u সমবেগে চলমান কোনো একটি বস্তুর সাধারণ ক্ষেত্রে এটি সঠিক। এর বেগ-সময় লেখচিত্র 3.11 নং চিত্রে দেখানো হয়েছে।

চিত্র 3.11 : ৩-t লেখচিত্রের বেগ এবং সময় অক্ষের মধ্যবর্তী ক্ষেত্রফল নির্দিস্ট সময়ে অতিক্রান্ত সরণের সমান।

U-t লেখচিত্রটি হল সময় অক্ষের সমান্তরাল একটি সরলরেখা এবং t=0 এবং t=T সময়ের মধ্যে ইহার ক্ষেত্রফল হল U উচ্চতার এবং T ভূমির আয়তক্ষেত্রের ক্ষেত্রফলের সমান। সুতরাং, ক্ষেত্রফল = u × T = uT হল এই সময় অবকাশে বস্তুর সরণের মান। এক্ষেত্রে কীভাবে ক্ষেত্রফল দূরত্বের সমান হবে ? ভাবো! দুই অক্ষ বরাবর নির্দেশিত রাশিগুলোর প্রতি নজর দিলে তুমি এর উত্তরে পৌঁছতে পারবে।

লক্ষ্য করো যে এ অধ্যায়ে দেখানো x-t, U-t এবং a-t এর বিভিন্ন লেখচিত্রগুলোর বিভিন্ন বিন্দুতে তীক্ষ্ণ শীর্ষ লক্ষ্য করা যায়; যার অর্থ হল এই সকল বিন্দুগুলোতে অপেক্ষকগুলোকে অবকলন করা যায় না। কিন্তু বাস্তব পরিস্থিতিতে, প্রত্যেক বিন্দুতেই অপেক্ষকগুলো অবকলনযোগ্য এবং লেখচিত্রগুলো সুষম হবে।

বাস্তবে এর দ্বারা বোঝা যায় যে, ত্বরণ এবং বেগের মান কোন এক মুহূর্তে হঠাৎ করে পরিবর্তন হয় না। পরিবর্তন সব সময় ধারাবাহিক ভাবে হয়।

3.6 সমত্বরণে গতিশীল বস্তুর গতির সমীকরণ (Kinematic equations for uniformly accelerated motion)

সমত্বরণে গতিশীল বস্তুর ক্ষেত্রে আমরা কিছু সাধারণ সমীকরণ বের করতে পারি যারা সরণ (x), সময় (t), প্রারম্ভিক বেগ (U₀), চূড়ান্ত বেগ (U) এবং ত্বরণ (a) এর মধ্যে সম্পর্কীত। আমরা ইতিমধ্যেই 3.6 নং সমীকরণে একটি সম্পর্ক পেয়েছি যা সমত্বরণে (a) গতিশীল বস্তুর অন্তিমবেগ U এবং প্রারম্ভিক বেগ U₀ সম্পর্কীত :

দ্বারা আবম্ধ ক্ষেত্রের ক্ষেত্রফল হল : 0 এবং t — এই দুই মুহূর্তের মধ্যে আবম্ধ ক্ষেত্রফল = ΔABC এর

ক্ষেত্রফল + OACD আয়তক্ষেত্রের ক্ষেত্রফল।

পূর্ববর্তী অনুচ্ছেদে আমরা ব্যাখ্যা করেছি যে ৩-t লেখচিত্র ও সময় অক্ষের দ্বারা আবদ্ধ ক্ষেত্রের ক্ষেত্রফল সরণকে সূচিত করে। সুতরাং বস্তুটির সরণ x হল :

$$x = \frac{1}{2} (v - v_0) t + v_0 t \tag{3.7}$$

কিন্তু $\upsilon - \upsilon_0 = at$

সুতরাং, $x = \frac{1}{2}a t^2 + v_0 t$

a),
$$x = v_0 t + \frac{1}{2} a t^2$$
 (3.8)

সমীকরণ (3.7) নং কে আবার এভাবেও লেখা যায় —

$$x = \frac{v + v_0}{2}t = \bar{v}t$$
 (3.9a)

যেখানে,

$$\bar{v} = \frac{v + v_0}{2}$$
 (কেবলমাত্র সমত্বরণের ক্ষেত্রে) (3.9b)

সমীকরণ (3.9a) এবং (3.9b) দ্বারা বোঝায় যে সমবেগে গতিশীল বস্তুটির সরণের মান প্রাথমিক ও অন্তিম বেগের গাণিতিক গড় মানের সমান। সমীকরণ (3.6) থেকে t = ৩-৩₀/a; (3.9a) নং সমীকরণে এই মান বসিয়ে পাই —

$$x = \overline{v}t = \left(\frac{v + v_0}{2}\right) \left(\frac{v - v_0}{a}\right) = \frac{v^2 - v_0^2}{2a}$$
$$v^2 = v_0^2 + 2ax$$
(3.10)

(3.6) নং সমীকরণ থেকে t এর মানকে নিয়ে (3.8) নং সমীকরণে প্রতিস্থাপন করলেও এই সমীকরণটি পাওয়া যায়। এভাবে আমরা তিনটি গুরুত্বপূর্ণ সমীকরণ পেলাম :

$$v = v_0 + at$$

$$x = v_0 t + \frac{1}{2} at^2$$

$$v^2 = v_0^2 + 2ax$$
 (3.11a)

যারা U₀, U, a, t এবং x এই পাঁচটি রাশির মধ্যে সম্পর্ক স্থাপন করে। এগুলো হল সযম গতিতে গতিশীল বস্তুর সরলরৈখিক গতির সমীকরণ।

(3.11a) নং সমীকরণে পাওয়া সমীকরণগুলোতে ধরা হয়েছে t=0 সময়ে কণাটির অবস্থান x=0। আমরা যদি ধরি যে t=0তে অবস্থান স্থানাঙ্ক শূন্য নয়, তবে তার মান x₀ ধরলে (3.11a) নং সমীকরণগুলো সংশোধিতভাবে (x কে x-x₀ দ্বারা প্রতিস্থাপন করে) পাই :

$$v = v_0 + at$$

 $x = x_0 + v_0 t + \frac{1}{2}at^2$ (3.11b)

$$v^{2} = v_{0}^{2} + 2a(x - x_{0})$$
 (3.11c)

উদাহরণ 3.3 : কলনবিদ্যার প্রয়োগে সমত্বরণে গতিশীল বস্তুর গতীয় সমীকরণগুলো প্রতিষ্ঠা করো।

উত্তর: সংজ্ঞানুযায়ী

$$a = \frac{\mathrm{d}v}{\mathrm{d}t}$$
$$\mathrm{d}\upsilon = \mathrm{adt}$$

উভয় পক্ষে সমাকলন করে পাই

$$\int_{v_0}^{v} dv = \int_{0}^{t} a \, dt$$
$$= a \int_{0}^{t} dt \quad (যেহেতু a ধ্রুবক)$$
বা, $v - v_0 = at$

$$\therefore v = v_0 + at$$

আবার,

বা,
$$dx = \upsilon dt$$
.

 $v = \frac{\mathrm{d}x}{\mathrm{d}x}$

উভয় পক্ষে সমাকলন করে পাই

$$\int_{x_0}^x dx = \int_0^t v dt$$

$$= \int_{0}^{t} (v_{0} + at) dt$$
$$x - x_{0} = v_{0} t + \frac{1}{2} a t^{2}$$
$$x = x_{0} + v_{0} t + \frac{1}{2} a t^{2}$$

আবার আমরা লিখতে পারি,

$$a = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}v}{\mathrm{d}x} \frac{\mathrm{d}x}{\mathrm{d}t} = v \frac{\mathrm{d}v}{\mathrm{d}x}$$

উভয়পক্ষে সমাকলন করে পাই,

$$\int_{v_0}^{v} v dv = \int_{x_0}^{x} a dx$$
$$\frac{v^2 - v_0^2}{2} = a(x - x_0)$$
$$v^2 = v_0^2 + 2a(x - x_0)$$

এই পাম্বতির সুবিধা হল যে আমরা একে অসম ত্বরণে গতিশীল বস্তুর বেলাতেও ব্যবহার করতে পারি।

এখন আমরা এই সমীকরণগুলো কিছু বিশেষ গুরুত্বপূর্ণ ক্ষেত্রে ব্যবহার করব।

. উদাহরণ 3.4 : 20ms⁻¹ বেগে একটি বলকে একটি বহুতল বাড়ির ছাঁদ থেকে উলস্বভাবে উর্ধ্বমুখে ছোড়া হল। যদি ভূমি থেকে প্রক্ষেপ বিন্দুর উচ্চতা 25.0m হয়, (a) বলটি কত উচ্চতা পর্যন্ত উঠবে ? এবং (b) বলটি কত সময় পর ভূমি স্পর্শ করবে ? দেওয়া আছে g=10ms⁻²

উত্তর : (a) আমরা ধরি y-অক্ষ উলম্বভাবে ঊর্ধ্বমুখী যার মূলবিন্দু ভূমিতে অবস্থিত (চিত্র (3.13)।

$$v_0 = +20 \text{ms}^{-1}$$

 $a = -g = -10 \text{ms}^{-2}$

$$v = 0 \text{ms}^{-1}$$

যদি বলটি নিক্ষেপ বিন্দু থেকে $(y-y_0)$ উচ্চতা পর্যন্ত উঠে, তবে সমীকরণ $v^2 = v_0^2 + 2 a \begin{pmatrix} y & y_0 \end{pmatrix}$ ব্যবহার করে

আমরা পাই

এখন

 $0 = (20)^2 + 2(-10)(y - y_0)$

সমাধান করে পাই (y - y₀) = 20m

(b) আমরা সমস্যাটির এই অংশকে দুভাবে সমাধান করতে পারি। পম্বতিগুলো ভালোভাবে লক্ষ্য করো।

প্রথম পম্বতি : প্রথম পম্বতিতে আমরা গতিপথটিকে দুটি টুকরায় ভাগ করি : ঊধ্বর্মুখী গতি (Aথেকে Bতে) এবং নিম্নমুখী গতি (B থেকে Cতে) এবং আনুষষ্ঠিাক সময়গুলো t₁ এবং t₂ ধরে গণনা করি। যেহেতু Bতে বেগ শূন্য,তাই

$$v = v_0 + at$$

 $0 = 20 - 10.t_1$
죄), $t_1 = 2s$

এই সময়টি হল A থেকে Bতে যাওয়ার সময়। B বিন্দু থেকে অর্থাৎ সর্বোচ্চ উচ্চতা থেকে বলটি বিনা বাধায় অভিকর্ষজ ত্বরণ নিয়ে পড়ে। বলটি ঋণাত্মক Y- অক্ষবরাবর গতিশীল। আমরা নিচের সমীকরণ ব্যবহার করি

$$-[(y - y_0) + y_0] = v_0 t + \frac{1}{2} a t^2$$

দেওয়া আছে, y=45m, y -y₀=20m, υ₀=0, a=-g=-10ms⁻² - 45=(¹/₂) (-10)t²

সমাধান করে পাই, t₂ = 3s

সুতরাং বলটি ভূমিতে স্পর্শ করা পর্যন্ত মোট সময়

 $= t_1 + t_2 = 2s + 3s = 5s$

দ্বিতীয় পম্বতি : মূলবিন্দু সাপেক্ষে প্রারম্ভিক ও অস্তিম অবস্থানের স্থানাঙ্ক নির্ধারণ করে এবং নিম্নের সমীকরণ ব্যবহার করে মোট সময় গণনা করা যায় :

$$-y_0 = v_0 t + \frac{1}{2}at^2$$

এখন $y_0 = 25m, v_0 = 20 \text{ ms}^2, t=?$ a = - 10 ms⁻²

$$-25 = 20t + \frac{1}{2}(-10)t^{2}$$

বা,
$$5t^2 - 20t - 25 = 0$$

t- এর দ্বি-ঘাত সমীকরণটি সমাধান করে আমরা পাই

$$t = 5s$$

উল্লেখ্য যে দ্বিতীয় পম্ধতিটি অধিকতর সুবিধাজনক। এতে আমাদের গতির পথ নিয়ে ভাবতে হয় না কারণ গতিটি হল সমত্বরণযুক্ত। <

উদাহরণ 3.5 (অবাধ পতন) : অবাধে পতনশীল বস্তুর গতি আলোচনা কর (বায়ুর বাধাকে উপেক্ষা কর)।

উত্তর : ভূ-পৃষ্টের কাছাকাছি কোন বস্তুকে ছেড়ে দিলে বস্তুর উপর পৃথিবীর আকর্ষণ বলের জন্য বস্তু নিন্নাভিমুখে ত্বরণ লাভ করে। অভিকর্ষের প্রভাবে সৃষ্ট ত্বরণের মানকে 'g' চিহ্নদ্বারা প্রকাশ করা হয়। যদি বায়ুর বাধাকে উপেক্ষা করা হয়, তবে বলা যায় বস্তু বিনা বাধায় পতনশীল। যে উচ্চতা থেকে বস্তুটি পতিত হচ্ছে তা যদি পৃথিবীর ব্যাসার্ধের তুলনায় খুবই কম হয় তবে আমরা g এর মান ধ্রুবক ধরতে পারি এবং তা 9.8ms⁻² এর সমান। তাই বিনাবাধায় পড়ন্ত বস্তুর ঘটনা হল সমত্বরণে গতিশীল বস্তুর গতি।

আমরা ধরি যে গতির অভিমুখ হল y- অক্ষ বরাবর, আরো সঠিকভাবে বলতেগেলে — y - অক্ষ বরাবর কারণ আমরা ঊর্ধ্বমুখী গতিকে ধনাত্মক গতি ধরে নিয়েছি। যেহেতু অভিকর্ষজ ত্বরণ সর্বদা নিম্নমুখী, তাই ইহা হল ঋণাত্মক অভিমুখী এবং আমরা ধরি —

$$a = -g = -9.8 \text{ ms}^{-2}$$

বস্তুটিকে স্থির অবস্থা y = 0 থেকে ছাড়া হয়। সুতরাং U₀ = 0 এবং গতীয় সমীকরণগুলো দাঁড়ায় :

$$\upsilon = 0 - gt$$
 = -9.8t ms⁻¹
y = 0 - ¹/₂ gt² = -4.9t² m
 $\upsilon^2 = 0 - 2gy$ = -19.6y m² s⁻²

এই সমীকরণগুলো, বেগ ও অতিক্রান্ত দূরত্বকে সময়ের অপেক্ষক রূপে এবং দূরত্বের সঙ্গো বেগের পরিবর্তন নির্দেশ করে। সময়ের সাপেক্ষে ত্বরণ, বেগ ও দূরত্বকে চিত্র 3.14(a), (b) এবং (c)তে অঙ্কন করা হয়েছে।

- চিত্র 3.14 : অবাধে পতনশীল বস্তুর গতি (a) সময়ের সাপেক্ষে ত্বরণের পরিবর্তন, (b)সময়ের সাপেক্ষে বেগের পরিবর্তন,
 - (c) সময়ের সাপেক্ষে দূরত্বের পরিবর্তন।

উদাহরণ 3.6 : গ্যালিলিওর অযুগ্ম সংখ্যার সূত্র — "স্থিরাবস্থা থেকে পতনশীল বস্তু দ্বারা পর পর সমান সময়ের অবকাশগুলোতে অতিক্রান্ত দূরত্বগুলোর অনুপাত এক থেকে শুরু করে অযুগ্ম সংখ্যার অনুপাতে হয় (1 : 3 : 5 : 7)" — প্রমাণ কর।......

উত্তর : বিনা বাধায় বস্তুর গতিপথের মোট সময় অবকাশকে অনেকগুলো ক্ষুদ্র ক্ষুদ্র সমঅবকাশে (τ) বিভক্ত করে নাও এবং পরপর অবকাশে অতিক্রান্ত পথ বের কর। যেহেতু প্রারম্ভিক বেগ শূন্য, তাই

$$y=\frac{1}{2}gt^2$$

এই সমীকরণ ব্যবহার করে, বিভিন্ন সময় অবকাশ 0, τ , 2τ , 3τ , তে বস্তুর বিভিন্ন অবস্থানগুলো গণনা করতে পারি এবং উহাদের মান 3.2 নং সারণির দ্বিতীয় স্তম্ভে দেওয়া হয়েছে। যদি আমরা $-\frac{1}{2}g\tau^2$ কে y₀ ধরি, যা প্রথম τ সময় অবকাশের পর অবস্থান ভেক্টর, তাহলে সারণির তৃতীয় স্তম্ভ বস্তুর অবস্থানকে y₀ এর এককে প্রকাশ করে। চতুর্থ স্তম্ভ পর পর τ s এ অতিক্রান্ত দূরত্বকে প্রকাশ করে। আমরা দেখি যে দূরত্বগুলোর সাধারণ অনুপাত হয় 1 : 3 : 5 : 7 : 9 : 11, যা সর্বশেষ স্তম্ভে দেখানো হয়েছে। এই সূত্রটি গ্যালিলিও গ্যালিলি (1564 - 1642) প্রতিষ্ঠা করেছিলেন। উনিই প্রথম গাণিতিকভাবে অর্থাৎ সংখ্যাগতভাবে অবাধে পতনের ব্যাখ্যা করেছিলেন

উদাহরণ 3.7 : যানবাহনের থামার দূরত্ব : গতিশীল যানবাহনকে ব্রেক কষলে থামার আগে পর্যন্ত যে দূরত্ব অতিক্রম করে তাকে থামার দূরত্ব (stopping distance) বলে। ইহা সড়ক সুরক্ষার জন্য একটি খুবই গুরুত্বপূর্ণ বিষয়, ইহা প্রারম্ভিক বেগ (৩₀) এবং ব্রেক কষার ক্ষমতা বা মন্দন '- a' এর উপর নির্ভর করে যা ব্রেক কষার ফলে সৃষ্টি হয়। ৩₀ এবং a এর সাপেক্ষে যানবাহনের থামার দূরত্বের রাশিমালা বের কর।

উত্তর : ধরো থামার পূর্বে বস্তুটি d_s দূরত্ব অতিক্রম করে। এখন υ² = υ₀² + 2ax ব্যবহার করে (যেখানে υ=0) আমরা থামার দূরত্ব পাই,

$$d_s = \frac{-v_0^2}{2a}$$

সুতরাং, থামার দূরত্ব প্রারম্ভিক বেগের বর্গের সমানুপাতিক। প্রারম্ভিক

t	у	y ₀ এর স্বাপেক্ষে y [= - ^{1/} 2 gt ²]	পরপর সময় অবকাশে অতিক্রান্ত দূরত্ব	অতিক্রান্ত দূরত্ব গুলোর অনুপাত
0	0	0		
τ	$-(1/2) g\tau^2$	y ₀	y ₀	1
2τ	$-4(1/2) g\tau^2$	4y ₀	3y ₀	3
3τ	$-9(1/2) g\tau^2$	9y ₀	5y ₀	5
4τ	$-16(1/2)\mathrm{g}\tau^2$	16y ₀	7y ₀	7
5τ	$-25(1/2) g\tau^2$	25y ₀	9y ₀	9
6τ	$-36(1/2)\mathrm{g}\tau^2$	36y ₀	11y ₀	11

Table 3.2

সরলরেখা বরাবর গতি

বেগ দ্বিগুণ হলে থামার দূরত্ব চারগুণ হয় (একই মন্দনের জন্য)। বিশেষভাবে তৈরি গাড়ির ক্ষেত্রে 11, 15, 20 এবং 25 m/s বেগের জন্য পাওয়া থামার দূরত্বগুলো যথাক্রমে 10m, 20m, 34m, এবং 50m যা উক্ত সূত্র এর সঙ্গে অনেকটা সামঞ্জস্যপূর্ণ।

দ্রুতির সীমা নির্বাচন করার জন্য থামার দূরত্ব একটি গুরুত্বপূর্ণ বিষয় যেমন বিদ্যালয় চত্ত্বর।

৬ উদাহরণ 3.8 : প্রতিক্রিয়ার সময়কাল :

আমাদের তৎক্ষণাৎ ক্রিয়া করতে হবে, এমন পরিস্থিতিতে, পরিস্থিতি উপলস্ধি করা এবং যথার্থ সাড়া দেওয়ার মধ্যে কিছুটা সময়ের ব্যবধান থাকে। প্রতিক্রিয়ার সময় হল সে সময়, যে সময়ে একজন ব্যক্তি পর্যবেক্ষণ করে, চিন্তা করে এবং ক্রিয়া করে। উদাহরণ হিসাবে, একজন লোক একটি গাড়ি চালাচ্ছেন এবং হঠাৎ করে একটি বালক রাস্তায় গাড়ির সামনে চলে এলো, এক্ষেত্রে ঐ ব্যস্তি যত সময় পরে গাড়ির ব্রেকে সজোরে চাপ দেবে সে সময়ই হল প্রতিক্রিয়ার সময়। 'প্রতিক্রিয়ার সময়' নির্ভর করে অবস্থার জটিলতা এবং ব্যস্তিবিশেষের উপর।

তুমি তোমার প্রতিক্রিয়ার সময় একটি সরল পরীক্ষার সাহায্যে নির্ণয় করতে পারো। তুমি একটি স্কেল (ruller) নাও এবং তোমার বন্থুকে বলো সে যেন স্কেলটিকে তোমার হাতের বৃদ্ধাঙ্গুল এবং তর্জনীর মধ্যবর্তী খালিস্থানের মধ্য দিয়ে উলস্বভাবে ফেলে (চিত্র 3.15 এ দেখানো)। তুমি স্কেলটিকে ধরে ফেলার পর স্কোলটি কত দূরত্ব d অতিক্রম করল তা লক্ষ্য কর। কোন একটি বিশেষ ক্ষেত্রে, d এর মান 21.0 cm পাওয়া গেল। প্রতিক্রিয়ার সময়কাল গণনা কর।

চিত্র 3.15 প্রতিক্রিয়ার সময়কাল পরিমাপ।

উত্তর : এখানে স্কেল (ruller)টি বিনাবাধায় পড়ছে। সুতরাং, ប₀ = 0 এবং a = - g = -9.8 ms⁻² অতিক্রান্ত দূরত্ব d এবং প্রতিক্রিয়াকাল t_r নিম্নরূপে সম্পর্কিত

$$d = \frac{1}{2}gt$$
বা, $t_r = \sqrt{\frac{2a}{a}}$

দেওয়া আছে d = 21.0 cm এবং g=9.8 ms⁻² সুতরাং প্রতিক্রিয়াকাল

$$t_r = \sqrt{\frac{2 \times 0.21}{9.8}} s \cong 0.2s.$$

3.7 আপেক্ষিক বেগ (Relative velocity)

তোমাদের নিশ্চয়ই ট্রেনে ভ্রমণের এমন অভিজ্ঞতা আছে যেখানে তোমার ট্রেনকে একই দিকে অন্য একটি ট্রেন অতিক্রম করে যাচ্ছে। অবশ্যই ঐ ট্রেনটি তোমার ট্রেন অপেক্ষা অধিক দ্রুততায় চলছে যার জন্য তোমার ট্রেনকে অতিক্রম করতে পারছে, ভূমিতে দাঁড়ানো একজন লোক দুটি ট্রেনকে দেখছে এবং লোকটি ঐ ট্রেনটিকে যে দ্রুততায় দেখছে তোমার কাছে তার চেয়ে কম দ্রুততায় গতিশীল মনে হবে। যদি ট্রেন দুটি ভূমির সাপেক্ষে একই বেগে গতিশীল হয় তখন তোমার নিকট অন্য ট্রেনটি একদমই চলছে না বলে মনে হবে। এধরনের পর্যবেক্ষণগুলোকে বোঝার জন্য আমরা এখন আপেক্ষিক বেগের ধারণার সঙ্গো পরিচিত হব।

ধরো, দুটি বস্তু A এবং B সুষমগতিতে υ_A এবং υ_B গড় গতিবেগে একমাত্রিক গতিতে যেমন X - অক্ষ বরাবর গতিশীল। (অন্যভাবে বর্ণনা না করে, এই অধ্যায়ে উল্লিখিত বেগগুলোকে ভূমির সাপেক্ষে মাপা হয়েছে), যদি A এবং B এর t = 0 সময়ে অবস্থান যথাক্রমে $x_A(O)$ এবং $x_B(O)$ হয়, তাহলে t সময়ে তাদের অবস্থান হবে

$$\begin{aligned} x_A(t) &= x_A(0) + v_A t \\ x_B(t) &= x_B(0) + v_B t \end{aligned} \tag{3.12a}$$
 (3.12b)

A থেকে Bতে বস্তুর সরণ হয়

$$\begin{aligned} x_{BA}(t) &= x_B(t) - x_A(t) \\ &= [x_B(0) - x_A(0)] + (v_B - v_A)t. \end{aligned}$$
(3.13)

সমীকরণ (3.13)কে সহজেই ব্যাখ্যা করা যায়। এ থেকে আমরা বুঝি যে, যদি A বস্তু থেকে Bকে দেখি তাহলে B বস্তুর বেগ হবে (ប_B - ប_A), কারণ A এর সাপেক্ষে B এর প্রতি একক সময়ে সরণের পরিবর্তন হয় (ប_B - ប_A)। অর্থাৎ A বস্তুর সাপেক্ষে B বস্তুর আপেক্ষিক বেগ হল ប_B - ប_A:

$$v_{BA} = v_B - v_A \tag{3.14a}$$

একইভাবে, B বস্তুর সাপেক্ষে A বস্তুর আপেক্ষিক বেগ

$$v_{AB} = v_A - v_B \tag{3.14b}$$

- (a) A এর সাপেক্ষে B এর বেগ কত ?
- (b) B এর সাপেক্ষে ভূমির বেগ কত? এবং
- (c) একটি বানর A ট্রেনের ছাঁদে A ট্রেনের সাপেক্ষে 18 km h⁻¹ বেগে A এর বিপরীত দিকে গতিশীল হলে ভূমিতে দাঁড়ানো ব্যক্তির নিকট বানরের বেগ কত ?

উত্তর : ধরো *x*-অক্ষের ধনাত্মক দিক দক্ষিণ থেকে উত্তর দিক বরাবর। তাহলে,

সুতরাং, $v_{BA} = -v_{AB}$ (3.14c)

এখন আমরা কিছু বিশেষ ক্ষেত্র নিয়ে আলোচনা করব :

(a) যদি $\upsilon_{\rm A} = \upsilon_{\rm B}$ হয় তাহলে $\upsilon_{\rm B} - \upsilon_{\rm A} = 0$ তখন (3.13) নং সমীকরণ থেকে $x_{\rm B}(t) - x_{\rm A}(t) = x_{\rm B}(0) - x_{\rm A}(0)$ । সুতরাং এই বস্তু দুটি একটি নির্দিষ্ট { $x_{\rm B}(0) - x_{\rm A}(0)$ } ব্যবধানে দূরত্বের অবস্থান করবে এবং তাদের 'অবস্থান-সময়' লেখচিত্র পরস্পার সমান্তরাল যা চিত্র 3.16তে দেখানো হয়েছে। এইক্ষেত্রে আপেক্ষিক বেগ $\upsilon_{\rm AB}$ বা $\upsilon_{\rm BA}$ শূন্য হয়।

(b) যদি $\upsilon_A > \upsilon_B$, $\upsilon_B - \upsilon_A$ হল ঋণাত্মক। একটির লেখচিত্র অন্যটির চেয়ে খাড়া এবং তারা একটি সাধারণ বিন্দুতে মিলিত হয়। উদাহরণ হিসাবে, ধরি $\upsilon_A = 20 \,\mathrm{m\,s^{-1}}$ এবং $x_A(0) = 10 \,\mathrm{m}$ এবং $\upsilon_B = 10 \,\mathrm{m\,s^{-1}}$, $x_B(0) = 40 \,\mathrm{m}$; যে সময়ে তারা পরস্পর মিলিত হয় তা হল $t = 3 \,\mathrm{s}$ (চিত্র 3.17 নং এ দেখানো)। এই মুহূর্তে বস্তু দুটি একই অবস্থানে $x_A(t) = x_B(t) = 70 \,\mathrm{m}$. আছে অর্থাৎ A বস্তুটি B বস্তুকে এই সময়ে অত্রিকম করবে। এক্ষেত্রে, $\upsilon_{BA} = 10 \,\mathrm{ms^{-1}} - 20 \,\mathrm{ms^{-1}} = -10 \,\mathrm{m\,s^{-1}} = - \upsilon_{AB}$.

(c) ধরো υ_{A} এবং υ_{B} হল পরস্পর বিপরীত চিহ্নযুক্ত। উদাহরণ হিসাবে, যদি উপরের উদাহরণে A বস্তুটি 20 m s^{-1} বেগে গতিশীল এবং $x_{A}(0) =$ 10 m থেকে যাত্রা শুরু করে এবং B বস্তুটি -10 m s^{-1} বেগে $x_{B}(0) = 40$ m বিন্দু অবস্থান যাত্রা শুরু করে। বস্তু দুটি t = 1 s এ পরস্পর মিলিত হয় (চিত্র 3.18তে দেখানো হয়েছে)। A বস্তুর স্বাপেক্ষে B বস্তুর আপেক্ষিক বেগ $\upsilon_{BA} = [-10 - (20)] \text{ m s}^{-1} = -30 \text{ m s}^{-1} = -\upsilon_{AB}$ এক্ষেত্রে υ_{BA} বা υ_{AB} এর 'মান'($= 30 \text{ m s}^{-1}$) যা A বা B এর বেগের 'মান' অপেক্ষা বেশি। যে বস্তুদ্বয়ের আলোচনা হয়েছে তারা যদি দুটি ট্রেন হয়, তবে একজন ব্যস্তি কোন একটি ট্রেনে বসে থাকলে তার নিকট মনে হবে অন্য ট্রেনটি খুব দ্রুততায় চলছে।

বিশেষ দ্রন্টব্য যে 3.14 নং সমীকরণ একইভাবে প্রযোজ্য হয় যদি _{UA} এবং _{UB} বস্তুদ্বয়ের তাৎক্ষণিক বেগকে প্রকাশ করে।

সরলরেখা বরাবর গতি

$$v_A = +54 \text{ km h}^{-1} = 15 \text{ m s}^{-1}$$

 $v_p = -90 \text{ km h}^{-1} = -25 \text{ m s}^{-1}$

(a) A এর সাপেক্ষেB এর আপেক্ষিক বেগ = $\upsilon_{\rm B} - \upsilon_{\rm A} = -\,40~{\rm m~s^{-1}}$, অর্থাৎAট্রেনের নিকট Bট্রেনটিকে 40 ${\rm m~s^{-1}}$ দুতি নিয়ে উত্তর থেকে দক্ষিণ দিকে গতিশীল মনে হবে।

(b) B এর সাপেক্ষে ভূমির আপেক্ষিক বেগ = $0 - v_{\rm B} = 25 \text{ m s}^{-1}$.

(c) ধরো ভূমির সাপেক্ষে বানরের বেগ হল $v_{\rm M}$ । সুতরাং A, এর সাপেক্ষে বানরের আপেক্ষিক বেগ

 $\upsilon_{MA} = \upsilon_M - \upsilon_A = -18 \text{ km } h^{-1} = -5 \text{ ms}^{-1}$. সুতরাং, $\upsilon_M = (15-5) \text{ ms}^{-1} = 10 \text{ ms}^{-1}$.

সারাংশ (SUMMARY)

- একটি বস্তুকে গতিশীল বলব যদি ইহা সময়ের সঙ্গে অবস্থান পরিবর্তন করে। নির্দিষ্ট একটি বাছাইকরা সুবিধাজনক মূল বিন্দুর সাপেক্ষে বস্তুর অবস্থানকে ঠিক করা হয়। সরল রৈখিক গতির বেলায় মূল বিন্দুর ডানদিকের অবস্থানকে ধনাত্মক এবং মূলবিন্দুর বামদিকের অবস্থানকে ঋণাত্মক ধরা হয়।
- 2. কোন একটি বস্তু তার গতিপথে মোট যে দৈর্ঘ্যের পথ অতিক্রম করে তাকে পথদৈর্ঘ্য বলে।
- 3. সরণ হল অবস্থানের পরিবর্তন : ∆x = x₂−x₁, দুটি বিন্দুর মধ্যবর্তী পথদৈর্ঘ্য তার সরণ এর মানের সমান বা বেশি হতে পারে।
- যদি একটি বস্তুর সমান সময় অবকাশে সমান সরণ হয় তবে ঐ বস্তুর গতিকে সুষম গতি বলে। অন্যথায় ইহাকে অসম গতি বলে।
- 5. কোনো সময়ে বস্তুর যে সরণ হয় সেই সরণ এবং সময়ের অনুপাতকে গড়বেগ বলে :

$$\overline{v} = \frac{\Delta x}{\Delta t}$$

x-t লেখচিত্রে, নির্দিষ্ট সময় অবকাশে গতিশীল বস্তুর প্রারম্ভিক ও অন্তিম অবস্থানের সংযোগকারী রেখার নতি হল ঐ সময় অবকাশের গড বেগের মান।

6. **গড়দ্রুতি** হল গতিশীল বস্তু কর্তৃক অতিক্রান্ত পদদৈর্ঘ্য এবং আনুযঙ্গিক সময় এর অনুপাত।

একটি নির্দিষ্ট সময় অবকাশে গড়দ্রুতির মান গড়বেগের মানের বেশি বা সমান হতে পারে।

 একটি নির্দিষ্ট অতিক্ষুদ্র ∆t সময় অবকাশে গড়বেগের সীমামান দ্বারা তাৎক্ষণিক বেগ বা সংক্ষেপে বেগকে সংজ্ঞায়িত করা হয়।

$$v = \lim_{\Delta t \to 0} \bar{v} = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{\mathrm{d}x}{\mathrm{d}t}$$

একটি নির্দিষ্ট মুহূর্তে অবস্থান -সময় লেখচিত্রের স্পর্শকের নতিই হল ঐ মুহূর্তের বেগ বা গতিবেগ।

8. বেগের পরিবর্তন এবং আনুযজ্গিক সময়ের অনুপাত হল **গড়ত্বরণ** ঃ

$$\overline{a} = \frac{\Delta v}{\Delta t}$$

9. একটি নির্দিস্ট অতিক্ষুদ্র ∆t সময় অবকাশে গড় ত্বরণের সীমামান দ্বারা তাৎক্ষণিক ত্বরণ সংজ্ঞায়িত করা হয়।

$$a = \lim_{\Delta t \to 0} \bar{a} = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{\mathrm{d}v}{\mathrm{d}t}$$

একটি বিশেষ মুহূর্তে কোন বস্তুর ত্বরণ হল ঐ মুহূর্তে বেগ-সময় লেখচিত্রের নতির মান। সমগতির বেলায় ত্বরণ হল

শূন্য এবং *x-t* লেখচিত্রে সময় অক্ষের সঙ্গো আনত একটি সরলরেখা এবং ৩-t লেখচিত্রে সময় অক্ষের সমান্তরাল সরলরেখা। সমত্বরণে গতির বেলায় *x*-t লেখচিত্র হল একটি অধিবৃত্ত যেখানে ৩-t লেখচিত্র হল সময় অক্ষের সঙ্গো আনত একটি সরলরেখা।

- 10. t₁ এবং t₂ এর মধ্যবর্তী বেগ-সময় লেখচিত্র এবং সময় অক্ষের মধ্যবর্তী আবন্ধ ক্ষেত্রফলই হল ঐ সময় অবকাশে বস্তুর সরণের সমান।
- 11. সমত্বরণে সরল রৈখিক গতির বেলায় বস্তুর পাঁচটি রাশি যথা সরণ x, প্রয়োজনীয় সময় t, প্রারম্ভিক বেগ υ_ρ, অন্তিম বেগ υ এবং ত্বরণ a কতগুলো সরল সমীকরণ দ্বারা সম্পর্কিত, যাদেরকে আমরা গতীয় সমীকরণ বলি, তারা হল :

$$\upsilon = \upsilon_0 + at$$
$$x = v_0 t + \frac{1}{2}at^2$$
$$v^2 = v_0^2 + 2ax$$

যেখানে *t* = 0 সময়ে বস্তুর অবস্থান *x* = 0। যদি বস্তুটি *x* = *x*₀, থেকে যাত্রা শুরু করে তবে উপরের সমীকরণগুলোতে *x* কে (*x* - *x*₀) দ্বারা প্রতিস্থাপিত করতে হবে।

প্রাকৃতিক রাশি	ক্তব্য	মাত্রা	একক	মন্তব্য
Physical quantity	symbol	Dimension	Unit	Remark
পথদৈর্ঘ্য		[L]	m	
সরণ	Δx	[L]	m	=x2-x1 একমাত্রিক গতিতে ইহার চিহ্নু গতির দিক নির্দেশ করে।
বেগ (a) গড়বেগ (b) তাৎক্ষণিক বেগ	ັ v ບ	[LT ⁻¹]	ms ⁻¹	$= \frac{\Delta x}{\Delta t}$ $= \frac{\lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}}{\int_{\Delta t} \frac{dx}{dt}} = \frac{dx}{dt}$ একমাত্রিক গতিতে ইহার চিহ্নু দিক নির্দেশ করে।
দ্রুতি (a) গড়দ্রুতি (b) তাৎক্ষণিক দ্রুতি		[LT ⁻¹]	ms ⁻¹	= <mark>পথদৈর্ঘ</mark> সময় অবকাশ = $rac{dx}{dt}$
ত্বরণ (a) গড় ত্বরণ (b) তাৎক্ষণিক ত্বরণ	\overline{a} a	[LT ⁻²]	ms ⁻²	$= \frac{\Delta v}{\Delta t}$ $= \frac{\lim_{\Delta t \to 0} \Delta v}{\Delta t} = \frac{dv}{dt}$ একমাত্রিক গতিতে ইহার চিহ্নু দিক নির্দেশ করে।
ভেবে দেখার বিষয়সমূহ (POINTS TO PONDER)

- বস্তু দ্বারা অতিক্রান্ত দুটি নির্দিষ্ট বিন্দুর মধ্যবর্তী পথদৈর্ঘ্য সাধারণত সরণের মানের সমান হয় না। সরণ শুধুমাত্র দুটি প্রান্তিক বিন্দুর উপর নির্ভরশীল; পথদৈর্ঘ্য নির্ভর করে প্রকৃত পথের উপর। একমাত্রিক গতিতে এই দুটি রাশি এক হয় কেবলমাত্র বস্তুটি যদি ইহার গতি বজায়কালীন অবস্থায় দিক পরিবর্তন না করে। অন্য সবক্ষেত্রে পথদৈর্ঘ্য সরণের মান অপেক্ষা বেশি হয়।
- 2. উপরে বর্ণিত 1 নং বিষয়বস্তুর (point) পরিপ্রেক্ষিতে বলা যায় নির্দিষ্ট সময়ে বস্তুর গড়দ্রুতির মান গড়বেগের মান অপেক্ষা বেশি বা সমান হয়। এ দুটি সমান হবে যদি পথদৈর্ঘ্য এবং সরণের মান সমান হয়।
- 3. মূলবিন্দু এবং অক্ষের ধনাত্মক দিক হল পর্যবেক্ষকের পছন্দনির্ভর। তোমাকে প্রথমে তোমার পছন্দ উল্লেখ করতে হবে তারপর তুমি সরণ, বেগ, ত্বরণ ইত্যাদি রাশির ধনাত্মক বা ঋণাত্মক চিহ্নগুলি নির্দেশ করবে।
- 4. যদি একটি বস্তুর দ্রুতি বৃষ্ধি পেতে থাকে, ত্বরণ বস্তুটির বেগের অভিমুখী হয়, আবার যদি বস্তুটির দ্রুতি হ্রাস পেতে থাকে তবে ত্বরণ বেগের বিপরীত অভিমুখে হয়। এই বস্তুব্য মূলবিন্দু এবং অক্ষের নির্বাচনের উপর নির্ভর করে না।
- 5. ত্বরণের চিহ্ন বলে না, যে বস্তুটির দ্রুতি বাড়ছে নাকি কমছে। ত্বরণের চিহ্ন (3 নং বিষয়ে উল্লিখিত) অক্ষের ধনাত্মক দিক নির্বাচনের উপর নির্ভর করে। উদাহরণ হিসাবে যদি উলস্বভাবে উধ্বমুখী গতিকে অক্ষের ধনাত্মক দিক ধরা হয়, তাহলে অভিকর্ষীয় ত্বরণের অভিমুখ ঋণাত্মক হবে। যদি একটি কণা অভিকর্ষের অধীনে পতনশীল হয়, এই ত্বরণ ঋণাত্মক হলেও, বস্তুর বেগ কিন্ডু বৃদ্ধি পাবে। উপরের দিকে নিক্ষেপ করা কণার বেলায়, একই ঋণাত্মক ত্বরণের জন্য (অভিকর্ষজ ত্বরণ) দ্রুতির মান হ্রাস পায়।
- 6. কোনো মুহূর্তে শূন্য বেগ সম্পন্ন কণার ত্বরণ শূন্য হবেই এর্প নয়। একটি কণার মুহূর্তের জন্য বেগ শূন্য হতে পারে যার ত্বরণ এ মুহূর্তে শূন্য নাও হতে পারে। উদাহরণ হিসাবে, ঊর্ধ্বমুখে উৎক্ষিপ্ত একটি কণার গতিপথের সর্বোচ বিন্দুতে বেগ শূন্য কিন্ধু এ মুহূর্তে ত্বরণের মান অভিকর্ষের জন্য একই থাকে।
- 7. গতীয় সমীকরণগুলোতে (সমীকরণ 3.11) বিভিন্ন রাশিগুলো হল বীজগাণিতিক, অর্থাৎ তারা ধনাত্মক বা ঋণাত্মক। এই সমীকরণগুলো সকল অবস্থায় সমানভাবে প্রযোজ্য (স্থির ত্বরণ যুক্ত একমাত্রিক গতীর বেলায়) যখন সমীকরণে সকল রাশিগুলোকে সঠিক চিহ্ন অনুযায়ী প্রতিস্থাপন করা হয়।
- 8. সমীকরণ 3.3 এবং 3.5 এ প্রকাশিত তাৎক্ষণিক বেগ এবং তাৎক্ষণিক ত্বরণের সংজ্ঞা যথাযথ এবং সর্বদা সঠিক। অন্যদিকে 3.11 নং সমীকরণে প্রকাশিত গতীয় সমীকরণগুলো সেই গতির ক্ষেত্রে সত্য হবে যেখানে সমস্ত গতিপথ ব্যাপী ত্বরণের মান ও দিক ধ্রুবক থাকে।

অনুশীলনী (EXERCISES)

- 3.1 নিম্নে উল্লিখিত গতির উদাহরণগুলোর মধ্যে কোন্ বস্তুকে তুমি বিন্দু বস্তু (point object) হিসাবে ধরতে পারো :
 - (a) দুটি স্টেশনের মধ্যে ঝাঁকুনীবিহীনভাবে একটি রেল গাড়ির কামরা গতিশীল।
 - (b) একটি বানর একজন বাইসাইকেল চালকের উপর বসে আছে এবং লোকটি বৃত্তাকার পথে সাইকেল চালাচ্ছে।
 - (c) একটি ঘূর্ণি ক্রিকেট বল মাটিতে জোরে আঘাতের পর দ্রুত মোড় নেয়।
 - (d) একটি গড়াগড়ি খাওয়া বীকার টেবিলের ধার থেকে পিছলে পড়ে গেল।
- 3.2 দুজন শিশু A ও B স্কুল O থেকে তাদের নিজ নিজ বাড়ি P এবং Qতে ফিরছে এবং তাদের অবস্থান-সময় (*x-t*) লেখচিত্র 3.19 এ দেখানো হয়েছে। নিচের বন্ধনীর সঠিক উত্তর বাছাই করো।
 - (a) (A/B) শিশুটি (B/A) শিশুর তুলনায় স্কুলের নিকটে বাস করে।
 - (b) (A/B) শিশুটি (B/A) শিশুর তুলনায় আগে রওয়ানা হয়।
 - (c) (A/B) শিশুটি (B/A) শিশুর তুলনায় দ্রুত হাঁটে।
 - (d) A এবং B বাড়িতে (একই/বিভিন্ন) সময়ে পৌঁছায়।
 - (e) (A/B) রাস্তায় (একবার/দুবার) (B/A) কে অতিক্রম করে।

পদার্থবিদ্যা

- 3.3 একজন মহিলা সকাল 9.00 টায় 5 km h⁻¹ দ্রুতিতে হেটে তার বাড়ি থেকে রওয়ানা হয়ে সোজা রাস্তায় 2.5 km দরে তার অফিসে পৌঁছে বিকাল 5.00 টা পর্যন্ত থাকে এবং অটোতে করে 25 km h⁻¹ দ্রুতিতে বাড়ি ফেরে। উপযুক্ত স্কেল বাছাই করে গতির x-t লেখচিত্র অঞ্চন করো।
- 3.4 একজন মাতাল ব্যক্তি একটি সরু গলি দিয়ে এরকমভাবে হাঁটছে যে, সে 5 কদম সামনে গেলে 3 কদম পেছনের দিকে ফিরে আসে। এইভাবে সে সামনের দিকে এগিয়ে যায়। প্রতি কদমে 1m দূরত্ব অতিক্রম করতে 1s সময় নেয়। তার গতির x-t লেখচিত্র অঙ্কন করো। লেখচিত্রের সাহায্যে বা অন্য পম্বতিতে ঐ মাতাল ব্যক্তি শুরু থেকে কত সময় পর 13m দূরের একটি কুপে পড়বে তা বের করো।
- 3.5 একটি জেট প্লেন 500 km h⁻¹ দ্রুতিতে উড়ার সময় জ্বালানী দহনে উৎপন্ন পদার্থ জেট প্লেনের সাপেক্ষে 1500 km h⁻¹ দ্রুতিতে নিক্ষেপ করছে। ভূমিতে দাঁড়ানো কোনো ব্যক্তির সাপেক্ষে জ্বালানী দহনে উৎপন্ন পদার্থের দ্রুতি কত হবে ?
- 3.6 একটি গাড়ি একটি সোজা মহাসড়ক (highway) দিয়ে 126 km h⁻¹ দ্রুতিতে চলমান এবং 200 m দূরত্বে থামানো হল। গাড়ির মন্দন কত তা বের করো (ধরে নাও গাড়ি সমমন্দনে গতিশীল) এবং গাড়িটি থামাতে কত সময় লাগবে ?
- 3.7 প্রতিটি 400m লম্বা দুটি ট্রেন A এবং B দুটি সমান্তরাল ট্রেক দিয়ে 72 km h⁻¹ সমদ্রুতিতে একই দিকে গতিশীল। A ট্রেনটি B এর সম্মুখে থেকে গতিশীল। B ট্রেনের চালক A ট্রেনটিকে অতিক্রম করার জন্য মনস্থ করল এবং1 m s⁻². ত্বরণ সৃষ্টি করল। যদি 50 s পর B ট্রেনের পেছনের গার্ড A ট্রেনের চালককে অতিক্রম করে তাহলে প্রথমে ট্রেন দুটির মধ্যবর্তী দুরত্ব কত ছিল ?
- 3.8 একটি দুই লেইন বিশিষ্ট রাস্তায় A গাড়িটি 36 km h⁻¹ দ্রুতিতে গতিশীল। বিপরীত দিক থেকে B এবং C দুটি গাড়ির প্রত্যেকটি A এর দিকে 54 km h⁻¹ দ্রুতিতে এগিয়ে আসছে। কোনো এক মুহূর্তে AB ও AC পরস্পর সমান হয়। যেখানে এই দূরত্ব 1 km ৷ B গাড়িটির চালক স্থির করল C এর পূর্বে A গাড়িকে অতিক্রম করবে। B এর ন্যূনতম কত ত্বরণ প্রয়োজন যাতে করে দুর্ঘটনা না ঘটে ?
- 3.9 দুটি শহর A এবং B পরস্পর নিয়মিত বাস পরিসেবা দ্বারা যুক্ত এবং প্রতি দিক থেকে T মিনিট পরপর বাস রওয়ানা হয়। একজন লোক 20 km h⁻¹ দ্রুতিতে A থেকে B শহরের দিকে সাইকেল চালাচ্ছে এবং সে দেখছে একই দিক থেকে 18 মিনিট পর পর এবং বিপরীত দিক থেকে 6 মিনিট পরপর বাস গাড়ি তাকে অতিক্রম করছে। T এর মান কত এবং বাসের দ্রুতি কত (সমদ্রুতিতে চলছে ধরে নাও)?
- 3.10 একজন খেলোয়াড় একটি বলকে 29.4 m s⁻¹ দ্রুতিতে ঊর্ধ্বমুখে উৎক্ষেপ করে।
 - (a) উধ্বমুখে গতিশীল অবস্থায় ত্বরণ এর দিক কোন্ দিকে হয় ?
 - (b) গতিপথের সর্বোচ্চ বিন্দুতে বলটির বেগ এবং ত্বরণ কত?
 - (c) সর্বোচ্চ বিন্দুটির অবস্থান x = 0 m এবং সময় t = 0s এবং উলস্বভাবে নিম্নমুখী দিককে x-অক্ষের ধনাত্মক দিক ধরে নিম্নমুখী ও ঊর্ধ্বমুখী গতির বেলায় বলটির অবস্থান, বেগ ও ত্বরণের চিহ্ন কী হবে উল্লেখ করো।
 - (d) কত উচ্চতা পর্যন্ত বলটি উঠবে এবং কত সময় পর আবার খেলোয়াড়ের হাতে বলটি ফিরে আসবে ? (ধরো $g = 9.8 \ {
 m m s^{-2}}$ এবং বায়ুর বাধা উপেক্ষা করো)।

সরলরেখা বরাবর গতি

একটি কণার একমাত্রিক গতির বেলায় —

- (a) কোন মুহুর্তে দ্রুতি শুন্য হলেও ঐ মুহুর্তে ত্বরণ শুন্য নাও হতে পারে।
- (b) দ্রুতি শূন্য কিন্তু বেগ শূন্য নাও হতে পারে।
- (c) সমদ্রুতিতে চললে অবশ্যই ত্বরণ শূন্য হবে।
- (d) ত্বরণের মান ধনাত্মক হলে অবশ্যই দুতি বাড়তে থাকবে।
- একটি বলকে 90m উচ্চতা থেকে মেঝের দিকে ছেড়ে দেওয়া হল। মেঝের সঙ্গে প্রতি সংঘর্ষে বলটি তার দ্রুতির 3.12 দশভাগের একভাগ অংশ হারায়। t=0 থেকে 12s এর মধ্যে গতির দ্রুতি-সময় লেখচিত্র অঞ্চন করো।
- উদাহরণ সহযোগে সঠিকভাবে পার্থক্য ব্যাখ্যা করো 3.13
 - (a) কোনো সময়ের অবকাশে কোনো কণা দ্বারা অতিক্রান্ত সরণের মান (কখনো কখনো দূরত্ব বলা হয়) এবং ঐ একই সময় অবকাশে কণা দ্বারা অতিক্রান্ত মোট পথের দৈর্ঘ্য।
 - (b) নির্দিষ্ট সময়ে গড়বেগের মান এবং ঐ সমান সময় অবকাশে গড় দ্রুতি। [গড় দ্রুতি হল নির্দিষ্ট সময়ে গতিশীল বস্তু বা কণা দ্বারা অতিক্রান্ত মোট পথদৈর্ঘ্য এবং মোট সময়ের অনুপাত।] (a) এবং (b) উভয় ক্ষেত্রেই দেখাও যে দ্বিতীয় রাশিটি প্রথম রাশি অপেক্ষা বডো বা সমান। কখন সমান চিহ্ন সঠিক হবে? [সহজীকরণের জন্য, একমাত্রিক গতি ভেবে আলোচনা করো।].
- এক ব্যক্তি তার বাড়ি থেকে সোজা রাস্তা বরাবর 2.5 km দুরের বাজারে 5 km h⁻¹ দ্রুতিতে হেঁটে যাচ্ছে। বাজার 3.14 বন্ধ দেখে সঙ্গে সঙ্গে 7.5 km h⁻¹ দ্রুতিতে হেঁটে বাড়িতে ফিরে এল। নির্ণয় কর —
 - (a) গড বেগের মান এবং
 - (b) গড় দ্রুতির মান যখন সময় অবকাশ (i) 0 থেকে 30 মিনিট ? (ii) 0 থেকে 50 মিনিট ? (iii) 0 থেকে 40 মিনিট ? [বিঃদ্রঃ তুমি এই অনুশীলনী থেকে উপলব্ধি করতে পারবে, গড় দ্রুতিকে সংজ্ঞায়িত করা হয় মোট পথদৈর্ঘ্য এবং মোট সময়ের অনুপাত দ্বারা, বেগের মানের দ্বারা নয়। বাজার থেকে বাড়িতে ফিরে আসা ক্লান্ড মানুষটিকে তোমার বলতে ভালো লাগবে না যে তার গড় দ্রুতির মান শূন্য!]
- অনুশীলনী 3.13 এবং 3.14 এ আমরা খুব ভালোভাবে গড়দ্বতি এবং গড়বেগের মানের মধ্যে পার্থক্য করেছি। কিন্তু 3.15 যখন আমরা তাৎক্ষণিক দ্রুতি এবং তাৎক্ষণিক বেগ বিবেচনা করি তখন এই পার্থক্যের প্রয়োজন পডে না। তাৎক্ষণিক বেগের মান সর্বদা তাৎক্ষণিক দ্রুতির সমান হয় কেন?
- 3.16 (a) থেকে (d) পর্যন্ত লেখচিত্রগুলো ভালোভাবে লক্ষ্য করো এবং কারণসহ বলো কোন্ কোন্ লেখচিত্রগুলো একমাত্রিক গতিকে প্রকাশ করতে পারে না :

চিত্র 3.20

- 3.17 3.21 নং চিত্রে একমাত্রিক গতিতে গতিশীল একটি কণার x-t লেখচিত্র দেখানো হয়েছে। লেখচিত্র থেকে ইহা কি সঠিক যে t < 0 সময়ে কণাটি সরলরৈখিক গতিতে গতিশীল এবং t >0 সময়ে অধিবৃত্তাকার পথে গতিশীল ? যদি না হয়, তাহলে এই লেখচিত্রের জন্য উপযুক্ত বাস্তবসন্মত প্রসঞ্চা উল্লেখ করো।
- 3.18 30 km h⁻¹ দ্রুতিতে মহাসড়ক দিয়ে চলমান একটি পুলিশ ভেন থেকে একটি 192 km h⁻¹ দ্রুতিতে একইদিকে চলমান একটি চোরের গাড়িকে লক্ষ্য করে গুলি ছুড়ল। যদি বুলেটের অগ্রভাগের দ্রুতি 150 m s⁻¹ তাহলে কত দ্রুতিতে বুলেটটি চোরের গাড়িকে আঘাত করবে ? (বিঃদ্রঃ চোরের গাড়িকে ক্ষতি করার মতো দ্রুতি বের কর)।

3.19 3.22 নং চিত্রে প্রদর্শিত লেখচিত্রগুলোর জন্য উপযুক্ত গতিয় অবস্থার বর্ণনা দাও ঃ

3.20 একটি কণা একমাত্রিক সরল দোলগতিতে আন্দোলিত হচ্ছে এবং তার *x*-t লেখচিত্র 3.23 নং চিত্রে দেখানো হয়েছে। (চতুর্দশ অধ্যায়ে তোমরা বিস্তারিত শিখবে)। এই কণাটির *t* = 0.3s, 1.2s এবং – 1.2s এ অবস্থান, বেগ এবং ত্বরণ এই চল রাশিগুলোর চিহ্ন উল্লেখ করো।

3.22 একটি নির্দিষ্ট দিকে গতিশীল একটি কণার দ্রুতি-সময় লেখচিত্র 3.25 নং চিত্রে দেখানো হয়েছে। তিনটি বিভিন্ন সময় অবকাশকে দেখানো হয়েছে। কোন্ অবকাশে গড় দ্রুতি সর্বোচ্চ ? কোন্ সময় অবকাশে গড় ত্বরণের মান সর্বোচ্চ ? ধনাত্মক দিককে গতির স্থির অভিমুখ ধরে নিয়ে তিনটি সময় অবকাশে *v* এবং *a* এর চিহ্নু প্রকাশ করো। A, B, C এবং D বিন্দুতে ত্বরণ কতো ?

অতিরিক্ত অনুশীলনী (Additional Exercises)

- 3.23 একটি ত্রিচক্র যান স্থিরাবস্থা থেকে যাত্রা শুরু করে 1 m s⁻² সমত্বরণ নিয়ে 10s ধরে সোজা রাস্তায় চলে, তারপর সমবেগে গতিশীল থাকে। 'n' তম সেকেন্ডে (n = 1,2,3....) অতিক্রান্ত দূরত্বকে সঙ্গো n এর সাপেক্ষে লেখচিত্র অঙ্কন করো। ত্বরণযুক্ত গতির বেলায় লেখচিত্রটি কীভাবে হবে; একটি সরলরেখা নাকি একটি অধিবৃত্ত?
- 3.24 উপরের দিকে খোলা একটি স্থির লিফ্টে দাঁড়িয়ে থাকা এক বালক একটি বলকে সর্বোচ্চ 49 m s⁻¹ দুতিতে ঊর্ধ্বে ছোঁড়তে পারে। বালকের হাতে বলটি কত সময় পর ফিরে আসবে ? যদি লিফ্টটি সমবেগে 5 m s⁻¹ নিয়ে উপরের দিকে উঠতে থাকে তখন যদি বলটিকে সে সর্বোচ্চ দুতিতে ঊর্ধ্বমুখে ছোঁড়ে তবে বলটি তার হাতে কত সময় পর ফিরে আসবে ?
- 3.25 3.26 নং এ দেখানো চিত্রের মতো একটি লম্বা অনুভূমিক গতিশীল বেল্টের উপর উপস্থিত একটি বালক ঐ বেন্ট 50m দুরে অবস্থিত মা-বাবার মধ্যে এদিক-ওদিক দৌড়া-দৌড়ি করছে। বালকটি বেল্টের সাপেক্ষে 9 km h⁻¹ দ্রুতিতে দৌড়াদৌড়ি করছে। বেল্টটি 4 km h⁻¹ দ্রুতিতে গতিশীল। স্থির প্লেটফর্মে উপস্থিত একজন দর্শকের নিকট —
 - (a) শিশুটির দ্রুতি কত হবে যখন শিশুটি বেল্টের গতির দিকে দৌড়ে যাচ্ছে?
 - (b) শিশুটির দ্রুতি কত হবে যখন শিশুটি বেল্টের গতির বিপরীত দিকে দৌড়ে যাচ্ছে?
 - (c) (a) এবং (b) এর ক্ষেত্রে যে সময় লেগেছে তার মান কত? যদি মা-বাবার যে কোনো একজন লক্ষ্য করে তবে উপরের কোন্ উত্তরগুলো পরিবর্তিত হবে?

চিত্র 3.26

3.26 দুটি পাথরখগুকে একই সঙ্গো একটি 200m উঁচু বাঁধের উপরের ধার থেকে ঊর্ধ্বমুখে 15 ms⁻¹ এবং 30ms⁻¹ দ্রুতিতে ছোঁড়া হল। 3.27 নং চিত্রে প্রথম বস্তুর সাপেক্ষে দ্বিতীয় বস্তুর সময়ের সহিত আপেক্ষিক অবস্থানের লেখচিত্র দেখানো হয়েছে? — ইহার সঠিকতা যাচাই করো। বায়ুর বাধা উপেক্ষা করো এবং ধরে নাও যে পাথর খগুগুলো ভূমিতে পড়ার পর আর উৎক্ষিপ্ত হয় না। g = 10m s⁻² ধরো। অঙ্জিত লেখচিত্রে রৈখিক এবং বক্রাকার অংশের সমীকরণ দাও।

3.27 একটি নির্দিষ্ট দিক বরাবর গতিশীল একটি কণার দ্রুতি-সময় লেখচিত্র 3.28. নং চিত্রে দেখানো হয়েছে। কণা দ্বারা অতিক্রান্ত দূরত্ব বের কর যখন (a) *t* = 0s থেকে 10s এরমধ্যে, (b) *t* = 2s থেকে 6s ।

কণাটির (a) এবং (b)তে উল্লিখিত সময়ে গড় দ্রুতি কত?

3.28 একমাত্রিক গতিতে গতিশীল একটি কণার বেগ-সময় লেখচিত্র 3.29 চিত্রে দেখানো হয়েছে:

t, থেকে t, সময়ের মধ্যে কণার গতি নিম্নের কোন্ কোন্ সমীকরণগুলো দ্বারা সঠিকভাবে ব্যাখ্যা করা যায় :

(a) $x(t_2) = x(t_1) + v_1(t_2 - t_1) + (\frac{1}{2}) a_1(t_2 - t_1)^2$ (b) $v(t_2) = v(t_1) + a_1(t_2 - t_1)$ (c) $v_{average} = (x(t_2) - x(t_1))/(t_2 - t_1)$ (d) $a_{average} = (v(t_2) - v(t_1))/(t_2 - t_1)$ (e) $x(t_2) = x(t_1) + v_{average}(t_2 - t_1) + (\frac{1}{2}) a_{average}(t_2 - t_1)^2$ (f) $x(t_2) - x(t_1) = v_1 - t_1 \text{ ensure and } t_2 - t_1 \text{ ensure and } t_1 \text{ ensure$

পরিশিষ্ট 3.1 : কলনবিদ্যার উপাদান (ELEMENTS OF CALCULUS)

অবকলন বিদ্যা (Differential Calculus)

অবকলন গুণাঙ্ক বা অবকলন এর ধারণা ব্যবহার করে আমরা খুব সহজেই বেগ এবং ত্বরণ এর সংজ্ঞা দিতে পারি। যদিও আমরা গণিত বিষয়ে অবকলন বিদ্যা সম্পর্কে বিষদভাবে শিখব, তথাপি গতি সম্পর্কীত বিভিন্ন রাশিগুলির বর্ণনা সহজতর করার জন্য আমরা এই পরিশিস্টে এই ধারণার অবতারণা করেছি।

ধরি একটি রাশি y এর মান একটি মাত্র চলরাশি x এর উপর নির্ভরশীল এবং y কে x এর অপেক্ষক রুপে এভাবে বর্ণনা করা হয়েছে :

এই সম্পর্কটিকৈ x - y কার্তেজীয় স্থানাঙ্ক জ্যামিতি ব্যবহার করে লেখচিত্র অঙ্জন করে অনুধাবন করা যায়, চিত্র 3.30 (a) তে দেখানো হয়েছে।

y = f(x) লেখচিত্রে P এবং Q বিন্দু দুটি বিবেচনা করি যাদের স্থানাঙ্ক যথাক্রমে (x, y) এবং (x + Δx, y + Δy) । P এবং Q বিন্দুর সংযোজক রেখার নতি:

ধরি Q বিন্দুটি লেখচিত্র বরাবর P বিন্দুর দিকে সরে আসছে। এই ঘটনায় Δy এবং Δx এর মান খুব ক্ষুদ্র হয়ে শূন্য এর কাছাকাছি হয়; যদিও তাদের অনুপাত $\frac{\Delta y}{\Delta x}$ এর মান শূন্য হয় না। যখন $\Delta y \rightarrow 0$, $\Delta x \rightarrow 0$ তখন PQ রেখাটির কী ঘটবে। তোমরা দেখবে যে এই রেখাটি P বিন্দুতে বর্করেখার একটি স্পর্শকে পরিণত হবে {চিত্র 3.30(b)}। এর অর্থ হল $\tan \theta$ এর মান P বিন্দুতে স্পর্শকটির নতির মানের সমান হয় এবং একে m দ্বারা সুচিত করা যায়,

$$m = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{(y + \Delta y) - y}{\Delta x}$$
(3)

যখন Δx এর মান শূন্য এর কাছাকাছি পৌঁছায় তখন $\Delta y / \Delta x$ অনুপাত সীমামানকে বলা হয় x এর সাপেক্ষে y এর অবকলন এবং ইহাকে dy/dx রুপে লেখা হয়। ইহা y = f(x) লেখচিত্রের (x, y) বিন্দুতে স্পর্শকের নতিকে প্রকাশ করে।

যেহেতু y = f(x) এবং $y + \Delta y = f(x + \Delta x)$, তাই আমরা অবকলনের সংজ্ঞা এভাবে দিতে পারি —

$$\frac{dy}{dx} = \frac{df(x)}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \left[\frac{f(x + \Delta x) - f(x)}{\Delta x} \right]$$

নিম্নে কিছু অপেক্ষকের অবকলনের প্রাথমিক সূত্র দেওয়া হল। এখানে u(x) এবং v(x) কে x এর যেকোন অপেক্ষক হিসাবে সূচিত করা হল এবং a ও b হল ধ্রুবক রাশি যারা, x এর উপর নির্ভরশীল নয়। কিছু সাধারণ অপেক্ষকের অবকলন নিম্নে উল্লেখিত করা হল:

$$\frac{d(a u)}{dx} = a \frac{du}{dx} \qquad ; \qquad \frac{du}{dt} = \frac{du}{dx} \cdot \frac{dx}{dt}$$
$$\frac{d(uv)}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \qquad ; \qquad \frac{d(u / v)}{dx} = \frac{1}{v^2} \frac{du}{dx} - u \frac{dv}{dx}$$
$$\frac{du}{dv} = \frac{du / dx}{dv / dx}$$
$$\frac{d}{dx} (\sin x) = \cos x \qquad ; \qquad \frac{d}{dx} (\cos x) = -\sin x$$
$$\frac{d}{dx} (\tan x) = \sec^2 x \qquad ; \qquad \frac{d}{dx} (\cot x) = -\cos \sec^2 x$$
$$\frac{d}{dx} (\sec x) = \tan x \sec x \qquad ; \qquad \frac{d}{dx} (\operatorname{cosec}^2 x) = \cot x \operatorname{cosec} x$$
$$\frac{d}{dx} (u)^n = n u^{n-1} \frac{du}{dx} \qquad ; \qquad \frac{d}{du} (\ln u) = \frac{1}{u}$$
$$\frac{d}{du} (e^u) = e^u$$

অবকলনের সাহায্যে তাৎক্ষণিক বেগ ও তাৎক্ষণিক ত্বরণকে এভাবে সংজ্ঞায়িত করা যায় —

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$
$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt} = \frac{d^2 x}{dt^2}$$

সমাকলন বিদ্যা (Integral Calculus)

তোমাদের সকলেরই ক্ষেত্রফলের ধারণা আছে। সাধারণ জ্যামিতিক চিত্রের ক্ষেত্রফল নির্ণয়ের সূত্রও তোমরা জান। যেমন আয়তক্ষেত্রের ক্ষেত্রফল হল দৈর্ঘ্য ও প্রস্থ এর গুণফল, আবার ত্রিভূজের ক্ষেত্রফল হল ভূমি ও উচ্চতার গুণফলের অর্ধেক। কিন্তু অনিয়মিত আকৃতির ক্ষেত্রফল নির্ণয় কিভাবে করা যায় ? এধরনের সমস্যার সমাধানের জন্য সমাকলনের গাণিতিক ধারণা প্রয়োজন।

চলো আমরা একটা বাস্তব উদাহরণ নেই। ধরো, একটি কণার x -অক্ষ বরাবর গতির x = a থেকে x = b তে একটি পরিবর্তনশীল বল f(x) র ক্ষেত্রে ক্রিয়াশীল। এই বলের দ্বারা বস্তুর গতিপথে কৃতকার্যের (W) মান বের করতে হবে। এই সমস্যার সমাধান বিস্তৃতভাবে ষষ্ঠ অধ্যায়ে ব্যাখ্যা করা হয়েছে।

চিত্র 3.31 এ x এর সাপেক্ষে *F*(x) এর পরিবর্তন দেখানো হয়েছে। যদি বল ধ্রুবক থাকত তাহলে সাধারণভাবে *F* ও (*b-a*) এর ক্ষেত্রফল {চিত্র 3.31(i) তে দেখানো} সূচিত করে তা হত কার্যের মান। কিন্তু চিত্র 3.31(ii), এক্ষেত্রে বল হল পরিবর্তনশীল।

চিত্র 3.31 (ii) নং চিত্রে লেখচিত্র দ্বারা আবন্দ্ধ ক্ষেত্রফল গণনা করার জন্য আমরা নিম্নলিখিত কৌশল অবলম্বন করি। x-অক্ষে a থেকে b পর্যন্ত অন্তরকে কতগুলো (N) ক্ষুদ্র সমান অন্তরে এভাবে বিভক্ত করি : $x_0(=a)$ থেকে x_1 ; x_1 থেকে x_2 ; x_2 থেকে x_3 ; x_{N-1} থেকে $x_N(=b)$ । এভাবে লেখচিত্র বেন্টিত ক্ষেত্র N সংখ্যক অংশে বিভক্ত হল। প্রতিটি অংশ মোটামোটি আয়তক্ষেত্রের অনুরূপ, যেহেতু এই ক্ষুদ্র অংশে F(x) এর মানের পরিবর্তন উপেক্ষণীয়। 3.31(ii) নং চিত্রে দেখানো i-তম অংশের ক্ষেত্রফল

$$\Delta A_i = F(x_i)(x_i \quad x_{i-1}) = F(x_i)\Delta x$$

যেখানে ∆x হল প্রতিটি অংশের প্রস্থ যা সবগুলি ক্ষুদ্র অংশের জন্য সমান। তোমরা খুবই ভাবনায় পড়বে যে আমরা উপরের সমীকরণে $F(x_{i-1})$ মান বসাব, নাকি $F(x_i)$ ও $F(x_{i-1})$ এর গড় মান বসাব। যদি আমরা N এর মান অনেক অনেক বড় (N→∞) ধরি, তাহলে বাস্তবে এতে কিছু যায় আসে না, কারণ অংশগুলো এত পাতলা হবে যে $F(x_i)$ এবং $F(x_{i-1})$ এর পার্থক্য শূন্যের কাছাকাছি হয়। তাই লেখচিত্র বেস্টিত মোট ক্ষেত্রফল হবে :

$$A = \sum_{i=1}^{N} \Delta A_i = \sum_{i=1}^{N} F(x_i) \Delta x$$

এই যোগফলের সীমাটিকে $N \to \infty$ এর জন্য x এর সাপেক্ষে a থেকে b অন্তরে F(x) এর সমাকলন বলা হয়। ইহাকে একপ্রকার বিশেষ সাংকেতিক চিহ্নের সাহায্যে এভাবে প্রকাশ করা যায় :

$$A = \int_{a}^{b} F(x) dx$$

সমাকলন চিহ্ন ∫দেখতে অনেকটা দীর্ঘয়িত S এর মতো, যা থেকে আমরা বুঝি যে ইহা হল মূলত অসীম সংখ্যক পদের যোগের সীমা। একটি সর্বাপেক্ষা গুরুত্বপূর্ণ গাণিতিক বিষয় হল যে সমাকলন হল এক অর্থে অবকলনের বিপরীত প্রক্রিয়া।

ধরো, একটি অপেক্ষক g(x) এর অবকলন হল f(x), অর্থাৎ $f(x) = \frac{dg(x)}{dx}$

g(x) কে বলা হয় f(x) এর অনির্দিষ্ট সমাকলন (indefinite integral) এবং একে এভাবে প্রকাশ করা হয়

$$g(x) = \int f(x) dx$$

ঊর্ধ্বসীমা ও নিম্নসীমাযুক্ত সমাকলনকে বলা হয় নির্দিষ্ট সমাকলন (definite integral)। ইহা হল একটি সংখ্যা। অন্যদিকে অনির্দিষ্ট সমাকলনের কোন সীমা নেই; তাই ইহা হল একটি অপেক্ষক।

গণিতের একটি গুরুত্বপূর্ণ সূত্র হল

$$\int_{a}^{b} f(x) \, dx = g(x) \Big|_{a}^{b} = g(b) \quad g(a)$$

উদাহরণ হিসাবে, ধরি $f(x) = x^2$ এবং x = 1 থেকে x = 2 সীমার মধ্যে আমরা নির্দিষ্ট সমাকলনটির মান বের করব। অপেক্ষক g(x) যদি $x^3/3$ হয় তবে তার অবকলন হল x^2 । সুতরাং

$$\int_{1}^{2} x^{2} dx = \frac{x^{3}}{3} \Big|_{1}^{2} = \frac{8}{3} - \frac{1}{3} = \frac{7}{3}$$

স্পন্টতই নির্দিষ্ট সমাকলনের মান নির্ণয় করতে হলে, তার অনুরূপ অনির্দিষ্ট সমাকলনটি বের করতে হবে। কিছু প্রচলিত অনির্দিষ্ট সমাকলন হল :

পদার্থবিদ্যা

$$\int x^n dx = \frac{x^{n+1}}{n+1} + c \qquad (n \neq -1)$$

$$\int \left(\frac{1}{x}\right) dx = \ln x + c \qquad (x > 0)$$

$$\int \sin x dx = -\cos x + c \qquad \int \cos x dx = \sin x + c$$

$$\int e^x dx = e^x + c$$

C হল সমাকলন ধ্রুবক।

অবকলন ও সমাকলনের এই আলোচনা যথাযথ নয়, ইহা শুধুমাত্র কলনবিদ্যার মৌলিক ধারণা পেতে সাহায্য করবে।

64

অধ্যায় : চতুর্থ

সমতলীয় গতি (Motion in a Plane)

4.1 ভূমিকা

- 4.2 স্কেলার এবং ভেক্টর
- 4.3 বাস্তব সংখ্যা দ্বারা ভেক্টরকে গুণন
- 4.4 ভেক্টর যোগ এবং বিয়োগ লৈখিক পম্বতি (graphical method)
- 4.5 ভেক্টর বিভাজন
- 4.6 ভেক্টর সংযোজন বিশ্লেষণাত্মক পদ্ধতি
- 4.7 সমতলীয় গতি
- 4.8 স্থির ত্বরণে সমতলীয় গতি
- 4.9 দ্বিমাত্রিক আপেক্ষিক গতি
- 4.10 প্রাসের গতি
- 4.11 সুষম বৃত্তীয় গতি সারাংশ ভেবে দেখার বিষয়সমূহ অনুশীলনী
 - অতিরিস্ত অনুশীলনী

4.1 ভূমিকা (INTRODUCTION)

আগের অধ্যায়ে আমরা অবস্থান, সরণ, বেগ এবং ত্বরণের ধারণা পাই যা বস্তুর সরলরৈথিক গতি বর্ণনার ক্ষেত্রে প্রয়োজনীয়। একমাত্রিক গতির ক্ষেত্রে যেহেতু কেবল দুটি অভিমুখই সম্ভব তাই আমরা অভিমুখের নিরিখে উক্তু রাশিগুলির কেবল ধনাত্মক এবং ঋণাত্মক চিহ্ন দ্বারা বিবেচনা করি। কিন্তু দ্বিমাত্রিক (একটি তল) বা ত্রিমাত্রিক দেশে একটি বস্তুর উক্তু ভৌত রাশিগুলির বর্ণনায় আমাদের ভেক্টর ব্যবহার করা প্রয়োজন। সুতরাং প্রথমে ভেক্টরের ভাষা শেখা প্রয়োজন। ভেক্টর কী? কিভাবে ভেক্টরকে যোগ, বিয়োগ বা গুণ করা হয়? একটি ভেক্টরকে বাস্তব সংখ্যা দিয়ে গুণ করলে গুণফল কী হবে? কোনো সমতলে বেগ এবং ত্বরণকে কীভাবে সংজ্ঞায়িত করা যায় তা আমরা শিখব। তারপর আমরা কোনো সমতলে একটি বস্তুর গতি আলোচনা করব, কোনো সমতলের সরলতম গতি হিসেবে আমরা স্থির ত্বরণে গতি আলোচনা করব এবং প্রাসের গতির বিস্তারিত আলোচনা করব। বৃত্তীয় গতি একটি অতি পরিচিত গতি যা দৈনন্দিন জীবনে বিশেষ তাৎপর্যপূর্ণ। আমরা সুযম বৃত্তীয় গতি

সমতলের ক্ষেত্রে এই অধ্যায়ে যে সকল সমীকরণ গঠন করা হয়েছে তা ত্রিমাত্রিক গতির ক্ষেত্রেও সহজেই প্রসার করা যাবে।

4.2 স্কেলার এবং ভেক্টর (SCALARS AND VECTORS)

পদার্থবিদ্যায় আমরা রাশিকে স্কেলার এবং ভেক্টরে শ্রেণিবিভাগ করতে পারি। মূলত পার্থক্য হল, ভেক্টরের সঙ্গে অভিমুখ জড়িত থাকে কিন্তু স্কেলারের সঙ্গে থাকে না। স্কেলার রাশি হল এমন একটি রাশি যার কেবল মান থাকে। একে একক সহ একটি সংখ্যা দ্বারা সুনির্দিন্টভাবে প্রকাশ করা হয়। দৃন্টান্তস্বরূপ : দুটি বিন্দুর মধ্যে দূরত্ব, বস্তুর ভর, বস্তুর উম্বতা এবং কোনো ঘটনা ঘটার সময়। স্কেলারের সংযোজন সাধারণ বীজগণিতের নিয়মে হয়। স্কেলারকে সাধারণ সংখ্যার ন্যায় যোগ, বিয়োগ, ভাগ ও গুণ করা হয়।* উদাহরণস্বরূপ, কোনো আয়তক্ষেত্রের দৈর্ঘ্য, প্রস্থ যথারুমে 1.0 m এবং 0.5 m হয়, তবে এর পরিসীমা হবে চারটি বাহুর দৈর্ঘ্যের যোগফল 1.0 m + 0.5 m +1.0 m + 0.5 m = 3.0 m । প্রতিটি বাহুর দৈর্ঘ্য হল স্কেলার এবং পরিসীমাও হল স্কেলার। অন্য একটি উদাহরণ নেওয়া যাক। কোনো দিনের সর্বোচ্চ এবং সর্বনিম্ন উন্নতা যথাব্রুমে 35.6 °C এবং 24.2 °C । সুতরাং দুটি উন্নতার পার্থক্য হল 11.4 °C । অনুরূপভাবে, যদি অ্যালুমিনিয়ামের সুষম নিরেট ঘনকের প্রতিটি বাহুর দৈর্ঘ্য 10 cm এবং ভর 2.7 kg হয়, তবে এর আয়তন হল 10⁻³ m³ (একটি স্কেলার) এবং এর ঘনত্ব হল 2.7×10³ kg m⁻³ (একটি স্কেলার)।

একটি ভেক্টর রাশি হল এমন একটি রাশি যার মান এবং দিক উভয়েই আছে এবং ভেক্টর যোগের ত্রিভুজসুত্র বা সমতুল্য ভেক্টরযোগের সামন্তরিক সূত্র মেনে চলে। সুতরাং একটি ভেক্টরকে প্রকাশ করা হয় তার দিক এবং একটি সংখ্যা দিয়ে, যা তার মানকে প্রকাশ করে। সরণ, বেগ, ত্বরণ এবং বল হল কিছু প্রাকৃতিক রাশি যাদের ভেক্টর দিয়ে প্রকাশ করা হয়। ভেক্টরকে প্রকাশ করতে এই বইয়ে আমরা মোটা হরফ ব্যবহার করব। ফলে একটি বেগ ভেক্টরকে v চিহ্ন দ্বারা প্রকাশ করা হবে। হাতে লেখার সময় যেহেতু মোটা হরফে প্রকাশ করা কর্যটকর তাই অক্ষরের উপর তির চিহ্ন দিয়ে ভেক্টরকে প্রায় সময় প্রকাশ করা হয়, যেমন \vec{v} । তাই v এবং \vec{v} উভয়েই বেগ ভেক্টরকে প্রকাশ করা হয়, যেমন \vec{v} । আবং |v| = v এভাবে নির্দেশিত হয়। ফলে একটি ভেক্টরকে মোট হরফে প্রকাশ করা হয়। যেমন A, a, p, q, r, ... x, y.

4.2.1 অবস্থান এবং সরণ ভেক্টর (Position and Displacement Vectors)

একটি তলে গতিশীল একটি বস্তুর অবস্থান বর্ণনা করতে আমাদের একটি সুবিধাজনক বিন্দু, যেমন মূলবিন্দু O বিবেচনা করা প্রয়োজন। মনে করি, t এবং t' সময়ে একটি বস্তুর অবস্থান যথাক্রমে P এবং P' [চিত্র 4.1(a)] । আমরা O এবং P বিন্দু একটি সরলরেখা দ্বারা যুক্ত করি। ফলে **OP** হল t সময়ে কোনো বস্তুর অবস্থান ভেক্টর। এই রেখার মাথাকে একটি তিরচিহ্ন দ্বারা চিহ্নিত করা হয়। একে r চিহ্ন দ্বারা প্রকাশ

পদার্থবিদ্যা

করা হয় অর্থাৎ **OP** = **r** । P' বিন্দুকে অপর একটি অবস্থান ভেক্টর **OP**' দ্বারা প্রকাশ করা হয় এবং **r**' দ্বারা চিহ্নিত করা হয় । **r** ভেক্টরের দৈর্ঘ্য ভেক্টরটির মানকে প্রকাশ করে এবং এর অভিমুখ O থেকে P বিন্দুটি যেদিকে আছে বলে মনে হবে সেই দিকে হবে । যদি বস্তু P থেকে P' বিন্দুতে সরে যায় তবে **PP'** ভেক্টর (অগ্রভাগ P' বিন্দু এবং পশ্চাদভাগ P বিন্দু) কে P বিন্দু (*t* সময়ে) থেকে P' (*t*' সময়ে) বিন্দুর গতির আনুষঞ্জিক সরণ ভেক্টর বলা হয় ।

চিত্র 4.1 (a) অবস্থান এবং সরণ ভেক্টর (b) বিভিন্ন প্রকার গতির ক্ষেত্রে PQ সরণ ভেক্টর

এখানে উল্লেখ করা প্রয়োজন যে, সরণ ভেক্টর হল প্রাথমিক এবং অন্তিম অবস্থানের সংযোজক সরলরেখা এবং দুটি অবস্থানের মধ্যে বস্তু কর্তৃক অতিক্রান্ত প্রকৃত পথের উপর নির্ভর করে না। যেমন 4.1(b) চিত্রে প্রদন্ত প্রাথমিক এবং অন্তিম অবস্থান হল P এবং Q, PABCQ, PDQ, এবং PBEFQ বিভিন্ন যাত্রাপথে সরণ ভেক্টর **PQ** একই হবে। সুতরাং, **সরণের মান দুটি বিন্দুর মধ্যে একটি বস্তুর পথদৈর্ঘ্যের চাইতে** কম বা সমান হবে। এই ঘটনা আগের অধ্যায়ে সরলরেখা বরাবর গতি বর্ণনার ক্ষেত্রেও যথেন্ট গুরুত্ব দেওয়া হয়েছিল।

4.2.2 ভেক্টরের সমতা (Equality of Vectors)

দুটি ভেক্টর A এবং B কে সমান বলা হবে একমাত্র যখন তাদের একই মান এবং একই অভিমুখ থাকবে। **

চিত্র 4.2(a) দুটি সমান ভেক্টর A এবং B প্রকাশ করে। আমরা সহজে তাদের সমতা যাচাই করতে পারি। B কে এর সমান্তরালে সরাও যতক্ষণ না এর পশ্চাদভাগ Q, A তে সমাপতিত হয় অর্থাৎ Q বিন্দু O বিন্দুর সঞ্চো যখন সমাপতিত হবে, তখন তাদের অগ্রভাগ S এবং P বিন্দু

^{*} কেবল একই একক বিশিষ্ট রাশিসমূহের স্কেলার যোগ এবং বিয়োগ সম্ভব। যদিও তুমি বিভিন্ন একক সম্পন্ন স্কেলারের গুণ এবং ভাগ করতে পার।

^{**} আমাদের আলোচনায় ভেক্টরের নির্দিন্ট কোনো অবস্থান নেই। তাই একটি ভেক্টরকে তার সমান্তরালে সরালে ভেক্টরটি অপরিবর্তিত থাকে। এরুপ ভেক্টরকে মুক্ত ভেক্টর (Free vector) বলে। যদিও কিছু বাস্তবক্ষেত্রে অবস্থান বা ভেক্টরের প্রয়োগরেখা খুব গুরুত্বপূর্ণ। এরুপ ভেক্টরকে স্থানীয় ভেক্টর (localised vector) বলে।

চিত্র 4.2 (a) দুটি সমান ভেক্টর A এবং B. (b) দুটি সমান ভেক্টর A' এবং B', যদিও তাদের দৈর্ঘ্য সমান।

সমাপতিত হওয়ায়, ভেক্টর দুটিকে সমান বলা যায়। সাধারণভাবে সমতাকে A = B এভাবে নির্দেশিত হয়। লক্ষ করো যে, 4.2(b) চিত্রে A' এবং B' ভেক্টরের মান সমান কিন্তু তারা সমান নয় কারণ তাদের অভিমুখ ভিন্ন। এমনকি যদি আমরা B' কে এর সমান্তরালে সরিয়ে এবং পশ্চাদ অংশ Q' কে A' এর পশ্চাদ অংশ O' এর সঙ্গো সমপাতিত করা হয় তবে B' এর অগ্রভাগ S' এবং A' এর অগ্রভাগ P' এর সঙ্গো সমপাতিত হবে না।

4.3 বাস্তব সংখ্যা দ্বারা ভেক্টরকে গুণন (MULTIPLICATION OF VECTORS BY REAL NUMBERS)

একটি ভেক্টর A কে একটি ধনাত্মক সংখ্যা λ দ্বারা গুণ করলে একটি ভেক্টর পাওয়া যাবে, তার মান λ গুণ হবে কিন্তু অভিমুখ A এর মত হবে:

 $|\lambda \mathbf{A}| = \lambda |\mathbf{A}|$ यमि $\lambda > 0$.

দৃষ্টান্তস্বরূপ যদি **A** কে 2 দ্বারা গুণ করা হয়, তবে লব্ধি ভেক্টর হবে 2**A** এবং অভিমুখ **A** এর অভিমুখ বরাবর হবে এবং মান 4.3(a) চিত্রের ন্যায় |**A**| এর দ্বিগুণ হবে।

A ভেক্টরকে একটি ঋণাত্মক সংখ্যা λ দ্বারা গুণ করলে একটি ভেক্টর λAপাওয়া যাবে, যার অভিমুখ হবে A ভেক্টরের অভিমুখের বিপরীত এবং যার মান |A| এর – λ গুণ।

প্রদত্ত ভেক্টর A কে ঋণাত্মক সংখ্যা যেমন -1 এবং -1.5 দ্বারা গুণ করলে চিত্র 4.3(b) এর ন্যায় দুটি ভেক্টর পাওয়া যাবে।

চিত্র 4.3 (a) A ভেক্টর এবং A কে একটি ধনাত্মক সংখ্যা 2 দ্বারা গুণ করার পর লব্ধি ভেক্টর।
(b) A ভেক্টর এবং ঋণাত্মক সংখ্যা –1 এবং –1.5 দ্বারা গুণ করার পর লব্ধি ভেক্টর।

A ভেক্টরকে যে গুণক λ দ্বারা গুণ করা হয় তা একটি স্কেলার হলে তার একটি নিজস্ব ভৌতমাত্রা (Physical dimension) থাকবে। তখন λA এর মাত্রা হবে λ এবং A এর মাত্রার গুণফল। দৃষ্টান্তস্বরূপ যদি স্থির বেগ ভেক্টরকে সময় অবকাশ দ্বারা আমরা গুণ করি তবে আমরা সরণ ভেক্টর পাব।

4.4 ভেক্টরের যোগ এবং বিয়োগ — লৈখিক পম্ধতি (ADDITION AND SUBTRACTION OF VECTORS—GRAPHICAL METHOD)

4.2 অনুচ্ছেদে উল্লেখ করা হয়েছিল যে, ভেক্টর, ভেক্টরযোগের ত্রিভুজ সূত্র বা সমতুল্য সামন্তরিক সূত্র মেনে চলে। আমরা এখন লৈখিক পম্বতিতে এই ভেক্টর যোগ ব্যাখ্যা করব।মনে করো, দুটি ভেক্টর A এবং B চিত্র 4.4(a) এর ন্যায় একটি সমতলে আছে। উন্তু ভেক্টরগুলির দৈর্ঘ্য ভেক্টরগুলির মানের সমানুপাতিরূপে প্রকাশ করা হয়েছে। ভেক্টর যোগফল A + B নির্ণয় করার জন্য B ভেক্টরের শেষপ্রান্ত 4.4(b) চিত্রের ন্যায় A ভেক্টরের অগ্রভাগে বসানো হল। এরপর A ভেক্টরের শেষ প্রান্ত B ভেক্টরের অগ্রপ্রান্তের সঙ্গো যুক্ত করি। এই OQ রেখা R ভেক্টরকে প্রকাশ করে, অর্থাৎ A এবং B ভেক্টরের যোগফলকে প্রকাশ করে। যেহেতু ভেক্টরযোগের এই পম্বতিতে ভেক্টরগুলির অগ্রপ্রান্ত ও পশ্চাদপ্রান্ত যুক্ত

করা হয়। তাই এই লৈখিক পম্বতিকে অগ্র থেকে পশ্চাদ পম্বতি (headto-tail method) বলে। দুটি ভেক্টর এবং তাদের লব্বি একটি ত্রিভুজের তিনটি বাহু গঠন করে, তাই এই পা্বতিকে আবার **ভেক্টর যোগের** ত্রিভুজ পান্ধতিও (triangle method of vector addition) বলে। চিত্র 4.4(c) এর ন্যায় যদি আমরা **B** + **A** লব্বি নির্ণয় করি, তবে একই ভেক্টর **R** পাওয়া যাবে। অর্থাৎ **ভেক্টর যোগ বিনিময় সূ**ত্র (commutative law) মেনে চলে।

$$\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A} \tag{4.1}$$

প্রদর্শিত 4.4(d) নং চিত্রের ন্যায় ভেক্টর সংযোজন, সংযোগ সূত্রও মেনে চলে। A এবং B ভেক্টরকে প্রথমে যোগ করে পরে C ভেক্টরকে যোগ করলে যে লব্দি পাওয়া যাবে তা প্রথমে B এবং C ভেক্টরকে যোগ করে পরে A ভেক্টরকে যোগ করলে যে লব্দি পাওয়া যায় তার সমান হবে, অর্থাৎ

$$(A+B)+C=A+(B+C)$$
 (4.2)

দুটি সমান মানের এবং বিপরীতমুখী ভেক্টরকে যোগ করলে লব্দি কি হবে ? চিত্র 4.3(b) এর ন্যায় দুটি ভেক্টর A এবং –A বিবেচনা করো। তাদের লব্দি হবে A + (–A) । যেহেতু দুটি ভেক্টরের মান একই কিন্তু অভিমুখ বিপরীত, তাদের লব্দি ভেক্টরের মান শূন্য হবে এবং একে 0 দ্বারা প্রকাশ করা হয় এবং একে অকার্যকর ভেক্টর (null vector) বা শূন্য ভেক্টর (zero vector) বলে।

$$\mathbf{A} - \mathbf{A} = \mathbf{0} \qquad |\mathbf{0}| = 0 \tag{4.3}$$

যেহেতু অকার্যকর ভেক্টরের মান শূন্য তাই এর কোন নির্দিষ্ট অভিমুখ নেই। যখন আমরা A ভেক্টরকে শূন্যসংখ্যা দ্বারা গুণ করি তখন আবার শূন্য ভেক্টরই পাওয়া যায়। 0 এর মুখ্য ধর্মাবলি হল :

$$\mathbf{A} + \mathbf{0} = \mathbf{A}$$
$$\lambda \mathbf{0} = \mathbf{0}$$
$$\mathbf{0} \mathbf{A} = \mathbf{0}$$
(4.4)

শূন্য ভেক্টরের ভৌত তাৎপর্য কী? 4.1(a) নং প্রদর্শিত চিত্রের ন্যায় কোনো সমতলে অবস্থান এবং সরণ ভেক্টর বিবেচনা করো। এখন মনে করো t সময়ে P অবস্থানে থাকা একটি বস্তু P' অবস্থানে গিয়ে পরে P অবস্থানে ফিরে আসে। তখন এর সরণ কী হবে? যেহেতু প্রাথমিক এবং অন্তিম অবস্থান সমপাতিত হয় তাই সরণ হল একটি শূন্য ভেক্টর।

ভেক্টরের বিয়োগ : ভেক্টরের বিয়োগকে ভেক্টর যোগের দ্বারা সংজ্ঞায়িত করা যায়। আমরা দুটি ভেক্টর A এবং B এর বিয়োগকে দুটি ভেক্টর A এবং –B এর যোগ দ্বারা সংজ্ঞায়িত করতে পারি :

$$\mathbf{A} - \mathbf{B} = \mathbf{A} + (-\mathbf{B}) \tag{4.5}$$

4.5 নং চিত্রে দেখানো হয়েছে যে, A ভেক্টরের সাথে –B ভেক্টর যোগ করায় $\mathbf{R}_2 = (\mathbf{A} - \mathbf{B})$ ভেক্টর পাওয়া যায়। একই চিত্রে $\mathbf{R}_1 = \mathbf{A} + \mathbf{B}$ ভেক্টরকে তুলনা করার জন্য দেখানো হয়েছে। আমরা দুটি ভেক্টরের যোগ করার জন্য **সামান্তরিক পম্বতিও** ব্যবহার করতে পারি। মনে করো, আমাদের দুটি ভেক্টর A এবং B দেওয়া আছে। এদের যোগ করার জন্য তাদের শেষপ্রান্ত 4.6(a) চিত্রের ন্যায় একটি সাধারণ প্রারম্ভিক বিন্দু O থেকে সামান্তরিকের কর্ণ OS বরাবর ক্রিয়া করে [চিত্র 4.6(b)]। 4.6(c) চিত্রে A এবং B ভেক্টরের লব্ধি পাওয়ার জন্য ত্রিভুজ সূত্র ব্যবহার করা হয়েছে এবং আমরা দেখেছি যে দুটি পদ্বতিতে একই ফলাফল পাওয়া যায়। সুতরাং দুটি পান্ধতিই পরস্পরের তুল্য।

চিত্র 4.5 (a) দুটি ভেক্টর A এবং B, – B ভেক্টরটিও প্রদর্শিত হল। (b) A ভেক্টর থেকে B ভেক্টরের বিয়োজন — লব্ধি হল R₂। তুলনার জন্য, A ভেক্টর এবং B ভেক্টরের লব্ধি অর্থাৎ R, প্রদর্শিত হল।

চিত্র 4.6 (a) দুটি ভেক্টর A এবং B, যাদের শেষ প্রান্তকে একটি সাধারণ মূলবিন্দুতে আনা হয়েছে। (b) সামান্তরিক সূত্র ব্যবহার করে যোগফল A + B পাওয়া গেল। (c) ভেক্টর যোগের সামান্তরিক সূত্র, ত্রিভুজ সূত্রের তুল্য।

উদাহরণ 4.1 বৃষ্টি উল্লম্বভাবে 35 m s⁻¹ দ্রুতিতে নীচে পড়ছে। কিছুক্ষণ পর 12 m s⁻¹ দ্রুতিতে বায়ু পূর্ব থেকে পশ্চিম দিকে প্রবাহিত হতে শুরু করে। বাসস্টপে অপেক্ষমান একজন বালক কোন্দিকে ছাতা ধরবে ?

Fig. 4.7

উত্তর : চিত্র 4.7 এ বৃষ্টি এবং বায়ুর বেগ v_r এবং v_w ভেক্টর দ্বারা প্রশ্নে উল্লেখিত দিক বরাবর প্রকাশ করা হয়েছে। ভেক্টর যোগের নীতি ব্যবহার করে আমরা দেখতে পাই যে, চিত্রের ন্যায় v_r এবং v_w এর লব্ধি হল **R**, **R** এর লব্ধির মান,

$$R = \sqrt{v_r^2 + v_w^2} = \sqrt{35^2 + 12^2} \text{ m s}^{-1} = 37 \text{ m s}^{-1}$$

উলম্বের সঙ্গে R, θ কোণ সৃষ্টি করলে, অভিমুখ θ নিম্নাক্ত সমীকরণ থেকে পাওয়া যাবে,

$$\tan \theta = \frac{v_w}{v_r} = \frac{12}{35} = 0.343$$

বা,
$$\theta = \tan^{-1}(0.343) = 19^{\circ}$$

সুতরাং, বালকটি উল্লম্বতলে, উল্লম্বের সঙ্গো প্রায় 19° কোণে পূর্বদিকে তার ছাতাটি ধরতে হবে।

4.5 ভেক্টরের বিভাজন (RESOLUTION OF VECTORS)

মনে করো, কোনো তলে ভিন্ন অভিমুখে a এবং b শূন্য নয় এমন দুটি ভেক্টর এবং A একইতলে অন্য একটি ভেক্টর। (চিত্র 4.8)। A ভেক্টরকে দুটি ভেক্টরের যোগফলরুপে প্রকাশ করা যায় — একটি পাওয়া যাবে a ভেক্টরকে একটি বাস্তব সংখ্যা দ্বারা গুণ করে এবং অন্যটি পাওয়া যাবে b ভেক্টরকে অপর একটি বাস্তব সংখ্যা দ্বারা গুণ করে এবং অন্যটি পাওয়া যাবে b ভেক্টরকে অপর একটি বাস্তব সংখ্যা দ্বারা গুণ করে। এজন্য ধরো, O এবং P হল A ভেক্টরের যথাক্রমে পশ্চাদপ্রান্ত এবং অগ্রপ্রান্ত। এরপর O বিন্দু দিয়ে a এর সমান্তরাল এবং P বিন্দু দিয়ে b এর সমান্তরাল সরলরেখা আঁক। মনে করো, তারা Q বিন্দুতে ছেদ করে, সুতরাং আমরা পাই,

$$\mathbf{A} = \mathbf{OP} = \mathbf{OQ} + \mathbf{QP} \tag{4.6}$$

যেহেতু, OQ, a এর সমান্তরাল এবং QP, b এর সমান্তরাল, সুতরাং আমরা লিখতে পারি,

$$\mathbf{OQ} = \lambda \mathbf{a}$$
, এবং $\mathbf{QP} = \mu \mathbf{b}$ (4.7)

যেখানে λ এবং μ হল বাস্তব সংখ্যা

সুতরাং, $\mathbf{A} = \lambda \, \mathbf{a} + \mu \, \mathbf{b}$

(4.8)

আমরা বলতে পারি, A ভেক্টরকে a এবং b ভেক্টর বরাবর যথাক্রমে λ a এবং μ b দুটি ভেক্টর উপাংশে বিভাজিত করা হয়েছে, এই পম্বতিতে প্রদত্ত ভেক্টরকে দুটি ভেক্টর বরাবর দুটি ভেক্টর উপাংশে বিভাজিত করতে পারবে - তিনটির প্রত্যেকে একটি সমতলে অবস্থান করবে। একটি ভেক্টরকে সাধারণত আয়তাকার স্থানাঙ্ক সংস্থার অক্ষদ্বয় বরাবর একক মানের ভেক্টর ব্যবহার করে বিভাজন করা সুবিধাজনক। এদেরকে একক ভেক্টর (Unit Vector) বলা হয় যা আমরা এখন আলোচনা করব।

একক ভেক্টর (unit vector) : নির্দিষ্ট অভিমুখে ক্রিয়াশীল একক মানের ভেক্টরকে একক ভেক্টর বলে। এর একক এবং মাত্রা নেই। এটি কেবল দিক নির্দেশ করতে ব্যবহৃত হয়। আয়তাকার স্থানাঙ্ক সংস্থার x-, y-এবং z-অক্ষ বরাবর একক ভেক্টর 4.9(a) চিত্রের ন্যায় যথাক্রমে $\hat{\mathbf{i}}_{,}\hat{\mathbf{j}}$

এবং $\hat{f k}$ দ্বারা প্রকাশ করা হয়।

যেহেতু এরা একক ভেক্টর, তাই

$$\begin{vmatrix} \hat{\mathbf{i}} \end{vmatrix} = \begin{vmatrix} \hat{\mathbf{j}} \end{vmatrix} = \begin{vmatrix} \hat{\mathbf{k}} \end{vmatrix} = 1$$
 (4.9)

এইসকল একক ভেক্টরগুলি পরস্পর পরস্পরের উপর লম্ব, এই পাঠ্যাংশে তাদেরকে মোটা হরফে ছাপা হয়েছে এবং সঙ্গে একটি টুপি (^) পরিয়ে তাদেরকে অন্য ভেক্টর থেকে আলাদা করা হয়। যেহেতু এই অধ্যায়ের বিষয়বস্তু দ্বিমাত্রিক গতি, তাই আমাদের দুটি একক ভেক্টরের ব্যবহার প্রয়োজন। আমরা যদি একক ভেক্টর $\hat{\mathbf{n}}$ কে স্কেলার দিয়ে গুণ করি তবে গুণফল $\boldsymbol{\lambda} = \boldsymbol{\lambda} \, \hat{\mathbf{n}}$ একটি ভেক্টর হবে, সাধারণত A ভেক্টরকে লেখা যায়

$$\mathbf{A} = |\mathbf{A}| \, \hat{\mathbf{n}} \tag{4.10}$$

যেখানে $\hat{\mathbf{n}}$ হল A ভেক্টর বরাবর একক ভেক্টর।

এখন আমরা A ভেক্টরকে $\hat{\mathbf{i}}$ এবং $\hat{\mathbf{j}}$ একক ভেক্টর বরাবর ভেক্টর উপাংশে বিভাজিত করতে পারি। মনে করো, 4.9(b) চিত্রের ন্যায় A ভেক্টর x-y তলে অবস্থান করে, A ভেক্টরের শেষপ্রান্ত থেকে স্থানাংক অক্ষের উপর লম্ব টানি; A₁ এবং A₂ এমন দুটি ভেক্টর পাই পদার্থবিদ্যা

যেন $\mathbf{A}_1 + \mathbf{A}_2 = \mathbf{A}$ হয়, যেহেতু ভেক্টর $\mathbf{A}_1, \, \hat{\mathbf{i}}$ ভেক্টরের সমান্তরাল এবং $\mathbf{A}_2, \, , \, \, \hat{\mathbf{j}}$ ভেক্টরের সমান্তরাল, সুতরাং আমরা পাই,

$$\mathbf{A}_{\mathbf{I}} = \mathbf{A}_{\mathbf{x}} \, \hat{\mathbf{i}}, \, \mathbf{A}_{\mathbf{2}} = \mathbf{A}_{\mathbf{y}} \, \hat{\mathbf{j}} \tag{4.11}$$

যেখানে A, এবং A, হল বাস্তব সংখ্যা,

ফলে,
$$\mathbf{A} = \mathbf{A}_{\mathbf{x}} \, \hat{\mathbf{i}} + \mathbf{A}_{\mathbf{y}} \, \hat{\mathbf{j}}$$
 (4.12)

এটি 4.9(c) চিত্রে প্রদর্শিত হয়েছে। A_x এবং A_y রাশিগুলোকে বলা হয় A ভেক্টরের x- এবং y- উপাংশ, লক্ষ করো যে, A_x নিজে একটি ভেক্টর নয়। কিন্তু A_x **i** একটি ভেক্টর এবং একইভাবে A_y **j** একটি ভেক্টর। সরল ত্রিকোণমিতি ব্যবহার করে আমরা A_x এবং A_y কে A ভেক্টরের মান এবং x-অক্ষের সঙ্গো নতিকোণের সাহায্যে প্রকাশ করতে পারি:

$$A_{x} = A \cos \theta$$
$$A_{y} = A \sin \theta$$
(4.13)

4.13 নং সমীকরণ থেকে স্পষ্ট যে, ভেক্টরের উপাংশ, θ এর মানের উপর নির্ভর করে ধনাত্মক, ঋণাত্মক বা শূন্য হতে পারে।

এখন, আমরা কোনো তলে A ভেক্টরকে নিম্নলিখিত দুভাবে প্রকাশ করতে পারি,

(i) এর মান A এবং এর অভিমুখ x-অক্ষের সঙ্গে θ কোণে; অথবা

(ii) এর উপাংশ A_x এবং A_y এর মাধ্যমে।

যদি A এবং θ দেওয়া থাকে তবে 4.13 নং সমীকরণ ব্যবহার করে A_x এবং A_y পাওয়া যেতে পারে। যদি A_x এবং A_y দেওয়া থাকে, তবে A এবং θ পাওয়া যাবে নিম্নরুপে :

$$A_x^2 + A_y^2 = A^2 \cos^2\theta + A^2 \sin^2\theta$$
$$= A^2$$
$$A = \sqrt{A^2 + A^2}$$
(4.14)

$$\mathbf{A} = \mathbf{A}$$

$$\tan \theta = \frac{A_y}{A_x}, \quad \theta = \tan^{-1} \frac{A_y}{A_x} \tag{4.15}$$

চিত্র 4.9 (a) x-, y-, এবং z- অক্ষ বরাবর $\hat{\mathbf{i}}_{,j}$ $\hat{\mathbf{j}}$ এবং $\hat{\mathbf{k}}$ একক ভেক্টর সমূহ, (b) x-, এবং y- অক্ষ বরাবর A ভেক্টরকে A_x এবং A_y উপাংশে বিভাজন, (c) $\hat{\mathbf{i}}$ এবং $\hat{\mathbf{j}}$ এর সাপেক্ষে A, এবং A_2 ভেক্টরের প্রকাশ।

বা,

এবং

x-y তলে অবস্থানরত ভেক্টরের ক্ষেত্রে আমরা যেভাবে ধরেছিলাম, ঠিক সেই পম্বতি ত্রিমাত্রিকের ক্ষেত্রেও ব্যবহার করে A ভেক্টরকে x-, y- এবং z- অক্ষ বরাবর তিনটি উপাংশে বিভাজিত করা যাবে। যদি 4.9(d) চিত্রের ন্যায় A ভেক্টর এবং x-, y-, এবং z- অক্ষের মধ্যবর্তী কোণ* যথাক্রমে α, β এবং γ হয়, তবে

চিত্র 4.9 (d) x-, y-, এবং z- অক্ষ বরাবর একটি ভেক্টর A কে উপাংশে বিভাজন।

 $A_x = A \cos \alpha, A_y = A \cos \beta, A_z = A \cos \gamma$ (4.16a) সাধারণভাবে আমরা পাই,

$$\mathbf{A} = A_x \hat{\mathbf{i}} + A_u \hat{\mathbf{j}} + A_z \hat{\mathbf{k}}$$
(4.16b)

A এর মান হবে

$$A = \sqrt{A_x^2 + A_y^2 + A_z^2}$$
(4.16c)

একটি অবস্থান ভেক্টর r কে প্রকাশ করা যায়, এভাবে

 $\mathbf{r} = x\,\,\hat{\mathbf{i}} + y\,\,\hat{\mathbf{j}} + z\,\,\hat{\mathbf{k}} \tag{4.17}$

যেখানে *x, y,* এবং *z* হল r ভেক্টরের যথাক্রমে *x-, y-, z-*অক্ষ বরাবর উপাংশ।

4.6 ভেক্টরের সংযোজন - বিশ্লেষণাত্মক পম্বতি (VECTOR ADDITION–ANALYTICALMETHOD)

যদিও ভেক্টরযোগের লৈখিক পম্ধতি ভেক্টর এবং লব্দি ভেক্টরকে কল্পনা করতে আমাদের সাহায্য করে তবুও এটি কখনো কখনো বিরস্তিকর এবং এর নির্ভুলতাও সীমিত। আনুযণ্ঠিক উপাংশ যুক্ত করে ভেক্টর যোগ করা তুলনামূলকভাবে অনেক সহজ। মনে করো, x-y তলে A এবং B ভেক্টরদ্বয়ের উপাংশগুলি হল A, A, এবং B, B, :

$$\mathbf{A} = A_x \mathbf{\hat{i}} + A_y \mathbf{\hat{j}}$$

 $\mathbf{B} = B_x \hat{\mathbf{i}} + B_y \hat{\mathbf{j}}$

মনে করো, তাদের লব্ধি R

 $\mathbf{R} = \mathbf{A} + \mathbf{B}$

$$= \left(A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}}\right) + \left(B_x \hat{\mathbf{i}} + B_y \hat{\mathbf{j}}\right)$$
(4.19a)

যেহেতু ভেক্টর বিনিময়সূত্র এবং সংযোগসূত্র মেনে চলে, আমরা (4.19a) সমীকরণে ভেক্টরকে আবার সুবিধাজনকভাবে সাজিয়ে এবং দলভুক্ত করে নিম্নরূপে লিখতে পারি :

$$\mathbf{R} = (A_x + B_x)\hat{\mathbf{i}} + (A_y + B_y)\hat{\mathbf{j}}$$
(4.19b)

মহেতু,
$$\mathbf{R} = R_x \hat{\mathbf{i}} + R_y \hat{\mathbf{j}}$$
 (4.20)

আমরা পাই, $R_x = A_x + B_x$, $R_y = A_y + B_y$ (4.21)

সুতরাং, লব্দি ভেক্টর R এর প্রতিটি উপাংশ হল A এবং B ভেক্টরের আনুযাজিক উপাংশের সমন্টির সমান।

ত্রিমাত্রিক দেশে আমরা পাই,

$$\mathbf{A} = A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}} + A_z \hat{\mathbf{k}}$$
$$\mathbf{B} = B_x \hat{\mathbf{i}} + B_y \hat{\mathbf{j}} + B_z \hat{\mathbf{k}}$$
$$\mathbf{R} = \mathbf{A} + \mathbf{B} = R_x \hat{\mathbf{i}} + R_y \hat{\mathbf{j}} + R_z \hat{\mathbf{k}}$$

যেখানে $R_x = A_x + B_x$

$$R_{y} = A_{y} + B_{y}$$

$$R_{z} = A_{z} + B_{z}$$
(4.22)

এই পদ্ধতি যে-কোনো সংখ্যক ভেক্টরের সংযোজন এবং বিয়োজনের ক্ষেত্রেও প্রয়োগ করতে পারি। যেমন, যদি a, b এবং c এভাবে প্রদন্তহয় যে,

$$\mathbf{a} = a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}$$

$$\mathbf{b} = b_x \hat{\mathbf{i}} + b_y \hat{\mathbf{j}} + b_z \hat{\mathbf{k}}$$

$$\mathbf{c} = c_x \hat{\mathbf{i}} + c_y \hat{\mathbf{j}} + c_z \hat{\mathbf{k}}$$
(4.23a)

তখন একটি ভেক্টর T = a + b - c এই উপাংশগুলি হবে :

$$T_{x} = a_{x} + b_{x} - c_{x}$$

$$T_{y} = a_{y} + b_{y} - c_{y}$$

$$T_{z} = a_{z} + b_{z} - c_{z}.$$
(4.23b)

উদাহরণ 4.2 দুটি ভেক্টর A এবং B এর লব্ধির মান এবং দিক ভেক্টরদ্বয়ের মান এবং তাদের মধ্যবর্তী θ কোণের সাপেক্ষে নির্ণয় করো।

[ে]লক্ষ কর, *৫, β,* এবং γ ত্রিমান্তিক দেশে তিনটি কোণ। এরা হল অসমতলীয় দুটি রেখার মধ্যবর্তী কোণ।

(4.18)

পদার্থবিদ্যা

উত্তর : ধরো, OP এবং OQ পরস্পর θ কোণে নত দুটি ভেক্টর A এবং B কে প্রকাশ করে। (চিত্র 4.10). তাহলে ভেক্টরযোগের সামন্তরিক সূত্র ব্যবহার করলে OS, লস্খি ভেক্টর R কে সূচিত করে :

$$\mathbf{R} = \mathbf{A} + \mathbf{B}$$

SN হল OP এর উপর লম্ব এবং PM হল OS এর উপর লম্ব। জ্যামিতিক চিত্র থেকে পাই,

 $OS^2 = ON^2 + SN^2$

কিন্তু $ON = OP + PN = A + B \cos \theta$ $SN = B \sin \theta$ $OS^2 = (A + B \cos \theta)^2 + (B \sin \theta)^2$ বা, $R^2 = A^2 + B^2 + 2AB \cos \theta$

$$R = \sqrt{A^2 + B^2 + 2AB\cos\theta} \tag{4}$$

.24a)

 $\Delta OSN- \mathfrak{a}$, $SN = OS \sin \alpha = R \sin \alpha$, এবং $\Delta PSN- \mathfrak{a}$, $SN = PS \sin \theta = B \sin \theta$ সুতরাং, $R \sin \alpha = B \sin \theta$

বা,
$$\frac{R}{\sin \theta} = \frac{B}{\sin \alpha}$$
 (4.24b)

অনুরূপে,

 $PM = A \sin \alpha = B \sin \beta$

বা,
$$\frac{A}{\sin\beta} = \frac{B}{\sin\alpha}$$
 (4.24c)

(4.24b) এবং (4.24c), সমীকরণ দুটি যুক্ত করে আমরা পাই,

$$\frac{R}{\sin\theta} = \frac{A}{\sin\beta} = \frac{B}{\sin\alpha}$$
(4.24d)

(4.24d) নং সমীকরণ ব্যবহার করে আমরা পাই,

$$\sin \alpha = \frac{B}{R} \sin \theta \tag{4.24e}$$

যেখানে R , (4.24a) সমীকরণে প্রদন্ত।

$$\operatorname{Tr}_{\alpha} \tan \alpha = \frac{SN}{OP + PN} = \frac{B \sin \theta}{A + B \cos \theta}$$
(4.24f)

সমীকরণ (4.24a) লন্ধির মান এবং সমীকরণ (4.24e) এবং (4.24f) এর দিক নির্দেশ করে। (4.24a) সমীকরণ কোসাইনের সূত্র (Law of cosines) এবং (4.24d) সমীকরণ সাইনের সূত্র (Law of sines) নামে পরিচিত। উদাহরণ 4.3 একটি মোটরবোট উত্তরদিকে 25 km/h বেগে গতিশীল এবং জলস্রোত 10 km/h বেগে দক্ষিণের সঙ্গে 60° পূর্বে ঐ অঞ্চলে গতিশীল। বোটটির লব্ধিবেগ নির্ণয় করো।

উত্তর : চিত্র 4.11 এ v_b মোটরবোটের বেগ এবং vু জলস্রোতের বেগ প্রশ্নে নির্দেশিত অভিমুখে প্রকাশিত। ভেক্টরযোগের সামন্তরিক পদ্ধতি ব্যবহার করে, লব্ধি **R** চিত্র প্রদর্শিত অভিমুখে পাওয়া যাবে।

কোসাইনের সূত্র ব্যবহার করে আমরা R লব্দির মান পেতে পারি :

$$R = \sqrt{v_{
m b}^2 + v_{
m c}^2 + 2 v_{
m b} v_{
m c} {
m cos120}^\circ}$$

= $\sqrt{25^2 + 10^2 + 2 imes 25 imes 10(-1/2)}$ ≅ 22 km/h
অভিমুখ পাওয়ার জন্য আমরা সাইনের সূত্র প্রয়োগ করতে পারি

$$\frac{R}{\sin \theta} = \frac{v_c}{\sin \phi} \quad \text{(f), } \sin \phi = \frac{v_c}{R} \sin \theta$$
$$= \frac{10 \times \sin 120^\circ}{21.8} = \frac{10\sqrt{3}}{2 \times 21.8} \approx 0.397$$
$$\phi \approx 23.4^\circ$$

4.7 সামতলিক গতি (MOTION IN A PLANE)

এই অংশে ভেক্টর ব্যবহার করে আমরা দেখব দ্বিমাত্রিক গতি কিভাবে বর্ণনা করা যায়।

4.7.1 অবস্থান ভেক্টর এবং সরণ (Position Vector and Displacement)

x-y নির্দেশতন্ত্রে মূলবিন্দুর সাপেক্ষে কোনো তলে অবস্থিত একটি বস্তুকণা P বিন্দুর অবস্থান ভেক্টর r (চিত্র 4.12) নিম্নরূপে প্রকাশ করা যায় :

$$\mathbf{r} = x\,\hat{\mathbf{i}} + y\,\hat{\mathbf{j}}$$

যেখানে x এবং y হল x- এবং y- অক্ষ বরাবর r এর উপাংশ অথবা সহজভাবে এরা বস্তুর স্থানাঙ্ক বোঝায়।

মনে করো, একটি বস্তুকণা 4.12(b) নং চিত্রে প্রদর্শিত বক্র মোটা রেখা বরাবর t সময়ে P বিন্দুতে এবং t' সময়ে P' বিন্দুতে গতিশীল। ফলে সরণ হল :

$$\Delta \mathbf{r} = \mathbf{r}' - \mathbf{r} \tag{4.25}$$

 $=\hat{\mathbf{i}}\Lambda \mathbf{x}+\hat{\mathbf{i}}\Lambda \mathbf{y}$

এবং এটি P থেকে P' অভিমুখে ক্রিয়াশীল।

আমরা (4.25) সমীকরণকে উপাংশের আকারে লিখতে পারি :

$$\Delta \mathbf{r} = \left(x' \,\hat{\mathbf{i}} + y' \,\hat{\mathbf{j}} \right) - \left(x \,\hat{\mathbf{i}} + y \,\hat{\mathbf{j}} \right)$$

যেখানে
$$\Delta x = x' - x, \Delta y = y' - y$$
 (4.26)
বেগ (Velocity)

একটি বস্তুর গড়বেগ $(\overline{\mathbf{v}})$ হল সরণ এবং আনুষষ্ঠিাক সময় ব্যবধানের অনুপাত :

$$\overline{\mathbf{v}} = \frac{\Delta \mathbf{r}}{\Delta t} = \frac{\Delta x \, \hat{\mathbf{i}} + \Delta y \, \hat{\mathbf{j}}}{\Delta t} = \hat{\mathbf{i}} \frac{\Delta x}{\Delta t} + \hat{\mathbf{j}} \frac{\Delta y}{\Delta t} \quad (4.27)$$
$$\overline{\mathbf{v}} = \overline{v}_x \, \hat{\mathbf{i}} + \overline{v}_y \, \hat{\mathbf{j}}$$

যেহেতু **⊽** = $\frac{\Delta \mathbf{r}}{\Delta t}$, গড়বেগের অভিমুখ ∆r এর অভিমুখ একই হবে। (চিত্র 4.12)। সময় ব্যবধান শৃন্যের নিকটবর্তী হলে গড়বেগের সীমাস্থ মান, তাৎক্ষণিক বেগের সমান হবে।

সুতরাং, তাৎক্ষণিক বেগ
$$\mathbf{v} = \lim_{\Delta t \to 0} \frac{\Delta \mathbf{r}}{\Delta t} = \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}$$
 (4.28)

চিত্র 4.13(a) থেকে 4.13(d) এর সাহায্যে খুব সহজে সীমাস্থকরণের অর্থ বোঝা যাবে। এই চিত্রগুলিতে মোটা রেখা t সময়ে P বিন্দুতে অবস্থিত বস্তুর সঞ্জারপথকে প্রকাশ করে। Δt_1 , Δt_2 , এবং Δt_3 সময় পর বস্তু যথাক্রমে P₁, P₂ এবং P₃ বিন্দুতে অবস্থান করে। $\Delta t_1, \Delta t_2$, এবং Δt_3 সময় বস্তু যথাক্রমে P₁, P₂ এবং P₃ বিন্দুতে অবস্থান করে। $\Delta t_1, \Delta t_2$, এবং Δt_3 সময়ে বস্তুর সরণ যথাক্রমে Δr_1 , Δr_2 , এবং Δt_3 , হলে গড়বেগ $\overline{\mathbf{v}}$ এর অভিমুখ ক্রমহ্রাসমান Δt অর্থাৎ $\Delta t_1, \Delta t_2$, এবং $\Delta t_3, (\Delta t_1 > \Delta t_2 > \Delta t_3)$ সময়ে (a), (b) এবং (c) চিত্রে প্রদর্শিত হয়েছে। যখন $\Delta t \rightarrow 0$,

বা,

চিত্র 4.13 সময় ব্যবধান ∆া যতই শূন্যের দিকে যায়, গড় বেগ ততই v এর দিকে যাবে। ⊽ এর অভিমুখ গতিপথের স্পর্শক রেখার সমান্তরাল হবে।

তখন △r → 0 এবং সঞ্জারপথের ওই বিন্দু স্পর্শক বরাবর (চিত্র 4.13(d)) ক্রিয়াশীল। সুতরাং কোনো বস্তুর গতিপথের যে-কোনো বিন্দুতে বেগের অভিমুখ গতিপথের ওই বিন্দুতে স্পর্শক বরাবর এবং গতির অভিমুখে নির্দেশিত হয়।

আমরা v কে উপাংশের আকারে প্রকাশ করতে পারি :

$$\mathbf{v} = \frac{d\mathbf{r}}{dt}$$

$$= \lim_{\Delta t \to 0} \left(\frac{\Delta x}{\Delta t} \,\hat{\mathbf{i}} + \frac{\Delta y}{\Delta t} \,\hat{\mathbf{j}} \right) \qquad (4.29)$$

$$= \hat{\mathbf{i}} \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} + \hat{\mathbf{j}} \lim_{\Delta t \to 0} \frac{\Delta y}{\Delta t}$$

$$\exists \mathbf{i}, \quad \mathbf{v} = \hat{\mathbf{i}} \frac{dx}{dt} + \hat{\mathbf{j}} \frac{dy}{dt} = v_x \hat{\mathbf{i}} + v_y \hat{\mathbf{j}}.$$

$$\exists \mathbf{k}, \quad \mathbf{v}_x = \frac{dx}{dt}, v_y = \frac{dy}{dt} \qquad (4.30a)$$

সুতরাং, স্থানাংক x এবং y এর রাশিমালা যদি সময়ের অপেক্ষকরৃপে জানা থাকে তবে আমরা v_x এবং v_y বের করতে এই সমীকরণগুলো ব্যবহার করতে পারি।

তখন v এর মান হবে

$$v = \sqrt{v_x^2 + v_y^2} \tag{4.30b}$$

এবং v এর অভিমুখ নিন্মাক্ত θ কোণ থেকে পাওয়া যাবে :

$$\tan\theta = \frac{v_y}{v_x}, \ \theta = \tan^{-1}\left(\frac{v_y}{v_x}\right)$$
(4.30c)

বেগ ভেক্টর v এর v, v, এবং কোণ 0, 4.14 নং চিত্রে প্রদর্শিত হয়েছে।

ত্বরণ (Acceleration)

x-y তলে কোনো বস্তুর নির্দিষ্ট সময় ব্যবধানে গড় ত্বরণ হল বেগের পরিবর্তন এবং সময়ের ব্যবধানের অনুপাত :

$$\bar{\mathbf{a}} = \frac{\Delta \mathbf{v}}{\Delta t} = \frac{\Delta \left(v_x \hat{\mathbf{i}} + v_y \hat{\mathbf{j}} \right)}{\Delta t} = \frac{\Delta v_x}{\Delta t} \hat{\mathbf{i}} + \frac{\Delta v_y}{\Delta t} \hat{\mathbf{j}} \qquad (4.31a)$$

বা,
$$\bar{\mathbf{a}} = a_x \hat{\mathbf{i}} + a_y \hat{\mathbf{j}}$$
. (4.31b)

* x এবং y এর সাপেক্ষে, a_x এবং a_y কে প্রকাশ করা হয় নিম্নরূপে

$$a_x = \frac{d}{dt} \left(\frac{dx}{dt} \right) = \frac{d^2x}{dt^2}, \ a_y = \frac{d}{dt} \left(\frac{dy}{dt} \right) = \frac{d^2y}{dt^2}$$

চিত্র 4.14 বেগ **v** এর উপাংশ v_x এবং v_y এবং x অক্ষের সঙ্গে এর নতিকোণ θ । লক্ষ করো $v_x = v \cos \theta, v_y$ = $v \sin \theta$.

যখন সময় ব্যবধান শূন্যের নিকটবর্তী হবে, তখন গড় ত্বরণের সীমাস্থ মান হল **ত্বরণ** (তাৎক্ষণিক ত্বরণ) :

$$\mathbf{a} = \lim_{\Delta t \to 0} \frac{\Delta \mathbf{v}}{\Delta t} \tag{4.32a}$$

যেহেতু $\Delta \boldsymbol{v} = \Delta v_x \hat{\mathbf{i}} + \Delta v_y \hat{\mathbf{j}}$, সুতরাং

$$\mathbf{a} = \hat{\mathbf{i}} \lim_{\Delta t \to 0} \frac{\Delta v_x}{\Delta t} + \hat{\mathbf{j}} \lim_{\Delta t \to 0} \frac{\Delta v_y}{\Delta t}$$

$$\overrightarrow{\mathbf{n}}, \quad \mathbf{a} = a_x \mathbf{\hat{i}} + a_y \mathbf{\hat{j}} \tag{4.32b}$$

যেখানে,
$$a_x = \frac{\mathrm{d}v_x}{\mathrm{d}t}, a_y = \frac{\mathrm{d}v_y}{\mathrm{d}t}$$
 (4.32c)*

বস্তুর গতিপথের বেগ-সময় লেখচিত্র ব্যবহার করে বেগের ন্যায় ত্বরণকে যে সংজ্ঞায়িত করা যায় - তা আমরা বুঝতে পারি। এটি 4.15(a) থেকে 4.15(d) চিত্রে প্রদর্শিত হয়েছে। t সময়ে বস্তুর অবস্থান P বিন্দু নির্দেশ করে এবং P₁, P₂, P₃ যথাক্রমে Δt_1 , Δt_2 , Δt_3 , সময় পর বস্তুর অবস্থান নির্দেশ করে ($\Delta t_1 > \Delta t_2 > \Delta t_3$)। 4.15 (a), (b) এবং (c) চিত্রে P, P₁, P₂, P₃ বিন্দুতে বেগ ভেক্টরগুলো দেখানো হয়েছে। Δt এর প্রতিটি ক্ষেত্রে, ভেক্টর যোগের ত্রিভুজ সূত্র ব্যবহার করে Δv পাওয়া যাবে। সংজ্ঞানুসারে, গড় ত্বরণের অভিমুখ এবং Δv এর অভিমুখ একই হবে। আমরা দেখি যে, Δt হ্রাস হওয়ার সাথে সাথে, Δv এর অভিমুখও পরিবর্তিত হয় এবং ফলস্বরূপ, ত্বরণের অভিমুখও পরিবর্তিত হব, অবশেবে, $\Delta t \rightarrow 0$ সীমায় (চিত্র 4.15(d), গড়ত্বরণ তাৎক্ষণিক ত্বরণে পরিবর্তিত হয় এবং চিত্রে যেভাবে দেখানো হয়েছে ঠিক সেভাবে এর অভিমুখ থাকবে। সমতলীয় গতি

চিত্র **4.15** (a) Δt_1 , (b) Δt_2 , এবং (c) Δt_3 , তিনটি সময় ব্যবধানে গড় ত্বরণ ($\Delta t_1 > \Delta t_2 > \Delta t_3$). (d) $\Delta t \rightarrow 0$ সীমায়, গড় ত্বরণই ঐ বিন্দুতে তাৎক্ষণিক ত্বরণ হয়।

বা,

লক্ষ করো, একমাত্রিকের ক্ষেত্রে কোনো বস্তুর বেগ এবং ত্বরণ সর্বদা একই সরলরেখা বরাবর ক্রিয়া করে। (হয় একই অভিমুখে কিংবা বিপরীত অভিমুখে)। যদিও দ্বিমাত্রিক বা ত্রিমাত্রিক গতির ক্ষেত্রে, বেগ ভেক্টর এবং ত্বরণ ভেক্টরের মধ্যবর্তী কোণ **0**° এবং **180**° এর মধ্যবর্তী যে-কোনো মানের হতে পারে।

উত্তর :

v(t) =
$$\frac{d\mathbf{r}}{dt} = \frac{d}{dt} (3.0 t \,\hat{\mathbf{i}} + 2.0t^2 \,\hat{\mathbf{j}} + 5.0 \,\hat{\mathbf{k}})$$

= $3.0\hat{\mathbf{i}} + 4.0t \,\hat{\mathbf{j}}$
a(t) = $\frac{d\mathbf{v}}{dt} = +4.0\hat{\mathbf{j}}$
a = $4.0 \,\mathrm{m \, s^{-2}}$ যা y- অভিমুখ ক্রিয়াশীল।

যখন t = 1.0 s, তখন **v = 3.0î + 4.0ĵ**

এক্ষেত্রে v এর মান হল $v = \sqrt{3^2 + 4^2} = 5.0 \ m \ s^{-1}$

এবং অভিমুখ হল

$$\theta = \tan^{-1}\left(\frac{v_y}{v_x}\right) = \tan^{-1}\left(\frac{4}{3}\right) \cong 53^{\circ}(x-$$
আক্ষের সজ্য)

4.8 স্থির ত্বরণে সমতলীয় গতি (MOTION IN A PLANE WITH CONSTANT ACCELERATION)

ধরো, একটি বস্তু x-y তলে গতিশীল এবং এর ত্বরণ a ধ্রুবন । নির্দিষ্ট সময় ব্যবধানে, গড় ত্বরণ এই স্থির মানের সমান হবে, এখন মনে করো, t = 0 সময়ে বস্তুর বেগ v₀ এবং t সময়ে v, তাহলে সংজ্ঞানুসারে,

$$\mathbf{a} = \frac{\mathbf{v} - \mathbf{v}_{\mathbf{o}}}{t - 0} = \frac{\mathbf{v} - \mathbf{v}_{\mathbf{o}}}{t}$$

 $\mathbf{v} = \mathbf{v_0} + \mathbf{a}t \tag{4.33a}$

উপাংশের সাপেক্ষে 🛛 কে লেখা যায় :

$$v_x = v_{ox} + a_x t$$

$$v_y = v_{oy} + a_y t \qquad (4.33b)$$

এখন চলো আমরা দেখি সময়ের সাথে অবস্থান কীভাবে পরিবর্তিত হয়। একমাত্রিক গতির ক্ষেত্রে ব্যবহৃত পদ্ধতি আমরা এক্ষেত্রে অনুসরণ করব। ধরো কণার 0 এবং t সময়ে অবস্থান ভেক্টর হল r, এবং r ঐসকল মুহূর্তে বেগসমূহ হল v, এবং v। তখন এই t সময় ব্যবধানে, গড়বেগ হল (v, + v)/2। সরণ হল গড়বেগ এবং সময় ব্যবধানের গুণফল।

$$\mathbf{r} - \mathbf{r_0} = \left(\frac{\mathbf{v} + \mathbf{v_0}}{2}\right) t = \left(\frac{(\mathbf{v_0} + \mathbf{a}t) + \mathbf{v_0}}{2}\right) t$$

$$= \mathbf{v_0}t + \frac{1}{2}\mathbf{a}t^2$$

$$\overrightarrow{\mathbf{n}}, \qquad \mathbf{r} = \mathbf{r}_0 + \mathbf{v}_0 t + \frac{1}{2} \mathbf{a} t^2 \tag{4.34a}$$

এটি খুব সহজে প্রমাণ করা যায় যে, (4.34a) সমীকরণের অবকলন অর্থাৎ $\frac{d\mathbf{r}}{dt}$ থেকে (4.33a) সমীকরণ পাওয়া যায় এবং এটি t=0 সময়ে $\mathbf{r} = \mathbf{r}_{o}$ শর্তটি সিদ্ধ করে। (4.34a) সমীকরণকে উপাংশের আকারে লেখা যায়।

$$x = x_0 + v_{ox}t + \frac{1}{2}a_xt^2$$

$$y = y_0 + v_{oy}t + \frac{1}{2}a_yt^2$$
 (4.34b)

(4.34b) সমীকরণের একটি বিশেষ তাৎপর্য হল x- এবং y-অভিমুখের গতি একে অপরের উপর নির্ভরশীল নয়, বলে ধরা যায়। অর্থাৎ কোনো তলের (দ্বিমাত্রিক) গতিকে একইসঙ্গে দুটি পরস্পর অভিলম্ব অভিমুখে স্থির ত্বরণে গতিশীল দুটি পৃথক একমাত্রিক গতি হিসেবে মনে করা যায়। বস্তুর দ্বিমাত্রিক গতির বিশ্লেষণের ক্ষেত্রে এটি খুব প্রয়োজনীয় এবং গুরুত্বপূর্ণ। ত্রিমাত্রিকের ক্ষেত্রেও এটি প্রযোজ্য। বিভিন্ন বাস্তব পরিস্থিতির উপর নির্ভর করে সুবিধাজনকভাবে অভিলম্ব অভিমুখ নির্বাচন করা হয় যা আমরা 4.10 অনুচ্ছেদে প্রাসের ক্ষেত্রে দেখতে পাবে।

► উদাহরণ 4.5 একটি কণা t = 0 সময়ে 5.0 î m/s বেগে মূলবিন্দু থেকে যাত্রা শুরু করে এবং x-y তলে একটি বলের অধীনে ক্রিয়াশীল, যা (3.0i+2.0j) m/s² স্থির ত্বরণ সৃষ্টি হয়। (a) যে মুহূর্তে কণার x-স্থানাংক 84 m, সে মুহূর্তে কণার y-স্থানাংক কি হবে ? (b) এই সময়ে কণার দ্রুতি কত হবে ?

উত্তর : কণার অবস্থান দেওয়া আছে,

$$\mathbf{r}(t) = \mathbf{v_0}t + \frac{1}{2}\mathbf{a}t^2$$

= $5.0\mathbf{\hat{i}}t + (1/2)(3.0\mathbf{\hat{i}} + 2.0\mathbf{\hat{j}})t^2$
= $(5.0t + 1.5t^2)\mathbf{\hat{i}} + 1.0t^2\mathbf{\hat{j}}$
সুতরাং, $x(t) = 5.0t + 1.5t^2$
 $y(t) = +1.0t^2$
প্রদত্ত $x(t) = 84$ m, t = ?
 $5.0t + 1.5t^2 = 84 \Rightarrow t = 6$ s

t = 6 s সময়ে y = 1.0 (6)² = 36.0 m

এখন বেগ, $\mathbf{v} = \frac{d\mathbf{r}}{dt} = (5.0 + 3.0t)\hat{\mathbf{i}} + 2.0t \hat{\mathbf{j}}$ ∴ t = 6 s সময়ে, বেগ $\mathbf{v} = 23.0\hat{\mathbf{i}} + 12.0\hat{\mathbf{j}}$ ∴ বেগের মান অর্থাৎ দ্রতি = $|\mathbf{v}| = \sqrt{23^2 + 12^2} \cong 26 \text{ m s}^{-1}$.

4.9দ্বিমাত্রিক আপেক্ষিক বেগ (RELATIVE
VELOCITY IN TWO DIMENSIONS)

3.7 অনুচ্ছেদে একটি সরলরেখা বরাবর গতির ক্ষেত্রে আপেক্ষিক বেগের ধারণা ত্রিমাত্রিক গতি বা কোনো তলের ক্ষেত্রে খুব সহজভাবে প্রয়োগ করা যায়।মনে করো, দুটি বস্তু A এবং B, v_A এবং v_B বেগে গতিশীল (প্রতিটি ক্ষেত্রে সাধারণ নির্দেশতন্ত্র একই যেমন ভূমির সাপেক্ষে), তখন B এর সাপেক্ষে A বস্তুর আপেক্ষিক বেগ :

$$\mathbf{v}_{\mathrm{AB}} = \mathbf{v}_{\mathrm{A}} - \mathbf{v}_{\mathrm{B}} \tag{4.35a}$$

এবং অনুরূপভাবে, A এর সাপেক্ষে B বস্তুর আপেক্ষিক বেগ :

$$\mathbf{v}_{BA} = \mathbf{v}_B - \mathbf{v}_A$$

সুতরাং, $\mathbf{v}_{AB} = -\mathbf{v}_{BA}$ (4.35b)
এবং, $|\mathbf{v}_{AB}| = |\mathbf{v}_{BA}|$ (4.35c)

► উদাহরণ 4.6 বৃষ্টি 35 m s⁻¹ দ্রুতিতে উলম্বভাবে নীচে পড়ছে। একজন মহিলা 12 m s⁻¹ দ্রুতিতে বাইসাইকেলে চড়ে পূর্ব থেকে পশ্চিমদিকে গতিশীল, কোন্দিকে সে তার ছাতাকে ধরে রাখবে?

উত্তর : 4.16 চিত্রে v, বৃষ্টির বেগকে প্রকাশ করে এবং মহিলার দ্বারা বাইসাইকেল চালানো অবস্থায় বাইসাইকেলের বেগ v, । উভয়বেগই ভূপৃষ্ঠের সাপেক্ষে। যেহেতু মহিলা সাইকেলে চলমান তাই তার

চিত্র 4.16

সমতলীয় গতি

বাইসাইকেলের সাপেক্ষে বৃষ্টির বেগই তার নিকট বৃষ্টির বেগ বলে মনে হবে। অর্থাৎ,

$$\mathbf{v}_{rb} = \mathbf{v}_r - \mathbf{v}_r$$

4.16 নং প্রদর্শিত চিত্রের মত আপেক্ষিক বেগ ভেক্টর উল্লম্বের সঙ্গে θ কোণে আনত। যেখানে

b

$$\tan \theta = \frac{v_b}{v_r} = \frac{12}{35} = 0.343$$

ৰা, $\theta \cong 19^{\circ}$

সুতরাং, মহিলা উল্লম্বের সঙ্গে প্রায় 19° কোণে পশ্চিমদিকে তার ছাতা ধরে রাখবে।

উক্ত উদাহরণ এবং 4.1 উদাহরণদ্বয়ের মধ্যে পার্থক্য ভালো করে লক্ষ্য কর। 4.1 উদাহরণে, বালকটি দুটি বেগের লব্ধি (ভেক্টর যোগফল) অনুভব করে আবার এই উদাহরণে, মহিলাটি বাইসাইকেলের সাপেক্ষে বৃষ্টির আপেক্ষিক বেগ (দুটি বেগ ভেক্টরের অন্তরফল) অনুভব করবে।

4.10 প্রাসের গতি (PROJECTILE MOTION)

আগের অংশে প্রাপ্ত ধারণার একটি প্রয়োগ হিসেবে আমরা প্রাসের গতি বিবেচনা করি। নিক্ষেপ বা প্রক্ষেপ করার পর উড্ডয়নরত বস্তুকে প্রাস বলে। এরকম প্রাস একটি ফুটবল, একটি ক্রিকেট বল, একটি বেস্বল অথবা অন্য কোনো বস্তু হতে পারে। প্রাসের গতি দুটি আলাদা একসঙ্গেই সংঘটিত গতির উপাংশের সমন্বয় হিসেবে মনে করা যেতে পারে। একটি উপাংশ ত্বরণহীনভাবে অনুভূমিক অভিমুখ বরাবর এবং অপর উপাংশ উল্লম্ব অভিমুখ বরাবর অভিকর্ষ বলের জন্য স্থির ত্বরণে ক্রিয়াশীল। গ্যালিলিও (Galileo) সর্বপ্রথম তার Dialogue on the great world systems (1632)-এ প্রাসের অনুভূমিক এবং উল্লম্ব উপাংশের নিরপেক্ষতা বিবৃত করেন।

আমাদের আলোচনায় আমরা ধরে নেই যে প্রাসের গতির ক্ষেত্রে বায়ুর বাধার প্রভাব নগণ্য। 4.17 নং প্রদর্শিত চিত্রের ন্যায় মনে করো, প্রাসটি v, বেগে x- অক্ষের সঙ্গে θ, কোণে উৎক্ষেপ করা হয়েছে।

বস্তুটি প্রক্ষেপ করার পর, এর উপর অভিকর্ষের জন্য উল্লম্বভাবে নীচের দিকে ত্বরণ ক্রিয়াশীল :

 $\mathbf{a} = -g \,\hat{\mathbf{j}}$ বা, $a_x = 0$, $a_y = -g$ (4.36) প্রাথমিক \mathbf{v}_o বেগের উপাংশগুলি হল : $\mathbf{v}_{ox} = \mathbf{v}_o \cos \theta_o$ $\mathbf{v}_{oy} = \mathbf{v}_o \sin \theta_o$ (4.37)

4.17 নং প্রদর্শিত চিত্রের ন্যায় নির্দেশ ফ্রেমের প্রাথমিক অবস্থানকে যদি আমরা মূলবিন্দু হিসেবে ধরে নেই তবে আমরা পাই,

$$x_0 = 0, y_0 = 0$$

y

তবে (4.34b) সমীকরণটি হবে :

$$x = v_{ox} t = (v_o \cos \theta_o) t$$

$$y = (v_o \sin \theta_o) t - (\frac{1}{2})g t^2$$

$$(4.38)$$

t সময়ে বেগের উপাংশ (4.47b) নং সমীকরণ থেকে আমরা পেতে পারি:

$$v_{x} = v_{ox} = v_{o} \cos \theta_{o}$$
$$v_{y} = v_{o} \sin \theta_{o} - g t \qquad (4.39)$$

(4.38) নং সমীকরণ t সময়ে প্রাথমিক দ্রুতি v₀ এবং প্রক্ষেপ কোণ θ₀ এই দুটি পরিমাপক (parameter) এর মাধ্যমে প্রাসের অবস্থানের x-এবং y-স্থানাংক প্রকাশ করে। লক্ষ করো, প্রাসের গতির বিশ্লেষণ সমকৌণিক x- এবং y-অভিমুখ সরলীকৃতভাবে নির্বাচন করা হয়েছে। বেগের একটি উপাংশ অর্থাৎ x-উপাংশ পুরো গতিতে স্থির এবং কেবল y- উপাংশ উলম্বভাবে পতনশীল বস্তুর ন্যায় পরিবর্তিত হচ্ছে। লেখচিত্রের সাহায্যে এর কিছু মুহূর্ত 4.18 নং চিত্রে দেখানো হয়েছে। লক্ষ করো, সর্বোচ্চ বিন্দুতে, v₀ = 0 এবং ওই ক্ষেত্রে

$$\theta = \tan^{-1} \frac{v_y}{v_x} = 0$$

প্রাসের গতিপথের সমীকরণ (Equation of path of a projectile) প্রাসের গতির সঞ্চারপথের আকার কী হবে ? এটি (4.38) নং সমীকরণে x এবং y রাশিমালা থেকে সময় অপনয়ন করে পাওয়া যাবে। আমরা পাই,

পদার্থবিদ্যা

$$y = (\tan \theta_{o}) x - \frac{g}{2 (v_{o} \cos \theta_{o})^{2}} x^{2} \qquad (4.40)$$

এখন যেহেতু, g, θ_0 এবং v₀ ধ্রুবক, তাই (4.40) নং সমীকরণটি হল $y = a x + b x^2$ আকারের, যেখানে a এবং b ধ্রুবক। এটি একটি অধিবৃত্তের সমীকরণ। অর্থাৎ প্রাসের গতিপথ হল একটি অধিবৃত্ত (চিত্র 4.18)।

চিত্র 4.18 প্রাসের গতিপথ হল একটি অধিবৃত্ত।

চরম উচ্চতায় পৌঁছতে সময় (Time of maximum height)

একটি প্রাস চরম উচ্চতায় পৌঁছতে কত সময় নেয় ? মনে করো, এই সময়কে t_mদ্বারা চিহ্নিত করা হল। যেহেতু উক্ত বিন্দুতে v_y=0, সুতরাং (4.39) সমীকরণ থেকে আমরা পাই,

$$v_{y} = v_{o} \sin \theta_{o} - g t_{m} = 0$$

$$t_{m} = v_{o} \sin \theta_{o} / g \qquad (4.41a)$$

প্রাসটি মোট যে সময় T_f ব্যাপী উড্ডয়নরত, তা (4.38) নং সমীকরণে y = 0 বসিয়ে পাওয়া যাবে,

সুতরাং, আমরা পাই, $T_f = 2 (v_o \sin \theta_o)/g$ (4.41b)

 $T_{\rm f}$ কে প্রাসের **উড্ডয়নকাল** বলে। আমরা লক্ষ করি যে, $T_{\rm f}=2~t_{\rm m}\,;$ অধিবৃত্তাকার সঞ্চারপথের প্রতিসাম্যতার জন্য এরূপে প্রকাশ করা যায়।

প্রাসের সর্বোচ্চ উচ্চতা (Maximum height of a projectile)

প্রাস সর্বোচ্চ যে উচ্চতায় h_m পৌঁছে তা (4.38) নং সমীকরণে t = t_m বসিয়ে নির্ণয় করা যায়।

$$y = h_m = (v_0 \sin \theta_0) \left(\frac{v_0 \sin \theta_0}{g}\right) - \frac{g}{2} \left(\frac{v_0 \sin \theta_0}{g}\right)^2$$

ৰা,
$$h_m = \frac{\left(v_0 \sin \theta_0\right)^2}{2g}$$
 (4.42)

প্রাসের অনুভূমিক পাল্লা (Horizontal range of a projectile)

প্রাস প্রাথমিক অবস্থান (x = y = 0) থেকে পতনকালে y = 0 বিন্দুগামী অবস্থানে অনুভূমিকভাবে যে দূরত্ব যায় তাকে **অনুভূমিক পাল্লা** (R) বলে। এটি হল T_f উড্ডয়নকালে অতিক্রান্ত দূরত্ব। সুতরাং পাল্লা Rহল:

$$R = (v_{o} \cos \theta_{o}) (T_{f})$$
$$= (v_{o} \cos \theta_{o}) (2 v_{o} \sin \theta_{o})/g$$
$$T, R = \frac{v_{o}^{2} \sin 2\theta_{0}}{g}$$
(4.43a)

(4.43a) সমীকরণ থেকে স্পস্টত যে, প্রদন্ত প্রক্ষেপ বেগ v₀ এর জন্য, R সর্বোচ্চ হবে যখন $\sin 2\theta_0$ সর্বোচ্চ অর্থাৎ যখন $\theta_0 = 45^0$. সুতরাং, সর্বোচ্চ অনুভূমিক পাল্লা

$$R_m = \frac{v_o^2}{g} \tag{4.43b}$$

উদাহরণ 4.7 গ্যালিলিও তার 'Two new sciences' বইয়ে বলেছেন যে "প্রাসের প্রক্ষেপ কোণ 45° এর সামান্য বৃদ্বি বা একই পরিমাণ হ্রাসের ক্ষেত্রে পাল্লা একই থাকে।" — এই বিবৃতিটি প্রমাণ করো।

উত্তর : \mathbf{v}_{a} বেগে এবং $\, heta_{a}$ কোণে প্রক্ষিপ্ত কোণ প্রাসের পাল্লা নিম্নে প্রদত্ত

$$R = \frac{v_0^2 \sin 2\theta_0}{g}$$

এখন (45° + α) এবং (45° – α) কোলের ক্ষেত্রে, 20, হবে যথাক্রমে (90° + 2α) এবং (90° – 2α) । sin (90° + 2α) এবং sin (90° – 2α) এর মান একই হবে এবং এর মান হবে cos 2α । সুতরাং প্রক্ষেপ কোণ 45° এর সামান্য বেশি বা একই পরিমাণ (α) হ্রাসের ক্ষেত্রে পাল্লা একই থাকে।

উদাহরণ 4.8 একজন নাগরিক ভূপৃষ্ঠ থেকে 490 m উপরে খাড়া বাধের চূড়ার উপরে দাঁড়িয়ে অনুভূমিকভাবে 15 m s⁻¹ প্রাথমিক বেগে একটি পাথরখণ্ড ছোড়ে। বায়ুর বাধা নগণ্য ধরে, পাথরখণ্ডটি ভূপৃষ্ঠে পৌঁছতে কত সময় লাগবে এবং এটি ভূপৃষ্ঠকে কী দ্রুতিতে আঘাত করবে তা নির্ণয় করো ।(ধরো g = 9.8 m s⁻²).

উত্তর : খাড়া বাঁধের চূড়াকে আমরা x-, এবং y-অক্ষের মূলবিন্দুরুপে ধরি এবং পাথরখণ্ডটি t = 0 s সময়ে ছোড়া হয়েছে। মনে করো, x-অক্ষের ধনাত্মক অভিমুখ প্রাথমিক বেগ বরাবর এবং y-অক্ষের ধনাত্মক অভিমুখ উল্লম্বভাবে উপরের দিকে ক্রিয়াশীল। গতির x-,উপাংশ এবং y- উপাংশ পরস্পর নিরপেক্ষ ধরা যায়। গতীয় সমীকরণগুলি হল :

$$\begin{array}{l} x\ (t) \ = x_o + v_{ox}\ t \\ y\ (t) \ = y_o + v_{oy}\ t + (1/2)\ a_y\ t^2 \\ \mbox{aviter,} \ x_o \ = y_o \ = 0,\ v_{oy} \ = 0,\ a_y \ = -g \ = -9.8\ {\rm m\ s^{-2}}, \\ v_{ox} \ = 15\ {\rm m\ s^{-1}}. \\ \mbox{aviter,} \ y\ (t) \ = -490\ {\rm m\ over aviter avi$$

উদাহরণ 4.9 একটি ক্রিকেটবল 28 m s⁻¹ দ্রুতিতে অনুভূমিকের সঙ্গে 30° কোণে ছোড়া হল। নির্ণয় করো (a) সর্বোচ্চ উচ্চতা (b) একই অনুভূমিক তলে ফিরে আসতে বলের সময় এবং (c) নিক্ষেপকারী থেকে একই অনুভূমিক তলে যেখানে বলটি ফিরে আসে তার দূরত্ব।

উত্তর : (a) চরম উচ্চতা নীচে প্রদত্ত হল

$$h_m = \frac{(v_0 \sin \theta_0)^2}{2g} = \frac{(28 \sin 30^\circ)^2}{2 (9.8)} \text{ m}$$

$$=\frac{14\times14}{2\times9.8}=10.0$$
 m

(b) একই অনুভূমিক তলে ফিরে আসতে সময়

 $T_f = (2 v_o \sin \theta_o)/g = (2 \times 28 \times \sin 30^\circ)/9.8$ = 28/9.8 s = 2.9 s

(c) নিক্ষেপকারী থেকে একই অনুভূমিক তলে যেখানে বলটি ফিরে আসে তার দুরত্ব হল :

$$R = \frac{\left(v_o^2 \sin 2\theta_o\right)}{g} = \frac{28 \times 28 \times \sin 60^o}{9.8} = 69 \text{ m}$$

বায়ুর বাধা উপেক্ষণীয় — এরূপ ধরে নেওয়ার প্রকত অর্থ কি ?

প্রাসের গতিবিষয়ক আলোচনায়, আমরা বলেছি যে প্রাসের গতির ক্ষেত্রে বায়ুর বাঁধার কোনো প্রভাব নেই ধরে নেওয়া যাক। তুমি নিশ্চয় বুঝতে পারছ যে এরকম বিবৃতির অর্থ কী ? ঘর্ষণ, সান্দ্রবল, বায়ুর বাধা - এরা প্রত্যেকে অপচিত বল। এরকম যে-কোনো বলের উপস্থিতি গতির বিপরীতমুখী হয়। এরকম বিরুদ্ধ বলের উপস্থিতিতে কোনো বস্তু তার প্রাথমিক শক্তির এবং সাথে সাথে ভরবেগের খানিকটা হ্রাস ঘটায়। তাই অধিবৃত্তাকার পথে সঞ্চালিত একটি প্রাস বায়ুর উপস্থিতিতে আদর্শ সঞ্জারপথ থেকে খানিকটা আলাদা হবে। এটি যে বেগে প্রক্ষিপ্ত করা হয়েছিল সেই বেগে ভূপষ্ঠে আঘাত করে না। বায়ুর বাধার অনুপস্থিতে, বেগের x-উপাংশ অপরিবর্তিত থাকে এবং কেবল y-উপাংশ অনবরত পরিবর্তিত হবে। বায়ুর বাধার উপস্থিতিতে এদের উভয়েই প্রভাবিত হয়। এর ফলে প্রাসের বিস্তার প্রদত্ত (4.43) সমীকরণের চাইতে কম হবে। আবার সর্বোচ্চ উচ্চতাও প্রদত্ত (4.42) নং সমীকরণের চাইতে কম হবে। উড্ডয়ণকালের পরিবর্তের ব্যাপারে তুমি কি আগে থেকে অনুমান করতে পার?

বায়ুর বাধা উপেক্ষা করার জন্য আমাদের বায়ুশূন্য স্থানে অথবা নিম্নচাপে পর্যবেক্ষণ করা প্রয়োজন। যা এত সহজ নয়। আমরা যখন 'বায়ুর বাধা উপেক্ষা করো' — এরূপ বলি তখন এর দ্বারা আমরা প্রাসের বিস্তার, উচ্চতা ইত্যাদি পরিমাপকের পরিবর্তন বায়ু ছাড়া তাদের মানের তুলনায় অনেক কম হয়। বায়ুর বাধা নগণ্য ধরে গণনা করা বায়ুর বাধা ধরে গণনার চাইতে অনেক সরল।

4.11 সুষম বৃত্তীয় গতি (UNIFORM CIRCULAR MOTION)

যখন একটি বস্তু স্থির দ্রুতিতে একটি বৃত্তাকার পথ অনুসরণ করে চলে তখন বস্তুর গতিকে সুষম বৃত্তীয় গতি বলে। 'সুষম' শব্দটি দ্বারা বোঝায় সম্পূর্ণ যাত্রায় দ্রুতি ধ্রুবক। মনে করো, একটি বস্তু 4.19 চিত্রের ন্যায় *R* ব্যাসার্ধের বৃত্তপথে *v* সুষম দ্রুতিতে ঘুরছে। যেহেতু বস্তুর বেগের অভিমুখ অনবরত পরিবর্তিত হচ্ছে। তাই বস্তু ত্বরণযুক্ত হবে। চলো আমরা এই ত্বরণের মান ও দিক নির্ণয় করি।

পদার্থবিদ্যা

চিত্র 4.19 সুষম বৃত্তীয় গতির ক্ষেত্রে কোনো বস্তুর বেগও ত্বরণ, সময় ব্যবধান Δt , (a) থেকে (c) তে (যেখানে শূন্য) ক্রমশ হ্রাস পায়। বৃত্তপথের প্রত্যেক বিন্দুতে ত্বরণ বৃত্তের কেন্দ্র বরাবর ক্রিয়াশীল।

ধরো, 4.19(a) চিত্রের ন্যায় কোনো বস্তুর P এবং P' বিন্দুতে অবস্থান ভেক্টর r এবং r' এবং বেগ v এবং v' । সংজ্ঞানুসারে, কোনো বিন্দুতে বেগ ওই বিন্দুতে গতির অভিমুখে স্পর্শক বরাবর ক্রিয়াশীল। 4.19(a1) চিত্রে বেগ ভেক্টর v এবং v' প্রদর্শিত হয়েছে। ভেক্টর যোগের ত্রিভুজ সূত্র ব্যবহার করে 4.19 (a2) নং চিত্র থেকে Δv পাওয়া যাবে। যেহেতু সঞ্জারপথটি বৃত্তাকার, তাই v, r এর উপর লম্ব হবে এবং একইভাবে v', r' এর উপর লম্ব। সুতরাং Δv , Δr এর উপর লম্ব হবে। যেহেতু গড় ত্বরণ, $\Delta {f r}$ বরাবর ক্রিয়াশীল $\left({f ar a} = {\Delta {f v}\over a}
ight)$, তাই গড ত্বরণ Δt ā, ∆r এর উপর লম্ব হয়। আমরা যদি ∆v কে r এর্বং r' এর মধ্যবর্তী কোণের সমদ্বিখণ্ডকরুপে স্থাপন করি তবে আমরা দেখি যে, এটি বৃত্তের কেন্দ্র বরাবর ক্রিয়াশীল। 4.19(b) নং চিত্র ক্ষুদ্র সময় অবকাশের ক্ষেত্রে $\Delta \mathbf{v}$ একই রাশিকে প্রকাশ করে এবং সাথে সাথে $\, \mathbf{ar{a}} \,$ আবার কেন্দ্র বরাবর ক্রিয়াশীল। 4.19(c) চিত্রে, ∆t→0 এবং গড় ত্বরণ তাৎক্ষণিক ত্বরণে পরিণত হয়। এটি কেন্দ্র বরাবর ক্রিয়াশীল।* অর্থাৎ আমরা দেখি যে, সুষম বৃত্তপথে গতিশীল বস্তুর ত্বরণ সর্বদা বৃত্তের কেন্দ্র বরাবর ক্রিয়াশীল। চলো আমরা এখন ত্বরণের মান নির্ণয় করি।

সংজ্ঞানুসারে a এর মান নিয়ে প্রদত্ত হল

$$|\mathbf{a}| = \frac{\lim}{\Delta t \to 0} \frac{|\Delta \mathbf{v}|}{\Delta t}$$

ধরো, অবস্থান ভেক্টর r এবং r' এর মধ্যবর্তী কোণ $\Delta \theta$. যেহেতু

বেগ ভেক্টর v এবং v' সর্বদা অবস্থান ভেক্টরের সাথে লম্ব, তাই v এবং v' এর মধ্যবতী কোণও ∆θ হবে। সুতরাং অবস্থান ভেক্টর দ্বারা গঠিত ত্রিভুজ CPP' এবং বেগ ভেক্টর v, v' এবং ∆v দ্বারা গঠিত ত্রিভুজ GHI সদৃশ হবে (চিত্র 4.19a)। সুতরাং একটি ত্রিভুজের ভূমির দৈর্ঘ্য এবং একপাশের দৈর্ঘ্যের অনুপাত অপর ত্রিভুজের ক্ষেত্রে অনুপাতের সমান হবে। অর্থাৎ,

$$\frac{|\Delta \mathbf{v}|}{\upsilon} = \frac{|\Delta \mathbf{r}|}{R}$$
 ($\because |\mathbf{r}| = |\mathbf{r}'| = \mathbf{R}$, বৃত্তের ব্যাসার্ধ।) $|\Delta \mathbf{v}| = \upsilon \frac{|\Delta \mathbf{r}|}{R}$

সুতরাং,

বা,

$$|\mathbf{a}| = \lim_{\Delta t \to 0} \frac{|\Delta \mathbf{v}|}{\Delta t} = \lim_{\Delta t \to 0} \frac{\upsilon |\Delta \mathbf{r}|}{R\Delta t} = \frac{\upsilon}{R} \lim_{\Delta t \to 0} \frac{|\Delta \mathbf{r}|}{\Delta t}$$

যদি ∆t ক্ষুদ্র হয় তবে ∆θ আবার ক্ষুদ্র হবে এবং তখন চাপ PP' কে প্রায় |∆r| ধরে নেওয়া যায় :

$$\begin{split} |\Delta \mathbf{r}| &\cong \upsilon \Delta t \\ \frac{|\Delta \mathbf{r}|}{\Delta t} &\cong \upsilon \\ \\ \exists l, \quad \Delta t \to O \quad \frac{|\Delta \mathbf{r}|}{\Delta t} &= \upsilon \end{split}$$

^{*} Δt→0 সীমায়, Δ**r** , **r** এর সাথে অভিলম্ব হয়ে যাবে। উক্ত সীমায় Δ**v → 0** এবং ফলস্বরূপ **V** এরও অভিলম্ব হবে। সুতরাং বৃত্তপথের প্রতিটি বিন্দুতে ত্বরণ কেন্দ্র অভিমুখী হবে।

সমতলীয় গতি

সুতরাং, অভিকেন্দ্র ত্বরণ aু হলে :

$$a_c = \left(\frac{v}{R}\right)v = v^2/R \tag{4.44}$$

অর্থাৎ *R* ব্যাসার্ধের বৃত্তপথে *v* দ্রুতিতে গতিশীল একটি বস্তুর ত্বরণের মান *v²/R* এবং সর্বদা কেন্দ্র বরাবর ক্রিয়াশীল। এধরণের ত্বরণকে নিউটনের প্রস্তাবিত নামানুসারে অভিকেন্দ্র ত্বরণ (centripetal acceleration) বলে। 1673 খ্রিস্টাব্দে ডাচ্ (Dutch) বিজ্ঞানী খ্রিস্টিয়ান হাইগেন্স (Christiaan Huygens (1629-1695) অভিকেন্দ্র ত্বরণের বিস্তারিত বিশ্লেষণ প্রকাশ করেন, যদিও কয়েক বৎসর আগেই বিজ্ঞানী নিউটনের সম্ভবত এটি জানা ছিল। Centripetal গ্রিক শব্দ থেকে এসেছে যার অর্থ 'কেন্দ্রাভিমুখী'। যেহেতু *v* এবং *R* ধ্রুবক, তাই অভিকেন্দ্র ত্বরণের মানও ধ্রুবক। যদিও অভিমুখ সর্বদা কেন্দ্রাভিমুখে পরিবর্তিত হয়। সুতরাং অভিকেন্দ্র ত্বরণ একটি স্থির ভেক্টর নয়।

সুষম বৃত্তপথে গতিশীল একটি বস্তর বেগ এবং ত্বরণ আরেকভাবেও আমরা ব্যাখ্যা করতে পারি। যেহেতু $\Delta t \ (= t' - t)$ সময়ে বস্তু P থেকে P' বিন্দুতে যায়, CP রেখা 4.19 চিত্রের ন্যায় $\Delta \theta$ কোণে আবর্তিত হয়। $\Delta \theta$ কে কৌণিক দূরত্ব বলে। আমরা কৌণিক দুতি ω (গ্রিক অক্ষর ওমেগা) কে কৌণিক দূরত্বের হাররুপে সংজ্ঞায়িত করি:

$$\omega = \frac{\Delta\theta}{\Delta t} \tag{4.45}$$

এখন, যদি $\,\Delta t\,$ সময়ে বস্তুটি $\,\Delta s\,$ দুরত্ব অতিক্রম করে, অর্থাৎ যদি PP' , Δs হয় তখন $\,$:

$$v = \frac{\Delta s}{\Delta t}$$

কিন্তু $\Delta s = R \Delta \theta$. সুতরাং,

$$v = R \frac{\Delta \theta}{\Delta t} = R \omega$$

$$v = R \omega \qquad (4.46)$$

আমরা অভিকেন্দ্র ত্বরণ a_c কে কৌণিক দ্রুতির সাপেক্ষে প্রকাশ করতে পারি :

$$a_c = \frac{v^2}{R} = \frac{\omega^2 R^2}{R} = \omega^2 R$$

$$a_c = \omega^2 R \qquad (4.47)$$

বস্তু একবার ঘুরে আসতে যে সময় নেয়, তাকে এর পর্যায়কাল T বলে এবং এক সেকেন্ড যতবার ঘূর্ণন সম্পন্ন হয় তাকে এর কম্পাংক v (=1/T) বলে। যদিও এই সময়ে বস্তুর অতিক্রান্ত দূরত্ব s = 2πR. সুতরাং, v = 2πR/T =2πRv (4.48) কম্পাংক v এর সাপেক্ষে আমরা পাই,

$$\omega = 2\pi v$$
$$v = 2\pi R v$$
$$a_{z} = 4\pi^{2} v^{2} R$$

(4.49)

উদাহরণ 4.10 12 cm ব্যাসার্ধের বৃত্তাকার ফাঁদে (খাঁজে) আটকে পড়া একটি পোকা খাঁজ বরাবর সুযমভাবে 100 s এ 7 বার ঘুরে আসে। (a) পোঁকার গতির কৌণিক দ্রুতি এবং রৈখিক দ্রুতি কত ? (b) ত্বরণ ভেক্টরটি কি ধ্রুবক ? এর মান কত ?

উত্তর : এটি একটি সুষম বৃত্তীয় গতির উদাহরণ। এখানে R = 12 cm. কৌণিক দ্রুতি ৩ নিম্নে প্রদত্ত

$$\omega = 2\pi/T = 2\pi \times 7/100 = 0.44 \text{ rad/s}$$

রৈখিক দ্রুতি v হল :

$$v = \omega R = 0.44 \text{ s}^{-1} \times 12 \text{ cm} = 5.3 \text{ cm} \text{ s}^{-1}$$

বৃত্তের প্রতিটি বিন্দুর স্পর্শক বরাবর বেগ v ক্রিয়াশীল। ত্বরণ বৃত্তের কেন্দ্র বরাবর ক্রিয়াশীল। যেহেতু এই অভিমুখ অনবরত পরিবর্তিত হয়, তাই এখানে ত্বরণ স্থির ভেক্টর নয়। যদিও, ত্বরণের মান ধ্রুবক:

$$a = \omega^2 R = (0.44 \text{ s}^{-1})^2 (12 \text{ cm})$$

$$= 2.3 \text{ cm s}^{-2}$$

সারাংশ স্কেলার রাশি হল এমন রাশি যার কেবল মান আছে। উদাহরণগুলি হল দূরত্ব, দ্রুতি, ভর এবং উয়ুতা। ভেক্টর রাশি হল এমন রাশি যার মান এবং দিক উভয়ই আছে। উদাহরণগুলি হল সরণ, বেগ এবং ত্বরণ। এরা ভেক্টর বীজগণিতের বিশেষ সুত্রাবলি মেনে চলে। একটি বাস্তব সংখ্যা λ দ্বারা একটি ভেক্টর A কে গুণ করলে গুণফল একটি ভেক্টর হয় যার মান A ভেক্টরের মানের λ গুণ এবং এর দিক, λ ধনাত্মক হলে একই অথবা ঋণাত্মক হলে বিপরীত দিকে হয়। দুটি ভেক্টর A এবং B কে লেখচিত্রের সাহায্যে অগ্র থেকে পশ্চাদ পদ্ধতি (head-to-tail) বা সামন্তরিক পদ্ধতি ব্যবহার করে সংযোজন করা যায়। ভেক্টর যোগ বিনিময়যোগ্য (Commutative) : $\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$ এটি সংযোগ সূত্রও (associative law) মেনে চলে : $(\mathbf{A} + \mathbf{B}) + \mathbf{C} = \mathbf{A} + (\mathbf{B} + \mathbf{C})$ একটি অকার্যকর বা শূন্য ভেক্টর (null or zero vector) শূন্য মানবিশিষ্ট একটি ভেক্টর। যেহেতু মান শূন্য, আমরা এর অভিমুখ সুনির্দিষ্ট করতে পারি না। এর ধর্মগুলি হল : $\mathbf{A} + \mathbf{0} = \mathbf{A}$ $\lambda 0 = 0$ 0 A = 0A-ভেক্টর থেকে B ভেক্টর বিয়োজন, A এবং –B ভেক্টরের সংযোজন দ্বারা সংজ্ঞায়িত করা হয় : $\mathbf{A} - \mathbf{B} = \mathbf{A} + (-\mathbf{B})$ একটি ভেক্টর A কে একইতলে দুটি প্রদত্ত ভেক্টর a এবং b বরাবর উপাংশে বিভাজিত করতে পারি : $\mathbf{A} = \lambda \mathbf{a} + \mu \mathbf{b}$ যেখানে λ এবং μ হল বাস্তব সংখ্যা। A ভেক্টরের সঙ্গো জড়িত একটি একক ভেক্টর (unit vector)-এর মান এক একক এবং A ভেক্টর বরাবর ক্রিয়াশীল : $\hat{\mathbf{n}} = \frac{\mathbf{A}}{|\mathbf{A}|}$ একক ভেক্টর i, j, k হল দক্ষিণাবর্তী স্থানাঙ্ক সংস্থা (right-handed coordinate system) যথাক্রমে x-, y-, এবং z-অক্ষ বরাবর ক্রিয়াশীল একক ভেক্টর। 10. একটি ভেক্টর **A** কে প্রকাশ করা হয়

$$\mathbf{A} = A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}}$$

যেখানে A_x, A_y হল x-, এবং y-অক্ষ বরাবর এর উপাংশ। যদি A ভেক্টর x-অক্ষের সঙ্গে θ কোণ সৃষ্টি করে, তবে

$$A_x = A \cos \theta, A_y = A \sin \theta$$
 এবং $A = |\mathbf{A}| = \sqrt{A_x^2 + A_y^2}, \ \tan \theta = \frac{A_y}{A_x}.$

11. বিশ্লেষণ পদ্ধতিতে (analytical method) সুবিধাজনকভাবে ভেক্টরকে সংযোজন করা যায়। যদি x-y তলে দুটি ভেক্টর A এবং B এর যোগফল R হয়, তবে :

 $\mathbf{R} = R_x \hat{\mathbf{i}} + R_y \hat{\mathbf{j}}$, যেখানে, $R_x = A_x + B_x$, এবং $R_y = A_y + B_y$

12. x-y তলে একটি বস্তুর অবস্থান ভেক্টর **r** = x î + y ĵ দ্বারা প্রকাশিত এবং r অবস্থান থেকে r' অবস্থানে সরণ

 $\Delta \mathbf{r} = \mathbf{r}' - \mathbf{r}$ $= (x' - x) \hat{\mathbf{i}} + (y' - y) \hat{\mathbf{j}}$ $= \Delta x \hat{\mathbf{i}} + \Delta y \hat{\mathbf{j}}$

13. যদি একটি বস্তু Δt সময়ে Δr সরণ ঘটায় তবে এর গড় বেগ $\mathbf{v} = \frac{\Delta \mathbf{r}}{\Delta t}$. t সময়ে একটি বস্তুর বেগ, Δt শূন্যের নিকটবর্তী

82

1.

2.

3.

4.

5.

6.

7.

8.

9.

v =

হলে গড়বেগের সীমাস্থ মানের সমান :

 $\mathbf{v} = \frac{\lim \Delta \mathbf{r}}{\Delta t \to 0} \frac{\Delta \mathbf{r}}{\Delta t} = \frac{\mathrm{d} \mathbf{r}}{\mathrm{d} t}$ । একক ভেক্টরের সাপেক্ষে একে প্রকাশ করলে

$$v_x \hat{\mathbf{i}} + v_y \hat{\mathbf{j}} + v_z \hat{\mathbf{k}}$$
 যোখানে $v_x = \frac{\mathrm{d}x}{\mathrm{d}t}, v_y = \frac{\mathrm{d}y}{\mathrm{d}t}, v_z = \frac{\mathrm{d}z}{\mathrm{d}t}$

যেখানে কোনো স্থানাঙ্ক সংস্থা একটি বস্তুর বিভিন্ন অবস্থান চিহ্নিত করলে বস্তুর যে সঞ্চারপথ পাওয়া যায়, ওই গতিপথের যে-কোনো বিন্দুতে v তার স্পর্শক বরাবর হয়।

14. যদি কোনো বস্তুর বেগ Δt সময়ে v থেকে v' -এর পরিবর্তিত হয়, তবে এর গড় ত্বরণ হবে, $\bar{\mathbf{a}} = \frac{\mathbf{v} - \mathbf{v}'}{\Delta t} = \frac{\Delta \mathbf{v}}{\Delta t}$

কোনো t সময়ে ত্বরণ a হল ∆t →0 সীমায় ā এর সীমাস্থ মান :

$$\mathbf{a} = \lim_{\Delta t \to 0} \frac{\Delta \mathbf{v}}{\Delta t} = \frac{\mathrm{d} \mathbf{v}}{\mathrm{d} t}$$

উপাংশের আকারে, আমরা পাই : $\mathbf{a} = a_x \hat{\mathbf{i}} + a_y \hat{\mathbf{j}} + a_z \hat{\mathbf{k}}$

যোখানে, $a_x = \frac{dv_x}{dt}$, $a_y = \frac{dv_y}{dt}$, $a_z = \frac{dv_z}{dt}$

যদি একটি বস্তু একটি তলে a = |a| = \sqrt{a_x^2 + a_y^2} স্থির ত্বরণে গতিশীল হয় এবং t = 0 সময়ে এর অবস্থান ভেক্টর r, হয়, তখন t সময়ে এটি অন্য যে বিন্দুতে অবস্থান করবে তা

$$\mathbf{r} = \mathbf{r}_{\mathbf{o}} + \mathbf{v}_{\mathbf{o}}t + \frac{1}{2}\mathbf{a}t^2$$

এবং এর বেগ, v = v, + a t যেখানে v, হল t = 0 সময়ের বেগ, উপাংশের আকারে :

$$x = x_o + v_{ox}t + \frac{1}{2}a_xt^2$$
$$y = y_o + v_{oy}t + \frac{1}{2}a_yt^2$$
$$v_x = v_{ox} + a_xt$$
$$v_y = v_{oy} + a_yt$$

সমতলীয় গতিকে দুটি পারস্পরিক লম্ব অভিমুখে দুটি পৃথক যুগপৎ একমাত্রিক গতির উপরিপাতনরূপে ধরা যায়।

16. উড্ডয়নরত প্রক্ষেপ করা বস্তুকে প্রাস (projectile) বলে। যদি একটি বস্তু x-অক্ষের সঙ্গে θ় কোণে v বেগে প্রক্ষিপ্ত হয় এবং যদি আমরা তার প্রাথমিক অবস্থান স্থানাজ্ঞ সংস্থার মূলবিন্দুর সঙ্গো সমপতিত ধরে নেই তখন t সময়ে প্রাসের অবস্থান এবং বেগ নীচে প্রদত্ত হল :

$$x = (v_o \cos \theta_o) t$$
$$y = (v_o \sin \theta_o) t - (1/2) g t^2$$
$$v_x = v_{ox} = v_o \cos \theta_o$$
$$v_y = v_o \sin \theta_o - g t$$

প্রাসের গতিপথ হবে অধিবৃত্তাকার এবং নিম্নরূপে প্রকাশিত :

$$y = (\tan \theta_0) x \quad \frac{g x^2}{2 \left(v_o \cos \theta_o \right)^2}$$

প্রাস সর্বোচ্চ যে উচ্চতা আরোহণ করে তা হল :

$$h_m = \frac{\left(v_o \sin \theta_o\right)^2}{2g}$$

এই উচ্চতায় পৌঁছতে যে সময়ে লাগে

$$t_m = \frac{v_o \sin \theta_o}{g}$$

প্রাথমিক অবস্থানরত হতে উড্ডয়নরত একটি প্রাস তার পতনকালে y = 0 অবস্থান পৌঁছতে যে অনুভূমিক দূরত্ব যায় তাকে প্রাসের পাল্লা (range of the projectile) বলে। এটি হল :

$$R = \frac{v_o^2}{g} \sin 2\theta_o$$

17. যখন একটি বস্তু স্থির দুতিতে বৃত্তাকার পথে ঘোরে তখন বস্তুর গতিকে সুষম বৃত্তীয় গতি (uniform circular motion) বলে। এর ত্বরণের মান হল a = v²/R । a এর অভিমুখ সর্বদা বৃত্তের কেন্দ্রাভিমুখী হয়।

কৌণিক দুতি ω হল কৌণিক দূরত্বের পরিবর্তনের হার। এটি v এর সঙ্গো $v = \omega R$ দ্বারা সম্পর্কযুক্ত। ত্বরণ a_c হল $a_c = \omega^2 R$.

যদি বৃত্তীয় গতিতে ঘূর্ণনশীল বস্তুর ঘূর্ণনের পর্যায়কাল T হয় এবং এর কম্পাংক v হয় তবে আমরা পাই $\omega = 2\pi v$, $v = 2\pi v R$, $a_c = 4\pi^2 v^2 R$

প্রাকৃতিক রাশি	চিহ্ন	মাত্রা	একক	মন্তব্য
অবস্থান ভেক্টর	r	[L]	m	ভেক্টর, একে পরিচিত অন্য যে-কোনো চিহ্ন চারা প্রকাশ করা সময়।
সরণ ভেক্টর	$\Delta \mathbf{r}$	[L]	m	ধারা একাশ করা বার। — ঐ —
বেগ		[LT ⁻¹]	m s ⁻¹	Δ r
(a) গড়	v			$=\overline{\Delta t}$, ভেক্টর
(b) তাৎক্ষণিক	v			$= \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t},$ ভেক্টর
ত্বরণ		$[LT^{-2}]$	$m s^{-2}$	
(a) গড়	ā			= <u>─</u> _, ভেক্টর ∆t
(b) তাৎক্ষণিক	a			$=\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}$, ভেক্টর
প্রাসের গতি				
(a) উত্থানকাল	t _m	[T]	S	$=\frac{v_0 \sin \theta_0}{g}$
(b) সর্বোচ্চ উচ্চতা	$h_{ m m}$	[L]	m	$=\frac{(\nu_0\sin\theta_0)^2}{2g}$
(c) অনুভূমিক পাল্লা	R	[L]	m	$=\frac{v_0^2\sin 2\theta_0}{g}$
বৃত্তীয় গতি				A.O
(a) কৌণিক দ্রুতি	ω	$[T^{-1}]$	rad/s	$=\frac{\Delta \sigma}{\Delta t} = \frac{\sigma}{r}$
(b) অভিকেন্দ্র ত্বরণ	a _c	[LT ⁻²]	${\rm m}~{\rm s}^{-2}$	$=\frac{v^2}{r}$

ভেবে দেখার বিষয়সমূহ [POINTS TO PONDER]

- দুটি বিন্দুর মধ্যে একটি বস্তুকর্তৃক অতিক্রান্ত পথের দৈর্ঘ্য সাধারণত সরণের মানের সমান হয় না। সরণ কেবল প্রান্তবিন্দুদ্বয়ের উপর নির্ভর করে, পথের দৈর্ঘ্য (নাম থেকে স্পইত) প্রকৃত পথের উপর নির্ভর করে। গতি চলাকালীন যদি বস্তু তার অভিমুখ পরিবর্তন না করে তবে দুটি রাশি একই হবে। অপর সবক্ষেত্রে, পথের দৈর্ঘ্য সরণের মানের চেয়ে বেশি হয়।
- 2. উপরের 1 নং পয়েন্টের পরিপ্রেক্ষিতে, নির্দিষ্ট সময় ব্যবধানে একটি বস্তুর গড় দ্রুতির মান গড়বেগের মানের সমান বা বেশি হবে, যদি পথদৈর্ঘ্য সরণের মানের সমান হয় তবে দুটি রাশি সমান হবে।
- 3. (4.33a) এবং (4.34a) ভেক্টর সমীকরণগুলো অক্ষ নির্বাচনের উপর নির্ভর করে না। অবশ্যই তুমি এদের যে-কোনো দুটি স্বাধীন অক্ষ বরাবর বিভাজিত করতে পার।
- সুষম ত্বরণযুক্ত গতীয় সমীকরণ সুষম বৃত্তীয় গতির ক্ষেত্রে প্রয়োগ করা যাবে না, কারণ সুষম বৃত্তীয় গতির ক্ষেত্রে ত্বরণের মান ধ্রুবক কিন্তু এর অভিমুখ পরিবর্তনশীল।
- 5. যুগপৎ \mathbf{V}_1 এবং \mathbf{V}_2 বেগে একটি বস্তুকে চলতে বাধ্য করলে বস্তুটির লব্দি বেগ হবে $\mathbf{V} = \mathbf{V}_1 + \mathbf{V}_2$ । এর সঙ্গে 2 নং বস্তুর সাপেক্ষে 1 নং বস্তুর আপেক্ষিক বেগ : $\mathbf{v}_{12} = \mathbf{v}_1 \mathbf{v}_2$ এর সঙ্গো সযত্নে পার্থক্য করো। এক্ষেত্রে \mathbf{v}_1 এবং \mathbf{v}_2 হল একটি সাধারণ নির্দেশতন্ত্রের সাপেক্ষে বেগদ্বয়।
- 6. দুতি ধ্রুবক হলেই বৃত্তপথে গতিশীল বস্তুর লব্ধি ত্বরণ কেবল কেন্দ্রগামী হবে।
- 7. গতিশীল বস্তুর সঞ্চারপথের আকৃতি কেবল ত্বরণ দ্বারা নির্ধারিত হয় না কিন্তু গতির প্রাথমিক শর্তাবলির (প্রাথমিক অবস্থান এবং প্রাথমিক বেগ) উপর নির্ভর করে। যেমন, প্রাথমিক শর্তের উপর নির্ভর করে অভিকর্ষের জন্য নির্দিষ্ট ত্বরণে গতিশীল কোনো বস্তুর সঞ্চারপথ হবে সরলরেখা কিংবা অধিবৃত্তাকার।

অনুশীলনী

- 4.1 নীচের প্রতিটি প্রাকৃতিক রাশিগুলোর মধ্যে কোন্টি স্কেলার এবং কোন্টি ভেক্টর বিবৃত করো : আয়তন, ভর, দ্রুতি, ত্বরণ, ঘনত্ব, মোলসংখ্যা, বেগ, কৌণিক কম্পাংক, সরণ, কৌণিক বেগ।
- 4.2 নীচের তালিকা থেকে দুটি স্কেলার রাশি নির্বাচন করো : বল, কৌণিক ভরবেগ, কার্য, তড়িৎপ্রবাহ, রৈখিক ভরবেগ, তড়িৎক্ষেত্র, গড়বেগ, চৌম্বক ভ্রামক, আপেক্ষিক বেগ।
- 4.3 নীচের তালিকা থেকে একমাত্র ভেক্টরটি নির্বাচন করো : উন্নতা, চাপ, ঘাত, সময়, ক্ষমতা, মোট পথদৈর্ঘ্য, শক্তি, মহাকর্ষীয় বিভব, ঘর্ষণ গুণাংক, আধান।
- 4.4 স্কেলার এবং ভেক্টর দিয়ে নীচের বীজগাণিতিক প্রক্রিয়া (algebraic operations) গুলি অর্থবহ কিনা ? যুন্তিসহ বিবৃত করো :

(a) দুটি স্কেলার সংযোজন, (b) একই মাত্রাবিশিষ্ট একটি স্কেলার-এর সঙ্গো ভেক্টরের সংযোজন, (c) যে-কোনো ভেক্টর যে-কোনো স্কেলার দ্বারা গুণন, (d) দুটি স্কেলারের গুণন, (e) যে-কোনো দুটি ভেক্টরের সংযোজন, (f) একটিি ভেক্টরের উপাংশের সঙ্গো একই ভেক্টরের সংযোজন।

4.5 নীচের প্রতিটি বিবৃতি ভালোভাবে পড়ো এবং যুক্তিসহ বিবৃত করো, এটি সত্য না মিথ্যা :

(a) একটি ভেক্টরের মান সর্বদা একটি স্কেলার, (b) একটি ভেক্টরের প্রতিটি উপাংশ সর্বদা একটি স্কেলার, (c) একটি কণা দ্বারা মোট অতিক্রান্ত পথদৈর্ঘ্য কণাটির সরণ ভেক্টরের মানের সমান, (d) একটি কণার গড় দ্রুতি (মোট অতিক্রান্ত পথকে অতিবাহিত সময় দ্বারা ভাগ করে সংজ্ঞায়িত), ওই নির্দিন্ট সময় ব্যবধানে কণার গড় বেগের মানের সমান বা বেশি, (e) একই সমতলে নয় এরূপ তিনটি ভেক্টরকে যোগ করে শূন্য ভেক্টর কখনো পাওয়া যাবে না।

- 4.6 নীচের ভেক্টর অসমীকরণগুলি জ্যামিতিকভাবে বা অন্যভাবে প্রতিষ্ঠা করো।
 - (a) $|\mathbf{a}+\mathbf{b}| \leq |\mathbf{a}|+|\mathbf{b}|$
 - (b) $|\mathbf{a}+\mathbf{b}| \ge ||\mathbf{a}|-|\mathbf{b}||$
 - $(c) \qquad |\mathbf{a}\mathbf{-b}| \le |\mathbf{a}| + |\mathbf{b}|$
 - (d) $|\mathbf{a}-\mathbf{b}| \ge ||\mathbf{a}| |\mathbf{b}||$

উপরিউক্ত ক্ষেত্রগুলিতে কখন সমান চিহ্ন ব্যবহার করা যায় ?

- 4.7 প্রদন্ত a + b + c + d = 0, নীচের কোন্ বিবৃতিগুলি সঠিক :
 - (a) a, b, c, এবং d প্রত্যেকেই অবশ্যই অকার্যকর ভেক্টর।
 - (b) $(\mathbf{a} + \mathbf{c})$ এর মান ($\mathbf{b} + \mathbf{d}$) এর মানের সমান।

(c) a এর মান কখনোই b, c, এবং d এর মানের যোগফলের চাইতে বেশি হতে পারে না,

(d) যদি a এবং d সমরেখ না হয় তবে b + c অবশ্যই a এবং d এর সমতলে অবস্থান করবে এবং b+c, a ও d এর সাথে একইরেখায় থাকবে যদি a এবং d সমরেখ হয়।

- 4.8 তিনজন বালিকা 200 m ব্যাসার্ধের একটি বৃত্তাকার বরফের মাঠের প্রান্তের একটি বিন্দু P থেকে যাত্রা শুরু করে এবং ব্যাস বরাবর P বিন্দুর বিপরীত Q বিন্দুতে 4.20 চিত্রের ন্যায় বিভিন্ন পথে পৌঁছায়। প্রতিক্ষেত্রে সরণ ভেক্টরের মান কী হবে ? কোন্ বালিকার ক্ষেত্রে এটি পথের প্রকৃত দৈর্ঘ্যের সমান হবে ?
- 4.9 একজন সাইকেল আরোহী 4.21 চিত্রের ন্যায় 1 km ব্যাসার্ধের বৃত্তাকার পার্কের কেন্দ্র O থেকে পার্কের একপ্রান্ত P তে পৌঁছে। এরপর পরিধি বরাবর সাইকেল চড়ে পরে QO পথে কেন্দ্রে ফিরে আসে। যদি পুরো যাত্রা সম্পন্ন করতে 10 min সময় নেয়, তবে সাইকেল আরোহীর (a) লন্ধি সরণ, (b) গড় বেগ এবং (c) গড় দ্রুতি কত হবে ?

P P Def 4.20

- 4.10 কোনো খোলা মাঠে একজন মোটরগাড়ি চালক প্রতি 500 মিটার যাওয়ার পর তার বাঁদিকে 60º কোণে বাঁক নিতে নিতে একটি পথ অনুসরণ করে। নির্দিন্ট একটি বাঁক থেকে শুরু করে তৃতীয়, যষ্ঠ এবং অন্টম বাকের সময় তার সরণ উল্লেখ কর। প্রতিক্ষেত্রে মোটরগাড়ি চালকের সরণের মানের সহিত মোট অতিক্রান্ত পথদৈর্ঘ্যের মানের তুলনা করো।
- 4.11 একজন যাত্রী একটি নতুন শহরে পৌঁছে স্টেশন থেকে সোজা রাস্তা বরাবর 10 km দূরে কোনো হোটেলে যেতে চায়। একজন অসাধু ট্যাক্সি চালক 23 km বৃত্তপথে তাকে নিয়ে 28 মিনিট পর হোটেলে পৌঁছে। (a) ট্যাক্সিচালকের গড় দ্রুতি এবং (b) গড় বেগের মান কী হবে ? এরা কি সমান হবে ?
- 4.12 বৃষ্টি 30 m s⁻¹ দ্রুতিতে খাড়া নীচের দিকে পড়ছে। একজন মহিলা বাইসাইকেলে চড়ে 10 m s⁻¹ দ্রুতিতে উত্তর থেকে দক্ষিণ দিকে যায়। সে কোন্দিকে তার ছাতা ধরে রাখবে ?
- 4.13 একজন লোক 4.0 km/h দ্রুতিতে স্থির জলে সাঁতার কাঁটতে পারে। যদি নদী 3.0 km/h স্থির দ্রুতিতে প্রবাহিত হয়, সে 1.0 km প্রশস্থ নদী কত সময়ে পার হতে পারবে? যদি নদীর স্রোতের সঙ্গো লম্বভাবে সাঁতার কাটে। যাত্রাস্থল থেকে নদীর অপর পারের বিন্দু হতে নদী বরাবর কত দুরে সে গিয়ে পৌঁছবে?
- 4.14 একটি বন্দরে বায়ু 72 km/h বেগে বইছে এবং একটি নৌকার মাস্তুলে টাঙানো পতাকা উত্তর-পূর্ব দিক বরাবর পতপত

86

করে উড়ছে। যদি নৌকা 51 km/h দ্রুতিতে উত্তরদিকে যাত্রা শুরু করে, তবে নৌকার মাস্তুলে টাঙানো পতাকা কোন্ দিকে উড়বে?

- 4.15 একটি লম্বা হলঘরের ছাদের উচ্চতা 25 m। একটি 40 m s⁻¹ দ্রুতিতে প্রক্ষিপ্ত একটি বল হলঘরের ছাদকে আঘাত না করে অনুভূমিক সর্বোচ্চ কত দূরে যেতে পারবে?
- 4.16 একজন ক্রিকেটার অনুভূমিকভাবে সর্বোচ্চ 100 m দূরত্বে বল ছুড়তে পারে। একই বল ভূপৃষ্ঠ থেকে কত উপরে ওই ক্রিকেটার নিক্ষেপ করতে পারবে ?
- 4.17 একটি পাথরখন্ডকে 80 cm লম্বা সুতোর একপ্রান্তে বেঁধে অনুভূমিক বৃত্ত বরাবর স্থির দ্রুতিতে ঘোরানো হল। যদি পাথরখন্ডটি 25 সেকেন্ডে 14 বার ঘূর্ণন সম্পন্ন করে, তবে পাথরখন্ডটির ত্বরণের মান এবং দিক কী হবে?
- 4.18 একটি বিমান 900 km/h স্থির দ্রুতিতে 1.00 km ব্যাসার্ধের অনুভূমিক লুপ সম্পন্ন করে। এর অভিকেন্দ্র ত্বরণের সঙ্গো অভিকর্ষজ ত্বরণের তুলনা কর।
- 4.19 নীচের প্রতিটি বাক্য ভালোভাবে পড়ো এবং কারণসহ বল এটি কি সত্যি না মিথ্যা :
 - (a) বৃত্তপথে গতিশীল কোনো কণার লব্ধি ত্বরণ সর্বদা কেন্দ্র অভিমুখী ব্যাসার্ধ বরাবর ক্রিয়াশীল।
 - (b) কোনো কণার সঞ্জারপথের কোনো বিন্দুতে কণার বেগ-ভেক্টর সর্বদা ঐ বিন্দুর স্পর্শক বরাবর ক্রিয়াশীল।
 - (c) কোনো একটি পূর্ণচক্রে সুষম বৃত্তগতিসম্পন্ন কোনো কণার গড় ত্বরণ ভেক্টর সর্বদা একটি অকার্যকর ভেক্টর (null vector) হয়।
- 4.20 একটি কণার অবস্থান ভেক্টর নিম্নরূপ :

$$\mathbf{r} = 3.0t \, \mathbf{i} - 2.0t^2 \, \mathbf{j} + 4.0 \, \mathbf{k} \, \mathrm{m}$$

যেখানে t সর্বদা সেকেন্ডে এবং সহগগুলির একক অবস্থানের সঠিক একক অর্থাৎ মিটার এককে হবে ?

(a) কণার v এবং a নির্ণয় করো। (b) t = 2.0 s এ কণার বেগের মান এবং দিক কী হবে ?

- 4.21 একটি কণা *t* = 0 s -এ মূলবিন্দু থেকে 10.0 ĵ m/s বেগে (8.0î + 2.0ĵ) m s⁻² স্থির ত্বরণে x-y তলে গতিশীল। (a) কণার x- স্থানাংক কোন্ সময়ে 16 m হবে ? ওই সময়ে কণার y-স্থানাংক কী হবে ? (b) ঐ সময়ে কণার দ্রুতি কত হবে ?
- 4.22 j এবং j হল যথাক্রমে x- এবং y- অক্ষ বরাবর একক ভেক্টর। j+j, এবং j-j ভেক্টরের মান এবং দিক নির্ণয় করো? A= 2 j+3j ভেক্টরের j+j এবং i-j ভেক্টর বরাবর উপাংশ কী হবে? [তুমি লৈখিক পদ্ধতি ব্যবহার করতে পারো]
- 4.23 শূন্যস্থানে যে-কোনো গতির ক্ষেত্রে নীচের কোন্ সম্পর্কটি সত্যি :

(a)
$$\mathbf{v}_{\text{average}} = (1/2) (\mathbf{v} (t_1) + \mathbf{v} (t_2))$$

(b) $\mathbf{v}_{\text{average}} = [\mathbf{r}(t_2) - \mathbf{r}(t_1)] / (t_2 - t_1)$

(c)
$$\mathbf{v}$$
 (t) = \mathbf{v} (0) + \mathbf{a} t

(d) \mathbf{r} (t) = \mathbf{r} (0) + \mathbf{v} (0) t + (1/2) \mathbf{a} t²

(e) **a** _{average} =[**v** (t_2) - **v** (t_1)] /($t_2 - t_1$)

(এখানে 'average' বলতে t, থেকে t, সময় ব্যবধানে রাশিটির গড়কে বোঝায়)

4.24 নীচের প্রতিটি বাক্য ভালোভাবে বড়ো এবং যুক্তি ও উদাহরণ দিয়ে বল, এটি সত্য না মিথ্যা :

একটি স্কেলার রাশি হল সেটি

(a) যা একটি প্রক্রিয়ায় সংরক্ষিত থাকে

(b) কখনো ঋণাত্মক মান নিতে পারে না

(c) যা অবশ্যই মাত্রাবিহীন হবে

(d) যা দেশ অঞ্চলে এক বিন্দু থেকে অন্য বিন্দুতে পরিবর্তিত হয় না।

- (e) যা অক্ষগুলির বিভিন্নভাবে অবস্থানের জন্য পর্যবেক্ষকের কাছে একই মান হয়।
- 4.25 একটি বিমান ভূপৃষ্ঠ থেকে 3400 m উপর দিয়ে উড়ে যাচ্ছে। যদি 10.0 s সময়ের মধ্যে এটির দুটি অবস্থানের জন্য ভূমির উপর কোনো পর্যবেক্ষণ বিন্দুতে 30° কোণ উৎপন্ন করে, তবে বিমানটির দ্রুতি কত হবে?

অতিরিক্ত অনুশীলনী

- 4.26 একটি ভেক্টরের মান ও দিক আছে। এর কি দেশে (space) কোনো অবস্থান আছে? এটি কি সময়ের সাথে পরিবর্তিত হয়? দেশে (বিভিন্ন অবস্থানে দুটি সমান ভেক্টর a এবং b এর কি একই ভৌত প্রভাব আছে? তোমার উত্তরের সপক্ষে উদাহরণ দাও।
- 4.27 একটি ভেক্টরের মান ও দিক আছে। এর অর্থ কি এমন যে যার মান ও দিক আছে তা অবশ্যই ভেক্টর হবে ? একটি বস্তুর ঘূর্ণন, ঘূর্ণন অক্ষের অভিমুখ দ্বারা এবং অক্ষের সাপেক্ষে ঘূর্ণন কোণ দ্বারা নির্ধারিত হয়। তবে কি যে-কোনো ঘূর্ণনই একটি ভেক্টর ?
- 4.28 (a) একটি তারকে বাঁকিয়ে একটি লুপ গঠন করা হলে, (b) একটি সমতল ক্ষেত্রফল এবং (c) একটি গোলকের সঙ্গে কি একটি ভেক্টর সংশ্লিষ্ট আছে? ব্যাখ্যা করো।
- 4.29 একটি বুলেট অনুভূমিকের সঙ্গো 30° কোণে গুলি ছোড়ে এবং 3.0 km দুরে ভূ-পৃষ্ঠকে আঘাত করে। প্রক্ষেপ কোণ পরিবর্তন করে একজন 5.0 km দুরে টার্গেটে আঘাত করতে পারার আশা করতে পারে কি ? ধরে নাও বন্দুকের নল থেকে গুলির নির্গমনের দ্রুতি ধ্রুবক এবং বায়ুর বাঁধা নগণ্য ?
- 4.30 একটি যুম্ববিমান ভূমি থেকে 1.5 km উচ্চতায় অনুভূমিকভাবে 720 km/h দ্রুতিতে গতিশীল। কোনো এক মুহুর্তে বিমানটি ভূমিতে অবস্থিত একটি যুম্ববিমান প্রতিরোধকারী আগ্নেয়াস্ত্রকে অতিক্রম করল। সেই মুহুর্তেই ওই যুম্ববিমান প্রতিরোধকারী আগ্নেয়াস্ত্রটি থেকে 600 m s⁻¹ দ্রুতিতে একটি ক্ষেপণাস্ত্র নিক্ষেপ করা হল। উল্লম্বের সঙ্গো কত কোণে ক্ষেপণাস্ত্রটিকে নিক্ষেপ করলে সেটি যুম্ব বিমানটিকে আঘাত করতে পারবে ? ভূমি থেকে ন্যূনতম কত উচ্চতায় চালকটি বিমানটিকে ওড়ালে সেটি ক্ষেপণাস্ত্রের আঘাত থেকে নিজেকে রক্ষা করতে পারবে ? (ধরে নাও g = 10 m s⁻²)।
- 4.31 একজন সাইকেল আরোহী 27 km/h দ্রুতিতে সাইকেল চালাচ্ছে। সে সামনে এগিয়ে 80 m ব্যাসার্ধের বৃত্তাকার বাঁক নেওয়ার সময় ব্রেক প্রয়োগ করে এবং প্রতি সেকেন্ডে 0.50 m/s হারে তার দ্রুতি হ্রাস ঘটায়। সাইকেল আরোহী বৃত্তাকার বাঁক নেওয়ার সময় তার লব্ধি ত্বরণের মান এবং দিক কী হবে ?
- 4.32 (a) দেখাও যে, প্রাসের ক্ষেত্রে সময়ের অপেক্ষকরূপে বেগ এবং x-অক্ষের মধ্যবর্তী কোণ নিম্নরূপে প্রকাশ করা যায়

$$\theta(t) = \tan^{-1}\left(\frac{v_{oy} - gt}{v_{ox}}\right)$$

(b) দেখাও যে, মূলবিন্দু থেকে প্রক্ষিপ্ত কোনো প্রাসের প্রক্ষেপ কোণ θ, নিম্নরূপে প্রকাশ করা যায়,

$$\theta_0 = \tan^{-1} \left(\frac{4h_m}{R} \right)$$

যেখানে চিহ্নগুলি প্রচলিত অর্থে ব্যবহৃত।

88

গতীয় সূত্রাবলি (Laws of Motion)

5.1 ভূমিকা (INTRODUCTION)

5.1 ভূমিকা

- 5.2 এরিস্টটলের ভ্রান্তধারণা
- 5.3 জড়তার সূত্র
- 5.4 নিউটনের প্রথম গতিসূত্র
- 5.5 নিউটনের দ্বিতীয় গতিসূত্র
- 5.6 নিউটনের তৃতীয় গতিসূত্র
- 5.7 ভরবেগের সংরক্ষণ
- 5.8 একটি কণার সাম্যাবস্থা
- 5.9 বলবিজ্ঞানে সাধারণ বলসমূহ
- 5.10 বৃত্তীয় গতি
- 5.11 বলবিজ্ঞানে সমস্যাসমূহের সমাধান

সারাংশ ভেবে দেখার বিষয়সমূহ অনুশীলনী অতিরিক্ত অনুশীলনী হয়েছি। আমরা দেখেছি সুষম গতি কেবলমাত্র গতিবেগের ধারণাবাহী যেখানে অসম গতিতে ত্বরণের ধারণাও যুক্ত। এখন পর্যন্ত আমরা একটি প্রশ্ন জানতে চাইনি যা হল বস্তুর গতি কীসের দ্বারা নিয়ন্ত্রিত হয় ? এই অধ্যায়ে আমরা এই মূল প্রশ্নটি জানব। সর্বপ্রথম আমরা আমাদের সাধারণ অভিজ্ঞতার উপর ভিত্তিকরে উত্তরটি অনুমান করব। একটি ফুটবলকে স্থিরাবস্থা থেকে গতিশীল করতে একজনকে অবশ্যই সেটাতে লাথি

পূর্ববর্তী অধ্যায়ে, আমরা কোনো স্থানে (space) একটি কণার গতি সংখ্যাগতভাবে অবগত

মারতে হবে। একটি পাথরকে উধ্বে নিক্ষেপ করতে হলে একজনকে এটিতে উধ্বাভিমুখী ঘাত দিতে হয়। বাতাস বৃক্ষের শাখা আন্দোলিত করে। এমনকি প্রবল ঝড় কখনো কখনো দৃঢ় বস্তুকে স্থানচ্যুত করে। দাঁড় ব্যবহার ছাড়াই স্রোতস্বী নদীতে নৌকা গতিশীল থাকতে পারে। স্পষ্টতই, কোনো বস্তুকে স্থিরাবস্থা থেকে গতিশীল করতে প্রয়োজনীয় বাহ্যিক কারণটি হল বল। একইভাবে কোনো বস্তুর গতি মন্দীভূত করতে বা থামাতে একটি বাহ্যিক বলের প্রয়োজন। নততল বরাবর গড়িয়ে নামা একটি বলের গতি থামাতে হলে বলটির গতির বিরুদ্বে বল প্রয়োগ করতে হয়।

এইসব উদাহরণগুলোতে বলের বাহ্যিক সংস্থা (হাত, বাতাস, প্রবাহ প্রভৃতি) বস্তুর সংস্পর্শে থাকে। এটা সবক্ষেত্রেই অত্যাবশ্যক নয়। একটি দালানের উপর থেকে একটি বস্তুকে ছেড়ে দিলে পৃথবীর অভিকর্ষীয় বলের প্রভাবে তা নিম্নাভিমুখে ত্বরাম্বিত হয়। একটি দণ্ড চুম্বক একটি লোহার পিনকে দূর থেকে আকর্ষণ করতে পারে। যা থেকে ধারণা করা যায় যে, বাহ্যিক সংস্থাসমূহ (যেমন অভিকর্ষীয় এবং চৌম্বকীয় বলগুলো) কোনো বস্তুর উপর দূর থেকেও বল প্রয়োগ করতে পারে।

সংক্ষেপে, একটি স্থির বস্তুকে গতিশীল করতে অথবা একটি গতিশীল বস্তুকে থামাতে একটি বলের প্রয়োজন এবং একটি বাহ্যিক সংস্থা এইক্ষেত্রে এই বলের যোগান দেয়। বাহ্যিক সংস্থাটি বস্তুর সংস্পর্শে থাকতেও পারে অথবা বস্তুর সংস্পর্শে নাও থাকতে পারে। এ পর্যন্ত সব ভালো। কিন্তু সুষমভাবে গতিশীল বস্তুর (যেমন অনুভূমিক বরফ প্রস্থারের উপর সরলরেখা বরাবর সমবেগে গতিশীল একজন স্কেটার) ক্ষেত্রে কি হবে ? সুষমগতি বজায় রাখতে বস্তুর উপর কোনো বাহ্যিক বলের প্রয়োজনীয়তা রয়েছে কি?

5.2 এরিস্টটলের ভ্রান্তধারণা (ARISTOTLE'S FALLACY)

উত্থাপিত প্রশ্নটি আপাতভাবে সহজ মনে হলেও তার উত্তর সুদূরপ্রসারী। বস্তুত, সপ্তদশ শতকে গ্যালিলিও এই প্রশ্নটির সঠিক উত্তর দিয়েছিলেন যা নিউটনের বলবিজ্ঞানের ভিত্তি এবং আধুনিক বিজ্ঞানের জন্মের ইঞ্চািতবাহী।

প্রিক দার্শনিক এরিস্টটলের (খ্রিস্টপূর্ব 38 – 322) মতে কোনো গতিশীল বস্তুর গতি বজায় রাখার জন্য বাহ্যিক কিছুর প্রয়োজন। এই মতানুসারে, উদাহরণস্বরূপ, ধনুক থেকে নিক্ষিপ্ত তির উড্ডয়নের জন্য তিরের পশ্চাতের বায়ুর ঘাতের প্রয়োজন। এটা এরিস্টটলের মহাবিশ্বের বস্তুর গতিবিধির উপর বিস্তৃত পরিকাঠামোর ধারণারই অংশস্বরূপ। এখন গতির উপর এরিস্টটলের অধিকাংশ মতই ভুল এবং আমাদের প্রয়োজনীয় নয়। আমাদের প্রয়োজনে এরিস্টটলের গতীয়সূত্র এইভাবে উপস্থাপিত করা যায় — "একটি বস্তুকে গতিশীল রাখতে একটি বাহ্যিক বলের প্রয়োজন হয়।"

এরিস্টটলের গতীয়সূত্র ব্রুটিপূর্ণ, যা আমরা দেখবো। তথাপি এটি একটি স্বাভাবিক অভিমত যা যে কেউ সাধারণ অভিজ্ঞতা স্বরূপ রাখতে পারে। মেঝের উপর (অবৈদ্যুতিক) খেলনা গাড়ি নিয়ে ক্রীড়ারত একটি শিশুও স্বভাবসিন্দ্র জ্ঞানে জানে যে খেলনা গাড়িটিকে চালানোর জন্য প্রয়োজনীয় বল প্রয়োগার্থে খেলনাটির সাথে যুক্ত সূতোর দ্বারা টানা প্রয়োজন। যদি সূতাটি ছেড়ে দেওয়া হয়, সেক্ষেত্রে সেটি থেমে যাবে। অধিকাংশ পার্থিব গতির ক্ষেত্রে এটি একটি সাধারণ অভিজ্ঞতা। কোনো বস্তুর চলনের জন্য একটি বলের প্রয়োজন। তাদের ছেড়ে দিলে, সব বস্তুই অবশেষে স্থিরাবস্থায় আসবে।

এরিস্টোটলের উদ্তির ত্রুটিটি কী ? উত্তরটি হল : একটি গতিশীল খেলনা গাড়ির গতি মেঝে দ্বারা প্রযুক্ত গতি প্রতিরোধক বাহ্যিক ঘর্ষণ বলের প্রভাবে স্থিরাবস্থায় আসে। এই বলটিকে প্রতিরোধ করতে শিশুটিকে গাড়ির গতির দিকে একটি বাহ্যিক বল প্রয়োগ করাতে হয়। যখন গাড়িটি সমগতিতে থাকে, সেক্ষেত্রে গাড়িটিতে কোনো লন্ধি বাহ্যিক বল ক্রিয়া করে না। শিশু দ্বারা প্রযুক্ত বল ভূমি কর্তৃক প্রযুক্ত (ঘর্ষণ) বল দ্বারা প্রশমিত হয়। অনুসিদ্ধান্তটি হল : যদি কোনো প্রকারের ঘর্ষণ বল না থাকে, গাড়িটির সুযম গতি বজায় রাখার জন্য শিশুটির বল প্রয়োগের প্রয়োজন হয় না। প্রতিরোধক বলগুলো যেমন ঘর্ষণ (কঠিনের ক্ষেত্রে) এবং সান্দ্রতাজনিত বলগুলো (প্রবাহীসমূহের ক্ষেত্রে) সর্বদা বাস্তব জগতে বর্তমান থাকে। এটি ব্যাখ্যা করে যে ঘর্ষণ বলসমূহকে অতিক্রম করে সুযম গতি বজায় রাখার জন্য বাহ্যিক সংস্থা থেকে বল প্রয়োগ করা প্রয়োজন। এখন আমরা বুঝতে পারি কোথায় এরিস্টটল ভূল করেছিলেন। এই বাস্তব অভিজ্ঞতাকে তিনি তাঁর মূল সিদ্ধান্তে ব্যক্ত করেছেন। প্রকৃতিতে বল ও গতি সম্পর্কিত সঠিক সূত্র পেতে হলে এমন একটি জগৎ কল্পনা করতে হবে যেখানে ঘর্ষণ বল ক্রিয়া করে না এবং সেক্ষেত্রে সুষমগতি পাওয়া সম্ভব, যা গ্যালিলিও দেখিয়ে গেছেন।

5.3 জড়তার সূত্র (THE LAW OF INERTIA)

গ্যালিলিও নততলে বস্তুসমূহের গতি সম্বন্ধে অনুধাবন করেন। বস্তুগুলোর (i) নততল বরাবর নিন্নাভিমুখী গতি ত্বরাধিত, যেখানে (ii) উর্ধ্বাভিমুখী গতি মন্দিভূত এবং (iii) অনুভূমিক তলে গতি এ দুটির মধ্যবর্তী অবস্থা। গ্যালিলিও এই সিন্দ্বান্তে উপনীত হন যে, ঘর্ষণহীন অনুভূমিক তলে গতিশীল বস্তু কখনোই ত্বরাম্বিত বা মন্দীভূত হয় না অর্থাৎ এটি সমবেগে গতিশীল থাকে [চিত্র 5.1(a)].

দ্বিনতিযুক্ত নততল (double inclined) সম্পর্কিত অপর একটি পরীক্ষা থেকে গ্যালিলিও একই সিম্বান্তে উপনীত হন। নততলদ্বয়ের যে-কোনো একটি তলের উপর থেকে একটি বলকে ছেড়ে দিলে তা গড়িয়ে নামে এবং অপর তল বরাবর উপরে ওঠে। তলদ্বয় মসৃণ হলে, বলটির চূড়ান্ত উচ্চতা তার প্রাথমিক উচ্চতার প্রায় সমান হবে (কিছু কম হলেও কিন্তু কখনো বেশি হবে না)। আদর্শ পরিস্থিতিতে, যেখানে ঘর্ষণ অনুপস্থিত, বলটির দ্বারা উত্থিত চূড়ান্ত উচ্চতা উহার প্রাথমিক উচ্চতার সমান হবে। যদি দ্বিতীয় নততলটির নতি কমানো হয় এবং পরীক্ষাটি পুনরাবৃত্ত

করা হয় সেক্ষেত্রেও বলটি একই উচ্চতা উঠবে কিন্তু এটি অধিক দূরত্ব অতিক্রম করবে। সীমাস্থ ক্ষেত্রটিতে, যখন দ্বিতীয় নততলটির নতি শূন্য হয় (অর্থাৎ এটি অনুভূমিক হলে) বলটি অসীম দূরত্ব অতিক্রম করবে। অন্যভাবে বলা যায়, এটির গতি কখনো থামবে না। এটি অবশ্যই, একটি আদর্শ পরিস্থিতি (চিত্র 5.1(b))।

বাস্তবক্ষেত্রে, বলটি অনুভূমিক তলের উপর কিছুদূর গিয়ে থেমে যাবে, কারণ প্রতিরোধক ঘর্ষণ বলকে সম্পূর্ণভাবে বাদ দেওয়া যায় না। যদি সেখানে কোনো ঘর্ষণ কাজ না করে তবে বলটি অনুভূমিক তলের উপর সমবেগে চলতে থাকবে।

গ্যালিলিওর এই গতি সম্বন্ধীয় অন্তর্দৃষ্টি মূলক উদ্ভাবনা, অ্যারিস্টটল ও উনার অনুগামীগণ আগে বুঝতে পারেননি। স্থিরাবস্থা এবং সুষম সরলরৈথিক গতীয় অবস্থা (সমবেগ গতি) সমতুল্য। উভয়ক্ষেত্রেই বস্তুটির উপর কোনো লব্ধি বল ক্রিয়া করে না।এটি ব্রুটিপূর্ণ অনুমান যে, হয়েছিল। এই কাজটি প্রায় এককভাবে সম্পন্ন করেন আইজ্যাক নিউটন যিনি সর্বকালের সর্বশ্রেষ্ঠ বিজ্ঞানীদের একজন।

নিউটন গ্যালিলিওর ধারণাটি গ্রহণ করেন এবং গতি সম্বন্ধীয় তিনটি সূত্রের মাধ্যমে বলবিজ্ঞানের ভিত্তি প্রতিষ্ঠিত করেন, যা উনার নামানুসারে প্রতিষ্ঠা লাভ করে। গ্যালিলিওর জড়ত্বীয় সূত্রটি উনি গ্রহণ করেন, যা তিনি গতি সম্বন্ধীয় প্রথম সূত্র হিসাবে লিপিবন্ধ করেন। বাহ্যিক বল দ্বারা বাধ্য না হলে প্রত্যেক বস্তুই উহার স্থিরাবস্থা অথবা সরলরেখা বরাবর সূযম গতি বজায় রাখতে চায়।

প্রাচীন ভারতীয় বিজ্ঞানে গতির ধারণা

প্রাচীন ভারতীয় চিন্তাবিদ্গণ গতি সম্বন্ধীয় ধারণাগুলোর একটি বিস্তৃত পম্বতিতে উপনীত হয়েছিলেন। গতির কারণ হল 'বল', যা বিভিন্ন রকমের হতে পারে বলে ভাবা হয়েছিল : নিরবিচ্ছিন্ন চাপের জন্য বল, পাল তোলা জলযানের উপর বায়ু কর্তৃক বল, সংঘর্ষ (অভিঘাত), কুম্ভকাররা দণ্ড দিয়ে চাকাটিকে ঘুরানোর সময় প্রদেয় বল, সরলরেখা বরাবর চলার প্রবণতা (sanskara) অথবা স্থিতিস্থাপক বস্তুতে আকৃতির পুনঃ প্রতাবর্তন; তার, দন্ড ইত্যাদি দ্বারা বলের সঞ্চালন। 'বৈশেষিকা'' গতীয় তত্ত্বে বেগের ধারণা সম্ভবত জড়তার ধারণার কাছাকাছি।'বেগ' অর্থাৎ সরলরেখা বরাবর গতিশীল থাকার ধারাবাহিক প্রবণতা, যার ফলে গতিশীল বস্তুটির সংস্পর্শে থাকা বায়ু সমেত সকল বস্তু দ্বারা বিপরীতমুখী একটি বিরুম্ব বলের সৃষ্টি হয় এবং ইহা থেকে ঘর্ষণ ও বায়ুর প্রতিরোধের মতো ধারণার অনুরূপ চিন্তার উদ্ভব হয়েছিল। কোনো বিস্তৃত বস্তুর বিভিন্ন প্রকার গতি (চলন, ঘূর্ণন ও কম্পনজনিত) শুধুমাত্র এর সংশ্লিস্ট কণাগুলোর চলন গতি থেকে সৃষ্টি হয়, এই ভাবে ধারণাটিকে সঠিকভাবে সংক্ষিপ্ত করা হয়েছিল। বাতাসে একটি পতনশীল পাতা সামগ্রিকভাবে নীচের অভিমুথে গতিপ্রাপ্ত হয় (পতন) এবং এর সঙ্গো ঘূর্ণন ও আন্দোলন গতি (ভ্রমন, স্পন্দন) ও যুক্ত হয়, কিন্তু এই পাতার প্রত্যেকটি কণার একটি নির্দিষ্ট ক্ষুদ্র সরণ ঘটে। গতির পরিমাপ এবং দৈর্ঘ্য ও সময়ের একক সম্বন্থে প্রচীন ভারতীয় চিন্তাধারায় প্রভূত দৃষ্টি ছিল। এটা জ্ঞাত ছিল যে দেশে (Spece এ) কোনো একটি বিন্দুর অবস্থান প্রকাশ করার জন্য তিনটি অক্ষের সাপেক্ষে পরিমিত দূরত্বের মাধ্যমে করা যায়। ভাস্কর (1150 খ্রিস্টান্দে) তাৎক্ষণিক গতির (তৎকালিকি গতি) প্রচলন করেন, যা পরবরতীকালে অবকলন বিদ্যা ব্যবহার করে তাৎক্ষণিক বেগের আধুনিক ধারণার ভিত্তি প্রস্তর স্থাপন করে। তাঁরা তরঙ্গ ও জল প্রবাহের (স্রোত) মধ্যে পার্থক্য খুবই স্পন্টভাবে বুঝতেন। স্রোত হল অভিকর্ষ ও প্রবাহিতার অধীনে জলের কণাগুলোর গতি, এখানে তরঞ্চা হল জলের কণাগুলোর মাধ্যমে কম্পন্দর সঞ্চালন।

কোনো বস্তুকে সুষম গতিতে চালু রাখতে একটি লব্ধি বলের প্রয়োজন। একটি বস্তুর সুষমগতি বজায় রাখতে, আমাদের একটি বাহ্যিক বল প্রয়োগ করতে হয় যা ক্রিয়াশীল ঘর্ষণ বলের সমান ও বিপরীতমুখী হয়, যাতে এই বলদুটির সমস্টিস্বরূপ মোট বল শূন্য হয়।

সংক্ষেপে, যদি মোট বাহ্যিক বল শূন্য হয়, স্থিরাবস্থায় থাকা একটি বস্থু স্থিরাবস্থাতেই থাকবে এবং গতিশীল বস্থুটি সমবেগে গতিশীল থাকবে। বস্থুর এই ধর্মকেই বলে জড়তা। জড়তার অর্থ "পরিবর্তনে বাঁধা"। স্থিরাবস্থা অথবা সমগতি সম্পন্ন একটি বস্থু কখনোই এর অবস্থার পরিবর্তন করে না যতক্ষণ না একটি বাহ্যিক বল এটিকে অবস্থার পরিবর্তনে বাধ্য করায়।

5.4 নিউটনের প্রথম গতিসূত্র (NEWTON'S FIRST LAW OF MOTION)

গ্যালিলিওর সহজ কিন্তু যুগান্তকারী ধারণাটি অ্যারিস্টটলের বলবিজ্ঞানকে বাতিল করে। এজন্য একটি নতুন বলবিজ্ঞান প্রবর্তনের প্রয়োজন স্থিরাবস্থা অথবা সরলরৈখিক সমগতি উভয়ক্ষেত্রেই ত্বরণ শূন্য। সুতরাং **প্রথম গতীয় সূত্রটি** এইভাবে বর্ণনা করা যায় :

যদি কোনো বস্তুর উপর মোট বাহ্যিক বল শূন্য হয়, তবে এর ত্বরণ শূন্য হবে। ত্বরণ শূন্য হতে পারবে না কেবলমাত্র যদি সেখানে বস্তুটির উপর একটি মোট বাহ্যিক বল থাকে।

এই সূত্রগুলোর ব্যবহারিক প্রয়োগে দুই ধরনের পরিস্থিতির সম্মুখীন হতে হয়। কিছু ক্ষেত্রে, আমরা জানি, কোনো বস্তুর উপর মোট বাহ্যিক বল শূন্য। সেইক্ষেত্রে আমরা সিম্ধান্ত নেব যে বস্তুটির ত্বরণ শূন্য। উদাহরণস্বরূপ, একটি মহাকাশযান নক্ষত্রমঙল স্থানের বাহিরে, বস্তুসমূহ থেকে অনেক দূরে এবং এটির সমস্ত রকেটগুলো বন্ধ রাখা হলে, এর উপর কোনো বাহ্যিক বল ক্রিয়াশীল থাকে না। এর ত্বরণ প্রথম সূত্রানুসারে অবশ্যই শূন্য হবে। যদি এটি গতিশীল থাকে তবে এটি অবশ্যই সমবেগে চলতে থাকবে।

গ্যালিলিও গ্যালিলি (1564 - 1642)

1564 সালে ইটালির পিসাতে জন্মগ্রহণকারী গ্যালিলিও গ্যালিলিই ছিলেন চার শতাব্দী পর্বে ইউরোপের বৈজ্ঞানিক বিপ্লবের মূল ব্যক্তি (key figure)। গ্যালিলিও ত্বরণের ধারণার উপস্থাপন করেছিলেন। কোনো বস্তুকে গতিশীল রাখতে বলের প্রয়োজন এবং মধ্যাকর্ষণে হাল্কা বস্তু অপেক্ষা ভারী বস্তু তাড়াতাড়ি পড়ে — অ্যারিস্টোটলের এই ধারণা তিনি খণ্ডন করেছিলেন, নততল বরাবর বস্তুর গতি অথবা মুক্তভাবে পতনশীল বস্তুর উপর পরীক্ষা নিরীক্ষার মাধ্যমে। তিনি এইভাবে জড়তার সূত্রটিতে উপনীত হন যা আইজ্যাক নিউটনের পরবর্তি কাজের প্রারম্ভিক উৎস ছিল।

গ্যালিলিও-র জ্যোতির্বিদ্যায় (astronomy) বিভিন্ন আবিষ্কার সমভাবে বৈপ্লবিক। 1609 সালে তিনি নিজের টেলিস্কোপের নক্সা তৈরি করেন (পূর্বে হল্যান্ডে আবিষ্কৃত) এবং এটি ব্যবহার করেন বেশ কিছু বিস্ময়কর পর্যবেক্ষণে : চাঁদের পৃষ্ঠের পর্বতসমূহ এবং নিচু স্থান (depressions) সমূহ ; সূর্যের উপর অন্ধকার স্থানসমূহ (dark spots

on the sun); বৃহস্পতির চাঁদসমূহ (the moons of Jupiter); শুক্রের দশাসমূহ (phases of Venus)। তিনি পরিসমাপ্ত করেন যে, খালি চোখে দেখা যায় না এরপ বৃহৎ সংখ্যক তারাসমূহের উজ্জ্বলতার কারণে ছায়াপথ (Milky Way) উৎপন্ন হয়।

উনার শ্রেষ্ঠত্বর বিজ্ঞানসম্মত রচনাতে : "দুটি মুখ্য জাগতিক সংস্থার উপর কথোপকথনে;" কপারনিকাশের প্রস্তাবিত সৌরজাগতিক সংস্থার সূর্যকেন্দ্রিক তত্ত্ব গ্যালিলিও সমর্থন করেছিলেন, যাহা অবশেষে সর্ব্বজন গ্রাহ্য হয়।

গ্যালিলিও থেকে এই বিশেষ বৈজ্ঞানিক অনুসন্থানের পম্বতি বলা যেতে পারে। বিজ্ঞান কেবলমাত্র প্রাকৃতিক পর্যবেক্ষণাবলি এবং তাদের থেকে প্রাপ্ত সিম্বান্তসমূহই নয়। বিজ্ঞান বুঝায় তত্ত্বসমূহের যাচাই করা বা ভুল প্রমাণ করার জন্য পরিকল্পনা এবং পরীক্ষা নিরীক্ষা করা। বিজ্ঞান বলতে বোঝায় রাশিসমূহের পরিমাপ এবং তাদের মধ্যে গাণিতিক সম্পর্ক স্থাপনের সন্থান করা। যোগ্য হিসাবেই অনেকে গ্যালিলিওকে আধুনিক বিজ্ঞানের জনক হিসাবে অভিহিত করেন।

> সূত্রানুসারে বইটির উপর মোট বাহ্যিক বল অবশ্যই শূন্য। এটি বোঝায় যে উল্লম্ব বল R অবশ্যই ওজনের (W) সমান ও বিপরীত।

ধরা যাক, একটি গাড়ি স্থিরাবস্থা থেকে যাত্রা শুরু করে, গতি বৃদ্ধি করতে থাকে এবং অতঃপর একটি মসৃণ সরলরৈখিক পথ বরাবর সমবেগে ধাবমান থাকে [চিত্র5.2(b)] যখন গাড়িটি স্থির, সেখানে এটির উপর কোনো মোট বল কাজ করে না। গতিবৃদ্ধিকালীন এটি 'ত্বরাম্বিত' হয়। এটি অবশ্যই ঘটে একটি মোট বল কার্যকরী হবার ফলে। লক্ষণীয় এটি অবশ্যই একটি বাহ্যিক বল। গাড়িটির ত্বরণে কোনো প্রকারের অভ্যন্তরিন বল গণ্য করা হয় না। এটি অবশ্যই বিস্ময়কর হলেও এটি সত্য। কেবলমাত্র রাস্তা বরাবর গ্রহণযোগ্য বাহ্যিক বলটি হল ঘর্ষণ বল। এই ঘর্ষণ বল, গাড়িটিকে এককভাবে ত্বরাম্বিত করে (তোমরা অধ্যায় 5.9 -এ ঘর্ষণ সম্বন্থে জানবে)। যখন একটি গাড়ি সমবেগে গতিশীল

যদিও, প্রায়ই শুরুতে সর্বপ্রকারের বল সম্পর্কে আমাদের জানা থাকে না। সেইক্ষেত্রে, যদি আমরা জানি যে, একটি বস্তু ত্বরণহীন (অর্থাৎ এটি স্থির অথবা সরলরৈখিক সুযম গতিসম্পন্ন), প্রথম সূত্র থেকে আমরা এই সিম্বান্তে আসি যে বস্তুটির উপর মোট বাহ্যিক বল অবশ্যই শূন্য হবে। অভিকর্য সর্বত্রই থাকে। বিশেষ করে পার্থিব ঘটনার ক্ষেত্রে, প্রত্যেক বস্তুই পৃথিবীর জন্য অভিকর্ষীয় বল অনুভব করে। এছাড়াও গতিশীল বস্তুগুলো ঘর্ষণ, সান্দ্রতা জাতীয় বাধা প্রভৃতি অনুভব করে। পৃথিবীতে কোনো বস্তু স্থির অথবা সরলরৈখিক সমগতিতে থাকলে, এটির উপর কোনো বল কাজ করছে না তা কারণ নয়, বিভিন্ন বাহ্যিক বলসমূহের প্রতিমিত হওয়াটাই কারণ অর্থাৎ বাহ্যিক বলগুলোর সমন্টি হবে শূন্য।

ধরা যাক, একটি অনুভূমিক তলের উপর একটি বই স্থিরাবস্থায় আছে (চিত্র 5.2(a))। এটির উপর দুটি বাহ্যিক বলের প্রভাব রয়েছে : একটি অভিকর্ষীয় বল (অর্থাৎ এর ওজন W) যা নিম্নাভিমুখীভাবে ক্রিয়াশীল এবং অপরটি টেবিল দ্বারা বইয়ের উপর উধ্ব্বাভিমুখী বল, যা উল্লম্ব বল R । R হল একটি স্থনিয়ন্ত্রক বল। এটি উপরিউক্ত পরিস্থিতির একটি উদাহরণ। বলসমূহ সম্পূর্ণভাবে জ্ঞাত না হলেও গতি অবস্থা জানা যায়। আমরা দেখবো বইটি স্থিরাবস্থায় আছে। সুতরাং, আমরা প্রথম সূত্র থেকে সিদ্ধান্ত নেব যে, R এর মান W এর সমান। আমরা একটি উক্তির প্রায়ই সম্মুখীন হই : "যেহেতু W=R, বলদ্বয় পরস্পরকে প্রশিমিত করে এবং এজন্য বইটি স্থির থাকবে"। এই যুক্তিটি অসত্য। সঠিক উক্তিটি হল : "যেহেতু পর্যবেক্ষণ স্বরূপ বইটি স্থির, প্রথম

গতীয় সূত্রাবলি

থাকে, সেখানে কোনো মোট বাহ্যিক বল থাকে না।

প্রথম সূত্রে থাকা জড়তার ধর্মটি বিভিন্ন পরিস্থিতিতে প্রতীয়মান হল। মনে করি, আমরা একটি স্থির বাসে দাঁড়িয়ে আছি এবং চালক বাসটিকে হঠাৎ করে চালাতে শুরু করল। আমরা একটি ধাক্কা সহকারে পিঁছু হঠি। কেন ? আমাদের পায়ের পাতা মেঝের সংস্পর্শে থাকে। যদি সেখানে ঘর্ষণ না থাকে, আমরা যেখানে ছিলাম সেখানেই থাকব। অথচ আমাদের পায়ের পাতার নীচের বাসের মেঝেটি কেবল সম্মুখদিকে পিছলাবে এবং বাসের পিছনটি আমাদের আঘাত করবে। যদিও, সৌভাগ্যবশত, সেখানে পায়ের পাতা ও মেঝের মধ্যে ঘর্ষণ কাজ করে। যদি শুরুটা খুব অকস্মাৎ না হয়, অর্থাৎ ত্বরণ যদি মাঝারি ধরনের হয়, বাসের সাথে আমাদের পায়ের পাতাকে ত্বরান্বিত করতে ঘর্ষণ বলটিই যথেষ্ট হবে। কিন্তু আমাদের দেহ সঠিকভাবে একটি দৃঢ় বস্তু নয়। এটি বিকৃতিযোগ্য, অর্থাৎ এটি বিভিন্ন অংশে আপেক্ষিক সরণ অনুমোদন করে। ইহা এটাই বুঝায় যে, যখন আমাদের পায়ের পাতা বাসের সাথে এগোয়, জড়তার জন্য দেহের অবশিষ্টাংশ যেখানে ছিল সেখানে থাকে। সুতরাং বাসের সাপেক্ষে আমরা পেছনের দিকে ছিটকে পড়ব। তৎক্ষণাৎ সেটাই ঘটবে, যদিও শরীরের অবশিষ্টাংশে পেশীয় বলগুলো (পায়ের পাতা দ্বারা) দেহকে বাসের সাথে গতিশীল করতে সক্রিয় হবে। যখন বাসটি হঠাৎ করে থেমে যাবে একই ধরনের ঘটনা ঘটবে। বাসের মেঝের সাপেক্ষে পায়ের পাতার আপেক্ষিক গতি থাকবে না। আমাদের পায়ের পাতা থেমে যাবে। কিন্তু শরীরের অবশিষ্টাংশ জড়তার জন্য গতিশীলতা বজায় রাখবে। আমরা সামনের দিকে ঝুকব। প্রত্যানয়ক পেশীয় বল পুনঃরায় সক্রিয় হয়ে দেহটিকে স্থিরাবস্থায় ফিরিয়ে আনবে।

উদাহরণ 5.1 একজন মহাকাশচারী দুর্ঘটনাবশত উনার মহাকাশযান থেকে আলাদা হন, যা নক্ষত্রমন্ডল স্থানে (inter stellar space) 100 m s⁻²হারে ত্বরাম্বিত। মহাকাশযান থেকে বেরোবার মুহূর্তে মহাকাশচারীর ত্বরণ কত? (ধরে নাও যে সেখানে আশেপাশে নক্ষত্ররা অনুপস্থিত, যারা তার উপর অভিকর্ষীয় বল প্রয়োগ করতে পারে)।

উত্তর যেহেতু সেখানে তার উপর অভিকর্ষীয় বল প্রয়োগ করাতে সক্ষম আশেপাশের নক্ষত্ররা অনুপস্থিত এবং ক্ষুদ্র মহাকাশযান দ্বারা তার উপর প্রযুক্ত অভিকর্ষীয় বল উপক্ষেণীয়, সে মহাকাশযান থেকে বেরিয়ে গেলে, তার উপর মোট ক্রিয়াশীল বল শূন্য হবে। প্রথম গতিসূত্রানুসারে মহাকাশচারীর ত্বরণ শূন্য হবে।

5.5 নিউটনের দ্বিতীয় গতিসূত্র (NEWTON'S SECOND LAW OF MOTION)

প্রথম সূত্রটি সহজ পরিস্থিতি সম্বন্ধীয় যেখানে একটি বস্তুর উপর মোট বাহ্যিক বল শূন্য হয়। দ্বিতীয় সূত্রটি সাধারণ পরিস্থিতি সম্বন্ধীয় যখন সেখানে একটি মোট বাহ্যিক বল বস্তুটির উপর ক্রিয়া করে। এটি মোট বাহ্যিক বলের সাথে বস্তুটির ত্বরণের সম্পর্ক স্থাপন করে।

ভরবেগ (Momentum)

একটি বস্তুর ভরবেগ এটির ভর *m* এবং গতিবেগ v-এর গুণফলের মাধ্যমে সংজ্ঞায়িত হয় এবং p দ্বারা প্রকাশ করা হয়।

p=mv (5.1) ভরবেগ স্পন্টতই একটি ভেক্টর রাশি। গতির উপর বলের প্রভাব

ভিয়নেগ প্রসন্তত একটি ভেস্কর রাশি। গাতর ভগর ননোর এভান বিবেচনার্থে এই রাশিটির গুরুত্ব নিম্নলিখিত সাধারণ অভিজ্ঞতাসমূহে নির্দেশিত।

- ধরা যাক, একটি হালকা ওজনের যান (যেমন একটি ক্ষুদ্র গাড়ি) এবং একটি ভারি যান (যেখানে একটি মালবোঝাই ট্রাক) একটি অনুভূমিক রাস্তার উপর দাড় করানো হল। আমরা সবাই দেখব যে, তাদের একই সময়ে একই বেগে গতিশীল করতে গাড়িটি অপেক্ষা ট্রাকটিকে বেশি বলে ঠেলা প্রয়োজন। একইভাবে, একই সময়ে হালকা বস্তু অপেক্ষা ভারি বস্তুকে থামাতে অধিক বিপরীত বলের প্রয়োজন, যদি তারা একই বেগে ধাবমান থাকে।
- যদি দুটি পাথর, একটি হালকা এবং অপরটি ভারি, একটি দেওয়ালের উপর থেকে ফেলা হয়, ভূমিতে দাঁড়িয়ে থাকা একজন ব্যক্তি ভারী পাথর অপেক্ষা হালকা পাথরটি ধরতে সহজ বোধ করবে। বস্তুর ভরটি হল এমন একটি গুরুত্বপূর্ণ প্রাচল (parameter) যা গতির উপর বলের প্রভাবকে বোঝায়।
- দ্রুতিকে অপর একটি গুরুত্বপূর্ণ প্রাচল (parameter) বলে গণনা করা হয়। বন্দুক থেকে নির্গত একটি গুলি থামার পূর্বে সহজে মানব কলা কোশ (human tissue) ভেদ করে, ক্ষতের সৃষ্টি করে। একই গুলিটি মাঝারি দ্রুতিতে ছুঁড়লে কম ক্ষতের সৃষ্টি করে। এইজন্য একটি নির্দিষ্ট ভরের ক্ষেত্রে, দ্রুতি বেশি হলে, একটি নির্দিষ্ট সময়ে বস্তুটিকে থামাতে অধিক বিপরীতমুখী বলের প্রয়োজন হবে। একসাথে গৃহীত ভর ও গতিবেগের গুণফল যা ভরবেগ, গতির ক্ষেত্রে স্পষ্টভাবে প্রাসঞ্চিাক চলরাশি। একটি নির্দিষ্ট সময়ে, ভরবেগের বেশি পরিবর্তন করাতে হলে, অধিক বল প্রয়োগ করা প্রয়োজন হয়।
- একজন পাকা ক্রিকেট খেলোয়াড় অধিক দ্রুতিতে আগত একটি ক্রিকেট বলকে অনায়াসে ধরে ফেলবে, অন্যদিকে একজন শিক্ষানবিশ একাজটি করতে আঘাত পাবে।এর একটি কারণ হল ক্রিকেট খেলোয়াড় তার হাতের দ্বারা বলটি থামাতে বেশি সময় নেবে। এক্ষেত্রে তুমি লক্ষ করবে, বলটি ধরার সময় সে তার হাত দুটিকে পেছনের দিকে সরাবে। অপরদিকে, শিক্ষানবিশের ক্ষেত্রে, তার হাত দুটি স্থির রাখবে এবং প্রায় মুহূর্তের মধ্যেই বলটি ধরার চেন্টা করবে।বলটিকে মুহূর্তের মধ্যে থামাতে সে অধিক বল প্রয়োগ করে, তাই আঘাত

পায়। এটা স্পন্ট যে, বল কেবলমাত্র ভরবেগের পরিবর্তনের উপর নিভরশীল নয়, কত দ্রুত পরিবর্তন করানো যায় তার উপরও নির্ভরশীল। কম সময়ে একই পরিমাণ ভরবেগের পরিবর্তন ঘটাতে হলে অধিক বলের প্রয়োজন। সংক্ষেপে, অধিক ভরবেগের পরিবর্তনের হারের ক্ষেত্রে, বলও অধিক হয়।

- চিত্র 5.3 বল কেবলমাত্র ভরবেগের পরিবর্তনের উপর নির্ভরশীল নয়, কত দ্রুত পরিবর্তন ঘটানো যায়, তার উপরও নির্ভরশীল। একজন পাকা ক্রিকেট খেলোয়াড় বল ধরার ক্ষেত্রে বেশি সময় নেয় এবং এতে কম বলের প্রয়োজন হয়।
- পর্যবেক্ষণগুলি নিশ্চিত করে যে, বস্তুর গতির উপর বলের প্রভাবের মৃলে হল ভর এবং বেগের গুণফল অর্থাৎ ভরবেগ। ধরা যাক, একটি নির্দিন্ট সময়ের পাল্লায় স্থিরাবস্থায় থাকা ভিন্ন ভরের দুটি বস্তুর উপর একই মানের বল প্রয়োগ করা হল, ভারি বস্তুটি অপেক্ষা হালকা বস্তুটি অধিক বেগ অর্জন করবে। যদিও, সময়ের পাল্লার শেষে পর্যবেক্ষণ দেখায় যে প্রত্যেক বস্তুই একই ভরবেগ অর্জন করে। এইজন্য একই সময়ের জন্য ক্রিয়াশীল একই পরিমাণ বল বিভিন্ন বস্তুর ক্ষেত্রে সমান ভরবেগের পরিবর্তন ঘটায়। দ্বিতীয় গতিসূত্রের ক্ষেত্রে এটি গুরুত্বপূর্ণ ইজ্গিত।
- পূর্বোক্ত পর্যবেক্ষণগুলোতে, ভরবেগের ভেক্টরীয় বৈশিষ্ট্য সুস্পষ্ট নয়। উদাহরণগুলোতে এখন অবধি, ভরবেগ এবং ভরবেগের পরিবর্তন উভয়েরই দিক এক। কিন্তু এই ঘটনা সবসময় নাও হতে পারে। যেমন সুতোর সাহায্যে একটি পাথরকে সমদ্রুতিতে অনুভূমিক তলে ঘোরালে, ভরবেগের মান স্থির থাকবে, কিন্তু এর দিক পরিবর্তনশীল হবে (চিত্র 5.4)। ভরবেগ ভেক্টরটি পরিবর্তনের জন্য একটি বলের প্রয়োজন। সুতোটির মাধ্যমে আমাদের হাতের দ্বারা এই বলটি যোগান দেওয়া হয়। অভিজ্ঞতায় দেখা গেছে যে, পাথরটিকে অধিক দ্রুতিতে অথবা ক্ষুদ্র ব্যাসার্ধের বৃত্তাকার পথে অথবা

অধিক দ্রুতি নিয়ে ক্ষুদ্রাকার ব্যাসার্ধের বৃত্তাকার পথে ঘোরানোর জন্য আমাদের হাত দ্বারা বেশি বল প্রয়োগ করতে হয়। এতে অধিক ত্বরণ অথবা সমতুল্যভাবে অধিক হারে ভরবেগ ভেক্টরের পরিবর্তন হয়। এ থকে বোঝা যায় যে, ভরবেগ ভেক্টরের পরিবর্তনের হার যত বেশি হবে প্রযুক্ত বলও তত বেশি হবে।

Fig. 5.4 ভরবেগের মান অপরিবর্তিত থাকলেও এর অভিমুখ পরিবর্তনের জন্য বলের প্রয়োজন। যখন সুতোর দ্বারা একটি পাথরকে অনুভূমিক বৃত্তপথে সমদ্রুতিতে ঘোরাই তখন আমরা তা অনুভব করি।

এইসকল গুণগত পর্যবেক্ষণগুলো থেকে নিউটন দ্বিতীয় গতিসূত্রের অবতারণা করেন এবং তা নিম্নরূপে প্রকাশ করেন :

একটি বস্তুর ভরবেগের পরিবর্তনের হার প্রযুক্ত বলের সরল সমানুপাতিক এবং বলটি যে দিকে ক্রিয়া করে ভরবেগের পরিবর্তনও সেদিকেই হয়।

যদি ∆t সময়ের পাল্লা ব্যাপী F বলের প্রভাবে ক্রিয়াশীল *m* ভরের একটি বস্তুর গতিবেগ v থেকে পরিবর্তিত হয়ে v + ∆v হয়, তবে ইহার প্রাথমিক ভরবেগ p = *m* v , Δ**p** = *m*Δv দ্বারা পরিবর্তিত হয়। দ্বিতীয় গতিসূত্রানুসারে,

$$\mathbf{F} \propto rac{\Delta \mathbf{p}}{\Delta t}$$
 অথবা $\mathbf{F} = k \; rac{\Delta \mathbf{p}}{\Delta t}$

যেখানে k হল একটি সমানুপাতিক ধ্রুবক। $\Delta t \to 0$ সীমাটি নিলে, $\Delta \mathbf{p}$ রাশিটি হবে t এর সাপেক্ষে \mathbf{p} এর অবকলন অথবা অবকলন

গুণাঙ্ক এবং $rac{\mathrm{d} \mathbf{p}}{\mathrm{d} t}$ দ্বারা নির্দেশিত হয়।

সুতরাং,
$$\mathbf{F} = k \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t}$$
 (5.2)

94

m স্থির ভরবিশিষ্ট একটি বস্তুর জন্য,

$$\frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t}(m\,\mathbf{v}) = m\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = m\,\mathbf{a} \quad (5.3)$$

অর্থাৎ দ্বিতীয় সূত্রটি এভাবেও লেখা যায়,

$$\mathbf{F} = k \, m \, \mathbf{a} \tag{5.4}$$

যা দেখায় যে, বল হল বস্তুর ভর (m) এবং ত্বরণের (a) গুণফলের সমানুপাতিক।

এখন পর্যন্ত বলের এককটি সংজ্ঞায়িত হয়নি। বস্তুত, বলের একক সঙ্গায়িত করতে আমরা (5.4) নং সমীকরণটি ব্যবহার করি। সুতরাং *k*. এর জন্য যে-কোনো ধ্রুবক মান পছন্দ করার স্বাধীনতা আমাদের রয়েছে। সরলীকরণের জন্য আমরা পছন্দ করব *k* = 1, দ্বিতীয় সূত্রটি হবে

$$\mathbf{F} = \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = m\,\mathbf{a} \tag{5.5}$$

SI এককে বলের একক হল 1 একক যা 1 kg ভরের উপর ক্রিয়া করলে 1 m s⁻²ত্বরণ সৃষ্ট করে। এই এককটি **নিউটন** হিসাবে পরিচিত। 1 N = 1 kg m s⁻².

এই পর্যায়ে আমরা দ্বিতীয় সূত্র সম্পর্কিত কিছু গুরুত্বপূর্ণ বিষয় (points) উল্লেখ করব :

- দ্বিতীয় সূত্রে, F = 0 বুঝায় a = 0. দ্বিতীয় সূত্রটি অবশ্যই প্রথম সূত্রের সাথে সংগতিপূর্ণ।
- দ্বিতীয় গতিসূত্রটি হল একটি ভেক্টরীয় সূত্র। এটি তিনটি সমীকরণের তুল্য, প্রত্যেক ভেক্টরীয় উপাংশটি,

$$F_{x} = \frac{dp_{x}}{dt} = ma_{x}$$

$$F_{y} = \frac{dp_{y}}{dt} = ma_{y}$$

$$F_{z} = \frac{dp_{z}}{dt} = ma_{z}$$
(5.6)

ইহা বোঝায় যে, যদি বস্তুর গতিবেগের সাথে বল সমান্তরালে না হয়, কিন্তু একটি কোণে ক্রিয়াশীল হয় কেবলমাত্র বলের দিকে গতিবেগের উপাংশে এই পরিবর্তন ঘটে। বলের দিকের সাথে গতিবেগের উল্লম্ব উপাংশটি অপরিবর্তিত থাকে। উদাহরণস্বরূপ উল্লম্ব অভিকর্ষীয় বলের প্রভাবে একটি প্রাসের গতির ক্ষেত্রে, গতিবেগের অনুভূমিক উপাংশটি অপরিবর্তিত থাকে (চিত্র 5.5)।

 একটি বিন্দু কণার ক্ষেত্রে সমীকরণ (5.5) নং এ দেওয়া দ্বিতীয় গতিসূত্রটি প্রযোজ্য। সূত্রটিতে F বলটি কণাটির উপর মোট বাহ্যিক বলকে বোঝায় এবং a কণাটির ত্বরণকে বোঝায়। যদিও এই সূত্রটি একইরুপে দৃঢ়বস্তুর ক্ষেত্রে, এমনকি আরো সাধারণভাবে, কণা সংস্থার ক্ষেত্রেও প্রযোজ্য। এইক্ষেত্রে, F সংস্থার উপর মোট বলকে বোঝায় এবং a সংস্থাটির সার্বিক ত্বরণকে বোঝায়। অধিকতর স্পফ্টভাবে, a হল সংস্থার ভরকেন্দ্রের ত্বরণ যা আমরা বিস্তারিতভাবে অধ্যায়-7 এ অধ্যয়ন করবো। F -এ সংস্থাটির কোনো আভ্যন্তরিণ বল যুক্ত নয়।

- চিত্র 5.5 কোনো মুহুর্তে ত্বরণ ওই মুহুর্তের বল দ্বারা নির্ণীত হয়। একটি ত্বরাশ্বিত ট্রেন থেকে একটি পাথরকে ফেলে দেওয়ার পর মূহুর্ত থেকে এটির কোনো অনুভূমিক ত্বরণ বা বল থাকে না, যদি বায়ুর বাধা উপেক্ষণীয় হয়। ট্রেন থেকে পড়ার পর পাথরটির উপর ট্রেনের ত্বরণের কোনো প্রভাব থাকে না।
- গতির দ্বিতীয় সূত্রটি একটি স্থানীয় সম্পর্ককে বোঝায়, যার অর্থ হল কোনো একটি নিশ্চিত মুহুর্তে কোনো স্থানের (কণাটির অবস্থান) একটি বিন্দুতে F বলের সাথে ওই মুহূর্তে ওই বিন্দুর ত্বরণ a এর সম্পর্ক। কোনো কণার কোনো একটি মুহূর্তে ত্বরণ, ওই ক্ষণে ক্রিয়াশীল বল দ্বারা নির্ণীত হয়, কণার গতির ইতিহাস দ্বারা নির্ধারিত হয় না (চিত্র 5.5 দেখো)।
- ► উদাহরণ 5.2 90 m s⁻¹ দুতিতে ধাবমান 0.04 kg ভরের একটি গুলি একটি ভারি কাঠের ব্লকে প্রবেশ করে এবং 60 cm দূরত্ব গিয়ে থেমে যায়। ব্লকটি দ্বারা গুলিটির উপর প্রযুক্ত গড় প্রতিরোধক বল কত ?
- উত্তর গুলিটির মন্দন 'a' (সুষম ধরলে) হবে

$$a = \frac{-u^2}{2s} = \frac{-90 \times 90}{2 \times 0.6} \,\mathrm{m \ s^{-2}} = -6750 \,\mathrm{m \ s^{-2}}$$

দ্বিতীয় গতিসূত্র হতে প্রতিরোধক বলটি হল

= 0.04 kg × 6750 m s⁻² = 270 N

প্রকৃত প্রতিরোধক বলটি অর্থাৎ গুলিটির মন্দন সুষম নাও হতে পারে। সুতরাং উত্তরটি কেবলমাত্র গড় প্রতিরোধক বলটিকেই ইঞ্চািত করে।

• *উদাহরণ 5.3 m* ভরবিশিষ্ট একটি কণার গতি $y = ut + \frac{1}{2}gt^2$ দ্বারা প্রকাশ করা হল। কণাটির উপর ক্রিয়াশীল বল নির্ণয় করো।

 $y=ut+\frac{1}{2}gt^2$

 $v = \frac{dy}{dt} = u + gt$

<u>উত্তর</u> আমরা জানি

এখন,

ত্বরণ, $a = \frac{\mathrm{d}v}{\mathrm{d}t} = g$

সমীকরণ (5.5) দ্বারা বলটি হবে,

F = ma = mg

সুতরাং প্রদন্ত সমীকরণটি অভিকর্ষজ ত্বরণের প্রভাবে কণাটির গতিকে প্রকাশ করে এবং *y* হলো *g* -এর দিকে উহার অবস্থান স্থানাক্ষা।

ঘাত(Impulse)

কখনো কখনো আমরা এমন সব ঘটনার সম্মুখীন হই যেখানে একটি বৃহৎ মানের বল খুবই ক্ষুদ্র সময় ধরে কোনো বস্তুর উপর ক্রিয়া করে তার ভরবেগের নির্দিশ্ট পরিবর্তন ঘটায়। উদাহরণস্বরূপ, যখন একটি বল একটি দেওয়ালকে আঘাত করে এবং প্রতিক্ষিপ্ত হয়ে ফিরে আসে, দেওয়াল দ্বারা বলটির উপর স্বল্প সময়ব্যাপী একটি বল ক্রিয়া করে যতক্ষণ উফয়ে সংস্পর্শে থাকে। যদিও বলটির ভরবেগের দিক বিপরীত করতে যথেস্ট বড়ো মানের বলের প্রয়োজন হয়। প্রায়ই, এইসব অবস্থাগুলোতে বলটি এবং ক্রিয়াকালটি পৃথকভাবে নিশ্চিত করা কন্টসাধ্য। তথাপি, বল এবং ক্রিয়াকালের গুণফল যা বস্তুটির ভরবেগের পরিবর্তন ঘটায় তা পরিমাপযোগ্য রাশি। এই গুণফলটিকে ঘাত বলা হয়।

ক্ষুদ্রসময়ব্যাপী ক্রিয়াশীল একটি বৃহৎ বল, ভরবেগের একটি নির্দিষ্ট পরিবর্তন ঘটালে, তাকে **ঘাত বল** বলে। বিজ্ঞানের ইতিহাসে, ঘাতবলসমূহকে সাধারণ বলসমূহ থেকে ধারণাগতভাবে ভিন্ন শ্রেণিতে রাখা আছে। নিউটনের বলবিজ্ঞানে এরুপ প্রভেদ নেই। ঘাত বল হল অন্যান্য বলেরই মতো — কেবলমাত্র এটি বৃহৎ এবং স্বল্প সময় ধরে ক্রিয়াশীল। উদাহরণ 5.4 একজন ব্যাটস্ম্যান একটি বলকে, উহার প্রাথমিক দুতি 12 ms⁻¹ অপরিবর্তিত রেখে আঘাত করে সোজা বলারের দিকে ফিরিয়ে দিল। যদি বলটির ভর 0.15 kg হয়, বলটিতে কত ঘাত প্রযুক্ত হয়েছিল, নির্ণয় কর। (ধরে নাও বলটির গতি সরলরৈখিক)

উত্তর ভরবেগের পরিবর্তন

 $= 0.15 \times 12 - (-0.15 \times 12)$ = 3.6 N s,

ঘাত = 3.6 N s, ব্যাটস্ম্যান হতে বোলারের দিকে ক্রিয়াশীল।

এটি এমন একটি উদাহরণ যেখানে ব্যাটস্ম্যান দ্বারা বলের উপর ক্রিয়াশীল বলটির মান এবং বল ও ব্যাটের সংস্পর্শকালটি জানা কন্টসাধ্য। কিন্তু ঘাতটি সহজে নির্ণয় করা যায়।

5.6 নিউটনের তৃতীয় গতিসূত্র (NEWTON'S THIRD LAW OF MOTION)

দ্বিতীয় গতিসূত্র বস্তুর উপর প্রযুক্ত বাহ্যিক বল ও উহার ত্বরণের সাথে সম্পর্ক স্থাপন করে। বস্তুর উপর প্রযুক্ত বাহ্যিক বলটির উৎস কী ? কোন্ সংস্থা এই বাহ্যিক বলের যোগান দেয়? নিউটনের বলবিজ্ঞান হতে সহজে বলা যায় যে একটি বস্তুর উপর বাহ্যিক বল সর্বদাই অপর কোনো বস্তুর জন্য উৎপন্ন হয়। ধর এক জোড় বস্তু A এবং B । B, A এর উপর একটি বাহ্যিক বল প্রয়োগ করে। একটি স্বাভাবিক প্রশ্ন হল : A, B এর উপর একটি বাহ্যিক বলের যোগান দেবে কি? কিছু উদাহরণ সমূহে, উত্তরটি স্পন্টরুপে প্রতিয়মান হবে। যদি তুমি একটি কুণ্ডলির স্প্রিংকে চাপ দাও, তোমার হাতের প্রযুক্ত বল দ্বারা স্প্রিংটি সংকুচিত হবে। সংকুচিত স্প্রীংটি বিপরীতভাবে তোমার হাতে একটি বল প্রয়োগ করবে এবং এটি তুমি অনুভব করবে। কিন্তু বস্তুদ্বয় সংস্পর্শে না থাকলে কী হত? অভিকর্ষের জন্য একটি পাথরকে পৃথিবী নীচের দিকে টানে। পাথরটি কি পৃথিবীর উপর বল প্রয়োগ করে ? উত্তরটি আমাদের কাছে স্পষ্ট হয় না, কারণ পৃথিবীর উপর পাথরটির প্রভাব আমরা বুঝতে পারি না। নিউটনের মতে উত্তরটি হল : হাঁা, পাথরটিও পৃথিবীর উপর সমান ও বিপরীতমুখী বল প্রয়োগ করবে। ইহা আমরা লক্ষ্য করি না কারণ পৃথিবী অধিক ভারী এবং এর গতির উপর ক্ষুদ্রবলের প্রভাব উপেক্ষনীয়।

সুতরাং, নিউটনের বলবিজ্ঞান অনুসারে, প্রকৃতিতে বল এককভাবে উৎপন্ন হয় না। বল হল বস্তুদ্বয়ের মধ্যে পারস্পরিক ক্রিয়া। বল সর্বদা বস্তুদ্বয়ের মধ্যে উদ্ভুত হয়। এছাড়াও, দুটি বস্তুর মধ্যে পারস্পরিক

পদার্থবিদ্যা

গতীয় সূত্রাবলি

বলসমূহ সর্বদাই সমান এবং বিপরীতমুখী হয়। এই ধারণাটিই নিউটনের তৃতীয় গতিসূত্র দ্বারা প্রকাশিত হয়।

প্রত্যেক ক্রিয়ারই সর্বদা একটি সমান এবং বিপরীতমুখী প্রতিক্রিয়া থাকে। তৃতীয় সূত্রে নিউটনের শব্দচয়ন এতো সতেজ এবং সাবলীল যে এটি সাধারণ ভাষার একটি অঙ্গা হতে পেরেছে। সম্ভবত এই কারণেই নিউটনের তৃতীয় সূত্র সম্পর্কে কিছু ভুল ধারণা প্রচলিত আছে। চলো আমরা তৃতীয় গতিসূত্র সম্পর্কে কিছু গুরুত্বপূর্ণ বিষয়ের উল্লেখ করব, বিশেষভাবে ক্রিয়া ও প্রতিক্রিয়া, এই দুইটি শব্দের ব্যবহার সম্পর্কে।

 তৃতীয় সূত্রে থাকা ক্রিয়া এবং প্রতিক্রিয়া পদদ্বয় কেবলমাত্র 'বল' ছাড়া আর কিছুই বুঝায় না। এই একই ধারণাটির জন্য ব্যবহৃত বিভিন্ন পদসমূহ মাঝেমধ্যে বিভ্রান্তির সৃষ্টি করে। তৃতীয় সূত্রের একটি সহজ ও স্পষ্ট পথ প্রদর্শিত হল :

বলসমূহ সর্বদা জোড়ায় ক্রিয়াশীল হয়। B দ্বারা A এর উপর বল, A দ্বারা B এর উপর বলের সমান ও বিপরীতমুখী হয়।

2. তৃতীয় সূত্রে থাকা পদদুটি, ক্রিয়া এবং প্রতিক্রিয়া একটি ভুল ধারণা দিতে পারে যা হল প্রতিক্রিয়ার পূর্বে ক্রিয়া আসে অর্থাৎ ক্রিয়া হল কারণ এবং প্রতিক্রিয়া হল ফল। তৃতীয় সূত্রে কারণ-ফল সম্পর্কের কোনো অর্থ থাকে না। A এর উপর B দ্বারা বল এবং B এর উপর *A* দ্বারা বল একই মুহুর্তে ক্রিয়া করে। এই একই কারণে যে কোনো একটিকে ক্রিয়া ও অপরটিকে প্রতিক্রিয়া বলা যেতে পারে।

 ক্রিয়া এবং প্রতিক্রিয়া বলসমূহ ভিন্ন বস্তুসমূহের উপর ক্রিয়া করে, একই বস্তুর উপর নয়। ধর একজোড়া বস্তু A এবং B এর মধ্যে তৃতীয় সূত্র অনুযায়ী,

$$\mathbf{F}_{AB} = -\mathbf{F}_{BA} \tag{5.8}$$

(B-র দ্বারা A এর উপর বল) = $-\left(A$ -র দ্বারা B এর উপর বল)

সুতরাং, আমরা যদি যে-কোনো একটি বস্তুর (A অথবা B) গতির কথা বিবেচনা করি, দুটি বলের মধ্যে কেবলমাত্র একটি বল প্রাসজিাক হবে। বল দুটিকে যোগ করা এবং মোট বল শূন্য বলে দাবি করাটা ত্রুটিপূর্ণ হবে।

তথাপিও যদি তুমি বস্তুদ্বয়কে নিয়ে সার্বিকভাবে একটি সংস্থা বিবেচনা কর, তবে (A + B) সংস্থাটির অভ্যন্তরীণ বলসমূহ হবে \mathbf{F}_{AB} এবং \mathbf{F}_{BA} । এদের যোগফলটি একটি শূন্য বল হবে। একটি বস্তুর মধ্যে অথবা কণাসমূহের একটি সংস্থার ক্ষেত্রে জোড়া হিসাবে এইজন্য পারস্পরিক বলসমূহ প্রতিমিত হয়। এই গুরুত্বপূর্ণ তত্ত্বটি একটি বস্তু অথবা কণাসমূহের একটি সংস্থার ক্ষেত্রে নিউটনের দ্বিতীয় সূত্রটিকে প্রয়োগ করতে সাহায্য করে (সপ্তম অধ্যায় দেখো)।

আইজ্যাক নিউটন (1642 – 1727)

গ্যালিলিওর মৃত্যুর বছর 1642 সালে আইজ্যাক নিউটন ইংল্যান্ডের Woolsthorpe শহরে জন্মগ্রহণ করেন। তাঁর অসাধারণ গাণিতিক দক্ষতা এবং প্রকৃতিগত যান্ত্রিক অভিরুচি (mechanical aptitude) তাঁর বিদ্যালয় জীবনে অন্যদের থেকে লুক্নায়িত ছিল। তিনি 1662 সালে স্নাতক-ডিগ্রি অর্জনের জন্য কেমব্রিজে গিয়েছিলেন। প্লেগ মহামারির জন্য 1665 সালে বিশ্ববিদ্যালয় বন্ধ হয়ে যায় এবং নিউটন তার মায়ের কৃষি খামারে ফিরে যেতে বাধ্য হন। সেখানে দুই বছর নির্জনতায়, পদার্থবিদ্যা ও গণিতের মৌলিক আবিষ্কার সমূহ যেমন ঋণাত্মক ও ধনাত্মক সূচকীয় দ্বিপদ উপপাদ্য, কলনবিদ্যার সূচনা, মহাকর্ষের ব্যস্তবর্গের সূত্র, সাদা আলোর বর্ণালী এবং অন্যান্য অনেক ক্ষেত্রে তাঁর সুপ্ত সূজন প্রতিভার প্রস্ফুরণ ঘটেছিল। কেমব্রিজে প্রত্যাবর্তনের পর তিনি আলোক বিজ্ঞান সম্পর্কে অনুসন্ধানের জন্য মনোনিবেশ করেন এবং প্রতিফলন দুরবীক্ষণ উদ্ভাবন করেছিলেন।

1684 সালে নিউটন তাঁর বন্ধু এডমন্ড হেলির দ্বারা উৎসাহিত হয়ে লেখায় প্রবৃত্ত হয়েছিলেন যা এখন পর্যন্ত প্রকাশিত বৈজ্ঞানিক কাজের মধ্যে শ্রেষ্ঠতম : প্রিন্সিপিয়া ম্যাথমেটিকা (Principia Mathematica)।

ইহাতে তিনি গতির তিনটি সূত্র এবং সর্বজনীন মহাকর্ষীয় সূত্র স্পউভাবে বিবৃত করেছিলেন যা কেপলারের তিনটি গ্রহ সম্পর্কিত সূত্রের ব্যাখ্যা করেছিল। বইটিতে নতুন নতুন দিক্দিশারী আবিষ্কার সমূহের তত্ত্বের সমাহার ছিল যেমন : প্রবাহী গতিবিদ্যার মূলনীতি, তরঙ্গা গতির গাণিতিক ব্যাখ্যা, পৃথিবী, সূর্য ও অন্যান্য গ্রহের ভরের গণনা, সঠিক বিযুবক্ষণের ব্যাখ্যা, জোয়ার ভাটার তত্ত্ব ইত্যাদি। 1704 সালে তিনি আলোক বিজ্ঞানের (Optics) আরেকটি যুগান্তকারী ধারণার অবতারণা করেন যেখানে আলো ও বর্ণের উপর উনার কাজের সংক্ষিপ্তকরণ করেছিলেন।

কোপারনিকাস যে বৈজ্ঞানিক বিপ্লবের সূত্রপাত করেছিলেন, কেপলার ও গ্যালিলিও তা দারুণভাবে এগিয়ে নিয়েছিলেন এবং পরবর্তীকালে নিউটন ইহাকে চমৎকারভাবে পূর্ণ অবয়ব দেন। নিউটনীয় বলবিদ্যা পার্থিব ও মহাজাগতিক ঘটনাবলির মধ্যে সমন্বয় সাধন করেছিল। একই গাণিতিক সমীকরণ দ্বারা ভূমিতে আপেলের পতন এবং পৃথিবীর চারদিকে চাঁদের গতি নিয়ন্ত্রিত হয় এবং বিজ্ঞানমনস্ক যুগেরও উদয় হয়েছিল। উদাহরণ 5.5 দুটি সদৃশ বিলিয়ার্ড বল একই দুতিতে কিন্তু ভিন্ন কোণে একটি দৃঢ় দেওয়ালে আঘাত করল এবং দুতি অপরিবর্তিত রেখে প্রতিক্ষিপ্ত হল, যা 5.6 নং চিত্রে দেখানো হয়েছে। (i) প্রত্যেক বল দ্বারা দেওয়ালে প্রযুক্ত বলের দিক কী হবে? (ii) দেওয়াল দ্বারা বলদ্বয়ের উপর প্রযুক্ত ঘাতের মানদ্বয়ের অনুপাতটি কত?

উত্তর স্বাভাবিকভাবে উত্তরটি এক্ষেত্রে হতে পারে, দেওয়ালের উপর ক্রিয়াশীল বলটি (a) প্রথম ক্ষেত্রে দেওয়ালের সাথে অভিলম্বভাবে, যেখানে (b) দ্বিতীয় ক্ষেত্রে অভিলম্বের সাথে 30° কোণে আনত। এই উত্তরটি ভুল। উভয়ক্ষেত্রে প্রযুক্ত বলটি দেওয়ালের সাথে অভিলম্ব হবে।

দেওয়ালের উপর প্রযুক্ত বলটি কীভাবে নির্ণয় করবে ? বিবেচিত কৌশলটি হল দ্বিতীয় সূত্র ব্যবহার করে দেওয়াল কর্তৃক বলটির উপর প্রযুক্ত বল (বা ঘাত) এবং তখন (i) নং এর উত্তরের ক্ষেত্রে তৃতীয় সূত্র ব্যবহার কর। ধর দেওয়ালের সাথে সংঘর্ষের পূর্বে এবং পরে প্রতিটি বিলিয়ার্ড বলের দ্রুতি *u* এবং প্রতিটি বিলিয়ার্ড বলের ভর m । পছন্দ করা x এবং y অক্ষদ্বয় চিত্রে দেখানো হয়েছে এবং প্রতিক্ষেত্রেই বলটির ভরবেগের পরিবর্তন বিবেচিত হয়েছে:

<u>ক্ষেত্র</u> (a)

 $(P_X)_{\text{minime}} = \text{mu}$ $(P_y)_{\text{minime}} = 0$ $(P_X)_{\text{poine}} = -\text{mu}$ $(P_y)_{\text{poine}} = 0$

ভরবেগ ভেক্টরটির পরিবর্তনই হল ঘাত। সুতরাং,

ঘাতের x-উপাংশ = – 2 m u

ঘাতের y-উপাংশ = 0

ঘাত এবং বলের দিক একই থাকে। উপরিউক্ত ধারণা থেকে স্পষ্টতই, দেওয়াল কর্তৃক বিলিয়ার্ড বলের উপর প্রযুক্ত বলটি দেওয়ালের সাথে অভিলম্ব হবে, ঋনাত্মক x-অক্ষ বরাবর হবে।

নিউটনের তৃতীয় গতিসূত্র ব্যবহার করলে, বিলিয়ার্ড বলটির জন্য দেওয়ালের উপর প্রযুক্ত বলটি x-অক্ষের ধনাত্মক দিকে দেওয়ালের সাথে অভিলম্ব বরাবর হবে। যেহেতু সংঘর্ষটির ক্ষুদ্র সময় অবকাশ সমস্যাটিতে উল্লেখিত নেই, সেজন্য বলের মানটি নিশ্চিত করা যাবে না।

<u>ক্ষেত্র (b)</u>

$$(P_{\chi})_{\text{and the product}} = \text{mucos}30^{\circ}; \qquad (P_{\chi})_{\text{and the product}} = -\text{musin}30^{\circ}$$

$$(P_{\chi})_{\text{puts}} = - \text{mucos} 30^{\circ}$$
 $(P_{\chi})_{\text{puts}} = - \text{musin} 30^{\circ}$

দ্রন্টব্য, সংঘর্ষের পর যেখানে p_x এর চিহ্ন পাল্টায়, p_y এর ক্ষেত্রে তা হয় না।

সুতরাং ঘাতের x-উপাংশ = $-2 m u \cos 30^\circ$

ঘাতের y-উপাংশ = 0

ঘাতের (এবং বলের) দিক (a) ক্ষেত্রের মতো x-অক্ষের ঋনাত্মক দিকে দেওয়ালের অভিলম্ব বরাবর হয়। পূর্বের মতো, নিউটনের তৃতীয় সূত্র ব্যবহার করে বলের জন্য দেওয়ালের উপর প্রযুক্ত বল x -অক্ষের ধনাত্মক দিকে দেওয়ালের অভিলম্ব বরাবর হয়। (a) এবং (b) এর ক্ষেত্রে ঘাতসমূহের মানগুলির অনুপাত হবে,

$2 m u / (2 m u \cos 30^\circ) = \frac{2}{\sqrt{3}} \approx 1.2$ 5.7 ভরবেগের সংরক্ষণ (CONSERVATION OF MOMENTUM)

দ্বিতীয় এবং তৃতীয় গতিসূত্র দুটির একটি গুরুত্বপূর্ণ ফলাফলের দিশা দেয় যা হল ভরবেগের সংরক্ষণ সূত্র। একটি পরিচিত উদাহরণ নেওয়া হল। একটি বন্দুক থেকে একটি গুলি ছোড়া হল। যদি বন্দুকটি দ্বারা গুলির উপর প্রযুক্ত বল F হয়, তৃতীয় সূত্রানুসারে গুলি দ্বারা বন্দুকের উপর প্রযুক্ত বল – F হবে। বল দুটি একটি সাধারণ সময় পাল্লার Δt অবকাশে ক্রিয়াশীল থাকবে। দ্বিতীয় সূত্রানুসারে, F Δt গুলিটির ক্ষেত্রে ভরবেগের পরিবর্তন হবে এবং বন্দুকটির ক্ষেত্রে ভরবেগের পরিবর্তন হবে – F Δt । যেহেতু প্রাথমিকভাবে, উভয়েই স্থির, প্রত্যেকের জন্যই ভরবেগের পরিবর্তন চূড়ান্ত ভরবেগের সমান হবে। যদি ছোড়ার পর গুলিটির ভরবেগ \mathbf{p}_b হয় এবং বন্দুকটির প্রতিক্ষিপ্ত ভরবেগ \mathbf{p}_g হয়, $\mathbf{p}_g = -\mathbf{p}_b$ অর্থাৎ $\mathbf{p}_b + \mathbf{p}_g = 0$ । অর্থাৎ (গুলি + বন্দুক) এই সংস্থাটির মোট ভরবেগ সংরক্ষিত হবে।

সুতরাং একটি বিচ্ছিন্ন সংস্থায় (অর্থাৎ বাহ্যিক বল মুক্ত একটি সংস্থা), সংস্থার মধ্যস্থ জোড় কণাগুলোর মধ্যে পারস্পরিক বলগুলো প্রত্যেকটি কণাতেই ভরবেগের পরিবর্তন ঘটাতে পারে, কিন্তু প্রতি জোড়ার ক্ষেত্রে পারস্পরিক বলগুলো সমান এবং বিপরীত হওয়াতে, জোড়াগুলোতে ভরবেগের পরিবর্তন প্রতিমিত হয় এবং মোট ভরবেগটি অপরিবর্তিত থাকে। এই তত্ত্বটি **ভরবেগের সংরক্ষণ সূত্র** হিসাবে জ্ঞাত হয়।

একটি বিচ্ছিন্ন সংস্থায় পারস্পরিক ক্রিয়ারত কণাগুলির মোট ভরবেগ সংরক্ষিত থাকে। ভরবেগের সংরক্ষণ সূত্র প্রয়োগের একটি গুরুত্বপূর্ণ উদাহরণ হল দুটি বস্তুর মধ্যে সংঘাত। ধর দুটি বস্তু A এবং B, যাদের প্রাথমিক ভরবেগ \mathbf{p}_A এবং \mathbf{p}_B । বস্তু দুটি সংঘর্ষে লিপ্ত হয়ে যথাক্রমে \mathbf{p}'_A এবং \mathbf{p}'_B চূড়ান্ত ভরবেগে দূরে সরে যায়। দ্বিতীয় সূত্র দ্বারা,

$$\mathbf{F}_{AB}\Delta t = \mathbf{p}_{A}^{\prime} - \mathbf{p}_{A}$$
 এবং

$$\mathbf{F}_{BA}\Delta t = \mathbf{p}_B' - \mathbf{p}_B$$

(যেখানে আমরা উভয় বলের ক্ষেত্রেই সময়ের একটি সাধারণ পাল্লা নেব অর্থাৎ বস্তু দুটি সংস্পর্শে থাকার সময়টি।)

যেহেতু তৃতীয় সূত্র হতে, $\mathbf{F}_{AB}=-\mathbf{F}_{BA}$

$$\mathbf{p}_{A}^{\prime} - \mathbf{p}_{A} = -(\mathbf{p}_{B}^{\prime} - \mathbf{p}_{B})$$
where $\mathbf{p}_{A}^{\prime} + \mathbf{p}_{B}^{\prime} = \mathbf{p}_{A} + \mathbf{p}_{B}$
(5.9)

এ থেকে দেখা যায় যে বিচ্ছিন্ন সংস্থাটির মোট চূড়াস্ত ভরবেগ, এটির প্রাথমিক মোট ভরবেগের সমান হয়। দ্রন্টব্য যে সংঘর্ষটি স্থিতিস্থাপক অথবা অস্থিতিস্থাপক হলেও ইহা সত্য। স্থিতিস্থাপক সংঘাতগুলোর ক্ষেত্রে, একটি দ্বিতীয় শর্ত প্রযুক্ত হয়, সংস্থাটির মোট প্রাথমিক গতিশক্তি, মোট চূড়াস্ত গতিশক্তির সমান হয় (যন্ঠ অধ্যায় দেখো)।

5.8 একটি কণার সাম্যাবস্থা (EQUILIBRIUM OFA PARTICLE) বলবিদ্যায় একটি কণার সাম্যাবস্থা সেই পরিস্থিতিটি উল্লেখ করে যখন কণাটির উপর মোট বাহ্যিক বল শূন্য হয়।* প্রথম সূত্রানুসারে, এটি বুঝায় যে, হয় কণাটি স্থির হবে নতুবা সুষম গতিতে থাকবে।

যদি দুটি বল \mathbf{F}_1 এবং \mathbf{F}_2 , একটি কণার উপর ক্রিয়া করে, সাম্যাবস্থার প্রয়োজনে

$$\mathbf{F}_1 = -\mathbf{F}_2 \tag{5.10}$$

অর্থাৎ, কণাটির উপর বল দুটি অবশ্যই সমান এবং বিপরীতমুখী হবে। তিনটি সমবিন্দু বলের অধীনে একটি কণার সাম্যাবস্থায় থাকার শর্ত হল, ওই তিনটি বল $\mathbf{F}_1, \mathbf{F}_2$ এবং \mathbf{F}_3 এর ভেক্টরীয় যোগফল শূন্য হবে।

$$\mathbf{F}_{1} + \mathbf{F}_{2} + \mathbf{F}_{3} = 0 \tag{5.11}$$

চিত্র 5.7 সাম্যাবস্থার অধীনে সমবিন্দুগামী বলসমূহ।

অপর অর্থে, বলের সামন্তরিক সূত্র দ্বারা প্রাপ্ত যে-কোনো দুটি বলের যেমন \mathbf{F}_1 এবং \mathbf{F}_2 -এর লস্ধিটি অবশ্যই তৃতীয় বল \mathbf{F}_3 এর সমান এবং বিপরীতমুখী হবে। চিত্র 5.7 তে দেখা যায়, সাম্যাবস্থায় থাকা বল তিনটি একটি ত্রিভূজের বাহুগুলি দ্বারা ভেক্টর তিরগুলোকে একই ক্রমানুসারে নিয়ে প্রকাশ করা যায়। যে-কোনো সংখ্যক বলসমূহের ক্ষেত্রেই ফলাফলটি সাধারণীকরণ করা যাবে। $\mathbf{F}_1, \mathbf{F}_2, \dots \mathbf{F}_n$ বলসমূহের প্রভাবে একটি কণা সাম্যাবস্থায় থাকে যদি তাদেরকে n-বাহুবিশিষ্ট একটি বহুভূজের বাহুগুলির দ্বারা একইক্রমে তিরগুলোর সাহায্যে প্রকাশ করা যায়।

(5.11) সমীকরণটি বোঝায় যে,

$$F_{lx} + F_{2x} + F_{3x} = 0$$

$$F_{ly} + F_{2y} + F_{3y} = 0$$

$$F_{lz} + F_{2z} + F_{3z} = 0$$
(5.12)

যেখানে F_{1x}, F_{1y} এবং F_{1z} হল যথাক্রমে x, y এবং z অক্ষ বরাবর F_{1} -এর উপাংশ সমূহ।

উদাহরণ 5.6 5.8 চিত্র দেখ। 2 m দীর্ঘ একটি দড়ির দ্বারা ছাদ থেকে একটি 6 kg ভরকে ঝুলিয়ে দেওয়া হল। দড়িটির মধ্যবিন্দু P থেকে 50 N মানের একটি অনুভূমিক বল প্রয়োগ করা হল, যা চিত্রে দেখানো হয়েছে। সাম্যাবস্থায় উল্লম্বের সাথে দড়িটির দ্বারা উৎপন্ন কোণটি কত ? (ধর g = 10 m s⁻²)। দড়িটির ভর

^{*} একটি বস্তুর সাম্যাবস্থা কেবলমাত্র চলণ গতির সাম্যকেই (translational equilibrium) (মোট বাহ্যিক বল শূন্য) নির্দেশ করে না কিন্তু ঘূর্ণন সাম্যাবস্থাকেও (rotational equilibrium) (মোট বাহ্যিক টর্ক শূন্য) নির্দেশ করে, যা আমরা অধ্যায় 7 এ দেখবো।

পদার্থবিদ্যা

উপেক্ষা করো।

উত্তর 5.8(b) এবং 5.8(c) চিত্রদ্বয় মুক্ত বস্তু চিত্রণ হিসাবে পরিচিত। চিত্র 5.8(b) হল W এর মুক্ত বস্তুচিত্রণ এবং চিত্র 5.8(c) হল P বিন্দুটির মুক্ত বস্তুচিত্রণ (Free-body diagram).

W ওজনটির সাম্যাবস্থা বিবেচনা করলে, স্পণ্টতই, $T_2 \!=\! 6 \times 10 \!=\! 60\,\mathrm{N}.$

তিনটি বলের অধীনে P বিন্দুটির সাম্যাবস্থা বিবেচনা করলে — টানগুলি T_1 এবং T_2 এবং অনুভূমিক বলটি হবে 50 N । লব্ধি বলটির অনুভূমিক এবং উল্লম্ব উপাংশগুলো পৃথকভাবে প্রতিমিত হবে :

 $T_1 \cos \theta = T_2 = 60 \text{ N}$ $T_1 \sin \theta = 50 \text{ N}$

যা থেকে পাওয়া যাবে,

$$\tan \theta = \frac{5}{6} \quad \text{singleft} \quad \theta = \tan^{-1}\left(\frac{5}{6}\right) = 40^{\circ}$$

দ্রস্টব্য যে উত্তরটি দড়িটির দৈর্ঘ্যের উপর যেমন নির্ভর করে না (ভরহীন ধরে নেওয়া) তেমনি যে বিন্দুটির উপর অনুভূমিক বলটি প্রয়োগ করা হয়, এর উপরও নির্ভর করে না।

5.9 বলবিদ্যাতে সাধারণ বলসমূহ (COMMON FORCES IN MECHANICS)

বলবিদ্যাতে আমরা বিভিন্ন ধরনের বলের সম্মুখীন হই। বাস্তবে অভিকর্ষীয় বলটি অবশ্যই ব্যপ্তি বিশাল। পৃথিবীপৃষ্ঠে প্রত্যেক বস্তুই পৃথিবীর অভিকর্যের জন্য একটি বল অনুভব করে। মহাকর্ষীয় বল মহাজাগতিক বস্তুগুলোর গতিকেও নিয়ন্ত্রণ করে। মধ্যবতী মাধ্যমের প্রয়োজন ব্যতিরেকেও অভিকর্ষীয় বলটি দূর থেকে ক্রিয়া করে।

বলবিদ্যাতে অপর সাধারণ বলগুলো হল সংস্পর্শী বলসমূহ। নামটি থেকেই বুঝা যায়, একটি বস্তুর উপর একটি সংস্পর্শ বল অপর বস্তুর সংস্পর্শে থাকার জন্যই উদ্ভব হয় : কঠিন অথবা প্রবাহী। বস্তুসমূহ যখন সংস্পর্শে থাকে (উদাহরণস্বরূপ টেবিলের উপর রাখা একটি বই, দন্ডসমূহ দ্বারা সংযুক্ত দৃঢ় বস্তুসমূহের সংস্থা, কজাসমূহ এবং অপর ধরনের আশ্রয়গুলো), সেখানে থাকা পারস্পরিক সংস্পর্শ বলগুলো (প্রতিজোড়া বস্তুগুলোর মধ্যে) তৃতীয় সূত্রকে মান্য করে। সংস্পর্শে থাকা তলগুলোর উপর সংস্পর্শ বলের তলের সঙ্গে অভিলম্ব উপাংশটিকে উল্লম্ব প্রতিক্রিয়া বলে। স্পর্শতলগুলোর সঙ্গে সমান্তরাল উপাংশটিকে ঘর্ষণ বলে। যখন কঠিন বস্তুসমূহ প্রবাহী সমূহের সংস্পর্শে থাকে, তখনও সংস্পর্শ বলের উদ্ধ্ব হয়। উদাহরণস্বরূপ, প্রবাহীতে নিমজ্জিত একটি কঠিনের ক্ষেত্রে উর্দ্ধোভিমুখী প্লবতা বল ক্রিয়াশীল হয় যা অপসারিত প্রবাহীর ওজনের সমান হয়। সান্দ্রতা বল, বায়ুর বাধাজনিত বল, প্রভৃতি হল সংস্পর্শ বলসমূহের উদাহরণ চিত্র 5.9।

অপর দুটি সাধারণ বল হল তারে উৎপন্ন টান এবং স্প্রিং-এ উৎপন্ন বলটি। যখনই একটি স্প্রিংকে বাহ্যিক বলের দ্বারা সংকোচিত অথবা প্রসারিত করা হয়, তখনই একটি প্রত্যানয়ক বলের উদ্ভব হয়। এই বলটি সাধারণত সংকোচন অথবা প্রসারণটির (ক্ষুদ্র সরণের জন্য) সমানুপাতিক হয়। স্প্রিং বলটি (F) কে এভাবে লেখা যায়, F = -k x যেখানে x হল সরণ এবং k হল বল ধ্রুবক। ঋণাত্মক চিহ্নটির অর্থ হল যে, বলটি অপ্রসার্য্য অবস্থা থেকে স্প্রিংটির সরণের বিপরীতমুখী। একটি অপ্রসার্য্য তারের জন্য বল ধ্রুবকটির মান বেশি হয়। তারে সৃষ্ট প্রত্যানয়ক বলটিকে বলা হয় তারের টান। প্রথাগতভাবে তারের সর্বত্র ধ্রুবক টান T ব্যবহার করা হয়। একটি ভরহীন তারের ক্ষেত্রে এই অনুমানটি সত্য।

অধ্যায় 1 এ, আমরা প্রকৃতিতে থাকা চারটি মূল বলের সম্বন্থে জেনেছি। এদের মধ্যে দুর্বল ও শক্তিশালী বলগুলো যেসব ক্ষেত্রে ক্রিয়াশীল, ঐগুলো নিয়ে এখানে আমরা ভাব্ব না। কেবলমাত্র অভিকর্ষীয় বলটি এবং তাড়িতিক বলগুলো বলবিদ্যার প্রেক্ষাপটে প্রাসজিক হয়। বলবিদ্যায় উপরিউক্ত বিভিন্ন সংস্পর্শ বলগুলো মূলগতভাবে তাড়িতিক বলসমূহ হতেই উদ্ভত।

চিত্র 5.9 বলবিদ্যার সংস্পর্শ বলগুলোর কিছু উদাহরণ।

* সহজ করার জন্য আমরা আহিত ও চুম্বকীয় বস্তু বিবেচনা করি নি। এগুলোর ক্ষেত্রে মহাকর্ষীয় বল ছাড়াও বৈদ্যুতিক এবং চুম্বকীয় বল হল অসংস্পর্শী বল। এটা খুবই আশ্চর্যজনক মনে হবে যে, বলবিদ্যায় আমরা কেবলমাত্র অনাহিত ও অচৌম্বক বস্তুর কথা বলছি। আণুবীক্ষণিক স্তরে, সমস্ত বস্তুসমূহ আধানগ্রস্ত উপাদানগুলি (নিউক্লিয়াস এবং ইলেকট্রনগুলো) দ্বারা তৈরি এবং বস্তুসমূহে, স্থিতিস্থাপকতা, আণবিক সংঘাত এবং ঘাত প্রভৃতির জন্যে উৎপন্ন বিভিন্ন ধরনের সংস্পর্শজনিত বলগুলো, বিভিন্ন বস্তুর আহিত উপাদানসমূহের মধ্যে ক্রিয়াশীল তাড়িতিক বলগুলোর জন্য হয়। এই বলগুলোর বিস্তারিত উৎস আণুবীক্ষণিক ও জটিল হয় এবং স্তুলবীক্ষণিক স্কেলে বলবিদ্যার সমস্যাগুলো মোকাবিলা করার ক্ষেত্রে ইহা ব্যবহারযোগ্য নয়। এজন্য বিভিন্ন ধরনের বলগুলোর চরিত্রগত বৈশিস্ট্যগুলো নিছক তত্ত্বগতভাবে প্রকাশ করা হয়।

5.9.1 ঘর্ষণ (Friction)

একটি টেবিলের উপর *m* ভরের একটি বস্তু স্থিরাবস্থায় আছে — এই উদাহরণটিতে আমরা ফিরে আসি। অভিকর্ষীয় বলটি (*mg*) টেবিলের উল্লম্ব প্রতিক্রিয়া বল দ্বারা প্রতিমিত হয়। এখন ধরা যাক বস্তুটির উপর একটি অনুভূমিক বল *F* প্রয়োগ করা হল। অভিজ্ঞতা থেকে আমরা দেখেছি যে, একটি ক্ষুদ্র বল প্রয়োগ বস্তুটির গতিশীলতার জন্য যথেন্ট নাও হতে পারে। কিন্ডু বস্তুটির উপর প্রযুক্ত বল *F* কেবলমাত্র বাহ্যিক বল হলে, বলটি যত ক্ষুদ্রই হোক না কেন, বস্তুটি অবশ্যই *F/m* ত্বরণে গতিশীল হবে। স্পন্টতই বস্তুটি স্থির থাকবে, যদি অনুভূমিক দিকে অপর একটি বল সক্রিয় হয় এবং প্রযুক্ত বল *F* কে প্রতিহত করে বস্তুটির উপর মোট লব্দ্বি বল শূন্য করে। টেবিলটির সাথে সংস্পর্শে থাকা বস্তুর পৃষ্ঠতলের সমান্তরালে থাকা, এই বল *f*, ঘর্ষণ বল হিসাবে অথবা কেবল ঘর্ষণ হিসাবে পরিচিত (চিত্র 5.10(a))। গতীয় ঘর্ষণ *f*, থেকে পৃথক করে বোঝাতে পদচিহ্ন (s)টি স্থিত ঘর্ষপেরে ক্ষেত্রে ব্যবহৃত হয়েছে

চিত্র 5.10 স্থিত এবং গতিয় ঘর্ষণ : (a) একটি বস্তুর গতিপ্রবণতা স্থিত ঘর্ষণ দ্বারা বাধা পায়। যখন বাহ্যিক বল স্থিত ঘর্ষণের সীমাস্থ মানকে অতিক্রম করে তখনই বস্তুটি চলতে শুরু করে। (b) যখনই বস্তুটি চলতে শুরু করবে এতে চল বা গতীয় ঘর্ষণ কাজ করবে যা স্পর্শতলদ্বয়ের মধ্যে আপেক্ষিক গতিকে বাধা দেবে। গতীয় ঘর্ষণ সাধারণত স্থিত ঘর্ষণের সীমাস্থ মানের চেয়ে কম হয়।

যেখানে গতীয় ঘর্ষণ আমরা পরে বিবেচনা করবো (চিত্র 5.10(b)) । দ্রন্টব্য যে স্থিত ঘর্ষণের নিজস্ব কোনো অস্তিত্ব নেই। যখন সেখানে কোনো প্রযুক্ত বল থাকে না, সেখানে কোনো স্থিতঘর্ষণ থাকে না। ইহা সে মুহুর্তেই সক্রিয় হয় যখন সেখানে একটি বল প্রযুক্ত হয়। বস্তুটিকে স্থির রেখে প্রযুক্ত বল *F* এর বৃদ্ধির সঙ্গো একটি নির্দিন্ট সীমা পর্যন্ত, সমান ও বিপরীত মুখে *f*, এর বৃদ্ধি ঘটে। এজন্যই ইহাকে স্থিত ঘর্ষণ বলে। স্থিত ঘর্ষণ গতিপ্রবণতাকে বাধা দেয়। গতিপ্রবণতা পদটি বোঝায় যে, যদি ঘর্ষণ না থাকত, তবে প্রযুক্ত বলের অধীনে গতিটি সংঘটিত হত (কিন্ডু প্রকৃতপক্ষে তা হবে না)।

অভিজ্ঞতা থেকে আমরা দেখেছি যে, প্রযুক্ত বলটি একটি নির্দিষ্ট সীমা অতিক্রম করলে, বস্তুটি চলতে শুরু করে। পরীক্ষামূলকভাবে দেখা যায় যে, স্থিত ঘর্ষনের সীমাস্থমান $(f_s)_{max}$ সংস্পর্শ তলের ক্ষেত্রফল নিরপেক্ষ হয় এবং আনুমানিকভাবে উল্লম্ব বলের *(N)* সাথে এভাবে পরিবর্তিত হয় :

$$\left(f_s\right)_{\max} = \mu_s N \tag{5.13}$$

যেখানে μ_s হল একটি সমানুপাতিক ধ্রুবক যা কেবলমাত্র সংস্পর্শ তলদ্বয়ের প্রকৃতির উপর নির্ভর করে। μ_s ধ্রুবকটিকে স্থিতঘর্ষণ গুণাঙ্ক বলে। স্থিত ঘর্ষণের সূত্রটি এভাবে লেখা যেতে পারে,

 $f_s \leq \mu_s N$ (5.14) যদি প্রযুক্ত বলটি, $(f_s)_{\max}$ এর বেশি হয় তবে বস্তুটি তলটির উপর চলতে শুরু করবে। পরীক্ষামূলকভাবে দেখা গেছে যে, যখনই তলদ্বয়ের মধ্যে আপেক্ষিক গতি শুরু হয়, তখন ঘর্ষণ বলের মান স্থিত ঘর্ষণের সর্বোচ্চ মানটি $(f_s)_{\max}$ অপেক্ষা কমে যায়। সংস্পর্শ তলদ্বয়ের মধ্যে আপেক্ষিক গতির বিরুদ্ধে সক্রিয় ঘর্ষণ বলটিকে গতীয় বা চল ঘর্ষণ বলে এবং \mathbf{f}_k দ্বারা প্রকাশ করা হয়। স্থিত ঘর্ষণের মত গতীয় ঘর্ষণও সংস্পর্শ তলদ্বয়ের ক্ষেত্রফল নিরপেক্ষ হবে। তাছাড়া ইহা প্রায় গতিবেগ নিরপেক্ষ হয়। ইহা স্থিত ঘর্ষণের অনুরূপ একটি সূত্র মান্য করে:

$$\mathbf{f}_{\mathbf{k}} = \boldsymbol{\mu}_{\boldsymbol{k}} \mathbf{N} \tag{5.15}$$

যেখানে μ_k গতিয় ঘর্ষণ গুণাজ্ঞ্রুটি কেবলমাত্র সংস্পর্শ তলদ্বয়ের উপর নির্ভর করে। উপরে উল্লেখিত পরীক্ষাসমূহ দেখায়, μ_k , μ_s এর চাইতে কম হয়। যখন আপেক্ষিক গতি শুরু হয়, তখন দ্বিতীয় সূত্রানুসারে বস্তুটির ত্বরণ হয় $(F - f_k)/m$ । সুযম গতিবেগে গতিশীল একটি বস্তুর জন্য, $F = f_k$ । যদি বস্তুটির উপর থেকে প্রযুক্ত বলটি সরিয়ে নেওয়া হয়, তখন ইহার ত্বরণ $- f_k/m$ হয় এবং অবশেষে বস্তুটি থেমে যাবে।

উপরিউক্ত ঘর্ষণের সূত্রাবলি অভিকর্ষীয়, তড়িৎ এবং চুম্বকীয় বলসমূহ সম্পর্কিত মূল সূত্রগুলোর মতো পদমর্যাদা রাখে না। এসব হল স্থৃল সম্পর্ক যা কেবলমাত্র আনুমানিকভাবে সত্য। তথাপি বলবিদ্যার বাস্তব গণনাগুলোতে এরা খুবই উপযোগী।

সুতরাং, যখনই দুটি বস্তু সংস্পর্শে থাকে, একে অপরের দ্বারা সংস্পর্শ বল অনুভব করে। সংজ্ঞানুসারে সংস্পর্শ তলগুলোর সমান্তরাল, সংস্পর্শ বলটির উপাংশটিই হল ঘর্ষণ বল, যা পৃষ্ট দুটির মধ্যে গতি প্রবণতা অথবা আপেক্ষিক গতিকে বাধা দেয়। লক্ষণীয় যে, ঘর্ষণ বল গতিকে নয়, **আপেক্ষিক গতিকে** বাধা দেয়। ধরা যাক একটি ত্বরাধিত ট্রেনের কামরার মেঝেতে একটি বাক্স রাখা আছে। যদি বাক্সটি ট্রেনটির সাপেক্ষে স্থির থাকে, বাস্তবে এটি ট্রেনটির সাথে একইভাবে ত্বরাধিত হয়। কোন্ বলগুলো বাক্সটির ত্বরণের কারণ হয় ? স্পষ্টতই, কেবলমাত্র অনুভূমিক দিকে অনুমেয় বলটি হল ঘর্ষণ বল। যদি সেখানে ঘর্ষণ ক্রিয়া না করে, তবে ট্রেনটির মেঝেটি পিছলে যাবে এবং জড়তার জন্য বাক্সটি এর প্রাথমিক অবস্থানেই থাকবে (এবং ট্রেনটির পশ্চাদ ভাগটিতে আঘাত করবে)। এই আপেক্ষিক গতির প্রবণতা স্থিত ঘর্ষণ বল *f*ু দ্বারা বাধাপ্রাপ্ত হয়। স্থিত ঘর্ষণ বাক্সটিতে ট্রেনটির সমান ত্বরণ যোগান দেবে এবং ট্রেনটির সাপেক্ষে ইহাকে স্থির রাখবে।

উদাহরণ 5.7 একটি ট্রেনের মেঝের উপর থাকা একটি বাক্স ট্রেনটির সর্বোচ্চ কত ত্বরণের জন্য স্থির থাকবে তা নির্ণয় কর। দেওয়া আছে বাক্সটি এবং ট্রেনটির মেঝের মধ্যে স্থিত ঘর্ষণ গুণাজ্ক 0.15.

উত্তর যেহেতু বাক্সটির ত্বরণ স্থিত ঘর্ষণের জন্য হয়,

 $ma = f_s \le \mu_s N = \mu_s m g$ অর্থাৎ $a \le \mu_s g$ $\therefore a_{max} = \mu_s g = 0.15 \text{ x } 10 \text{ m s}^{-2}$ $= 1.5 \text{ m s}^{-2}$

উদাহরণ 5.8 5.11. নং চিত্রে 4 kg ভরের একটি ব্লক একটি অনুভূমিক তলে স্থিরাবস্থায় রয়েছে। তলটি ক্রমাগত আনত করা হল যতক্ষণ না এর নতি অনুভূমিকের সাথে $\theta = 15^{\circ}$ হয় এবং ব্লকটি পিছলে, পড়তে শুরু করে। ব্লক এবং তলটির মধ্যে স্থিতঘর্ষণ গুণাঙ্ক কত ?

উত্তর m ভরের ব্লকটি নততলের উপর স্থির থাকা অবস্থায় ক্রিয়াশীল

বলগুলো : (i) ওজন mg লম্বভাবে নিম্নাভিমুখী ক্রিয়াশীল (ii) তল দ্বারা ব্লকটির উপর অভিলম্ব বল N এবং (iii) গতিপ্রবণতা প্রতিরোধকারী স্থিত ঘর্ষণ বল f_{i} । সাম্যাবস্থায় এই বলগুলোর লন্ধি শূন্য হবে।

ওজন mg কে নির্দেশিত দুটি দিকে বিভাজিত করলে, আমরা পাই

$$mg\sin\theta = f_s$$
, $mg\cos\theta = N$

 θ বৃদ্ধি পেতে থাকলে স্বনিয়ন্ত্রক ঘর্ষণ বলটি (f_s) বৃদ্ধি পাবে যতক্ষণ না $\theta = \theta_{max}$ হয় এবং f_s সর্বোচ্চ মান অর্জন করে,

$$(f_s)_{\max} = \mu_s N.$$

সুতরাং,

$$\tan \theta_{max} = \mu_s \text{ or } \theta_{max} = \tan^{-1} \mu_s$$

যখন θ , θ_{max} অপেক্ষা সামান্য বেশি হয়, তখন ব্লকটির উপর স্বল্প মানের মোট বল থাকবে এবং এটি পিছলাতে শুরু করবে। দ্রফ্ট্য যে θ_{max} কেবলমাত্র μ_s এর উপরই নির্ভরশীল এবং ব্লকটির ভর নিরপেক্ষ হয়।

এর জন্য,
$$heta_{max} = 15^{\circ}$$
,
 $\mu_s = \tan 15^{\circ}$
 $= 0.27$

উদাহরণ 5.9 5.12(a) নং চিত্রে প্রদর্শিত ব্লক এবং ট্রলি সংস্থাটির ত্বরণ কত হবে, যদি ট্রলিটি এবং তলটির মধ্যে গতিয় ঘর্ষণ গুণাঙ্ক 0.04 হয়? সূতার টান কত? (ধর g = 10 m s⁻²)। সৃতাটির ভর উপেক্ষনীয়।

গতীয় সূত্রাবলি

উত্তর যেহেতু সূতাটি অপ্রসার্য এবং কপিকলটি মসৃণ, 3 kg ব্লকটি এবং 20 kg ট্রলিটি উভয়েরইই ত্বরণ সমান হবে। ব্লকটির গতির ক্ষেত্রে দ্বিতীয় গতিসূত্রটি প্রয়োগ করলে (চিত্র 5.12(b)),

30 - T = 3a

ট্রলিটির ক্ষেত্রে দ্বিতীয় সূত্র প্রয়োগ করলে (চিত্র 5.12(c)),

 $T-f_k = 20 a.$ এখন, $f_k = \mu_k N,$ এক্ষেত্রে $\mu_k = 0.04,$ $N = 20 \ge 10$ $= 200 \, \mathrm{N}.$

সুতরাং ট্রলিটির জন্য গতিয় সমীকরণটি হবে,

T−0.04 x 200 = 20 *a* অথবা, *T*−8 = 20*a*.

এই সমীকরণদ্বয় থেকে পাওয়া যায় $a = rac{22}{23} \mathrm{m\,s^{-2}} = 0.96 \mathrm{m\,s^{-2}}$ এবং $T = 27.1 \mathrm{\,N.}$

আবর্ত ঘর্ষণ (Rolling friction)

নীতিগতভাবে একটি রিং অথবা একটি গোলকের মতো একটি বস্থু একটি অনুভূমিক তলের উপর না পিছলে গড়াতে থাকলে ঘর্ষণ অনুভব করবে না। সেখানে বস্তুটি এবং তলটির মধ্যে প্রতি মুহুর্তে কেবল একটি স্পর্শবিন্দু থাকে এবং তলটির সাপেক্ষে এই বিন্দুটির কোনো আপেক্ষিক গতি থাকে না। এই আদর্শ অবস্থাতে গতিয় অথবা স্থিত ঘর্ষণ শূন্য হয় এবং বস্তুটি সমবেগে গড়াতে থাকবে। বাস্তবে আমরা দেখব এটি ঘটবে না এবং গতি প্রতিরোধক (আবর্ত ঘর্ষণ) ক্রিয়া করবে অর্থাৎ বস্তুটি গড়িয়ে যাওয়া বজায় রাখতে হলে বল প্রয়োগ করা প্রয়োজন। একই ওজনের ক্ষেত্রে আবর্ত ঘর্ষণ (এমনকি 2 বা 3 ক্রমের মান) স্থিতঘর্ষণ অথবা গতীয় ঘর্ষণের থেকে অনেক ছোটো হয়। আবর্ত ঘর্ষণের উৎস আবার একটি জটিল প্রক্রিয়া যা স্থিত ঘর্ষণ এবং গতীয় ঘর্ষণ থেকে কিছুটা ভিন্ন। গড়িয়ে যাবার সময়, সংস্পর্শ তলদ্বয় ক্ষণিকের জন্য সামান্য বিকৃত হয় এবং এই কারণে বস্তুটির একটি সীমিত ক্ষেত্র (একটি বিন্দু নয়) তলটির সংস্পর্শে থাকে। ফলস্বরূপ তলটির সমান্তরালে সংস্পর্শ বলটির উপাংশটি গতিকে প্রতিরোধ করে।

আমরা প্রায়ই কিছুক্ষেত্রে ঘর্ষণকে অবাঞ্ছিত বলে ধরি। অনেক পরিস্থিতিতে যেমন একটি যন্ত্রের গতিশীল বিভিন্ন অংশগুলোতে ঘর্ষদের একটি ঋণাত্মক ভূমিকা আছে। এটি আপেক্ষিক গতিকে বাধা দেয় এবং এজন্য শস্তির তাপ এবং অন্যান্য শস্তিরুপে অপচয় হয়। গতীয় ঘর্ষণ কমানোর একটি উপায় হল যন্ত্রে পিচ্ছিলকারী পদার্থ বা তেল ব্যবহার করা। অপর একটি উপায় হল যন্ত্রের দুটি ঘুরস্ত অংশের মধ্যে বলবেয়ারিং ব্যবহার করা [চিত্র 5.13(a)]। বলবিয়ারিং এবং তলগুলোর স্পর্শতলের মধ্যে আবর্ত ঘর্ষণের মান খুব কম হওয়ার জন্য শস্তির অপচয় কম হয়। দুটি কঠিন তলের মধ্যে থাকা আপেক্ষিক গতিসম্পন্ন পাতলা চাপা দেওয়া বায়ুস্তর হল ঘর্ষণ কমানোর অপর একটি কার্যোপযোগী পদ্ধতি [চিত্র 5.13(b)]।

যদিও অনেক বাস্তব পরিস্থিতিতে ঘর্ষণ অতি প্রয়োজনীয় হয়। আপেক্ষিক গতি দ্রুত থামাতে গতীয় ঘর্ষণ প্রয়োজন হয় যা শক্তির অপচয় করে। যন্ত্র এবং যানবাহনে ব্রেক ব্যবহারের দ্বারা এটি সম্ভব হয়। একইভাবে দৈনন্দিন জীবনে স্থিতঘর্ষণ গুরুত্বপূর্ণ। ঘর্ষণের কারণেই আমরা হাঁটতে পারি।অতি পিচ্ছিল একটি রাস্তায় একটি গাড়ি গতিশীল থাকা সম্ভব নয়। একটি স্বাভাবিক রাস্তার উপর টায়ার এবং রাস্তার মধ্যে সক্রিয় ঘর্ষণ বলটি গাড়িটিকে ত্বরাম্বিত করতে প্রয়োজনীয় বাহ্যিক বল যোগায়।

চিত্র 5.13 ঘর্ষণ কমানোর কয়েকটি উপায়। (a) একটি যন্ত্রের ঘূর্ণনশীল অংশগুলোর মধ্যে বলবিয়ারিং স্থাপন। (b) আপেক্ষিক গতি সম্পন্ন দুটি পৃষ্ঠের মধ্যে চাপা দেওয়া বায়ুস্তর।

5.10 বৃত্তীয় গতি (CIRCULAR MOTION)

অধ্যায় 4 -এ আমরা দেখেছি যে সুষম দ্রুতি v নিয়ে R ব্যাসার্ধের বৃত্তপথে ঘূরতে থাকা একটি বস্তুর ত্বরণ v²/R কেন্দ্রের দিকে ক্রিয়া করে। দ্বিতীয় গতিসূত্রানুযায়ী এই ত্বরণ যোগনদ্বায়ী বল f হল,

$$f_c = \frac{mv^2}{R} \tag{5.16}$$

যেখানে *m* বস্তুটির ভর। কেন্দ্রাভিমুখী এই বলটিকে অভিকেন্দ্র বল (centripetal force) বলা হয়। সুতো দ্বারা একটি পাথরকে একটি বৃত্ত বরাবর ঘোরালে সুতোর টান অভিকেন্দ্র বলের যোগান দেয়। সূর্যের চারদিকে ঘুর্ণনশীল একটি গ্রহের ক্ষেত্রে অভিকেন্দ্র বল হল গ্রহটির উপর সূর্যের মহাকর্ষীয় বল। একটি অনুভূমিক রাস্তার উপর একটি গাড়ির কেন্দ্র হতে বহির্মুখী গতীয় প্রবণতা স্থিত ঘর্ষণ রোধ করে। সমীকরণ (5.14) এবং (5.16) ব্যবহার করে আমরা পাই,

$$f = \frac{mv^2}{R} \le \mu_s N$$
$$v^2 \le \frac{\mu_s RN}{m} = \mu_s Rg \qquad [::N = mg]$$

যা গাড়িটির ভরের উপর নির্ভর করে না। এটি থেকে বোঝা যায় যে μ_{S} এবং *R* এর নির্দিন্ট মানের জন্য বৃত্তপথে ঘুর্ণনরত গাড়িটির দ্রুতি সর্বোচ্চ হবে,

$$v_{\rm max} = \sqrt{\mu_{\rm s} Rg} \tag{5.18}$$

চিত্র 5.14 একটি গাড়ির বৃত্তীয় গতি (a) সমতল রাস্তার উপর (b) ব্যাঞ্চ্ব রাস্তার উপর

বৃত্তাকার বাঁক নেয়ার ক্ষেত্রে ঘর্ষণ বলটি অভিকেন্দ্র বল হয়। একটি সমতল এবং ব্যাষ্কিংযুক্ত রাস্তার উপর একটি গাড়ির বৃত্তাকার গতি, গতীয় সূত্রাবলি প্রয়োগের একটি আকর্ষণীয় উদাহরণ।

সমতল রাস্তায় একটি গাড়ির গতি (Motion of a car on a level road)

গাড়িটির উপর ক্রিয়াশীল তিনটি বল [চিত্র 5.14(a)] :

(i) গাড়িটির ওজন, mg

(ii) উল্লম্ব প্রতিক্রিয়া, N

(iii) ঘর্ষণ বল,f

এক্ষেত্রে উল্লম্ব দিকে কোনো ত্বরণ না থাকায়

$$N - mg = 0$$

$$N = mg \tag{5.17}$$

গাড়িটির চাকাগুলো এবং রাস্তাটির মধ্যে সক্রিয় সংস্পর্শ বলটির অনুভূমিক পৃষ্ঠ বরাবর উপাংশটি গাড়িটিকে বৃত্তপথ বরাবর ঘোরাবার জন্য অভিকেন্দ্র বলের যোগান দেয়। সংজ্ঞানুসারে এটিই হল ঘর্ষণ বল। লক্ষনীয় যে, স্থিত ঘর্ষণ বলটি অভিকেন্দ্র ত্বরণের যোগান দেয়। ঘূর্ণনরত গাড়িটির

ব্যাঙ্কিংযুক্ত রাস্তার উপর একটি গাড়ির গতি (Motion of a car on a banked road)

একটি গাড়ির বৃত্তীয় গতির ক্ষেত্রে ঘর্ষণের অবদান কমানো যায় যদি রাস্তাটি ব্যাঙ্কযুক্ত হয়।এক্ষেত্রে যেহেতু উল্লম্ব দিকে ত্বরণ শূন্য হয়, এই দিকে মোট বল অবশ্যই শূন্য হবে।

সুতরাং,
$$N\cos\theta = mg + f\sin\theta$$
 (5.19a)

N এবং f এর অনুভূমিক উপাংশদ্বয় অভিকেন্দ্র বলটির যোগান দেয়।

$$N\sin\theta + f\cos\theta = \frac{mv^2}{R}$$
(5.19b)

কিন্থু
$$f \le \mu_s N$$

সুতরাং
$$v \mod N$$
 পণ্ডিয়ার জন্য $f = \mu_s N$ বসিয়ে
সমীকরণ (5.19a) এবং (5.19b) হবে,
 $N \cos \theta = mg + \mu_s N \sin \theta$ (5.20a)

গতীয় সূত্রাবলি

 $N \sin \theta + \mu_s N \cos \theta = mv^2/R$ সমীকরণ (5.20a), হতে আমরা পাই,

 $N = \frac{mg}{\cos\theta - \mu_{\rm s}\sin\theta}$

সমীকরণ (5.20b) তে N এর উপরের সম্পর্কটি বসিয়ে পাই,

$$\frac{mg(\sin\theta + \mu_{\rm s} \cos\theta)}{\cos\theta - \mu_{\rm s} \sin\theta} = \frac{mv_{\rm max}^2}{R}$$

অথবা,
$$v_{\max} = \left(Rg \frac{\mu_s + \tan \theta}{1 - \mu_s \tan \theta} \right)^{\overline{2}}$$
 (5.21)

এটিকে সমীকরণ (5.18) এর সাথে তুলনা করলে আমরা দেখি যে একটি ব্যাঙ্কিং যুক্ত রাস্তার উপর একটি গাড়ির দ্রুতির সন্তাব্য সর্বোচ্চ মান সমতল রাস্তার চেয়ে বেশি হয়। সমীকরণ (5.21) এর ক্ষেত্রে $\mu_{\rm s}=0$ হলে,

$$v_{a} = (Rg \tan \theta)^{\frac{1}{2}}$$
(5.22)

এই দ্রুতিতে, প্রয়োজনীয় অভিকেন্দ্র বল যেগানের ক্ষেত্রে ঘর্ষণ বলের প্রয়োজন হয় না। একটি ব্যাংকিংযুক্ত রাস্তায় এই দ্রুতিতে গাড়ি চালানোর ফলে টায়ারের সামান্য ক্ষয় হতে পারে। এই সমীকরণ এটাও জানায় যে, $v < v_o$ এর ক্ষেত্রে, ঘর্ষণ বল নতি বরাবর উপর দিকে হবে এবং গাড়িটি পার্ক করা যাবে যদি tan $\theta \le \mu_c$.

উদাহরণ 5.10 18 km/h সমদ্রুতি নিয়ে সমতল রাস্তায় একজন সাইকেল চালক 3 m ব্যাসার্ধের বৃত্তচাপে বাঁক নেয়। চাকা এবং রাস্তার মধ্যে স্থিত ঘর্ষণ গুণাঙ্ক হল 0.1। বাঁক নেওয়ার সময় সাইকেল চালক কী পিছলে যাবে ?

উত্তর একটি ব্যাংকিংহীন রাস্তায়, একজন সাইকেল চালক একটি বৃত্তাকার বাঁকে না পিছলে গতিশীল থাকার জন্য প্রয়োজনীয় অভিকেন্দ্র বল, ঘর্ষণ বল একাই যোগান দেয়। যদি দ্রুতিটি খুব বেশি হয় অথবা বাঁকটি খুব তীক্ষ্ণ হয় (অর্থাৎ ক্ষুদ্র ব্যাসার্ধের হয়) অথবা উভয়, প্রয়োজনীয় অভিকেন্দ্র বল যোগানের ক্ষেত্রে ঘর্ষণ বলটি যথেষ্ট হয় না এবং সাইকেল চালক পিছলে যায়। সাইকেল চালকের না পিছলাবার শর্তটি, সমীকরণ (5.18) অনুসারে:

$$v^2 \leq \mu_s R g$$

এখন, R = 3 m, g = 9.8 m s⁻², $\mu_s = 0.1$. সুতরাং, $\mu_s R g = 2.94$ m² s⁻². v = 18 km/h = 5 m s⁻¹; অর্থাৎ,

 $v^2 = 25 \, \mathrm{m}^2 \, \mathrm{s}^{-2}$ । এখানে শর্তটি মানেনি তাই বৃত্তাকারে বাঁক নেওয়ার সময় সাইকেল চালক পিছলে যাবে। উদাহরণ 5.11 একটি 300 m ব্যাসার্ধের বৃত্তাকার রেসট্রেক যার ব্যাজ্ঞিং কোণ হল 15° । যদি রেসকারের চাকাগুলো এবং রাস্তার মধ্যে ঘর্ষণ গুণাঙ্ক 0.2 হলে (a) প্রতিযোগী গাড়িটির চাকার টায়ারের ক্ষয় এড়ানোর সর্বোচ্চ বেগ (optimum speed) কত ? এবং (b) পিছলে যাওয়া এড়ানোর জন্য সর্বোচ্চ অনুমোদনযোগ্য বেগ (maximum permissible speed)কত ?

উত্তর একটি ব্যাঙ্কিংযুক্ত রাস্তায় একটি গাড়ি না পিছলে বৃত্তাকার বাঁক নেওয়ার সময় প্রয়োজনীয় অভিকেন্দ্র বলের যোগান দেয় যৌথভাবে উল্লম্ব প্রতিক্রিয়া বলের অনুভূমিক উপাংশ এবং ঘর্ষণ বল। সর্বোচ্চ বেগের (optimum speed) ক্ষেত্রে উল্লম্ব প্রতিক্রিয়ার উপাংশটি প্রয়োজনীয় অভিকেন্দ্র বল যোগানের ক্ষেত্রে যথেন্ট হয় এবং ঘর্ষণ বলের প্রয়োজন হয় না। সমীকরণ (5.22) অনুসারে সর্বোচ্চ বেগ v_{α} হবে :

$$v_o = (R g \tan \theta)^{1/2}$$

এখানে $R = 300 \text{ m}, \ \theta = 15^\circ, \ g = 9.8 \text{ m s}^{-2};$ সুতরাং, $v_o = 28.1 \text{ m s}^{-1}.$

সমীকরণ (5.21) থেকে সর্বোচ্চ অনুমোদিত বেগ (maximum permissible speed) v_{max} হবে :

$$v_{max} = \left(Rg\frac{\mu_s + \tan\theta}{1 - \mu_s \tan\theta}\right)^{1/2} = 38.1 \,\mathrm{m \, s^{-1}}$$

5.11 বলবিদ্যায় সমস্যাগুলোর সমাধান (SOLVING PROBLEMS IN MECHANICS)

এই অধ্যায়ে তোমরা গতি সম্পর্কিত যে তিনটি সূত্র জেনেছ সেগুলো হল বলবিদ্যার ভিত্তি। তোমরা এখন বলবিদ্যার বিভিন্ন ধরনের সমস্যাগুলো সমাধানে সমর্থ হয়েছ। বলবিদ্যার একটি বিশেষ সমস্যায় সাধারণত বলগুলোর ক্রিয়া একটিমাত্র বস্তুর উপর হয় না। প্রায়ই আমাদের অনেকগুলো বস্তুর সমাবেশ ধরে নেওয়া প্রয়োজন হবে যেখানে বস্তুগুলো একে অপরের উপর বল প্রয়োগ করে। তাছাড়া সমাবেশের প্রত্যেক বস্তুই অভিকর্ষ বল অনুভব করে। এই ধরনের একটি সমস্যার সমাধানের ক্ষেত্রে আমরা সমাবেশের যে-কোনো একটি অংশ নির্বাচিত করতে পারি এবং নির্বাচিত অংশটির উপর সমাবেশের অবন অংশগুলোর দ্বারা সক্রিয় বলগুলো যুক্ত করে গতীয় সূত্রগুলো প্রয়োগ করি। সমাবেশের নির্বাচিত অংশটিকে সংস্থা এবং সমাবেশের অবশিষ্ট অংশটিকে (এবং অন্যান্য বল সংস্থাগুলোসহ) পরিবেশ বলতে পারি। সমাধান করা উদাহরণগুলোতে আমরা একই পম্বতি অনুসরণ করেছি। বলবিদ্যার

(5.20b)

106

পদক্ষেপগুলো অনুসরণ করতে হবে :

- বস্তু সমাবেশটির বিভিন্ন অংশের সংযোগ, আলম্ব ইত্যাদির রূপরেখা দেখিয়ে একটি চিত্র অঞ্চল করো।
- সমাবেশটির একটি উপযোগী অংশকে একটি সংস্থা হিসাবে
 বিবেচনা করো।
- (iii) একটি পৃথক চিত্র আঁকো যা এই সংস্থাটিকে এবং সমাবেশের অবশিষ্ট অংশটির দ্বারা সংস্থাটির উপর বিভিন্ন বলগুলো দেখায়। তাছাড়া অন্যান্য সংস্থাগুলো দ্বারা ওই সংস্থার উপর বলুগলোও যুক্ত করো। সংস্থা দ্বারা পরিবেশের উপর প্রযুক্ত বলগুলো অন্তর্ভুক্ত করা হয় না। এ ধরনের চিত্র 'একটি মুক্ত বস্তু চিত্র' হিসেবে পরিচিত (লক্ষ করো যে বিবেচিত সংস্থাটির মোট বল শৃন্য — এটি তা বোঝায় না)।
- (iv) একটি মুক্ত বস্তু চিত্রে বলগুলো সম্বন্ধীয় তথ্য (তাদের মানগুলো এবং দিকগুলো) যা হয় দেওয়া আছে অথবা যাদের সম্পর্কে তোমরা সুনিশ্চিত আছ তাদের যুক্ত করো (যেমন তারের টানের দিক এটির দৈর্ঘ্য বরাবর)। অবশিষ্টগুলোকে অজ্ঞাত হিসাবে ধরে গতীয় সূত্র ব্যবহার করে নির্ণয় করতে হবে।
- (v) প্রয়োজন হলে, অপর একটি বিবেচিত সংস্থায় একই পদ্ধতি অবলম্বন করো। এমনটি করতে হলে নিউটনের তৃতীয় সূত্র প্রয়োগ করা হয়। A-এর মুক্ত বস্তু চিত্রে, B-এর জন্য A এর উপর বলটি F হিসেবে দেখালে, B এর মুক্ত বস্তু চিত্রে, B এর উপর A এর জন্য বলকে –F দ্বারা দেখাতে হবে।

নিম্নের উদাহরণটি উপরিউক্তি পম্ধতিটিকে ব্যাখ্যা করে :

উদাহরণ 5.12 5.15 চিত্রে 2 kg ভরের একটি কাঠের ব্লক একটি নরম অনভূমিক মেঝের উপর স্থিরাবস্থায় আছে। যখন 25 kg ভরের একটি লোহার চোঙ ব্লকটির উপর স্থাপন করলে মেঝেটি সুস্থিতভাবে চেপে যাবে এবং ব্লকটিও চোঙটি একসঙ্গো 0.1 m s⁻² ত্বরণে নীচে নামবে। মেঝেটি চেপে যাবার (a) পূর্বে এবং (b) পরে মেঝেটির উপর ব্লকটির ক্রিয়া কত ? ধর g = 10 m s⁻²। এই সমস্যাটিতে ক্রিয়া-প্রতিক্রিয়া জোড়সমূহকে সনাস্তু করো।

উত্তর

(a) ব্লকটি মেঝের উপর স্থির রয়েছে। এটির মুক্ত বস্তু চিত্রে ব্লকটির উপর দুটি বল দেখানো হয়েছে, পৃথিবীর দ্বারা অভিকর্ষীয় আকর্ষণ বল যার মান 2×10=20 N এবং ব্লকটির উপর মেঝের উল্লম্ব বল *R*। প্রথম সূত্র হতে বলা যায় ব্লকটির উপর মোট বল অবশ্যই শূন্য হবে অর্থাৎ *R* = 20 N। তৃতীয় সূত্রানুসারে ব্লকটির ক্রিয়া (অর্থাৎ ব্লকের দ্বারা মেঝের উপর প্রযুক্ত বলটি) 20 N এর সমান হবে এবং লম্বভাবে নীচের দিকে ক্রিয়াশীল।

(b) সংস্থাটি (ব্লক + চোঙ) 0.1 m s⁻² ত্বরণে নিম্নাভিমুখে ত্বরান্বিত হয়। সংস্থাটির মুক্ত বস্তু চিত্র সংস্থার উপর দুটি বলকে দেখায় : পৃথিবীর অভিকর্ষীয় বল (270 N) এবং মেঝে দ্বারা উল্লম্ব প্রতিক্রিয়া বল R'। লক্ষ করার দিকটি হল সংস্থাটির মুক্ত বস্তুচিত্রটিতে ব্লক ও চোঙের মধ্যে অভ্যন্তরীণ বলগুলো দেখানো হয়নি। সংস্থাটিতে দ্বিতীয় সূত্রটি প্রয়োগ করে পাওয়া যায়,

> 270*-R'* = 27 × 0.1N অর্থাৎ, *R'* = 267.3 N

চিত্র 5.15

তৃতীয় সূত্রানুসারে মেঝের উপর উল্লম্বভাবে নীচের দিকে সংস্থার ক্রিয়া 267.3 N হয়।

ক্রিয়া-প্রতিক্রিয়া জোড় (Action-reaction pairs)

- (a): এর জন্য (i) ব্লকটির উপর পৃথিবীর অভিকর্ষীয় বল 20 N (ক্রিয়া হলে); ব্লকটি দ্বারা পৃথিবীর (প্রতিক্রিয়া) উপর উপরের দিকে বল 20 N হবে (চিত্র দেখানো হয়নি)।
 - (ii) ব্লক দ্বারা মেঝের উপর অভিকর্ষীয় বল (ক্রিয়া); মেঝে দ্বারা ব্লকটির উপর বলটি (প্রতিক্রিয়া)।
- (b):এর জন্য (i) পৃথিবীর দ্বারা সংস্থার উপর অভিকর্ষীয় বলটি (270
 N, ক্রিয়া হলে); সংস্থা দ্বারা পৃথিবীর অভিকর্ষীয় বল

(প্রতিক্রিয়া) 270 N, উপরের দিকে ক্রিয়াশীল (চিত্রে দেখানো হয়নি)।

(ii) সংস্থা দারা মেঝের উপর বলটি (ক্রিয়া); মেঝে দারা সংস্থার উপর বলটি (প্রতিক্রিয়া)। তাছাড়া (b) এর ক্ষেত্রে চোঙ দারা ব্লকটির উপর বল এবং ব্লক দারা চোঙের উপর বলও ক্রিয়া-প্রতিক্রিয়া জোড় গঠন করে।

মনে রাখার দিকটি হল ক্রিয়া-প্রতিক্রিয়া জোড়, পারস্পরিক বলগুলো নিয়ে গঠিত যা দুটি বস্তুর ক্ষেত্রে সর্বদাই সমান ও বিপরীতমুখী হয়। একই বস্তুর উপর সমান এবং বিপরীতমুখী দুটি বল কখনো ক্রিয়া-প্রতিক্রিয়া জোড় গঠন করতে পারে না। (a) অথবা (b) এর ক্ষেত্রে ভরটির উপর অভিকর্ষীয় বল এবং বস্তুর উপর মেঝে দ্বারা উল্লম্ব বল ক্রিয়া-প্রতিক্রিয়া জোড় হয় না। (a) এর ক্ষেত্রে ভরটি স্থির থাকায় এই বলগুলো সমান এবং বিপরীত হতে পারে। কিন্ডু (b) এর ক্ষেত্রে এমনটি হয় না। সংস্থাটির ওজন 270 N যেখানে উল্লম্ব বল *R*' টি 267.3 N হয়।

বলবিদ্যার সমস্যাগুলো সমাধানের ক্ষেত্রে মুক্ত বস্থু চিত্রগুলো অধিক সহায়ক হয়। কোনো সংস্থাকে স্পষ্টভাবে সংজ্ঞায়িত করতে এটি সহায়ক এবং যে সব বস্তুসমূহ সংস্থাটির অংশ বিশেষ নয় এদের দ্বারা সংস্থাটির উপর বলগুলো বিবেচিত হয়।

এ ব্যাপারে অনুশীলনীগুলো এবং পরবর্তী অধ্যায়গুলো এ চর্চার অনুশীলন করাবে।

সারসংক্ষেপ

- একটি বস্তুর সুষমগতি বজায় রাখার জন্য একটি বলের প্রয়োজন, অ্যারিস্টটলের এই অভিমতটি ভুল। বাস্তবে বিরুম্ধ ঘর্ষণ বলকে প্রতিরোধ করতে একটি বলের প্রয়োজন হয়।
- 2. নততলগুলোর উপর বস্তুসমূহের গতি সম্পর্কিত সহজ পর্যবেক্ষণগুলো গ্যালিলিও পূর্বেই দেখিয়েছেন এবং জড়তার সূত্রে উপনীত হয়েছেন। নিউটনের প্রথম গতীয় সূত্রটি অন্যভাবে বলা যায় : "প্রত্যেক বস্তুই স্থির অবস্থাতে থাকতে চায় অথবা একটি সরলরেখা বরাবর সুযম গতি বজায় রাখতে চায়, যতক্ষণ না এটি বাহ্যিক বলের ক্রিয়া দ্বারা বাধ্য হয়। সহজ কথায় প্রথম সূত্রটি হল "কোনো বস্তুর উপর বাহ্যিক বল শূন্য হলে, এটির ত্বরণ শূন্য হয়।"
- 3. একটি বস্তুর ভরবেগ (\mathbf{p}) হল বস্তুটির ভর (m) এবং গতিবেগের (\mathbf{v}) গুণফল :

একটি বস্তুর ভরবেগের পরিবর্তনের হার প্রযুক্ত বলের সমানুপাতিক হয় এবং বলটি যে দিকে ক্রিয়া করে পরিবর্তন সেদিকে ঘটে। সুতরাং,

$$\mathbf{F} = k \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = k m \mathbf{a}$$

যেখানে F বস্তুটির উপর মোট বাহ্যিক বল এবং a এটির ত্বরণ। SI পম্বতিতে সমানুপাতিক ধ্রুবক k=1 বসানো হয়। তখন

$$\mathbf{F} = \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = m\mathbf{a}$$

বলের SI এককটি হল নিউটন : 1 N = 1 kg m s⁻².

- (a) দ্বিতীয় সূত্রটি প্রথম সূত্রের সাথে সংগতিপূর্ণ হয় ($\mathbf{F}=0$ হলে $\mathbf{a}=0$ হবে)
- (b) এটি একটি ভেক্টরীয় সমীকরণ।
- (c) এটি, একটি কণা এবং একটি বস্তুর ক্ষেত্রেও অথবা একটি কণাসমূহের সংস্থার ক্ষেত্রে প্রযোজ্য যেখানে সংস্থাটির উপর মোট বাহ্যিক বল F হয় এবং সামগ্রিকভাবে সংস্থাটির ত্বরণ a ।
- (d) কোনো এক মুহূর্তে কোনো একটি বিন্দুতে a (ত্বরণ) সেই মুহূর্তে একই বিন্দুতে F (বল) দ্বারা নির্ণীত হয়। এজন্য দ্বিতীয় সূত্রকে স্থানীয় সূত্র বলে; কোনো এক মুহুর্তে a, গতির প্রকৃতির উপর নির্ভর করে না।
- 5. ঘাত হল বল ও সময়ের গুণফল যা ভরবেগের পরিবর্তনের সমান। ঘাতের ধারণাটি উপযোগী হয় যখন একটি বৃহৎ মানের বল স্বল্প সময়ের জন্য ক্রিয়া করে ভরবেগের পরিমাপযোগ্য পরিবর্তন সৃষ্টি করে। যেহেতু বলের ক্রিয়াকালটি খুবই ক্ষুদ্র, কেউ অনুমান করতেই পারেন যে ঘাত বলটির ক্রিয়াকালের মধ্যে বস্তুটির অবস্থানের পরিবর্তন হয় না।

নিউটনের তৃতীয় গতিসূত্র :

প্রত্যেক ক্রিয়ারই একটি সমান ও বিপরীতমুখী প্রতিক্রিয়া থাকে।

সহজভাবে সূত্রটিকে এভাবে ব্যস্তু করা যায় : প্রকৃতিতে বলগুলো সবসময়ই বস্তু জোড়ের মধ্যেই সৃষ্টি হয়। B দ্বারা A এর উপর বলটি, A দ্বারা B এর উপর বলের সমান ও বিপরীত হয়। ক্রিয়া-প্রতিক্রিয়া বল যুগপৎ বল। ক্রিয়া-প্রতিক্রিয়ার মধ্যে কারণ-ফল (cause-effect) সম্পর্কটি থাকে না। যে-কোনো দুটি পারস্পরিক বলের মধ্যে একটি ক্রিয়া হলে অপরটি প্রতিক্রিয়া হয়। ক্রিয়া-প্রতিক্রিয়া দুটি ভিন্ন বস্তুর মধ্যে ক্রিয়া করে বলে এরা প্রতিমিত হয় না। অভ্যন্তরীণ ক্রিয়া-প্রতিক্রিয়া বলগুলো একটি বস্তুর বিভিন্ন অংশগুলোতে ক্রিয়াশীল হলে, এদের সমষ্টি শূন্য হয়।

- ভরবেগের সংরক্ষণ সূত্র : একটি বিচ্ছিন্ন কণাসংস্থার ক্ষেত্রে মোট ভরবেগ সংরক্ষিত থাকে। দ্বিতীয় এবং তৃতীয় গতিসূত্র হতে এই সূত্র অনুসৃত হয়।
- 8. ঘর্ষণ : ঘর্ষণ বল দুটি সংস্পর্শে থাকা তলদ্বয়ের মধ্যে (আসন্ন অথবা প্রকৃত) আপেক্ষিক গতিকে বাধা দেয়। এটি হল স্পর্শ তলদ্বয়ের সাধারণ স্পর্শক বরাবর সংস্পর্শ বলটির উপাংশ। স্থিত ঘর্ষণ f_s আপেক্ষিক গতিপ্রবণতাকে বাধা দেয়; গতীয় ঘর্ষণ f_k প্রকৃত আপেক্ষিক গতিকে বাধা দেয়। তারা স্পর্শতলের ক্ষেত্রফলের উপর নির্ভর করে না এবং নিম্নের আনুমানিক সূত্রগুলি সিম্ব করে :

$$f_{\mathbf{S}} \leq (f_{\mathbf{S}})_{\max} = \mu_{\mathbf{S}}R$$

$$f_{\mathbf{k}} = \mu_{\mathbf{k}} R$$

μৣ (স্থিতঘর্ষণ গুণাঞ্চ্ক) এবং μৣ (গতিঘর্ষণ গুণাঙ্ক) ধ্রুবকদ্বয় সংস্পর্শতলদ্বয়ের বৈশিস্ট্যের উপর নির্ভর করে। পরীক্ষামূলকভাবে দেখা যায় যে, μৣ, μৣ এর চাইতে কম হয়।

রাশি	চিহ্ন	একক	মাত্রা	মন্তব্য
ভরবেগ	р	$ m kg~m~s^{-1}$ অথবা N s	[MLT ⁻¹]	ভেক্টর
বল	F	Ν	$[MLT^{-2}]$	F = m a দ্বিতীয় সূত্র
ঘাত	Ι	kg m s ⁻¹ অথবা N s	[M LT ⁻¹]	ঘাত = বল × সময় = ভরবেগের পরিবর্তন
স্থিত ঘৰ্ষণ	\mathbf{f}_{s}	Ν	[MLT ⁻²]	$\mathbf{f}_{s} \leq \mu_{s} \mathbf{N}$
গতীয় ঘৰ্ষণ	\mathbf{f}_{k}	Ν	$[MLT^{-2}]$	$\mathbf{f}_{k} = \boldsymbol{\mu}_{k} \mathbf{N}$

ভেবে দেখার বিষয়সমূহ [POINTS TO PONDER]

- বল সবসময় গতির দিকে ক্রিয়া নাও করতে পারে। পরিস্থিতির উপর ভিত্তি করে F, v এর দিক্ বরাবর, v এর বিপরীত দিকে, v এর সাথে লম্বভাবে হতে পারে অথবা v এর সাথে কিছু কোণ উৎপন্ন করতে পারে। প্রতিক্ষেত্রেই এটি ত্বরণের সমান্তরাল।
- কোনো এক মুহুর্তে যদি v = 0 হয় অর্থাৎ বস্তুটি যদি ক্ষণিকের জন্য স্থির থাকলে, এটি বুঝায় না যে ওই মুহুর্তে বস্তুটির বল অথবা ত্বরণ শূন্য হওয়া প্রয়োজন। উদাহরণস্বরূপ, একটি বলকে উধ্বের্ব নিক্ষেপ করলে সর্বোচ্চ উচ্চতায় উঠলে v = 0 হয়, কিন্তু এটির উপর বল mg ক্রিয়া করে এবং ত্বরণ শূন্য না হয়ে g হয়।
- 3. কোনো এক সময়ে একটি বস্তুর উপর বল সেই সময়ে বস্তুটির অবস্থান জনিত পরিস্থিতির দ্বারা নির্ণীত হয়। গতির পূর্বকালীন ইতিহাস থেকে বস্তু দ্বারা বল বাহিত হয় না। একটি ত্বরাম্বিত ট্রেন থেকে একটি পাথরকে ছেড়ে দেওয়ার পর মুহুর্ত হতে পাথরটির উপর সেখানে কোনো অনুভূমিক বল (অথবা ত্বরণ) থাকে না, যদি আমরা আশপাশের বায়ুর প্রভাব উপেক্ষা করি। পাথরটির উপর তখন কেবলমাত্র উল্লম্ব অভিকর্ষীয় বল থাকে।

গতীয় সূত্রাবলি

- 4. দ্বিতীয় গতিসূত্রে **F** = m a, **F** বস্তুটির উপর বিভিন্ন বাহ্যিক জড় সংস্থাজনিত মোট বাহ্যিক বলকে বুঝায়। a হল বলের প্রভাব। ma কে F এর অতিরিক্ত অন্য কোনো বলের অধীনে ভাবা উচিত নয়। 5. অভিকেন্দ্র বলকে অদ্যাবধি অপর কোনো ধরনের বল রপে ধরা হয় না। এটি বৃত্তপথে গতিশীল একটি বস্তুর ক্ষেত্রে ব্যাসার্ধ বরাবর অন্তর্মুখী ত্বরণ যোগানকারি এক ধরণের বলমাত্র। আমরা সর্বদাই বৃত্তীয় গতির জন্য কিছু বাস্তব বলকে দেখবো যেমন টান, অভিকর্ষীয় বল, তড়িৎ বল, ঘর্ষণ প্রভৃতি। 6. μ N (f ≤ μ N) এই সীমা পর্যন্ত স্থিতঘর্ষণ একটি স্থনিয়ন্ত্রক বল। স্থিত ঘর্ষণের সর্বোচ্চ মান স্বক্রিয় হওয়ার ব্যাপারে নিশ্চিত না হওয়া পর্যন্ত $f = \mu_N$ ধরা হয় না। 7. টেবিলের উপর থাকা একটি বস্তু কেবলমাত্র সাম্যাবস্থায় থাকলে পরিচিত সমীকরণটি mg = R সত্য হয়। বল দুটি mg এবং R ভিন্ন হতে পারে (যথা ত্বরান্বিত লিফ্টে থাকা একটি বস্তু)। mg এবং R সমতা নিউটনের তৃতীয় সুত্রের সাথে যুক্ত নয়। 8. ৃতৃতীয় গতিসূত্রে থাকা 'ক্রিয়া' এবং 'প্রতিক্রিয়া' পদ দুটি কেবলমাত্র একজোড়া বস্তুদ্বয়ের মধ্যে একই সাথে থাকা পারস্পরিক বলগুলোকে বুঝায়। এদের অর্থ সাধারণ ভাষার মতো নয়; ক্রিয়া প্রতিক্রিয়ার অগ্রবর্তী অথবা ক্রিয়া প্রতিক্রিয়ার কারণ হয় না। ক্রিয়া এবং প্রতিক্রিয়া ভিন্ন বস্তুগুলোর উপর ক্রিয়া করে। 9. বিভিন্ন পদগুলো যেমন 'ঘর্ষণ', 'উল্লম্ব প্রতিক্রিয়া', 'টান', 'বায়ুর বাধা', 'সান্দ্রতাজনিত বাধা', 'ঘাত (thrust)', 'প্লবতা', 'ওজন', 'অভিকেন্দ্র বল' সবই বিভিন্ন প্রসঞ্চো বলকেই বোঝায়। স্পন্টতার জন্য বলা যায়, বলবিদ্যায় ব্যবহত প্রত্যেক বল ও তার সমতৃল্য পদগুলোকে এক কথায় 'B দ্বারা A এর উপর বল' রূপে অভিহিত করা হয়।
- 10. গতির দ্বিতীয় সূত্রের প্রয়োগের ক্ষেত্রে সজীব ও নিম্প্রাণ বস্তুর মধ্যে কোনো ধারণাগত পার্থক্য নেই। একটি সজীব বস্তু যেমন মানুষের বেগ বাড়াতে বাহ্যিক বলের প্রয়োজন হয়। উদাহরণস্বরূপ বাহ্যিক ঘর্ষণ বল ব্যতীত আমরা ভূপৃষ্ঠে হাঁটতে পারি না।
- পদার্থবিদ্যায় বল সম্পর্কে বাস্তব ধারণার সঙ্গে বলের অনুভূতির বিষয়গত ধারণার বিভ্রান্তি হওয়া উচিত নয়। নাগরদোলায় আমাদের শরীরের সমস্ত অংশ অন্তর্গামী বলের অধীনে থাকে, কিন্তু আমাদের বহির্মুখীভাবে ছিটকে যাবার অনুভূতি থাকে — এটা আসন্ন গতির দিক।

অনুশীলনী

(সাংখ্যিক গণনাগুলো সরল করার জন্যে, $g = 10 \text{ m s}^{-2}$ ধর)

- 5.1 ক্রিয়াশীল মোট বলের মান ও দিক বের কর :
 - (a) সমদ্রতিতে নীচের দিকে পতনশীল একটি বারিবিন্দু,
 - (b) জলের উপর ভাসমান 10 g ভরের একটি কর্ক,
 - (c) একটি ঘুড়িকে দক্ষতার সাথে আকাশে স্থির রাখা হয়েছে,
 - (d) একটি অসমৃণ রাস্তার উপর একটি গাড়ি 30 km/h সমবেগে গতিশীল,
 - (e) তড়িৎক্ষেত্র এবং চৌম্বকক্ষেত্র মুক্ত এবং সব জড় বস্তুগুলো হতে বহু দুরে কোনো স্থানে উচ্চ দ্রুতি সম্পন্ন একটি ইলেকট্রন।
- 5.2 0.05 kg ভরের একটি নুড়িকে উল্লম্বভাবে উপরের দিকে নিক্ষেপ করা হল। নুড়িটির উপর মোট বলের দিক এবং মান বের করো :
 - (a) উর্দ্ধগতিতে থাকা কালীন,
 - (b) নিম্নাভিমুখী গতিতে থাকাকালীন,
 - (c) সর্বোচ্চ উচ্চতায় যখন এটি ক্ষণিকের জন্য স্থির থাকবে। নুড়িটিকে অনুভূমিকের সাথে 45° কোণে নিক্ষেপ করলে তোমার উত্তরের কোনো পরিবর্তন হবে কী? বায়ুর বাঁধা উপেক্ষণীয়।
- 5.3 0.1 kg ভরের একটি পাথরের উপর ক্রিয়াশীল মোট বলের মান ও দিক বের করো :
 - (a) একটি ট্রেনের জানালা হতে এটি ছেড়ে দেবার পর মুহুর্তে,
 - (b) 36 km/h সমবেগে চলন্ত একটি ট্রেনের জানালা হতে এটি ছেড়ে দেবার পর মুহুর্তে,
 - (c) 1 m s⁻² ত্বরণে চলন্ত একটি ট্রেনের জানালা হতে এটি ছেড়ে দেবার পর মুহুর্তে,
 - (d) 1 m s⁻² ত্বরণে ত্বরান্বিত একটি ট্রেনের মেঝেতে থাকাকালীন পাথরটি ট্রেনের সাপেক্ষে স্থির। সবক্ষেত্রেই বায়ুর বাধা উপেক্ষণীয়।
- 5.4 l দৈর্ঘ্যের একটি সুতোর এক প্রান্তে m ভরের একটি কণা যুক্ত এবং অপর প্রান্তটি একটি মসৃণ টেবিলে থাকা খিলের

(peg) সাথে যুক্ত। যদি কণাটি v দুতিতে একটি বৃত্তাকার পথে ঘুরে কণাটির উপর মোট বল (কেন্দ্রগামী) হল : mu² mu²

(i) T, (ii) $T - \frac{mv^2}{l}$, (iii) $T + \frac{mv^2}{l}$, (iv) 0T সূতার টান (সঠিক বিকল্পটি বাছাই করো)।

- 5.5 15 m s⁻¹ প্রাথমিক দ্রুতি নিয়ে গতিশীল 20 kg ভরের বস্তুর উপর 50N মানের মন্দনস্ষ্টিকারী ধ্রুবক বল প্রযুক্ত হল। কতক্ষণ পর বস্তুটি স্থির হবে ?
- 5.6 3.0 kg ভরের একটি বস্তুর উপর একটি স্থির মানের বল ক্রিয়া করায় এটির দ্রুতি 25 s এ 2.0 m s⁻¹ হতে 3.5 m s⁻¹ হয়। বস্তুটির গতির দিক অপরিবর্তিত থাকে। বলটির মান এবং দিক কী হবে ?
- 5.7 5 kg ভরের একটি বস্তু দুটি লম্বভাবে থাকা দুটি বল 8 N এবং 6 N দ্বারা ক্রিয়াবন্দ্ব হল। বস্তুটির ত্বরণের মান এবং দিক বের করো।
- 5.8 36 km/h দ্রুতিতে গতিশীল একটি তিন চাকা যানের চালক মধ্য রাস্তায় এক বালককে দাঁড়িয়ে থাকতে দেখলো এবং বালকটিকে যথাসময়ে বাঁচাতে গিয়ে 4.0 s এর মধ্যে যানটি থামাল। যানটির মন্দন সৃষ্টিকারী গড় বল কত ? তিন চাকা যানটির ভর 400 kg এবং চালকের ভর 65 kg ।
- 5.9 20,000 kg উৎক্ষেপকালীন ভর নিয়ে একটি রকেট 5.0 m s⁻² প্রাথমিক ত্বরণ সহকারে উপরের দিকে বিস্ফোরিত হল। বিস্ফোরণের প্রাথমিক ঘাতটি (বল) গণনা করো।
- 5.10 0.40 kg ভরের একটি বস্তু 10 m s⁻¹ প্রাথমিক দ্রুতি নিয়ে উত্তর দিকে গতিশীল অবস্থায় 30 s ব্যাপী দক্ষিণ দিকে ক্রিয়াশীল একটি স্থিরমানের বল 8.0 N দ্বারা প্রভাবিত হল। বলপ্রয়োগের মুহুর্তটি *t* = 0 ধরে, এই মুহুর্তে বস্তুটির অবস্থান *x* = 0 হলে t = -5 s, 25 s, 100 s এ বস্তুটির অবস্থানগুলো গণনা করো।
- 5.11 স্থিরাবস্থা থেকে 2.0 m s⁻² সমত্বরণে একটি ট্রাক যাত্রা শুরু করল। ট্রাকটির উপর (ভূমি থেকে 6 m উঁচুতে) দাঁড়িয়ে থাকা এক ব্যক্তি একটি পাথর t = 10 s সময়ে ফেলে দিল। পাথরটির (a) গতিবেগ এবং (b) ত্বরণ t = 11s সময়ে কত হবে? (বায়ুর বাধা উপক্ষেণীয়)
- 5.12 0.1 kg ভরের একটি পিগুকে (bob) 2 m দৈর্ঘ্য সুতার সাহায্যে একটি ঘরের ছাদ থেকে ঝুলিয়ে দেওয়া হল এবং পিগুটিকে আন্দোলিত করা হল । সাম্যাবস্থানে পিগুটির দ্রুতি হল 1 m s⁻¹ । পিগুটির সঞ্জারপথ কী হবে ? (a) যখন এটি সর্বোচ্চ অবস্থানে থাকবে (b) যখন এটি সাম্যাবস্থানে থাকবে ?
- 5.13 গতিশীল একটি লিফটে থাকা একটি ওজন মাপক যন্ত্রের উপর 70 kg ভরের এক ব্যক্তি দাঁড়িয়ে আছেন। লিফ্টি
 - (a) 10 m s⁻¹সমবেগে উপরে উঠলে,
 - (b) 5 m s⁻² সমত্বরণে নীচে নামলে,
 - (c) 5 m s⁻² সমত্বরণে উপরে উঠলে। প্রতিক্ষেত্রে ওজন মাপক যন্ত্রের পাঠ কত হবে?
 - (d) লিফটির যদি যান্ত্রিক বিকলতা দেখা দেয় এবং এটি অভিকর্ষের প্রভাবে অবাধে পড়তে থাকে, সেক্ষেত্রে পাঠ কত হবে?
- 5.14 5.16 চিত্রে 4 kg ভরের একটি কণার অবস্থান-সময়ের লেখচিত্র দেখানো হয়েছে। কণাটির উপর (a) ক্রিয়াশীল বল কত যখন t < 0, t > 4 s, 0 < t < 4 s? (b) t = 0 এবং t = 4 s ঘাত কত ? (কেবলমাত্র একমাত্রিক গতি ধরে নাও)</p>

চিত্র 5.16

5.15 একটি হালকা সূতার দুপ্রান্তে 10 kg এবং 20 kg ভরের দুটি বস্তু শক্ত করে আটকানো অবস্থায় একটি অনুভূমিক মসৃণতলের উপর রাখা হলো এবং F = 600 N মানের একটি অনুভূমিক বল সুতোর দিক বরাবর (i) A ও (ii) B এর উপর প্রয়োগ করা হল। প্রত্যেক ক্ষেত্রে সুতোর টানা কত হবে ?

- 5.16 একটি ঘর্ষণ কপিকলের উপর দিয়ে যাওয়া একটি হালকা অপ্রসার্য সুতোর দুই প্রান্তে 8 kg এবং 12 kg দুটি ভর যুক্ত আছে। ভরদ্বয়কে ছেড়ে দেবার পর এদের ত্বরণ এবং সুতোর টান নির্ণয় করো।
- 5.17 পরীক্ষাগার নির্দেশতন্ত্রে (laboratory frame of reference) একটি নিউক্লিয়াস স্থির আছে। দেখাও যে, এটি দুটি ছোটো নিউক্লিয়াসে ভেঙ্গো গেলে সৃষ্ট নিউক্লিয়াসদ্বয় অবশ্যই বিপরীত দিকে গতিশীল হবে।
- 5.18 0.05 kg ভরের দুটি বিলিয়ার্ড বল পরস্পরের বিপরীত দিকে 6 m s⁻¹ দ্রুতিতে গতিশীল হয়ে সংঘর্ষে লিপ্ত হয় এবং একইবেগে প্রতিক্ষিপ্ত হয়। প্রত্যেক বল অপরটির দ্বারা কত ঘাত অনুভব করবে ?
- 5.19 100 kg ভরের একটি বন্দুক হতে 0.020 kg ভরের গুলি ছোড়া হল। যদি গুলিটির মুখবন্ধ বেগ (muzzle speed) 80 m s⁻¹ হয়, বন্দুকটির প্রতিক্ষেপ বেগ কত হবে?
- 5.20 54 km/h প্রাথমিক দ্রুতিসম্পন্ন একটি বলকে একজন ব্যাটস্ম্যান, দ্রুতি অক্ষুন্ন রেখে 45° কোণে বিক্ষেপ ঘটায়। বলটিতে প্রযুক্ত ঘাত কত ? (বলটির ভর 0.15 kg.)।
- 5.21 একটি সুতোর একপ্রান্তে আটকানো 0.25 kg ভরের একটি পাথর অনুভূমিক তলে 1.5 m ব্যাসার্ধের বৃত্তপথে 40 rev./min দ্রুতিতে ঘুরছে। সুতোটিতে টান কত হবে ? সুতোটি যদি সর্বোচ্চ 200 N টান সহ্য করতে পারে তবে পাথরটি সর্বোচ্চ কত দ্রুতিতে ঘুরতে পারবে ?
- 5.22 যদি উপরের সমস্যাটিতে (5.21 নং) যদি পাথরটির দ্রুতি সর্বোচ্চ অনুমোদনযোগ্য বেগের চেয়ে বেড়ে যায় এবং হঠাৎ সুতোটি ছিড়ে গেলে নিম্নের কোন্টি সুতোটি ছিড়ে যাবার পর পাথরটির সঞ্চারপথকে সঠিকভাবে ব্যাখ্যা করবে :

(a) পাথরটি ব্যাসার্ধ বরাবর বহির্মুখে গতিশীল হবে,

(b) সুতোটি ছিঁড়ে যাওয়ার মুহুর্ত হতে পাথরটি স্পর্শক বরাবর ছুটে যাবে,

- (c) পাথরটি স্পর্শকের সাথে একটি কোণ করে ছুটে যাবে যার মান পাথরটির গতিবেগের মানের উপর নির্ভর করে।
 5.23 কারণ ব্যাখ্যা কর :
 - (a) শূন্যস্থানে একটি ঘোড়া একটি গাড়িকে টানতে পারে না এবং চলতে পারে না,
 - (b) একটি চলন্ত বাস হঠাৎ থেমে গেলে সীটে বসা যাত্রীরা সামনের দিকে ঝুঁকে পড়ে।
 - (c) একটি লনে ঘাস কাঁটার যন্ত্রকে ঠেলা অপেক্ষা টানা সহজ,
 - (d) একজন ক্রিকেট খেলোয়াড় ক্রিকেট বলটি ধরে রাখার সময় তার হাতটি পেছনের দিকে নিয়ে যায়।

অতিরিক্ত অনুশীলনী

5.24 5.17 নং চিত্রে 0.04 kg ভরের একটি বস্তুর অবস্থান-সময়ের লেখচিত্র দেখানো হয়েছে। এই গতির ক্ষেত্রে উপযুক্ত প্রাকৃতিক প্রসঙ্গা উল্লেখ করো। বস্তুটি দ্বারা গৃহীত পরপর দুটি ঘাতের মধ্যবর্তী সময় কত হবে ? প্রতিটি ঘাতের মান কত হবে ?

5.25 5.18 নং চিত্রে 1 m s⁻²ত্বরণে ত্বরাম্বিত একটি অনুভূমিক বাহক বেল্টের উপর বাহক বেল্টটির সাপেক্ষে এক ব্যান্তি স্থিরভাবে দাঁড়িয়ে আছেন। ব্যান্তির উপর মোট বল কত? ব্যন্তির জুতো এবং বাহক বেল্টের মধ্যে স্থিত ঘর্ষণ গুণাঞ্চ 0.2 হলে, বাহক বেল্টটির কত ত্বরণ পর্যন্ত ব্যন্তি বাহক বেল্ট সাপেক্ষে স্থির থাকবে? (ব্যন্তির ভর = 65 kg)

চিত্র 5.18

5.26 একটি সুতোর একপ্রান্তে দৃঢ়ভাবে আটকানো *m* ভরের একটি পাথর *R* ব্যাসার্ধে উল্লম্ব বৃত্তপথে ঘুরছে। বৃত্তপথটির সর্বনিম্ন এবং সর্বোচ্চ বিন্দুতে উল্লম্বভাবে নিম্নাভিমুখী মোট বল হবে : (সঠিক বিকল্পটি বেছে নাও)

সর্বনিম্ন বিন্দু	সর্বোচ্চ বিন্দু	
(a) $mg - T_1$	$mg + T_2$	
(b) $mg + T_1$	$mg - T_2$	
(c) $mg + T_1 - (m v_1^2)/R$	$mg - T_2 + (m v_1^2) / R$	
(d) $mg - T_1 - (m v_1^2) / R$	$mg + T_2 + (m v_1^2)/R$	

- T, এবং v, সর্বনিম্ন বিন্দুতে টান এবং দ্রুতি। T, এবং v,সর্বোচ্চ বিন্দুতে সংশ্লিষ্ট মানগুলো বোঝায়।
- 5.27 1000 kg ভরের একটি হেলিকপ্টার 15 m s⁻²ত্বরণে উপরে উঠছে। চালক এবং যাত্রীদের ভর 300 kg। মান ও দিক বের কর,
 - (a) চালক এবং যাত্রীদের দ্বারা মেঝের উপর বল,
 - (b) আশেপাশের বায়ুর উপর হেলিকপ্টারের ঘূর্ণয়মান অংশ দ্বারা ক্রিয়া,
 - (c) আশেপাশের বায়ুর জন্য হেলিকপ্টারের উপর বল।
- 5.28 10⁻² m² প্রস্থচ্ছেদের ক্ষেত্রফল বিশিষ্ট একটি নল হতে 15 m s⁻¹ বেগে জলের প্রবাহ অনুভূমিকভাবে নির্গত হচ্ছে এবং পাশের একটি উলস্ব দেওয়ালকে আঘাত করছে। জলের প্রভাব দ্বারা দেওয়ালের উপর প্রযুক্ত ঘাত কত ? ধরে নাও জল প্রতিক্ষিপ্ত হয় না।
- 5.29 এক টাকা মূল্যের দশটি মুদ্রাকে একটি টেবিলে পর পর একটির উপর অপরটিকে রাখা আছে। প্রত্যেক মুদ্রার ভর *m*। নিম্নলিখিতগুলোর মান এবং দিক বের করো:
 - (a) সপ্তম মুদ্রাটির (নীচ থেকে গণনা করলে) উপর উপরের মুদ্রাগুলোর জন্য বল,
 - (b) অন্টম মুদ্রাটি দ্বারা সপ্তম মুদ্রার উপর বল,
 - (c) সপ্তম মুদ্রাটির উপর ষষ্ঠ মুদ্রাটির প্রতিক্রিয়া।
- 5.30 একটি বায়ুযান 720 km/h বেগে এর 15° কোণে বাঁকা পাখাগুলোর দ্বারা একটি অনুভূমিক চক্র সম্পন্ন করলো। চক্রটির ব্যাসার্ধ কত হবে?
- 5.31 একটি ট্রেন 30 m ব্যাসার্ধের একটি ব্যাজ্ঞিংহীন বৃত্তাকার পথ বরাবর 54 km/h দ্রুতিতে চলা শুরু করল। ট্রেনটির ভর 10⁶ kg । এক্ষেত্রে কে প্রয়োজনীয় অভিকেন্দ্র বলটি যোগান দেয় ইঞ্জিনটি না রেইলটি ? ব্যাজ্ঞিং কোণটি কত হলে ট্রেনটির রেইল থেকে পড়ে যাওয়াকে প্রতিরোধ করা যাবে ?
- 5.32 25 kg ভরের একটি ব্লককে 50 kg ভরের এক ব্যক্তি দুটি ভিন্ন পথে উত্তোলন করছে যা 5.19 নং চিত্রে দেখানো হয়েছে। ক্ষেত্র দুটিতে ব্যক্তি দ্বারা মেঝের উপর ক্রিয়া কত হবে ? মেঝেটি যদি 700 N লম্ব বল সহ্য করতে পারে, মেঝের সহন সীমা লঙ্খন না করে ব্লকটি উত্তোলন করতে ব্যক্তি কোন্ পথটি বেছে নেবেন ?

চিত্র 5.19

- 5.33 40 kg ভরের একটি বানর একটি দড়ি বেয়ে উঠছে যা সর্বোচ্চ 600 N মানের টান সহ্য করতে পারে। নিম্নে উল্লেখিত কোন ক্ষেত্রটিতে দড়িটি ছিড়ে যাবে: যখন বানরটি
 - (a) 6 m s⁻² ত্বরণ নিয়ে বেয়ে উঠবে,
 - (b) 4 m s⁻²ত্বরণ নিয়ে বেয়ে নামবে,
 - (c) 5 m s⁻¹ সমবেগে বেয়ে উঠবে,
- (d) দড়ি বেয়ে অভিকর্ষের প্রভাবে মুক্তভাবে নামবে ? (দড়িটির ভর উপেক্ষণীয়)
 5.34 একটি দৃঢ় দেওয়ালের বিরুম্বে 5 kg এবং 10 kg ভরের দুটি বস্তু A এবং B সংস্পর্শে থেকে একটি টেবিলের উপর রয়েছে (চিত্র নং 5.21)। বস্তুদ্বয় এবং টেবিলটির মধ্যে ঘর্ষণ গুণাঞ্চক হল 0.15 । A -এর উপর অনুভূমিকভাবে 200 N
- টেবিলটির মধ্যে ঘর্ষণ গুণাঙ্ক হল 0.15 । A -এর উপর অনুভূমিকভাবে 200 N এর একটি বল প্রয়োগ করা হল। (a) দেওয়ালে প্রতিক্রিয়া বল (b) A এবং B এর মধ্যে ক্রিয়া-প্রতিক্রিয়া বলগুলো হবে ? দেওয়ালটি সরিয়ে নিলে কী ঘটবে ? যখন বস্তু দুটি গতিশীল থাকবে তখন (b) এর উত্তরটি পরিবর্তিত হবে কি ? µ_s এবং µ_k এর মধ্যে পার্থক্য উপেক্ষা করো।

- 5.35 একটি দীর্ঘ ট্রলির উপর 15 kg ভরের একটি ব্লক আছে। ব্লক এবং ট্রলির মধ্যে স্থিত ঘর্ষণ গুণাঙ্ক 0.18 । 20 s সময়ব্যাপী ট্রলিটি স্থিরাবস্থা হত 0.5 m s⁻² ত্বরণে গতিশীল থাকে এবং পরে সমবেগে গতি বজায় রাখে। (a) ভূমিতে দাঁড়ানো একজন পর্যবেক্ষকের সাপেক্ষে, (b) ট্রলির সাথে গতিশীল পর্যবেক্ষকের সাপেক্ষে ব্লকটির গতি আলোচনা করো।
- 5.36 পেছন খোলা একটি ট্রাকের খোলা প্রান্ত হতে 5 m দুরে 40 kg ভরের একটি বাক্স আছে যা 5.22 চিত্রে দেখানো হয়েছে। বাক্স এবং এটির নীচের পৃষ্ঠের মধ্যে ঘর্ষণ গুণাঙ্ক 0.15। একটি সোজা রাস্তার উপর দিয়ে ট্রাকটি স্থিরাবস্থা থেকে যাত্রা শুরু করে এবং 2 m s⁻² ত্বরণ নিয়ে চলতে থাকে। যাত্রারস্তের বিন্দু হতে কত দূর পর বাক্সটি ট্রাক থেকে পড়ে যাবে ? (বাক্সটির আকার উপেক্ষণীয়)।

5.37 একটি চাকতি 33 1/3 rev/min দ্রুতিতে ঘুরছে এবং এর ব্যাসার্ধ হল 15

cm। চাকতিটির কেন্দ্র হতে 4 cm এবং 14 cm দূরে দুটি মুদ্রা রাখা হল। মুদ্রা দুটি এবং চাকতিটির মধ্যে ঘর্ষণ গুণাজ্ঞ 0.15 হলে, কোন মুদ্রাটি চাকতিটির সাথে ঘুরবে ?

- 5.38 তোমরা হয়তো একজন মোটর সাইকেল চালককে সার্কাসের মরণ কুয়োয় (ছিদ্র সমূহ যুক্ত ফাঁপা গোলাকার কক্ষ, যাতে দর্শকরা বাহির থেকে দেখতে পায়) উল্লম্ব বৃত্তাকার পথগুলো বরাবর মোটর সাইকেল চালাতে দেখে থাকবে। নীচ থেকে কোনো সহায়তা ছাড়া যখন মোটর সাইকেল চালক বৃত্তাকার পথের সর্বোচ্চ বিন্দুতে অবস্থান করেন, তখন কেন নীচে পড়ে যান না তা স্পফ্টভাবে বর্ণনা কর। যদি কক্ষের ব্যাসার্ধ 25 m হয় তাহলে খাড়া বৃত্তাকার পথের সর্বোচ্চ অবস্থানে ন্যূনতম কত দ্রুতি প্রয়োজন যাতে উল্লম্ব পথটি পরিক্রম করা সম্ভব?
- 5.39 3 m ব্যাসার্ধের একটি ফাঁপা চোঙাকৃতি ড্রাম, এর উল্লম্ব অক্ষের সাপেক্ষে 200 rev/min দুতিতে ঘুরছে এবং 70 kg ভরের এক ব্যক্তি ফাঁপা চোঙটির ভেতরের দেওয়ালের সংস্পর্শে থেকে দাঁড়িয়ে আছে। দেওয়াল এবং ব্যক্তির কাপড়ের মধ্যে ঘর্ষণ গুণাঙ্ক 0.15 । চোঙটি সর্বনিম্ন কত দ্রুতিতে ঘুরলে ব্যক্তি, মেঝেটি হঠাৎ সরে গেলেও ভেতরের দেওয়ালে আটকে থাকতে সক্ষম হবে (নীচের দিকে না পড়ে)?
- 5.40 R ব্যাসার্ধের একটি সরু বৃত্তাকার লুপ, এটির উল্লম্ব ব্যাসের সাপেক্ষে ω কৌণিক কম্পাঞ্চ নিয়ে ঘুরছে। দেখাও যে, ω ≤ √g/R এর জন্যে একটি ক্ষুদ্র পুতি বৃত্তাকার লুপটির সর্বনিম্ন বিন্দুতে অবস্থান করবে। ω = √2g/R এর জন্য বৃত্তাকার তারটির কেন্দ্র ও পুতিটির সংযোগকারী ব্যাসার্ধ ভেক্টরটি উল্লম্ব অক্ষটির নীচের দিকের সাথে কত কোণ উৎপন্ন করবে ? ঘর্ষণ উপেক্ষা করো।

অধ্যায় : যঠ

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

ভূমিকা

উপপাদ্য

গতিশস্তি

উপপাদ্য

সত্র

সারাংশ

অনুশীলনী

ঐচ্ছিক অনুশীলনী পরিশিষ্ট 6.1

6.11 ক্ষমতা

6.12 সংঘর্ষ

স্থিতিশস্তির ধারণা

যান্ত্রিক শক্তির সংরক্ষণ

স্প্রিং-এর স্থিতিশক্তি

6.10 বিভিন্ন প্রকার শক্তি : শক্তির সংরক্ষণ

ভেবে দেখার বিষয়সমূহ

কাৰ্য

কার্য ও গতিশক্তির ধারণা : কার্য শক্তির

পরিবর্তনশীল বলের দ্বারা কার্য

পরিবর্তনশীল বলের জন্য কার্যশস্তির

কাৰ্য, শক্তি ও ক্ষমতা (Work, Energy and Power)

6.1 ভূমিকা (INTRODUCTION)

'কার্য', 'শক্তি'ও 'ক্ষমতা' প্রাত্যহিক ভাষার প্রচলিত শব্দ। একজন কৃষক মাঠে কর্ষণ করছেন, নির্মাণ কার্যের কর্মী ইট বহন করছেন, একজন ছাত্র প্রতিযোগিতা মূলক পরীক্ষার জন্য প্রস্তুতি নিচ্ছে, একজন শিল্পী সুদৃশ্য ভূ-চিত্র আঁকছেন - এক্ষেত্রে বলা হয় সকলেই কাজ করছেন। পদার্থবিদ্যায় 'কার্য' শব্দের যথাযথ ও নির্দিন্ট অর্থ আছে। কোনো ব্যক্তির 14 থেকে 16 ঘণ্টা কার্য করার ক্ষমতা থাকা মানে, অধিক শক্তির অধিকারী। দুরপাল্লার দৌড় বাজকে তার সামর্থ্য অথবা শক্তির জন্য আমরা প্রশংসা করি। আমাদের কার্য করার সামর্থ্যই হল শক্তি। এই অর্থে, পদার্থবিদ্যার ক্ষেত্রেও শক্তি, কার্যের সাথে সম্পর্কিত। কিন্তু, আগে যেভাবে উল্লেখিত হল, 'কার্য' আরও সঠিক অর্থে সংজ্ঞায়িত হয়েছে। প্রাত্যহিক জীবনে 'ক্ষমতা' শব্দটি বিভিন্ন অর্থে প্রয়োগ করা হয়। ক্যারাটে ও বক্সিং-এ আমরা জোরালো মুন্ট্যাঘাতের কথা বলি। এগুলো অধিক দুতিতে প্রদান করা হয়। এই ধরনের অর্থ পদার্থবিদ্যায় ব্যবহৃত 'ক্ষমতা' শব্দের কাছাকাছি। আমরা দেখবো যে পদগুলোর (Terms) অর্থবহ সংজ্ঞা ও তাদের জন্য শারীরবৃত্তীয় ধারণা (Physiological picture) আমাদের মনে একটি পারস্পরিক অস্পন্টতা গড়ে তুলবে। এই অধ্যায়ের উদ্দেশ্য হল, এই তিনটি প্রাকৃতিক রাশির ধারণা উপলব্ধি করা। এই কাজটি শুরুর পূর্বে একটি গাণিতিক পূর্বশর্ত তথা দুটি

6.1.1 স্কেলার গুণন : (The Scalar Product)

আমরা চতুর্থ অধ্যায়ে ভেক্টর রাশি ও তার ব্যবহার সম্পর্কে জেনেছি। প্রাকৃতিক রাশি যথা - সরণ, গতিবেগ, ত্বরণ, বল প্রভৃতি ভেক্টর রাশি। আমরা ভেক্টর রাশির যোগ ও বিয়োগ এর পম্বতিও জেনেছি। আমরা এখন জানবো কীভাবে ভেক্টরগুলোকে গুণ করতে হয়। ভেক্টর রাশির গুণের দুটি পম্বতি — একটি পম্বতিতে স্কেলার গুণের ফলে দুটি ভেক্টর রাশির গুণফল স্কেলার রাশিতে পরিণত হয়। অপর পম্বতিতে 'ভেক্টর গুণে" দুটি ভেক্টর রাশির গুণফলে উৎপন্ন হয় অপর একটি নতুন ভেক্টর রাশি। আমরা ভেক্টর গুণেে সপ্তম অধ্যায়ে দেখতে পাবো। এখানে আমরা দুটি ভেক্টর রাশির স্কেলার গুণ নিয়ে জানবো। দুটি ভেক্টর রাশি A এবং B এর স্কেলার গুণ অথবা ডট্ গুণকে A·B দ্বারা প্রকাশ করা হয় (যাকে A ডট B পড়া হয়)।

$$\mathbf{A} \cdot \mathbf{B} = A B \cos \theta \tag{6.1a}$$

যেখানে θ হল দুটি ভেক্টর রাশি **A** এবং **B** এর মধ্যবর্তী কোণ যা 6.1(a) নং চিত্রে দেখানো হয়েছে। যেহেতু *A*, *B* এবং cos θ স্কেলার রাশি, তাই **A** এবং **B** এর স্কেলার গুণ একটি স্কেলার রাশি। প্রতিটি ভেক্টর রাশি **A** এবং **B** এর নির্দিষ্ট দিক আছে কিন্তু তাদের স্কেলার গুণ এর কোনো দিক নেই।

(6.1a) সমীকরণ অনুসারে,

$$\mathbf{A} \cdot \mathbf{B} = A \left(B \cos \theta \right)$$
$$= B \left(A \cos \theta \right)$$

জ্যামিতিকভাবে, $B \cos \theta \ge \mathbf{A}$ এর উপর \mathbf{B} এর উপাংশ এবং $A \cos \theta$ হল \mathbf{B} এর উপর \mathbf{A} এর উপাংশ। কাজেই, $\mathbf{A} \cdot \mathbf{B}$ হল \mathbf{A} এর মান এবং \mathbf{A} এর দিকে \mathbf{B} এর উপাংশের গুণফল। বিকল্পভাবে বলা যায়, এটা \mathbf{B} এর মান এবং \mathbf{B} এর দিকে \mathbf{A} এর উপাংশের গুণফল।

(6.1a) সমীকরণ দেখায় যে, স্কেলার গুণ বিনিময় সূত্র মেনে চলে।

 $\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A}$

স্কেলার গুণ বন্টন সূত্র মেনে চলে।

 $\mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C}$

আরও, $\lambda \mathbf{A} \cdot (\lambda \mathbf{B}) = \lambda^2 (\mathbf{A} \cdot \mathbf{B})$

যেখানে ১ একটি বাস্তব সংখ্যা।

উপরিউক্ত সমীকরণগুলির প্রমাণ তোমরা অনুশীলনী রূপে করে নিও।

একক ভেক্টর î, ĵ, k এর জন্য

$$\mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j} = \mathbf{k} \cdot \mathbf{k} = 1$$

$$\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = 0$$

প্রদত্ত দুটি ভেক্টর

$$\mathbf{A} = A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}} + A_z \hat{\mathbf{k}}$$

$$\mathbf{B} = B_x \mathbf{1} + B_y \mathbf{j} + B_z$$

তাদের স্কেলার গুণ,

$$\mathbf{A} \cdot \mathbf{B} = \left(A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}} + A_z \hat{\mathbf{k}} \right) \cdot \left(B_x \hat{\mathbf{i}} + B_y \hat{\mathbf{j}} + B_z \hat{\mathbf{k}} \right)$$

k

$$= A_x B_x + A_y B_y + A_z B_z \tag{6.1b}$$

স্কেলার গুণের সংজ্ঞানুসারে এবং সমীকরণ 6.1b হতে আমরা পাই,

(1)
$$\mathbf{A} \cdot \mathbf{A} = A_x A_x + A_y A_y + A_z A_z$$

$$\overline{a}, \ A^2 = A_x^2 + A_y^2 + A_z^2 \tag{6.1c}$$

যেহেতু, $\mathbf{A} \cdot \mathbf{A} = |\mathbf{A}| |\mathbf{A}| \cos 0 = A^2$. (ii) $\mathbf{A} \cdot \mathbf{B} = 0$, যদি \mathbf{A} এবং \mathbf{B} পরস্পর লম্ব হয়।

$$= 3 (5) + 4 (4) + (-5) (3)$$

= 16 একক
সুতরাং, F·d = F d cos θ = 16 একক
এখন, F·F = F² = F_x² + F_y² + F_z²
= 9 + 16 + 25
= 50 একক
এবং d·d = d² = d_x² + d_y² + d_z²
= 25 + 16 + 9
= 50 একক
∴ cos θ = $\frac{16}{\sqrt{50}\sqrt{50}} = \frac{16}{50} = 0.32$,

$$\theta = \cos^{-1} 0.32$$

চিত্র 6.1 (a) A এবং B এর স্কেলার গুণন একটি স্কেলার; A·B = A B cos θ. (b) B cos θ হল A এর উপর B এর অভিক্ষেপ।(c) A cos θ হল B এর উপর A অভিক্ষেপ।

6.2 কার্য ও গতিশস্তির ধারণা : কায-শস্তির উপপাদ্য (NOTIONS OF WORK AND KINETIC ENERGY: THE WORK-ENERGY THEOREM)

সমত্বরণযুক্ত (a) সরলরৈখিক (rectilinear) গতির ক্ষেত্রে নিম্নলিখিত সম্পর্কটি তৃতীয় অধ্যায়ে উল্লেখিত রয়েছে।

$$v^2 - u^2 = 2 as (6.2)$$

যেখানে *u* এবং *v* যথাক্রমে প্রাথমিক ও চূড়ান্ত দ্রুতি এবং *s* হচ্ছে অতিক্রান্ত দূরত্ব। উভয়পক্ষকে *m*/2 দিয়ে গুণ করে পাই,

$$\frac{1}{2}mv^2 - \frac{1}{2}mu^2 = mas = Fs$$
 (6.2a)

যেখানে শেষ ধাপটি নিউটনের দ্বিতীয় গতিসূত্র অনুসারে করা হল। ভেক্টরের ত্রিমাত্রিক প্রয়োগের সাধারণীকরণের, সমীকরণ (6.2) থেকে আমরা পাই,

$$v^2 - u^2 = 2$$
 a.d

একইভাবে উভয়পক্ষকে m/2 দিয়ে গুণ করে আমরা পাই,

$$\frac{1}{2}mv^2 - \frac{1}{2}mu^2 = m \,\mathbf{a.d} = \mathbf{F.d}$$
 (6.2b)

উল্লেখিত সমীকরণ কার্য ও গতিশক্তির সংজ্ঞা দেওয়ার প্রেরণা যোগায়। সমীকরণের বামপক্ষ হচ্ছে দ্রুতির প্রাথমিক ও অন্তিম মানের বর্গের অন্তফলের সাথে ভরের অর্ধেক মানের গুণ। আমরা প্রতিটি রাশিকে গতিশক্তি বলি, যা *K* দিয়ে প্রকাশ করা হয়। ডানপক্ষ সরণ এবং সরণের দিকে বলের উপাংশের গুণ। এই রাশিটিকে কার্য বলা হয় এবং *W* দিয়ে প্রকাশ করা হয়। (6.2b) সমীকরণ অনুসারে,

$$K_f - K_i = W \tag{6.3}$$

যেখানে K_i এবং K_j যথাক্রমে বস্তুর প্রাথমিক এবং অন্তিম গতিশক্তি। 'কার্য' বলতে বস্তুর উপর প্রযুক্ত বল এবং এর সরণের মধ্যে সম্পর্ককে বুঝায়। বস্তুর উপর বলের প্রয়োগে নিশ্চিত সরণ হলে বল দ্বারা কার্য সম্পাদিত হয়।

সমীকরণ (6.3) টিও কার্যশস্তির উপপাদ্যের একটি বিশেষ ক্ষেত্র : "একটি কণার গতিশস্তির পরিবর্তন কণার উপর মোট বল দ্বারা সম্পাদিত কার্যের সমান।"

আমরা পরবর্তী অংশে পরিবর্তনশীল বলের জন্য উপরিউক্ত নির্ণয় পম্বতির সাধারণীকরণ করবো।

উদাহরণ 6.2 এটি সবার ভালো করে জানা আছে যে, নিম্নাভিমুখী অভিকর্ষ বলের প্রভাবে এবং বিপরীতমুখী বাধাজনিত বলের অধীনে একটি বারিবিন্দু পতনশীল হয়। বাধাজনিত বলটি বারিবিন্দুর দ্রুতির সমানুপাতিক অন্যথা এটি অনির্ণায়ক। ধরো, 1.00 গ্রাম ভরের একটি বারিবিন্দু 1.00 কিমি. উচ্চতা থেকে পড়ে ভূমিতে 50.0 m s⁻¹ দ্রুতিতে আঘাত করে। (a) অভিকর্ষীয় বলের দ্বারা কার্যের পরিমাণ নির্ধারণ করো। (b) অজানা বাঁধাজনিত বলের দ্বারা কার্যের পরিমাণ কত ?

উত্তর (a) বারিবিন্দুর গতিশক্তির পরিবর্তন,

$$\Delta K = \frac{1}{2}mv^2 - 0$$
$$= \frac{1}{2} \times 10^{-3} \times 50 \times 50$$
$$= 1.25 \text{ J}$$

যেখানে আমরা বারিবিন্দুটিকে প্রথমে স্থির অবস্থায় ছিল ধরে নিই। *g* এর স্থির মান 10 m/s²ধরে, অভিকর্ষীয় বলের দ্বারা কৃতকার্য,

$$W_g = mgh$$

= 10⁻³×10×10³
= 10.0 J

(b) কার্য-শক্তির উপপাদ্য থেকে,

 $\Delta K = W_g + W_r$ যেখানে W_r হচ্ছে বারিবিন্দুর উপর বাধাজনিত বলের দ্বারা কৃতকার্য। সুতরাং, $W_r = \Delta K - W_g$ = 1.25 – 10

$$= -8.75$$
 J

কৃতকার্য ঋণাত্মক।

6.3 কার্য (WORK)

আমরা আগেই পেলাম যে, কৃতকার্য হল প্রযুক্ত বল এবং বলের প্রয়োগাধীন সরণের সাথে সম্পর্কিত।ধরো, একটি স্থির মানের বল **F** একটি *m* ভরের বস্তুর উপর ক্রিয়াশীল আছে এবং বস্তুটির ধনাত্মক *x*-অক্ষ অভিমুখে সরণ হল (d) চিত্র 6.2 তে দেখানো হয়েছে।

কাৰ্য, শক্তি ও ক্ষমতা

বলের দ্বারা 'কৃতকার্য' বস্তুর সরণের অভিমুখে বলের উপাংশ ও সরণের গুণফল দিয়ে সংজ্ঞায়িত হয়।

এইভাবে, $W = (F \cos \theta)d = F d \cos \theta = \mathbf{F.d}$ (6.4)

আমরা দেখি যে, বলের মান বড়ো হলেও কোনো সরণ না হলে, কোনো কৃতকার্য হয় না। কাজেই তুমি ইটের দেওয়ালকে যত জোরেই ঠেলা দাও না কেন, দেওয়ালের উপর প্রযুক্ত বল দ্বারা কোনো কার্য সম্পাদিত হয় না। যদিও তোমার পেশিসমূহ পর্যায়ক্রমে সঙ্কুচিত ও প্রসারিত হওয়ার জন্য আভ্যন্তরিন শক্তি ব্যবহৃত হয় এবং তুমি পরিশ্রান্ত হয়ে পড়। অতএব পদার্থবিদ্যায় কার্যের অর্থ প্রাত্যহিক ভাষায় ব্যবহৃত কার্য থেকে ভিন্ন।

কোনো কাৰ্য হয় না যখন :

- উপরে বর্ণিত উদাহরণে দেখা যায়, সরণ হল শূন্য। একজন ভার উত্তোলনকারী (weightlifter) একটি 150 kg ভরকে কাঁধে নিয়ে 30 s স্থিরভাবে দাঁড়িয়ে থাকলেও, উক্ত ভারের জন্য ঐ সময়ে কোনো কার্য সম্পাদিত হয় না।
- (ii) বলটির মান শূন্য। একটি মসৃণ অনুভূমিক তলে একটি ব্লক কোনো অনুভূমিক বল প্রয়োগ ছাড়া (যেহেতু, এক্ষেত্রে ঘর্ষণ অনুপস্থিত) গতিশীল। কিন্তু এক্ষেত্রেও বস্তুর সরণ অধিক হতে পারে।
- (iii) বল এবং সরণ পরস্পরের উপর লম্ব। এর কারণ হচ্ছে যখন θ =π/2 rad = 90° তখন cos (π/2)=0। মসৃণ অনুভূমিক টেবিলের উপর গতিশীল ব্লকের জন্য, অভিকর্ষীয় বল mg কোনো কার্য করে না, কেননা বলটি সরণের সাথে সমকোণে ক্রিয়া করে। আমরা যদি পৃথিবীর চারদিকে চাঁদের কক্ষপথ সম্পূর্ণভাবে বৃত্তাকার ধরি, তখন পৃথিবীর মহাকর্ষীয় বল কোনো কার্য করে না। চাঁদের তাৎক্ষণিক সরণ স্পর্শকীয় কিন্তু পৃথিবীর বল ব্যাসার্ধ বরাবর অন্তর্মুখী এবং θ =π/2 ।

কার্য ধনাত্মক এবং ঋণাত্মক দুই-ই হতে পারে। ' θ ' যদি 0° এবং 90° এর মধ্যে থাকে, তাহলে $\cos \theta$ ধনাত্মক হয়। আবার θ যদি 90° এবং 180° মধ্যে থাকে, তখন $\cos \theta$ ঋণাত্মক হয়। আনেকক্ষেত্রে, ঘর্ষণ বল সরণকে বাধা দেয় এবং $\theta = 180^\circ$ । কাজেই ঘর্ষণ বলের দ্বারা কৃতকার্য ঋণাত্মক হয়। ($\cos 180^\circ = -1$).

সমীকরণ (6.4) হতে এটা পরিষ্কারভাবে বোঝা যায় যে, কার্য ও শক্তির একই মাত্রা [ML²T⁻²] । এর SI একক হল joule (J), যা বিখ্যাত বৃটিশ পদার্থবিদ James Prescott Joule (1811-1869) এর নামানুসারে করা হয়। যেহেতু কার্য ও শক্তি বিভিন্ন ভৌত ধারণায় (physical concepts) ব্যাপকভাবে ব্যবহৃত হয়, কাজেই বিকল্প এককগুলি 6.1 টেবিল দেওয়া হল।

সারণি 6.1 J এককে কার্য / শক্তির বিকল্প এককসমূহ

আর্গ	10^{-7} J
ইলেকট্ৰন ভোল্ট (eV)	$1.6 \times 10^{-19} \mathrm{J}$
ক্যালোরি (cal)	4.186 J
কিলোওয়াট ঘন্টা (kWh)	$3.6 \times 10^6 \text{ J}$

উদাহরণ 6.3 একজন সাইকেল আরোহী হড়কিয়ে (Skidding) 10 মি দুরে দাঁড়িয়ে যায়। এক্ষেত্রে রাস্তা সাইকেলের উপর 200 N বল প্রয়োগ করে। যা তার গতিকে সরাসরি বাধা দেয়। (a) সাইকেলের উপর রাস্তার কৃতকার্য নির্ণয় করো। (b) সাইকেল রাস্তার উপর কতটা কার্য করল ?

উত্তর : রাস্তার দ্বারা সাইকেলের উপর কৃতকার্য হল সাইকেলের উপর রাস্তার বিরুম্ব বলের (ঘর্ষণ বল) দ্বারা কৃতকার্য।

- (a) বিরুদ্ধ বল এবং সরণ পরস্পর 180° (π rad) কোণে থাকে, কাজেই রাস্তার দ্বারা কৃতকার্য,
 - $W_r = Fd\cos\theta$
 - = $200 \times 10 \times \cos \pi$
 - = -2000 J

কার্য-শক্তির উপপাদ্য অনুসারে, এই ঋণাত্মক কার্যের জন্যই সাইকেলটি থামালো।

(b) নিউটনের তৃতীয় গতিসূত্র অনুযায়ী সাইকেলটিও রাস্তার উপর একটি সমান ও বিপরীতমুখী বল প্রয়োগ করে, যার মান 200 N। যদিও রাস্তার কোনো সরণ হয় না। কাজেই সাইকেলের দ্বারা রাস্তার উপর কৃতকার্য শূন্য 6.3 নং উদাহরণ থেকে আমরা পাই যে, যদিও 'A' এর উপর 'B' এর প্রযুক্ত বল। 'B' এর উপর 'A' এর প্রযুক্ত বলের সমান ও বিপরীতমুখী (নিউটনের তৃতীয় সূত্র) হয়। কিন্ডু 'B' এর দ্বারা 'A' এর উপর কৃতকার্য, 'A' এর দ্বারা 'B' এর উপর কৃতকার্যের সমান ও বিপরীত নাও হতে পারে।

6.4 গতিশক্তি (KINETIC ENERGY)

পূর্বেই উল্লেখিত আছে যে, *m* ভরের একটি বস্তুর গতিবেগ v হলে এর গতিশক্তি *K* হলো

$$K = \frac{1}{2}m\,\mathbf{v}.\mathbf{v} = \frac{1}{2}mv^2 \tag{6.5}$$

গতিশন্তি একটি স্কেলার রাশি। কোনো বস্তুর গতীয় অবস্থার জন্য বস্তু

সারণি 6.2 বিশেষ কিছু গতিশস্তি (K)

ৰস্থু (Object)	ভর (kg)	বেগ (m s ⁻¹)	<i>K</i> (J)
গাড়ি	2000	25	6.3×10^{5}
দৌড় ক্রিয়াবিদ্ (Running Athlete)	70	10	3.5×10^{3}
গুলি (Bullet)	5×10 ⁻²	200	10^{3}
10m উপর থেকে একটি পাথরের পতন	1	14	10^{2}
প্রান্তীয় গতিবেগে বারিবিন্দু	3.5×10 ⁻⁵	9	1.4×10^{-3}
বায়বীয় অণু	$\simeq 10^{-26}$	500	$\simeq 10^{-21}$

যে পরিমাণ কার্য করে তাই হল বস্তুটির গতিশক্তির পরিমাপ। এই ধারণাটির অন্তর্জ্ঞান (intuitively) অনেক আগে থেকে জানা ছিল। দ্রুতগামী জলপ্রবাহের গতিশক্তিকে শস্য চূর্ণ করার জন্য ব্যবহৃত হয়। পালতোলা জাহাজে বায়ুর গতিশক্তিকে কাজে লাগানো হয়। 6.2 টেবিলে বিভিন্ন বস্তুর গতিশক্তি দেওয়া আছে।

উদাহরণ 6.4 একটি ক্ষেপণাস্ত্র সম্পর্কীয় প্রদর্শনীতে, একজন পুলিশ অফিসার 50.0 g ভরের বুলেট 200 m s⁻¹ (Table 6.2 দেখো) একটি 2.00 cm বেষের (thickness) নরম প্লাইউডের উপর নিক্ষেপ করে। গুলিটি এর প্রাথমিক গতিশক্তির 10% মান নিয়ে নির্গত হয়। গুলিটির নির্গমন বেগ কত ?

উত্তর গুলিটির প্রাথমিক গতিশক্তি $mv^2/2 = 1/2 \times 0.050 \times (200)^2 = 1000$ J। তার অন্তিম গতিশক্তি = $0.1 \times 1000 = 100$ J। নির্গমন বেগ v_{ℓ} হলে,

$$\frac{1}{2}mv_f^2 = 100 \text{ J}$$
$$v_f = \sqrt{\frac{2 \times 100 \text{ J}}{0.05 \text{ kg}}}$$

 $= 63.2 \text{ m s}^{-1}$

বেগ প্রায় 68% কমে যায় (90% নয়)।

6.5 পরিবর্তনশীল বলের জন্য কার্য (WORK DONE BY A VARIABLE FORCE)

একটি ধ্রুবক বল বিরল। পরিবর্তনশীল বলই সাধারণভাবে বেশি দেখা যায়। 6.3 নং চিত্রে একমাত্রিক পরিবর্তনশীল বল দেখানো আছে।

যদি সরণের মান ∆x খুব ছোটো হয়, বল F(x) কে প্রায় ধ্রুবক ধরা যায় এবং কৃতকার্য,

$$\Delta W = F(x) \Delta x$$

এটি 6.3(a) নং চিত্রে দেখানো হল। পর পর আয়তকার ক্ষেত্রের

ক্ষেত্রফলগুলি যোগ করে আমরা মোট কৃতকার্যের পরিমাপ (W) পাই, (চিত্র 6.3a)

$$W \cong \sum_{x}^{x_f} F(x) \Delta x \tag{6.6}$$

যেখানে যোগফল প্রাথমিক অবস্থান x_i থেকে অন্তিম অবস্থান x_j . পর্যন্ত করা হয়েছে।

যদি প্রতিটি সরণকে শূন্যের কাছাকাছি নেওয়া যায়। তাহলে পদের সংখ্যা অসীমভাবে বেড়ে যায় এবং যোগফল একটি নির্দিষ্ট মানে পৌঁছায় যা লেখটি এবং সরণ অক্ষের অন্তবর্তী ক্ষেত্রের ক্ষেত্রফলের সমান। (চিত্র 6.3(b)। অতএব কৃতকার্য

$$W = \lim_{\Delta x \to 0} \sum_{x_i}^{x_j} F(x) \Delta x$$
$$= \int_{x_i}^{x_j} F(x) dx$$
(6.7)

যেখানে 'lim' বলতে Δx এর শূন্যমানের কাছাকাছি মান ধরে যোগফলের সীমাকে বোঝায়। কাজেই পরিবর্তনশীল বলের জন্য কৃত কার্যকে সরণের বলের নির্দিন্ট সমাকলন দ্বারা প্রকাশ করা যায়।(পরিশিন্ট 3.1 দেখো)।

কাৰ্য, শক্তি ও ক্ষমতা

চিত্র 6.3 (a) অংশাঙ্কিত (shaded) আয়তক্ষেত্রটি পরিবর্তনশীল বলের F(x) দ্বারা ক্ষুদ্র সরণের (Δx) জন্য কৃতকার্যকে সচিত করে, ΔW = F(x) Δx. (b) ক্ষুদ্র আয়তক্ষেত্রগুলির ক্ষেত্রফল যোগ করে পাই যা Δx → 0 এর জন্য লেখচিত্রের নীচের যে ক্ষেত্রফল F(x) এর দ্বারা কৃতকার্যের সমান।

উদাহরণ 6.5 একজন মহিলা অমসৃণ রেলওয়ে প্র্যাটফর্মের উপর একটি ট্র্যাঙ্ককে ঠেলছে। সে 10 m দূরত্ব পর্যন্ত 100 N বল প্রয়োগ করে। তারপর সে ক্রমাগত ক্লান্ত হয়ে পরে এবং তাহার প্রযুক্ত বল দূরত্বের সাথে রৈখিকভাবে (linearly) হ্রাস পেয়ে 50 N হল। ট্রাঙ্কটিকে মোট 20 m দূরত্ব সরানো হয়েছে। সরণের সঙ্গো মহিলা দ্বারা প্রযুক্ত বল ও ঘর্ষণ বল (যা 50 N) এর লেখচিত্র অংকন করো। 20 m দূরত্ব পর্যন্ত এই দুইটি বলের দ্বারা কৃতকার্য নির্ণয় করো।

চিত্র 6.4 সরণের সাথে মহিলা দ্বারা প্রযুক্ত বল F ও বিপরীতমুখী ঘর্ষণ জনিত বল 'f' এর লেখচিত্র অংকন।

চিত্র 6.4 এ প্রযুক্ত বলের লেখচিত্র দেখানো হয়েছে। যখন x = 20 m তখন F = 50 N (≠ 0)। প্রদন্ত ঘর্ষণজনিত বল f অর্থাৎ |f|= 50 N। এটা গতিকে প্রতিরোধ করে এবং F এর বিপরীত দিকে ক্রিয়া করে। এটা তাই বল অক্ষের ঋণাত্মক দিকে দেখানো হয়েছে।

মহিলা দ্বারা কৃতকার্য,

 W_F →ABCD আয়তক্ষেত্রের ক্ষেত্রফল + ট্রাপিজিয়াম CEID এর ক্ষেত্রফল

$$W_F = 100 \times 10 + \frac{1}{2} (100 + 50) \times 10$$

= 1000 + 750
= 1750 J

ঘর্ষণ বলের দ্বারা কৃতকার্য,

$$W_f \rightarrow$$
 আয়তক্ষেত্র AGHI এর ক্ষেত্রফল $W_f = (-50) \times 20$
= - 1000 J

বল অক্ষের ঋণাত্মক দিকের ক্ষেত্রফলের চিহ্ন ঋণাত্মক।

6.6 পরিবর্তনশীল বলের জন্য কার্য-শস্তির উপপাদ্য (THE WORK-ENERGY THEOREM FORA VARIABLE FORCE)

পরিবর্তনশীল বলের ক্ষেত্রে কার্য শক্তি উপপাদ্যটি সিম্ধ করার জন্য আমরা কার্য ও গতিশক্তির ধারণা সম্পর্কে ভালোভাবে পরিচিত হয়েছি। আমরা আমাদের বিবেচনাকে একমাত্রায় সীমাবদ্ধ করেছি।

সময়ের সাপেক্ষে গতিশক্তির পরিবর্তনের হার হবে,

$$\frac{dK}{dt} = \frac{d}{dt} \left(\frac{1}{2} m v^2 \right)$$
$$= m \frac{dv}{dt} v$$
$$= mav$$
$$= F v (নিউটনের দ্বিতীয় সূত্রানুসারে)$$
$$= F \frac{dx}{dt}$$

অথবা

 $\mathrm{d}K = F\mathrm{d}x$

প্রাথমিক অবস্থান (x_i) থেকে অন্তিম অবস্থান (x_f) পর্যন্ত সমাকলন করে পাই,

$$\int_{K_i}^{K_f} \mathrm{d}K = \int_{x_i}^{x_f} F \mathrm{d}x$$

যেখানে x_i এবং x_f অবস্থানে বস্তুর প্রাথমিক ও অন্তিম গতিশক্তি যথাক্রমে K_i এবং K_f ।

অথবা,
$$K_f - K_i = \int_{x_i}^{x_f} F \mathrm{d}x$$
 (6.8a)

(6.7) সমীকরণ হতে এটা প্রতীয়মান যে,

$$K_f - K_i = W \tag{6.8b}$$

কাজেই, পরিবর্তনশীল বলের জন্য কার্যশস্তির উপপাদ্য প্রমাণিত হল।

যদিও কার্যশস্তির উপপাদ্য বিভিন্ন ধরনের সমস্যার সমাধানে ব্যবহৃত হয়। কিন্তু সামগ্রিকভাবে এটা নিউটনের দ্বিতীয় সূত্রের সম্পূর্ণ গতীয় তথ্য পরিবেশন করে না। এটা নিউটনের দ্বিতীয় সূত্রের একটি সমাকলীয় রূপ (integral form)। নিউটনের দ্বিতীয় সূত্র সময়ের কোনো একটি মুহুর্তে, বল ও ত্বরণের মধ্যে একটি সম্পর্ক নির্দেশ করে। কার্যশন্তির উপপাদ্যে নির্দিন্ট সময়ের পাল্লায় সমাকলন নিহিত আছে। এই দৃস্টিতে কোনো মুহুর্তে নিউটনের দ্বিতীয় সূত্রের গতীয় তথ্য কার্যশস্তি উপপাদ্যে স্পন্টভাবে প্রকট হয় না বরং কার্য শক্তি উপপাদ্যে একটি নির্দিন্ট সময়ের পাল্লায় নিউটনের দ্বিতীয় সূত্রের সমাকলন রুপটি নিহিত থাকে। অপর একটি পর্যবেক্ষণ হল, দ্বিমাত্রিক ও ত্রিমাত্রিক ক্ষেত্রে নিউটনের দ্বিতীয় সূত্রটি ভেক্টর রূপে হয়। কিন্তু কার্যশন্তির উপপাদ্য স্কেলার রুপে হয়। নিউটনের দ্বিতীয় সূত্রে উল্লেখিত দিক সম্পর্কিত তথ্য কার্যশন্তির উপপাদ্যের এই স্কেলার রুপে বর্তমান থাকে না।

৬ উদাহরণ 6.6 একটি 1 kg ভরের ব্লক v_i = 2 m s⁻¹ বেগে একটি অনুভূমিক তলে গতিশীল হয়ে অমসৃণ তলের x = 0.10 m থেকে x = 2.01 m দুরত্বে প্রবেশ করে। এই বিস্তৃতিতে ব্লকের উপর বাধাজনিত বল F_r, x এর সাথে ব্যাস্তানুপাতিক (inversly proportional)

$$F_r = rac{-k}{x} \ (0.1 < x < 2.01 \,\mathrm{m}$$
 এর জন্য)

= 0 (x < 0.1m এবং x>2.01 m এর জন্য) যেখানে, k = 0.5 J। অমসৃণ তলটি অতিক্রম করার পর ব্লকটির অন্তিম গতিশস্তি ও তার গতিবেগ (v,) কত হবে ?

উত্তর (6.8a) সমীকরণ হতে,

$$K_{f} = K_{i} + \int_{0.1}^{2.01} \frac{-K}{x} dx$$

= $\frac{1}{2} m v_{i}^{2} - k \ln(x) \Big|_{0.1}^{2.01}$
= $\frac{1}{2} m v_{i}^{2} - k \ln(2.01/0.1)$
= $2 - 0.5 \ln(20.1)$
= $2 - 1.5 = 0.5 \text{ J}$
 $v_{f} = \sqrt{2K_{f}/m} = 1 \text{ m s}^{-1}$

এখানে, ln হল স্বাভাবিক লগারিদম (natural logarithm) যেখানে নিধান *e* এবং তা নিধান (base) 10 এর লগারিদম নয়। [ln X = log_e X=2.303 log₁₀ X].

6.7 স্থিতিশক্তির ধারণা (THE CONCEPT OF POTENTIAL ENERGY)

'স্থিতি' শব্দটি কাজ করার ক্ষমতা বা তার সম্ভাবনাকে বোঝায়। 'স্থিতিশক্তি' বলতে আমরা বস্তুর ভিতর সঞ্চিত (stored) শক্তিকে বুঝি। একটি ধনুকের তার টানটান অবস্থায় স্থিতিশক্তির অধিকারী হয়। তাকে ছেড়ে দিলে তীরটি অধিক বেগে নিক্ষিপ্ত হয়। ভূত্বক সুষম নয়। পদার্থবিদ্যা

বিচ্ছিন্ন স্থান চ্যুতিসমূহকে চ্যুতিরেখা (fault lines) বলে। ভূত্বকের এইসব চ্যুতিরেখাগুলো সঙ্কুচিত স্প্রিং এর মতো। তারা বিপুল পরিমাণ স্থিতিশক্তির অধিকারী হয়। এই চুত্যিরেখাগুলোর পুনর্বিন্যাসে ভূকম্পন ঘটে। কাজেই স্থিতিশক্তি হল বস্তুর অবস্থান বা গঠন কাঠামো ভিত্তিক সঞ্জিত শক্তি। বস্তুটিকে মুক্তভাবে ছেড়ে দিলে তার সঞ্চিত শক্তি গতিশক্তি রূপে আত্মপ্রকাশ করে। আমরা স্থিতিশক্তির ধারণাকে আরো সুদৃঢ় করব।

m ভরের একটি বলের উপর অভিকর্ষীয় বল হল mg, যেখানে ভূপৃষ্ঠের কাছে g এর মান ধ্রুবক হিসাবে ধরা যেতে পারে। কাছে (near) শব্দটি বলতে আমরা বুঝি যে, ভূপৃষ্ঠ থেকে বলটির উচ্চতা h, পৃথিবীর ব্যাসার্ধ R_E এর তুলনায় খুবই কম (h << R_E), অর্থাৎ আমরা ভূপৃষ্ঠের কাছাকাছি g এর মানের পরিবর্তনকে উপেক্ষা করি। উধ্বর্মুখী দিককে ধনাত্মক বিবেচনা করি। ধরি, বলটাকে h উচ্চতায় উঠানো হল। অভিকর্ষীয় বলের বিরুদ্ধে বহিঃস্থ সংস্থার (external agency) দ্বারা কৃতকার্য হল mgh । এই কৃতকার্য (mgh) স্থিতিশক্তি হিসাবে সঞ্চিত হয়।

একটি বস্তুর অভিকর্ষীয় স্থিতিশস্তি, উচ্চতা h এর অপেক্ষক হিসাবে, V(h) দিয়ে প্রকাশ করা হয় এবং তা বস্তুটিকে h উচ্চতায় উঠাতে অভিকর্ষীয় বলের দ্বারা কৃতকার্যের ঋণাত্মক মানের সমান।

V(h) = mgh

h কে যদি পরিবর্তনশীল মান হিসাবে ধরা যায়, দেখা যায় যে, অভিকর্ষীয় বল F, h এর সাপেক্ষে V(h) এর অবকলনের ঋণাত্মক মানের সমান।

কাজেই, $F = -\frac{\mathrm{d}}{\mathrm{d}h}V(h) = -m g$

ঋণাত্মক চিহ্নটি অভিকর্ষীয় বলের নিম্নাভিমুখকে নির্দেশ করে। বলটিকে ছেড়ে দিলে এটি ক্রমবর্ধমান দ্রুতিতে নিচে নেমে আসে। ভূমিতে আঘাত করার প্রাকৃ-মুহূর্তে, বস্তুটির দ্রুতি নিচের গতীয় সম্পর্ক থেকে পাই,

ফরার আক্-মুহূতে, বজুটির দ্রাত নিটের গতার সম্পক থেকে পাহ,

 $v^2 = 2gh$

এই সমীকরণ থেকে আমরা পাই,

$$\frac{1}{2}m v^2 = mg h$$

এটি দেখায় যে, h উচ্চতা থেকে যখন একটি বস্তুকে ছাড়া হয়। তার অভিকর্ষীয় স্থিতিশক্তি ভূমিতে পৌঁছে বস্তুটির গতিশক্তি রূপে প্রকাশিত হয়।

প্রাকৃতিক নিয়মানুযায়ী (Physically), স্থিতিশস্তির ধারণা শুধুমাত্র ওইসব শ্রেণির বলের ক্ষেত্রে প্রযোজ্য হয়, যেখানে বলের বিরুদ্ধে কৃতকার্য শস্তি হিসাবে সঞ্চিত হয়। যখন বাহ্যিক বাধাসমূহ সরিয়ে নেওয়া হয়, তখন এটি গতিশস্তি হিসাবে আত্মপ্রকাশ করে। গাণিতিকভাবে, (সরলিকৃত করার জন্য একমাত্রিক ক্ষেত্র বিবেচনা কর) স্থিতিশস্তি *V*(x)

^{*} উচ্চতার সাথে g এর পরিবর্তন, অস্টম অধ্যায় মহাকর্ষে আলোচনা করা হয়েছে।

সংজ্ঞায়িত (defined) হয়, যদি F(x) কে এভাবে লেখা যায় যে,

$$F(x) = -\frac{\mathrm{d}V}{\mathrm{d}x}$$

ইহা হতে পাই,

$$\int_{x_i}^{x_f} F(x) \mathrm{d}x = -\int_{V_i}^{V_f} \mathrm{d}V = V_i - V_f$$

সংরক্ষী বলের দ্বারা কৃতকার্য তথা অভিকর্ষীয় বল দ্বারা কৃতকার্য শুধুমাত্র প্রাথমিক ও অন্তিম অবস্থানের উপর নির্ভর করে। পূর্ববর্তী অধ্যায়ে আমরা নততলের ক্ষেত্রে বিভিন্ন উদাহরণ নিয়ে আলোচনা করেছি। একটি *m* ভরের বস্তুকে স্থির অবস্থা থেকে *h* উচ্চতা থেকে একটি মসৃণ (ঘর্ষণহীন) নততল বরাবর ছেড়ে দিলে তলায় এসে তার গতিবেগ দাঁড়ায় $\sqrt{2gh}$, এক্ষেত্রে নততলের নতিকোণের মান যাই হোক না কেন।

অতএব নততলের পাদদেশে বস্তুটি *mgh* গতিশস্তি অর্জন করে। যদি কৃতকার্য বা গতিশস্তি অন্য কোনো বিষয় তথা বস্তুর গতিবেগ বা নির্দিষ্ট অনুসরণকারী পথের উপর নির্ভর করে তখন উস্তু বলকে অসংরক্ষী বল বলা হবে।

স্থিতিশস্তির মাত্রাগুলি হল [ML²T⁻²] এবং তার একক হল জুল (joule) (J) যা গতিশস্তি বা কার্যের মতো একই।

পুনরাবৃত্তি করে বলা যায়, একটি সংরক্ষী বলের জন্য, স্থিতিশস্তির পরিবর্তন ΔV এর মান উক্ত বলের দ্বারা কৃতকার্যের ঋণাত্মক মানের সমান।

$$\Delta V = -F(x)\,\Delta x\tag{6.9}$$

এই অংশে (section) একটি পতনশীল বলের উদাহরণে, আমরা দেখি যে স্থিতিশস্তি গতিশস্তিতে রূপান্তরিত হয়। এটি বলবিদ্যার একটি গুরুত্বপূর্ণ সংরক্ষণ নীতির ইঞ্চিাত দেয়, যা আমরা পরীক্ষা করে দেখব।

6.8 যান্ত্রিক শক্তির সংরক্ষণ (THE CONSERVATION OF MECHANICALENERGY)

সরলীকরণের জন্য আমরা এই গুরুত্বপূর্ণ নীতিটি একমাত্রিক গতির জন্য প্রদর্শন (demonstrate) করছি। ধরি, সংরক্ষী বল F এর ক্রিয়ায় একটি বস্তুর Δx সরণ হল। তখন, কার্যশন্তির উপপাদ্য অনুসারে আমরা পাই,

$$\Delta K = F(x) \, \Delta x$$

যদি বলটি সংরক্ষী বল হয়, তবে স্থিতিশক্তি অপেক্ষক V(x) কে নিম্নরূপে প্রকাশ করা যায়

$$-\Delta V = F(x) \Delta x$$

উপরের সমীকরণগুলো থেকে পাই,

$$\Delta K + \Delta V = 0$$

$$\Delta (K + V) = 0$$
(6.10)

এ থেকে বোঝা যায় যে, বস্তুর গতিশক্তি ও স্থিতিশক্তির সমষ্টি (K + V) একটি ধ্রুবক। সম্পূর্ণ পথ x_i থেকে x_f এর ক্ষেত্রে এর অর্থ দাঁড়ায়,

$$K_{i} + V(x_{i}) = K_{f} + V(x_{f})$$
(6.11)

K +V(x) রাশিটিকে সংস্থা (system)টির যান্ত্রিক শক্তি বলা হয়। এককভাবে গতিশক্তি K এবং স্থিতিশক্তি V(x) এক বিন্দু থেকে অপর বিন্দুতে পরিবর্তিত হতে পারে কিন্ডু তাদের সমন্টি একটি ধ্রুবক হয়। এখন 'সংরক্ষী বল' এই শব্দটির যথোপযুক্ততা স্পন্ট হয়ে গেল। সংরক্ষী বলের কিছু সংজ্ঞা আমরা বিবেচনা করি।

- একটি বল F(x) সংরক্ষী হিসাবে ধরা হবে, যদি এটি (6.9) সমীকরণে প্রদত্ত স্কেলার রাশি V(x) থেকে নির্ণয় করা যায়।
 ত্রিমাত্রিক সাধারণীকরণের জন্য ভেক্টরীয় অবকলন (vector derivative) প্রয়োজন, যা এই বইয়ের বিবেচনাধীন নয়।
- সংরক্ষী বলের দ্বারা কৃতকার্য অন্তিম বিন্দু দুটির (end points)
 উপর নির্ভর করে। এটি এই সম্পর্ক থেকে দেখা যায়,

$$W = K_f - K_i = V(x_i) - V(x_f)$$

যা অন্তিম বিন্দু দুটির (end points) উপর নির্ভর করে।

 তৃতীয় সংজ্ঞা অনুযায়ী একটি আবন্ধ পথের জন্য বলের দ্বারা কৃতকার্যের মান শূন্য হবে। x_i = x_j হওয়ায়, এটা আবার সমীকরণ (6.11) থেকেও স্পন্ট।

কাজেই মোট যান্ত্রিক শস্তির সংরক্ষণ সূত্রটি এইভাবে বিবৃত করা যায়, "একটি সংস্থার (system) মোট যান্ত্রিক শস্তির সংরক্ষিত হবে, যদি কার্যের জন্য দায়ি ক্রিয়াশীল বল সংরক্ষী বল হয়।"

আমরা আবারও অভিকর্ষীয় বল এবং পরবর্তী পর্যায়ে স্প্রিং বলের উদাহরণ দিয়ে উপরের আলোচনাকে আরো সুদৃঢ় করতে পারি।

6.5 নং প্রদর্শিত চিত্রের ন্যায় একটি m ভরের বল H উচ্চতার চূড়া থেকে ফেলা হল।

Fig. 6.5 H উচ্চতা থেকে ছেড়ে দেওয়া m ভরের একটি বলের স্থিতিশস্তি থেকে গতিশস্তির রুপান্তর।

ভূতল h এবং H উচ্চতায় বলটির মোট যান্ত্রিক শক্তি যথাক্রমে $E_{\scriptscriptstyle 0}, E_{\scriptscriptstyle h},$ এবং $E_{\scriptscriptstyle H}$

$$E_{H} = mgH \tag{6.11 a}$$

$$E_h = mgh + \frac{1}{2}mv_h^2 \tag{6.11b}$$

$$E_0 = (1/2) m v_f^2 \tag{6.11c}$$

স্পন্টত ধ্রুবক বলটি স্থান নির্ভরশীল বল (spatially dependent force) F(x) এর একটি বিশেষক্ষেত্র, কাজেই যান্ত্রিক শস্তি সংরক্ষিত হয়।

সুতরাং, $E_H = E_0$ অথবা, $mgH = \frac{1}{2}mv_f^2$

$$1, \quad 11GH = -1$$

$$v_f = \sqrt{2gH}$$

যা 3.7 অংশে বর্ণিত মুক্তভাবে পতনশীল বস্তুর অনুরূপ। আবার,

 $E_{_H} = E_{_h}$ এবং এ থেকে আমরা পাই,

 $v_{\rm h}^2 = 2g(H - h)$ (6.11 d)

এটি গতিবিদ্যার (Kinematics) একটি পরিচিত ফলাফল।

H উচ্চতায় শক্তি সম্পূর্ণরূপে স্থিতিশক্তি। এটি *h* উচ্চতায় আংশিকভাবে গতিশস্তিতে রূপান্তরিত হয় এবং ভূতলে সম্পূর্ণরূপে গতিশক্তিতে রূপান্তরিত হয়। এটি যান্ত্রিক শক্তির সংরক্ষণকে ব্যাখ্যা করে।

উদাহরণ 6.7 m ভরের একটি পিশু L দৈর্ঘ্যের একটি সূতো দিয়ে ঝোলানো হল। এটির সর্বনিম্ন বিন্দু A তে একটি অনুভূমিক বেগ v_o প্রয়োগ করা হল, যাতে এটি উল্লম্ব তলে অর্ধবৃত্তাকার পথ সম্পন্ন করে এবং সর্বোচ্চ বিন্দুতে সুতোটি শিথিল (slack) হয়ে যায়। 6.6 নং চিত্রে এটিকে দেখানো হয়েছে। নীচের রাশিগুলো নির্ণয় করো —(i) গতিবেগ v_o; (ii) B এবং C বিন্দুতে দুতি; (iii) B এবং C বিন্দুতে গতিশন্তির অনুপাত (K_b/ K_c)। পিশুটি C বিন্দুতে পৌঁছানোর পর তার গতিপথের প্রকৃতি কেমন হবে এর উপর মন্তব্য করো।

উত্তর : (i) সৃতোয় বাধা পিঙটির উপর দুটি বাহ্যিক বল ক্রিয়া করে। অভিকর্ষজ বল এবং সৃতোর টান (tension)। যেহেতু পিঙটির সরণ সর্বদা সৃতোর উপর লম্ব, কাজেই টানের জন্য কোনো কৃতকার্য হয় না। পিঙটির স্থিতিশক্তি তাই অভিকর্ষীয় বলের সাথে সম্পর্কযুক্ত। সংস্থাটির মোট যান্ত্রিক শক্তি *E* সংরক্ষিত থাকে। আমরা সংস্থার সর্বনিম্ন *A* বিন্দুতে স্থিতিশক্তি শুন্য ধরি। *A* বিন্দুতে :

$$E = \frac{1}{2}mv_0^2$$
 (6.12)

$$T_A - mg = rac{mv_0^2}{L}$$
 [নিউটনের দ্বিতীয় সূত্র অনুসারে]

যেখানে $T_{_A}$ হল A বিন্দুতে সূতোর টান। সর্বোচ্চ বিন্দু C তে সূতোর টান শূন্য হওয়ায় সূতোটি শিথিল হয়ে যায়।

কাজেই C বিন্দুতে,

$$E = \frac{1}{2}mv_c^2 + 2mgL \tag{6.13}$$

$$mg = \frac{mv_c^2}{L}$$
 [নিউটনের দ্বিতীয় সূত্র অনুসারে] (6.14)

যেখানে v_c হল C বিন্দুতে বেগ সমীকরণ (6.13) এবং (6.14) হতে পাই,

$$E = \frac{5}{2}mgL$$

এটিকে A বিন্দুর শক্তির সাথে সমান করে পাই,

$$\frac{5}{2}mgL = \frac{m}{2}v_0^2$$

বা, $v_0 = \sqrt{5gL}$

(ii) (6.14) সমীকরণ হতে আমরা পাই,

$$v_c = \sqrt{gL}$$

B বিন্দুতে শক্তি,

$$E = \frac{1}{2}mv_B^2 + mgL$$

এটিকে A বিন্দুতে শক্তির সাথে সমান করে এবং $v_o^2 = 5gL$, [(i) হতে] ব্যবহৃত করে আমরা পাই,

$$\frac{1}{2}mv_B^2 + mgL = \frac{1}{2}mv_0^2$$
$$= \frac{5}{2}m g L$$
$$\therefore v_B = \sqrt{3gL}$$

(iii) B এবং C বিন্দুতে গতিশক্তির অনুপাত,

$$\frac{K_B}{K_C} = \frac{\frac{1}{2}mv_B^2}{\frac{1}{2}mv_C^2} = \frac{3}{1}$$

C বিন্দুতে সূতোটি শিথিল (slack) হয়ে যায় এবং পিণ্ডটির গতিবেগ বাদিকে অনুভূমিক হয়ে পড়ে। সংযুক্ত সূতোটিকে এই মুহূর্তে কেটে দিলে পিণ্ডটি একটি অনুভূমিকভাবে প্রক্ষিপ্ত প্রাসের গতি প্রদর্শন করবে যা কোনো চূড়া থেকে অনুভূমিক দিকে নিক্ষিপ্ত পাথরের গতিপথের মতো। অন্যথায় পিণ্ডটি বৃত্তাকার পথে প্রদক্ষিণ করতে থাকবে।

6.9 স্প্রিং এর স্থিতিশস্তি (THE POTENTIAL ENERGY OF A SPRING)

স্প্রিং বল একটি পরিবর্তনশীল বল, যা একটি সংরক্ষী বল। একটি স্প্রিং এর সাথে যুক্ত একটি ব্লক (Block) চিত্র 6.7 এর ন্যায় অনুভূমিক মসৃণ তলের উপর স্থির অবস্থায় আছে। স্প্রিং এর অপর প্রান্ত একটি দৃঢ় দেওয়ালের সাথে যুক্ত আছে। স্প্রিংটি হালকা এবং ভরহীন ধরা যেতে পারে। একটি আদর্শ স্প্রিং এর ক্ষেত্রে স্প্রিং বল (spring force) F_s ব্লকটির সাম্যাবস্থা থেকে সরণ x এর সমানুপাতিক। সরণ ধনাত্মক [চিত্র 6.7(b)] অথবা ঋণাত্মক [চিত্র 6.7(c)] হতে পারে। স্প্রিং এর এই বলের সূত্রকে 'হুকের সূত্র' (Hooke's law) বলে এবং গাণিতিকভাবে নিম্নরূপে লেখা যায় —

$$F_{s} = -kx$$

ধ্রুবক k কে স্প্রিং ধ্রুবক (spring constant) বলে। এটির একক হল N m⁻¹। k এর মান বেশি হলে স্প্রিংটিকে দৃঢ় (stiff) এবং কম হলে নমনীয় (soft) বলা হয়।

ধরি, আমরা 6.7(b) চিত্রের ন্যায় ব্লকটিকে বাইরের দিকে টানি। যদি প্রসারণ x, হয়, তাহলে স্প্রিং বল দ্বারা কৃতকার্য হবে,

$$W_{s} = \int_{0}^{x_{m}} F_{s} \, \mathrm{d}x = -\int_{0}^{x_{m}} kx \, \mathrm{d}x$$
$$= -\frac{k \, x_{m}^{2}}{2} \tag{6.15}$$

এই রাশিমালাটি 6.7(d) নং লেখচিত্রটির ত্রিভূজের ক্ষেত্রফল থেকে ও নির্ণয় করা যেতে পারে। লক্ষ করে দেখো, টানজনিত বাহ্যিক বল *F*, স্প্রিং বলকে অতিক্রান্ত করবে *F* এর দ্বারা কৃতকার্য ধনাত্মক হয়।

$$W = +\frac{k x_m^2}{2} \tag{6.16}$$

যখন স্প্রিংটিকে x_c (< 0) পরিমাণ সরিয়ে সঙ্কুচিত করা হয়, তখনও উ পরিউস্তু রাশিমালাটি সত্য হয়। স্প্রিং বলের দ্বারা কৃতকার্য,

চিত্র 6.7 স্প্রিং এর মুক্ত প্রান্তের সঙ্গো যুক্ত ব্লকের উপর স্প্রিং বলের সচিত্র প্রকাশ — (a) যখন সাম্য অবস্থান থেকে সরণের মান শূন্য তখন স্প্রিং বলের মান (F_s) শূন্য। (b) প্রসারিত স্প্রিং এর জন্য x > 0 এবং $F_s < 0$ (c) সঙ্কুচিত স্প্রিং এর জন্য x < 0 এবং $F_s > 0.(d)$ F_s এবং x এর মধ্যে লেখচিত্র অংশাঙ্কিত ত্রিভূজের ক্ষেত্রফল, স্থিং বলের দ্বারা কৃতকার্য প্রকাশ করে। F_s এবং x এর বিপরীত চিহ্ন্বে জন্য কৃতকার্যের মান ঋণাত্মক হয়। $W_c = -kx_m^2/2$.

 $W_s = -kx_c^2/2$ । কিন্তু বাহ্যিক বল *F* এর দ্বারা কৃতকার্য + $kx_c^2/2$ হয়। ব্লকটিকে প্রাথমিক সরণ x_i থেকে অন্তিম সরণ x_j এ গতিশীল করালে স্প্রিং বলের দ্বারা কৃতকার্য,

$$W_s = -\int_{x_i}^{x_f} k x \, dx \qquad = \frac{k x_i^2}{2} - \frac{k x_f^2}{2} \qquad (6.17)$$

কাজেই স্প্রিং বলের দ্বারা কৃতকার্য কেবলমাত্র অন্তিম বিন্দুগুলির উপর নির্ভর করে। বিশেষ বলটিকে x_i অবস্থান থেকে টেনে আবার x_i তে ফিরে আসতে দেওয়া হলে, কৃতকার্য

$$W_{\rm s} = -\int_{x_{\rm t}}^{x_{\rm t}} k \, x \, dx \qquad = \frac{k \, x_{\rm t}^2}{2} - \frac{k \, x_{\rm t}^2}{2}$$

(6.18)

একটি আবর্ত প্রক্রিয়ায় (cyclic process) স্প্রিং বলের দ্বারা কৃতকার্য শূন্য হয়। আমরা স্পফ্টভাবে (explicitly) প্রদর্শন করলাম যে, (i) স্প্রিং বল (spring force) শুধুমাত্র অবস্থানের উপর নির্ভর করে, যা হুকের সূত্রে আগেই বলা হয়েছে ($F_s = -kx$); (ii) স্প্রিং বলের দ্বারা কৃতকার্য শুধুমাত্র প্রাথমিক ও অন্তিম অবস্থানের উপর নির্ভর করে। উদাহরণস্বরূপ সমীকরণ (6.17)। কাজেই স্প্রিং বল একটি সংরক্ষী বল।

যখন ব্লক এবং স্প্রিং সংস্থা সাম্যাবস্থায় থাকে, আমরা স্প্রিং এর স্থিতিশক্তির V(x) মান শূন্য ধরি। স্প্রিং এর প্রসারণ বা সংকোচন x এর জন্য উপরিউক্ত বিশ্লেষণ থেকে পাই,

$$V(x) = \frac{kx^2}{2} \tag{6.19}$$

তুমি সহজভাবে যাচাই করতে পার যে, -dV/dx = -kx, স্প্রিং বল। চিত্র 6.7 অনুসারে *m* ভরের ব্লকটিকে x_m পর্যন্ত প্রসারিত করে, ঐ স্থির অবস্থা থেকে ছেড়ে দিলে, $-x_m$ এবং $+x_m$ এর মধ্যবর্তী অবস্থানে ধরে নেওয়া কোনো বিন্দু x এ এটির মোট যান্ত্রিক শক্তি,

$$\frac{1}{2}k x_m^2 = \frac{1}{2}k x^2 + \frac{1}{2}m v^2$$

যেখানে আমরা যান্ত্রিক শক্তির সংরক্ষণের নিয়মটি ব্যবহার করেছি। এ থেকে বোঝা যায় যে, ব্লকটির দ্রুতি এবং গতিশক্তি তার সাম্যাবস্থানে সর্বাধিক হবে *x* = 0, i.e.,

অর্থাৎ, $\frac{1}{2}m v_m^2 = \frac{1}{2}k x_m^2$

যেখানে v_m হচ্ছে সর্বাধিক গতিবেগ।

বা,
$$v_m = \sqrt{\frac{k}{m}} x_m$$

উল্লেখ্য যে, k/m এর মাত্রা [T⁻²] এবং এই সমীকরণটি মাত্রাগতভাবে সঠিক। গতিশক্তি স্থিতিশক্তিতে রুপান্তরিত হয় এবং স্থিতিশক্তি ও গতিশক্তিতে রূপান্তরিত হয়, যদিও মোট যান্ত্রিক শক্তি ধ্রুবক (constant) থাকে। 6.৪ নং চিত্রে এটি লেখচিত্রের মাধ্যমে দেখানো হয়েছে।

উত্তর সর্বাধিক সংকোচনে, গাড়িটির গতিশক্তি পুরোপুরিভাবে স্প্রিং-এর স্থিতিশক্তিতে রূপান্তরিত হয়। গতিশীল গাড়িটির গতিশক্তি হল,

$$K = \frac{1}{2}mv^{2}$$
$$= \frac{1}{2} \times 10^{3} \times 5 \times 5$$
$$K = 1.25 \times 10^{4} \text{ J}$$

এখানে 18 km h⁻¹ = 5 m s⁻¹ [36 km h⁻¹ = 10 m s⁻¹ এটা মনে রাখা খুবই উপযোগী] । যান্ত্রিকশক্তির সংরক্ষণের সূত্র অনুসারে, সর্বাধিক সংকোচন x_mএ, স্প্রিং এর স্থিতিশক্তি *V* গতিশীল গাড়িটির গতিশক্তি *K* এর সমান।

$$V = \frac{1}{2}k x_m^2$$
$$= 1.25 \times 10^4 \text{ J}$$

আমরা পাই,

 $x_m = 2.00 \,\mathrm{m}$

উল্লেখ্য যে, এই পরিস্থিতিটাকে আমরা আদর্শরূপে প্রস্তুত করলাম। স্প্রিংটিকে ভরহীন বিবেচনা করা হল। পৃষ্ঠটির ঘর্ষণ বল নগণ্য ধরা হয়েছে।

আমরা সংরক্ষী বলের উপর কিছু মন্তব্য রেখে এই অংশটির সমাপ্ত করব।

- (i) উপরিউক্ত আলোচনায় সময়ের কোনো উল্লেখ নেই। উপরের উদাহরণে, আমরা সংকোচন পরিমাপ করতে পারি কিন্তু যতটা সময়ে সংকোচন হল তাকে পরিমাপ করি না। এই সংস্থার, অল্পকালীন কোনো তথ্যের জন্য, নিউটনের দ্বিতীয় সূত্রের একটি সমাধান প্রয়োজন হয়।
- (ii) সব বল সংরক্ষী বল হয় না। উদাহরণস্বরূপ, ঘর্ষণ বলটি অসংরক্ষী বল। এইক্ষেত্রে শক্তির সংরক্ষণ সূত্রটিকে কিছুটা সংশোধিত করতে হবে। এটি উদাহরণ 6.9 এ স্পন্ট করা হয়েছে।
- (iii) স্থিতিশস্তির শূন্য মান স্বেচ্ছাধীন (arbitrary)। এটি সুবিধাজনকভাবে ধরা হয়। স্প্রিং বলের জন্য আমরা x = 0 তে V(x) = 0 ধরি, অর্থাৎ অপ্রসারিত স্প্রিংটির স্থিতিশস্তি শূন্য। স্থিরমানের অভিকর্ষীয় বল mg এর জন্য, ভূপৃষ্ঠে আমরা স্থিতিশস্তি V = 0 ধরি। পরবর্তী অধ্যায়ে আমরা দেখব যে, সার্বজনীন মহাকর্ষীয় সূত্রের ক্ষেত্রে, মহাকর্ষীয় ক্ষেত্র থেকে অসীম দূরত্বে স্থিতিশস্তির মান শূন্য বিবেচনা করে সংজ্ঞায়িত করা অধিক যুন্তিযুক্ত। যদি শূন্য স্থিতিশস্তি শুরুতে একবার কোনো একটি ক্ষেত্রে সুনিশ্চিত করা হয় তবে আলোচনার শেষ অবধি এই নিয়মটি মেনে চলতে হবে।

উদাহরণ 6.9 উদাহরণ 6.8 এ ঘর্ষণ গুণাঙ্কের মান 0.5 ধরে স্প্রিংটির সর্বাধিক সংকোচন নির্ণয় করো।

উত্তর ঘর্ষণের উপস্থিতিতে, স্ঞিং বল এবং ঘর্ষণ বল উভয়েই স্ঞিং এর সংকোচনের বিরুদ্ধে কাজ করেছ। 6.9 চিত্রে তা দেখানো হয়েছে। আমরা যান্ত্রিক শক্তির সংরক্ষণের নীতির চাইতে কার্যশক্তি উপপাদ্যকে এখানে নেব।

গতিশস্তির পরিবর্তন,

$$\Delta K = K_f - K_i = 0 - \frac{1}{2}m v^2$$

চিত্র 6.9 গাড়ির উপর ক্রিয়াশীল বল

মোট বলের (net force) দ্বারা কৃতকার্য,

$$W = -\frac{1}{2} k x_m^2 - \mu m g x_m$$

সমীকরণ দুটির বাঁদিক সমান হওয়ায় আমরা পাই,

$$\frac{1}{2}m v^2 = \frac{1}{2}k x_m^2 + \mu m g x_n$$

এখন $\mu mg = 0.5 \times 10^3 \times 10 = 5 \times 10^3 \,\mathrm{N}$ (g এর মান $10.0 \,\mathrm{m} \,\mathrm{s}^{-2}$ ধরা হল). উপরের সমীকরণটি পুনর্গঠন করে অজানা রাশি x_m এর নীচের দ্বিঘাত সমীকরণটি পাওয়া যায়,

$$k x_m^2 + 2\mu m g x_m - m v^2 = 0$$
$$x_m = \frac{-\mu m g + \left[\mu^2 m^2 g^2 + m k v^2\right]^{1/2}}{k}$$

যেহেতু x_m একটি ধনাত্মক রাশি; কাজেই বর্গমূলের ধনাত্মক মানটি আমরা নেব।

সাংখ্যিক মানগুলো বসিয়ে আমরা পাই,

$$x_m = 1.35 \,\mathrm{m}$$

এটি 6.8 উদাহরণের মানের থেকে কম। এটিই প্রত্যাশিত ছিল। যদি বস্তুর উপর ক্রিয়াশীল বলদ্বয়ের একটি সংরক্ষী বল ' F_c ' এবং অপরটি অসংরক্ষী বল ' F_{nc} ' হয়। তবে যান্ত্রিক শক্তির সংরক্ষণ সূত্রটিকে সংশোধন করতে হবে। কার্য শক্তি উপপাদ্য অনুসারে,

$$(F_c + F_{nc}) \Delta x = \Delta K$$

কিন্তু $F_c \Delta x = -\Delta V$
কাজেই, $\Delta (K + V) = F_{nc} \Delta x$

$$\Delta E = F_{nc} \Delta x$$

যেখানে, E হল মোট যান্ত্ৰিক শক্তি।

পথটি বরাবর, $E_f - E_i = W_{nc}$

যেখানে, W_{nc} হল পথটির উপর অসংরক্ষী বলের দ্বারা মোট কৃতকার্য। উল্লেখ্য যে, W_{nc} , *i* থেকে *f* এর মধ্যে নির্দিষ্ট পথের উপর নির্ভর করে। যা সংরক্ষী বলের ক্ষেত্রে সত্যি নয়।

6.10 শক্তির বিভিন্ন রূপ : শক্তির সংরক্ষণ সূত্র (VARIOUS FORMS OF ENERGY : THE LAW OF CONSERVATION OF ENERGY)

আগের অনুচ্ছেদে আমরা যান্ত্রিক শক্তি আলোচনা করেছি। আমরা দেখেছি যে, এটিকে দুটি পৃথক শ্রেণিতে ভাগ করা হয়েছে। একটি গতির উপর ভিত্তি করে, যাকে গতিশক্তি বলা হয়। অপরটি গঠন কাঠামো (অবস্থান) এর ভিত্তি করে, যাকে আমরা স্থিতিশক্তি বলি। শক্তি বিভিন্ন রূপে থাকে; যেটি এক রূপ থেকে অন্যরূপে রূপান্তরিত হয়, যা অনেক সময় আমরা বুঝতেও পারি না।

6.10.1 이어 (Heat)

আমরা দেখলাম, ঘর্ষণ বল সংরক্ষী বল নয়। কিন্তু কার্য ঘর্ষণ বলের সাথে সম্পর্কযুক্ত (উদাহরণ 6.5)। একটি অমসৃণ অনুভূমিক তলের উপর 'm' ভরের একটি ব্লক v_0 গতিবেগে পিছলিয়ে ' x_0 ' দূরত্ব চলার পর থেমে যায়। x_0 দূরত্বের জন্য গতীয় ঘর্ষণ বল f দ্বারা কৃতকার্য হল $-f x_0$ কার্যশক্তি উপপাদ্য অনুসারে,

$$m v_o^2/2 = f x_0.$$

আমরা যদি আমাদের আলোচনা বলবিদ্যার মধ্যে সীমিত করি, তা হলে আমরা দেখি যে, ব্লকটির গতিশস্তি ঘর্ষণ বলের জন্য নন্ট হয়। টেবিল ও ব্লককে পর্যবেক্ষণ করে আমরা দেখি যে, এদের তাপমাত্রা সামান্য পরিমাণ বেড়ে যায়। ঘর্ষণের দ্বারা কৃতকার্য নন্ট হয় না, এটি তাপশস্তিতে রূপান্তরিত হয়। এটি ব্লক ও টেবিলের অভ্যন্তরীণ শস্তি (internal energy) বাড়িয়ে দেয়। শীতের সময় গরম অনুভব করার জন্য, আমরা হাতের তালুকে জোড়ালোভাবে পরস্পরের সঙ্গো ঘযে তাপ উৎপম করি।

আমরা পরে দেখব যে, অনুর নিরবচ্ছিন্ন, অবিরাম, এলোমেলো গতির সাথে এই অভ্যন্তরীণ শক্তি সম্পর্কযুক্ত। 1 kg ভরের জল 10 °C উস্নতা হ্রাসে প্রায় 42000 J তাপশক্তি বর্জন করে। এটি পর্যবেক্ষণ করে আমরা তাপশক্তির সঞ্জালনের একটি সংখ্যাগত ধারণা পাই।

6.10.2 রাসায়নিক শক্তি (Chemical Energy)

মানব জাতির একটি সর্বশ্রেষ্ঠ প্রযুক্তিগত সফলতা হল আগুনের প্রজ্বলন ও নিয়ন্ত্রণের আবিষ্কার। আমরা দুটি ফ্লিন্ট পাথরকে একত্রে ঘযে (যান্ত্রিক শক্তি), তাদেরকে উত্তপ্ত করে এবং এর সাহায্যে শুকনো পাতার স্তুপকে জ্বালিয়ে (রাসায়নিক শক্তি), তা থেকে নিরবচ্ছিন্ন উস্নতা পেতে শিখি। একটি দেশলাই কাঠি যখন বিশেষভাবে প্রস্তুত রাসায়নিক তলে (chemical surface) আঘাত করে তখন এটি একটি উজ্জ্বল শিখায় প্রজ্বলিত হয়ে উঠে।জ্বলন্ত দেশলাই কাঠি পটকা বাজিতে (firecracker) লাগালে একটি চমৎকার আলো ও শব্দের মেলবন্ধনের ঝলকানি প্রদর্শিত হয়।

রাসায়নিক বিব্রিয়ায় অংশগ্রহণকারী অণুগুলোর বিভিন্ন বন্ধনশস্তির জন্য রাসায়নিক শস্তির উদ্ভব ঘটে। একটি সুস্থির রাসায়নিক যৌগের শক্তি তার বিচ্ছিন্ন অংশ থেকে কম থাকে। রাসায়নিক বিক্রিয়া হল মুখ্যত পরমাণুগুলোর পুনঃবিন্যাস। যদি বিক্রিয়কগুলোর মোট শক্তি বিক্রিয়ালব্ধ পদার্থগুলোর থেকে বেশি হয়, তখন এই বিক্রিয়ায় তাপশস্তি মুক্ত হয় এবং এই বিক্রিয়াকে তাপোৎপাদী (exothermic) বিক্রিয়া বলে। যদি বিপরীতটি সত্য হয় তাহলে ওই বিক্রিয়ায় তাপ শোষিত হয় এবং তাকে তাপগ্রাহী (endothermic) বিক্রিয়া বলে। কয়লা কার্বন দ্বারা তৈরি এবং এর এক কিলোগ্রাম পরিমাণ জ্বালানো হলে প্রায় 3 × 10⁷ J (জুল) শক্তি নির্গত হয়।

রাসায়নিক শক্তি ঐসব বলগুলোর সাথে সম্পর্কিত যা পদার্থের স্থায়িত্ব প্রদান করে। এই বলগুলো পরমাণুগুলোকে অণুতে এবং অণুগুলোকে পলিমারিক (polymeric) শৃঙ্খল ইত্যাদিতে বেঁধে রাখে। কয়লা, রামার গ্যাস, কাঠ এবং পেট্রোলিয়ামের দহন থেকে উৎপন্ন রাসায়নিক শক্তি আমাদের দৈনন্দিন জীবনযাত্রার অস্তিত্বের জন্য অপরিহার্য।

6.10.3 তড়িৎশক্তি (Electrical Energy)

তড়িৎ প্রবাহের দ্বারা বাল্ব জ্বলে, বৈদ্যুতিক পাখা ঘোরে এবং ঘণ্টা বাজে। তড়িৎ আধানের মধ্যে আকর্ষণ ও বিকর্ষণজনিত এবং তড়িৎপ্রবাহ সংক্রান্ত সূত্র আছে, যা আমরা পরে পড়ব। তড়িৎ প্রবাহের সাথে একটি শক্তি যুক্ত থাকে। ভারতের যে-কোনো একটি শহরের পরিবার গড়ে প্রতি সেকেণ্ডে প্রায় 200 J শক্তি ব্যয় করে।

6.10.4 ভর ও শক্তির তুল্যতা (The Equivalence of Mass and Energy)

উনবিংশ শতাব্দীর শেষ পর্যন্ত পদার্থবিদ্রা মনে করতেন যে প্রতিটি ভৌত এবং রাসায়নিক প্রক্রিয়ায়, কোনো বিচ্ছিন্ন সংস্থার মোট ভর সংরক্ষিত থাকে। পদার্থ তার দশারূপ পরিবর্তন করতে পারে। উদাহরণস্বরূপ, হিমবাহের স্তুপ গলে প্রবাহী নদীর মতো বয়ে চলতে পারে। কিন্তু পদার্থের সৃষ্টি বা বিনাশ করা যায় না। যাই হোক এলবার্ট আইনস্টাইন (1879-1955) সর্বপ্রথম দেখালেন যে ভর এবং শক্তি পরস্পরের সমতুল্য এবং তাদের মধ্যে সম্পর্ক হল,

$$E = m c^2 \tag{6.20}$$

যেখানে, *c* হল শূন্য মাধ্যমে আলোর বেগ যার মান প্রায় 3 ×10⁸ms⁻¹। কাজেই মাত্র কিলোগ্রাম ভরের পদার্থের সঙ্গে প্রচুর পরিমাণ শক্তি নিহিত থাকে।

$$E = 1 \times (3 \times 10^8)^2 \text{ J} = 9 \times 10^{16} \text{ J}.$$

এটি একটি বড়ো (3000 MW) বৈদ্যুতিক শক্তি উৎপাদন কেন্দ্রের বার্ষিক বিদ্যুৎ উৎপাদনের পরিমাণের সমতূল্য।

6.10.5 নিউক্লিয় শক্তি (Nuclear Energy)

নিউক্লিয় বিভাজন এবং সংযোজনজনিত বোমা হল মানব জাতির তৈরি করা সবচেয়ে ধ্বংসাত্মক অস্ত্র যেখানে পদার্থের ভর ও শক্তির সমতূল্যতার
	<u> </u>			
সারাণ 6.3	ব ভগ্ন	খচনাপ(গ্লের	সাথে	যন্ত শাব
				a

বিবরণ	শক্তি (J)
মহাবিস্ফোরণ (Big Bang)	10^{68}
নক্ষত্রমণ্ডল দ্বারা এদের জীবনকালে নির্গত রেডিয়ো শক্তি (Radio energy)	10^{55}
আকাশ গঙ্গার (Milkyway) ঘূর্ণন শক্তি	10^{52}
সুপারনোভা (Supernova) বিস্ফোরণে নির্গত শক্তি	10^{44}
মহাসাগরের হাইড্রোজেনের সংযোজন থেকে নির্গত শক্তি	10^{34}
পৃথিবীর ঘূর্ণন শক্তি	10^{29}
পৃথিবীতে আপতিত বার্ষিক মোট সৌরশক্তি	5×10 ²⁴
ভূপৃষ্ঠের কাছাকাছি বায়ুশক্তির বার্যিক অপচয়	1022
সারা বিশ্বে মানব দ্বারা প্রয়োগ করা বার্ষিক শক্তি	3×10 ²⁰
জোয়ার-ভাটা দ্বারা বার্ষিক শক্তির অপচয়	10^{20}
15 মেগাটন সংযোজন (Fusion) বোমের নির্গত শক্তি	10 ¹⁷
বড়ো বৈদ্যুতিক উৎপাদক কেন্দ্রের বার্ষিক উৎপাদিত শক্তি	10^{16}
বজ্রবিদ্যুৎ থেকে নির্গত শক্তি (Thunderstorm)	10^{15}
1000 kg কয়লার দহন থেকে নির্গত শক্তি	3×10 ¹⁰
বড়ো জেট বিমানের গতিশক্তি	10^{9}
1 লিটার গ্যাসোলিন (gasoline) দহন থেকে নির্গত শক্তি	3×10 ⁷
একজন প্রাপ্তবয়স্ক মানুষের দৈনিক খাদ্য থেকে প্রাপ্ত শক্তি	107
মানব হৃদয়ের প্রতি স্পন্দনে কৃতকার্য	0.5
বইয়ের একটি পৃষ্ঠা উল্টাতে কৃতকার্য	10^{-3}
মাছির লাফানো (Flea hop)	10 ⁻⁷
একটি নিউরোনের ক্ষরণজনিত শক্তি (Discharge of the single neuron)	10 ⁻¹⁰
একটি নিউক্লিয়াসের ভিতর একটি প্রোটনের বিশিষ্ট (Typical) শক্তি	10 ⁻¹³
একটি পরমাণুর ভিতর একটি ইলেকট্রনের বিশিষ্ট শক্তি	10 ⁻¹⁸
DNA এর একটি বন্ধন (Bond) ভাঙানোর জন্য শক্তি	10 ⁻²⁰

উদাহরণ 6.10 6.1 থেকে 6.3 সারণিগুলো পরীক্ষা করো এবং বের করো (express) (a) DNA এর একটি বন্ধন (bond) ভাঙ্গার জন্য প্রয়োজনীয় শক্তি eV এককে ; (b) বায়ুর একটি কণার গতিশক্তি (10⁻²¹ J) কে eV এককে ; (c) একজন প্রাপ্ত বয়ম্ব মানুযের দৈনিক আহার কিলো ক্যালরি এককে প্রকাশ করো।

উত্তর (a) DNA এর একটি বন্ধন ভাঙার জন্য প্রয়োজনীয় শক্তি

$$\frac{10^{-20} \text{ J}}{1.6 \times 10^{-19} \text{ J/eV}} \simeq 0.06 \text{ eV}$$

দেখো $\rightarrow 0.1 \text{ eV} = 100 \text{ meV} (100 মিলি ইলেকট্রন ভোল্ট).$

(b) বায়ুর একটি কণার গতিশক্তি

$$\frac{10^{-21} \text{J}}{1.6 \times 10^{-19} \text{J/eV}} \simeq 0.0062 \text{ eV}$$

= 6.2 meV [মিলি ইলেকট্ৰন ভোল্ট]

(c) একজন প্রাপ্ত বয়স্ক মানুষের দৈনিক গড় আহার থেকে প্রাপ্ত শক্তি

$$\frac{10^7 \text{ J}}{4.2 \times 10^3 \text{ J/kcal}} \simeq 2400 \text{ kcal}$$

বহিঃপ্রকাশ ঘটে। (সমীকরণ 6.20)। অপরদিকে, সূর্য থেকে উৎপাদিত জীবন পরিপোষক শক্তির ব্যাখ্যাও ওই উপরোক্ত সমীকরণ থেকে আমরা পাই। এইক্ষেত্রে চারটি হাল্কা হাইডোজেন নিউক্রিয়াসের সংযোজনে গঠিত হিলিয়াম নিউক্লিয়াসের ভর বিক্রিয়কগুলোর মোট ভরের চেয়ে কম হয়। এই ভরের পার্থক্যকে ভরত্রুটি (mass defect) ∆m বলে। এটিই নিউক্লিয় শস্তির (Δm) c^2 উৎস। নিউক্লিয় বিভাজনে একটি ভারী নিউক্লিয়াস যেমন - ইউরেনিয়াম $^{235}_{92}$ C, একটি নিউট্রনের দ্বারা বিভাজিত হয়ে তুলনামূলক হাল্কা নিউক্লিয়াস সমূহ গঠন করে। এক্ষেত্রেও অন্তিম ভর প্রাথমিক ভরের তুলনায় কম এবং ভরের পার্থক্য শক্তিতে রুপান্তরিত হয়। এই শক্তিকে কাজে লাগিয়ে পারমাণবিক শক্তি কেন্দ্রে নিয়ন্ত্রিত নিউক্লিয় বিভাজন বিক্রিয়ার মাধ্যমে বৈদ্যুতিক শক্তি উৎপাদন করা হয় অথবা অনিয়ন্ত্রিত নিউক্লিয় বিভাজন বিক্রিয়ার মাধ্যমে পারমাণবিক অস্ত্র তৈরি করা যায়। সঠিকভাবে বলতে গেলে রাসায়নিক বিক্রিয়ায় নির্গত শস্তি ΔE একইভাবে ভর ত্রটির সঙ্গে নিম্নলিখিত সম্পর্ক দ্বারা যুক্ত $\Delta m = \Delta E/c^2$ । যদিও রাসায়নিক বিক্রিয়ায় ভরত্রুটির মান নিউক্লিয় বিক্রিয়ার ভরত্রুটি থেকে অনেক কম। 6.3 সারণিতে বিভিন্ন প্রাকৃতিক ঘটনাসমূহের মোট শক্তির মান লিপিবন্ধ করা হল।

এখানে আমরা খবরের কাগজ এবং সাময়িক পত্রিকা (magazines) সুষ্ট ভ্রান্তধারণা সম্পর্কিত কিছু তথ্য তুলে ধরি। ওরা আহারের তাপনমূল্য ক্যালোরিতে প্রকাশ করে এবং আমাদেরকে 2400 ক্যালোরির কম মাত্রার ভোজন আহার করার জন্য পরামর্শ দেয়। কিন্তু খাদ্যের তাপনমূল্য ক্যালোরির পরিবর্তে কিলোক্যালোরিতে প্রকাশ করা উচিত। একজন প্রাপ্ত বয়ষ্ক মানুষ দৈনিক 2400 ক্যালোরি তাপনমূল্যের খাবার খেলে শীঘ্রই অতি অল্প খাবার নেওয়ার জন্য মারা পড়বে। 1 ফুড ক্যালোরি হল 1 kcal (কিলোক্যালোরি)।

6.10.6 শক্তির সংরক্ষণ নীতি (The Principle of Conservation of Energy)

আমরা দেখলাম যে, যদি কার্যের জন্য প্রযুক্ত বল সংরক্ষী হয়। তবে, সংস্থার মোট যান্ত্রিকশক্তি সংরক্ষিত থাকে। যদি ক্রিয়ারত কিছু বল অসংরক্ষী হয়, তাহলে এর যান্ত্রিক শক্তির একটি অংশ তাপ, আলো এবং শব্দ শক্তিতে রুপান্তরিত হয়। সব ধরণের শক্তিগুলোকে বিবেচনা করা গেলে, দেখা যায় কোনো বিচ্ছিন্ন সংস্থায় মোট শক্তির পরিমাণ অপরিবর্তিত থাকে। শক্তি এক রূপ থেকে অন্য রূপে রূপান্তরিত হতে পারে কিন্তু একটি বিচ্ছিন্ন সংস্থায় মোট শক্তির পরিমাণ ধ্রবক থাকে। শক্তি সৃষ্টিও করা যায় না বা ধ্বংসও করা যায় না। যেহেতু মহাবিশ্বকে একটি বিচ্ছিন্ন সংস্থা হিসাবে বিবেচনা করা যায়, তাই মহাবিশ্বের মোট শক্তির পরিমাণ ধ্রুবক থাকে। যদি মহাবিশ্বের একটি অংশের শক্তি হ্রাস পায়, তাহলে অপর অংশে সমপরিমাণ শক্তির বৃদ্ধি ঘটে।

শক্তি সংরক্ষণ নীতি প্রমাণ করা যায় না। কিন্তু এই সংরক্ষণ নীতি মেনে চলে না এমন কোনো নিদর্শন পাওয়া যায় না। শক্তির বিভিন্ন রপে রুপান্তর এবং সংরক্ষণ পদার্থবিদ্যা, রসায়ন ও জীববিদ্যার বিভিন্ন শাখার মধ্যে সম্পর্কে স্থাপন করে। এটি বিজ্ঞান সাধনায় — একত্রিকরণ ও স্থায়িত্বের তত্ত্ব প্রদান করে। কারিগরী দৃষ্টিকোণ থেকে সব ধরনের ইলেক্ট্রনিক, যোগাযোগ সম্বন্ধীয় এবং যান্ত্রিক যন্ত্রপাতি সমূহের ব্যবস্থাপনায় এক ধরনের শক্তি অন্য শক্তিতে রূপান্তরিত হয়।

6.11 ক্ষমতা (POWER)

আমাদের শুধুমাত্র বস্তুর উপর কৃতকার্য জানলেই পর্যাপ্ত হয় না, কিন্তু কী হারে কৃতকার্য হচ্ছে এটা জানাও আবশ্যক। আমরা কোনো ব্যক্তিকে শারীরিকবাবে সক্ষম বলি, যখন উনি একটি দালানের চার তালা বেয়ে শুধুমাত্র উঠবেনই না, সঙ্গে তাড়াতাড়ি উঠতে পারবেন। সময় সাপেক্ষে কৃতকার্যের হার অথবা শক্তি সঞ্চালনের হারকে ক্ষমতা বলা হয়।

একটি বলের গড় ক্ষমতার সংজ্ঞা হল কৃতকার্য (W) এবং মোট সময়

(t) এর অনুপাত।

$$P_{av} = \frac{W}{t}$$

সময়ের অবকাশ শূন্যের কাছাকাছি হলে গড় ক্ষমতার সীমাস্থ মানকে তাৎক্ষণিক ক্ষমতা বলে।

$$P = \frac{\mathrm{d}W}{\mathrm{d}t} \tag{6.21}$$

dr সরণের জন্য বল F এর দ্বারা কৃতকার্য হল, dW = F.dr. তাৎক্ষণিক ক্ষমতাকে এইভাবে প্রকাশ করা যায়.

$$P = \mathbf{F} \cdot \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}$$
$$= \mathbf{F} \mathbf{v} \tag{6.22}$$

যেখানে v হল তাৎক্ষণিক বেগ যখন বল F.

কার্য ও শস্তির মতো ক্ষমতা একটি স্কেলার রাশি। এর মাত্রাগুলো হল [ML²T⁻³] | SI তে এটির একক হল watt (W) | watt হল 1 J s⁻¹ | অফ্টাদশ শতাব্দীতে স্টিম ইঞ্জিন এর আবিষ্কর্তা জেমস্ ওয়াট (James Watt) এর নাম অনুসারে ক্ষমতার একক ওয়াট (watt) নেওয়া হয়েছে। ক্ষমতার অপর একটি একক হল অশ্বক্ষমতা (horse-power) (hp)

1 hp = 746 W

এই এককটি যানবাহন মোটর বাইক ইত্যাদি ক্ষেত্রের নির্গত ক্ষমতা (output) প্রকাশে ব্যবহৃত হয়।

বৈদ্যুতিক যন্ত্রাদি তথা বাল্ব, হিটার এবং ফ্রিজ ইত্যাদির ক্ষেত্রে আমরা ওয়াট (watt) এককটি পাই।

একটি 100 watt তড়িৎ ক্ষমতার বাল্ব 10 ঘন্টা চালু রাখলে, এটা 1 kilowatt hour (kWh) তড়িৎশক্তি ব্যয় করে।.

100 (watt) × 10 (hour)

= 1000 watt hour

- =1 kilowatt hour (kWh)
- $= 10^{3} (W) \times 3600 (s)$ $= 3.6 \times 10^6 \, \text{J}$

আমাদের ইলেকট্রিক বিলে তড়িৎশস্তির ব্যয় kWh এককে প্রকাশ করা হয়।মনে রাখতে হবে যে, kWh হল শক্তির একক, ক্ষমতার একক নয়।

উদাহরণ 6.11 1800 kg ভরবিশিষ্ট (লিফ্ট + যাত্রীগণ) একটি লিফ্ট (elevator) 2 m s⁻¹সমদ্রুতি নিয়ে ঊর্ধ্বমুখী গতিশীল। বিপরীতমুখী ঘর্ষণ বল হল 4000 N । লিফ্টটির মোটরের (motor to the elevator) ন্যূনতম ক্ষমতা ওয়াট এবং অশ্বক্ষমতা (horse power) এককে নির্ণয় করো।

কাৰ্য, শক্তি ও ক্ষমতা

উত্তর লিফ্টের উপর নিম্নমুখী বল,

$$F = mg + F_f = (1800 \times 10) + 4000 = 22000 \text{ N}$$

এই বলটির সাম্যতা বজায় (balance) রাখার জন্য মোটরটির পর্যাপ্ত পরিমাণ ক্ষমতা প্রয়োগ করতে হবে।

কাজেই, $P = \mathbf{F. v} = 22000 \times 2 = 44000 \text{ W} = 59 \text{ hp}$

6.12 সংঘর্ষ (COLLISIONS)

পদার্থবিদ্যায় আমরা গতি বিষয়ে (অবস্থানের পরিবর্তন) অধ্যয়ন করি। সাথে সাথে আমরা এমন কিছু ভৌতরাশির খোঁজ করি যারা কোনো প্রাকৃতিক প্রক্রিয়ায় পরিবর্তিত হয় না। ভরবেগ এবং শক্তির সংরক্ষণ নীতি এর প্রকৃষ্ট উদাহরণ। এই বিভাগে আমরা সাধারণভাবে উপলব্ধ ঘটনাবলি যথা-সংঘর্ষ সমূহে ভরবেগ এবং শক্তির সংরক্ষণ নীতি প্রয়োগ করব।

বিভিন্ন খেলাধূলায় তথা বিলিয়ার্ড, মার্বেল এবং ক্যারাম খেলায় 'সংঘর্ষ' অনিবার্য। আমরা দুটি ভরের মধ্যে একটি আদর্শ সংঘর্ষ অধ্যয়ন করব।

ধরা যাক, m_1 এবং m_2 ভরের দুটি কণা। m_1 ভরের কণাটি v_{1i} গতিতে (নিম্নলিপি (subscript) 'i' প্রাথমিক মান বোঝায়) গতিশীল

চিত্র 6.10 m, এবং একটি স্থির ভর m, এর মধ্যে সংঘর্ষ

এবং m_2 স্থির অবস্থায় আছে। এই ধরনের নির্দেশ ফ্রেম নির্ধারণে সাধারণীকরণ কোনোভাবে উপেক্ষিত হয় না। এই অবস্থায় m_1 ভরের কণাটি m_2 ভরের স্থিতিশীল কণাটির সাথে 'সংঘর্ষ' ঘটায়। যা 6.10 চিত্রে দেখানো হয়েছে।

m1 এবং m2 ভরে দুটি কণা সংঘর্ষের পর ভিন্ন দিকে গতিশীল হয়। আমরা দেখবো যে, কণাগুলোর ভর, বেগ এবং এদের পারস্পরিক কোণের মধ্যে সম্পর্ক আছে।

6.12.1 স্থিতিস্থাপক ও অস্থিতিস্থাপক সংঘৰ্ষ (Elastic and Inelastic Collisions)

সব ধরণের সংঘর্ষে মোট রৈখিক ভরবেগ সংরক্ষিত থাকে। কোনো সংস্থার প্রারম্ভিক (initial) ও অন্তিম ভরবেগ (final) সমান থাকে। এটি আমরা নিম্নলিখিতভাবে সিম্ব করতে পারি। যখন দুটি বস্তু সংঘর্ষে লিপ্ত হয়, সংঘর্ষ চলাকালীন সময়ে (Δt), পারস্পরিক ঘাতবলের প্রভাবে তাদের নিজ নিজ ভরবেগের পরিবর্তন হয়।

$$\Delta \mathbf{p}_1 = \mathbf{F}_{12} \Delta t$$
$$\Delta \mathbf{p}_2 = \mathbf{F}_{21} \Delta t$$

যেখানে, F₁₂ হল প্রথম কণার উপর দ্বিতীয় কণার প্রযুক্ত বল। একইভাবে F₂₁হল দ্বিতীয় কণার উপর প্রথম কণা দ্বারা প্রযুক্ত বল। নিউটনের তৃতীয় সূত্র অনুসারে,

$$\mathbf{F}_{12}$$
= $-\mathbf{F}_{21}$
এটা হতে পাই, $\Delta \mathbf{p}_1 + \Delta \mathbf{p}_2 = \mathbf{0}$

সংঘর্ষ চলাকালীন সময়ে (Δt) বলগুলো এই জটিল আকারে পরিবর্তিত হলেও উপরিউক্ত সিম্ধান্তটি সঠিক হয়। যেহেতু তৃতীয় সূত্রটি প্রতিটি মুহূর্তে সঠিক থাকে তাই প্রথম বস্তুর উপর প্রযুক্ত মোট ঘাত, দ্বিতীয় বস্তুর উপর ক্রিয়াশীল মোট ঘাতের সমান এবং বিপরীতমুখী হয়।

অপরপক্ষে, সংস্থাটির মোট গতিশক্তি আবশ্যিকরূপে সংরক্ষিত নাও হতে পারে। সংঘর্ষজনিত ধাক্কা এবং বিকৃতির ফলে তাপ এবং শব্দ উৎপন্ন হতে পারে। প্রাথমিক গতিশস্তির কিছুটা অংশ অন্য শস্তিতে রূপান্তরিত হয়। একটি "সংকুচিত স্প্রিং" এর মাধ্যমে আমরা সংঘর্ষ চলাকালীন বিকৃতি সহজভাবে দেখাতে পারি। যদি দুটি ভরের মধ্যে সংযুক্ত স্প্রিংটি শক্তি ক্ষয় না করে নিজের মূল আকৃতিতে ফিরে আসে, তাহলে এটির প্রাথমিক ও অন্তিম গতিশক্তি সমান থাকে কিন্তু সংঘর্ষ চলাকালীন সময়ে (Δt) গতিশন্তি ধ্রুবক থাকে না। এই ধরণের সংঘর্ষক স্থিতিস্থাপক সংঘর্ষ বলে। অপরপক্ষে, সংঘর্ষের পরে দুটি বস্তু বিকৃতি মুক্ত না হয়ে একত্রে মিলে গতিশীল হতে পারে। যে সংঘর্ষের ক্ষেত্রে সংঘর্ষের পরে বস্তুদ্বয় একত্রে মিলিত হয়ে গতিশীল হয়, তাকে পূর্ণ অস্থিতিস্থাপক সংঘর্ষ বলা যায়।

মধ্যবর্তী ক্ষেত্র যা সচরাচর খুবই দেখা যায় যেখানে বিকৃতি (deformation) আংশিকভাবে মুক্ত হয় এবং কিছু পরিমাণ প্রাথমিক গতিশক্তি ক্ষয় পেয়ে যায়। এ ধরনের সংঘর্ষকে যথার্থভাবে অস্থিতিস্থাপক সংঘর্ষবলে।

6.12.2 একমাত্রিক সংঘর্ষ (Collisions in One Dimension)

সর্বপ্রথম আমরা একটি একমাত্রিক পূর্ণ অস্থিতিস্থাপক সংঘর্ষ বিবেচনা করি। 6.10 চিত্র অনুসারে,

$$\theta_1 = \theta_2 = 0$$

 $m_1 v_{1i} = (m_1 + m_2) v_f$ (ভরবেগ সংরক্ষণ)
 $v_f = \frac{m_1}{m_1 + m_2} v_{1i}$ (6.23)

সংঘর্ষে গতিশক্তির ক্ষয় হল,

$$\Delta K = \frac{1}{2}m_1v_{1i}^2 - \frac{1}{2}(m_1 + m_2)v_f^2$$

$$=rac{1}{2}m_1v_{1i}^2-rac{1}{2}rac{m_1^2}{m_1+m_2}v_{1i}^2$$
 [(6.23) সমীকরণ ব্যবহার করে]

মুখোমুখী সংঘর্ষের উপর একটি পরীক্ষা (An experiment on head-on collision)

একটি অনুভূমিক তলে সংঘর্ষের উপর একটি পরীক্ষা করার সময় আমরা তিনটি সমস্যার সম্মুখীন হই। প্রথমত, ঘর্ষনের জন্য বস্তুগুলো সমবেগে গতিশীল হবে না। দ্বিতীয়ত, যদি দুটি ভিন্ন আকৃতির বস্তুর মধ্যে টেবিলের উপর সংঘাত ঘটানো হয়, তবে তাদের ভরকেন্দ্র পৃষ্ঠতল থেকে সম উচ্চতায় না থাকলে, এদের মধ্যে মুখোমুখি সংঘর্ষ ঘটানো খুবই কন্টকর হয়। তৃতীয়ত, সংঘর্ষের ঠিক আগে এবং ঠিক পরে বস্তুগুলোর বেগ পরিমাপ করা বস্তুত খুবই কঠিন।

এই পরীক্ষাটি উল্লম্ব অভিমুখে করা হলে উক্ত তিনটি প্রতিকুলতা আর থাকে না। আমরা দুটি বল নিই। একটি ভারী (বাস্কেট বল/ ফুটবল/ ভলিবল) এবং অপরটি হান্ধা (টেনিস বল/ রাবার বল/টেবিল টেনিস বল)। প্রথমে ভারী বলটিকে 1 m উচ্চতা থেকে উল্লম্বভাবে ছেড়ে দিই। লক্ষ্য করব এটি কতটা উচ্চতা পর্যন্ত উঠছে। এটি মেঝে বা ভূমির কাছাকাছি প্রতিক্ষেপের ঠিক আগে এবং পরে বলটির বেগের মান নির্ধারণ করে। ($v^2 = 2gh$ ব্যবহার করে)। কাজেই তুমি সংঘাত গুণাঞ্চ্ব (coefficient of restitution) পেয়ে যাবে।

٦

এখন একটি বড়ো বল এবং একটি ছোটো বল নিই, বড়ো বলটিকে ছোটো বলটির নিচে স্থাপন করে হাত থেকে একই সাথে ছেড়ে দিই (চিত্রে যেভাবে দেখানো হয়েছে)। দেখবে যাতে দুটি বল একব্রে পড়তে থাকে এবং দেখো কী ঘটে। দেখা যায়, ভারী বলটিকে বিছিন্নভাবে ছাড়া হলে এটি যতটা উচ্চতা পর্যন্ত উঠতে পারত, তার চেয়ে বলটি এখন কম উচ্চতায় উঠে কিন্তু হান্ধা বলটি প্রায় 3 m উচ্চতায় উঠে যায়। বারে বারে অভ্যাস করে তুমি দুটি বলকে এমনভাবে ধরার কৌশল আয়ত্ত করো যাতে হান্ধা বলটি উল্লম্বভাবে উপরে উঠে এবং পাশে সরে যায় না। এখানে দুটি বলের মধ্যে মুখোমুখী সংঘর্ষ হবে।

তুমি বলগুলোর একটি উত্তমযুগল নিয়ে (combination) চেম্টা করো যাতে খুব ভাল প্রভাব পাওয়া যায়। তুমি একটি সুবেদী তুলাযন্ত্রে (standard balance) এদের ভর মাপ। ভেবে দেখো, বলগুলোর প্রাথমিক ও অন্তিম বেগ তুমি কীভাবে নির্ণয় করবে।

$$=\frac{1}{2}m_1v_{1i}^2\left[1-\frac{m_1}{m_1+m_2}\right]$$

$$=\frac{1}{2}\frac{m_1m_2}{m_1+m_2}v_{1i}^2$$

এটি একটি ধনাত্মক রাশি যা আশা করা হয়েছিল। পরবর্তী ক্ষেত্রে আমরা একটি স্থিতিস্থাপক সংঘর্ষ বিবেচনা করি।

উপরিউক্ত নামাকরণ ব্যবহার করে এবং $\theta_1 = \theta_2 = 0$ ধরে, ভরবেগ ও গতিশক্তির সংরক্ষণের সমীকরণগুলো হল,

$$m_1 v_{1i} = m_1 v_{1f} + m_2 v_{2f} \tag{6.24}$$

$$m_1 v_{1i}^2 = m_1 v_{1f}^2 + m_2 v_{2f}^2 \tag{6.25}$$

(6.24) এবং (6.25) সমীকরণ অনুসারে,

$$m_1 v_{1i} (v_{2f} - v_{1i}) = m_1 v_{1f} (v_{2f} - v_{1f})$$

এটি (6.24) সমীকরণে প্রতিস্থাপিত করে আমরা পাই,

$$v_{1f} = \frac{(m_1 - m_2)}{m_1 + m_2} v_{1i}$$
(6.27)

$$a_{\ell} \qquad v_{2f} = \frac{2m_1 v_{1i}}{m_1 + m_2} \tag{6.28}$$

কাজেই জানা রাশিগুলোর (m_1 , m_2 , v_{1i}) মাধ্যমে আমরা অজানা রাশিগুলোকে (v_{1j} , v_{2j}) প্রকাশ করি। আমাদের বিশ্লেষণের বিশেষ ক্ষেত্রগুলো খুবই মজাদার।

ক্ষেত্র I: যদি দুটো ভরের মান সমান হয়, $(m_1 = m_2)$

$$v_{1f} = 0$$
$$v_{2f} = v_{1i}$$

প্রথম বস্তুকণাটি থেকে যাঁয় এবং সংঘর্ষের পর এটি দ্বিতীয় বস্তুকণাতে তার প্রাথমিক বেগ অর্পণ করে।

ক্ষেত্র II : যদি একটির ভর খুব বেশি হয়, যথা, $m_2^{>>}m_1^{-}$

 $v_{_{1f}}\simeq -v_{_{1i}}$ $v_{_{2f}}\simeq 0$ এক্ষেত্রে ভারী বস্তুটি স্থির থাকে কিন্তু হাল্কা বস্তুটি একইবেগে ফিরে আসে।

► উদাহরণ 6.12 গতিশীল নিউট্রনের মন্দন (Slowing down of neutrons): নিউক্লিয়ার রিয়েক্টারে একটি তীব্রবেগে ধাবমান (10⁷ m s⁻¹) নিউট্রনের গতিকে মন্দীভূত করে 10³ m s⁻¹

বেগে আনা হয় যাতে এটির সমস্থানিক (isotope) $^{235}_{92}$ U এর সাথে পারস্পরিক ক্রিয়ার অধিক সম্ভাবনা থাকে এবং নিউক্লিয় বিভাজন ঘটাতে পারে। দেখাও যে, একটি নিউট্রন যখন একটি হাল্কা নিউক্লিয়াস যথা - ডয়টেরিয়াম বা কার্বনের (যার ভর নিউট্রনের ভরের কয়েকগুণ) সাথে স্থিতিস্থাপক সংঘর্ষে লিপ্ত হয়। তখন এর অধিকাংশ গতিশন্তি হ্রাস পায়। যে সকল পদার্থ যেমন - ভারী জল, গ্রাফাইট, যারা নিউট্রনের গতিকে মন্দীভূত করে, এদেরকে মন্দক বা মডারেটর বলে।

উত্তর নিউট্রনটির প্রাথমিক গতিশক্তি হল,

$$K_{1i} = \frac{1}{2} m_1 v_{1i}^2$$

এটির অন্তিম গতিশক্তি (6.27 সমীকরণ অনুসারে)

$$K_{1f} = \frac{1}{2}m_1v_{1f}^2 = \frac{1}{2}m_1\left(\frac{m_1 - m_2}{m_1 + m_2}\right)^2 v_{1i}^2$$

গতিশস্তির ভগ্নাংশে অপচয়,

$$f_1 = \frac{K_{1f}}{K_{1i}} = \left(\frac{m_1 - m_2}{m_1 + m_2}\right)^2$$

বিমন্দক নিউক্লিয়াস (moderating nuclei) দ্বারা গতিশক্তির ভগ্নাংশ (Fractional) বৃষ্ণি হল,

$$f_2 = 1 - f_1$$
 (স্থিতিস্থাপক সংঘৰ্ষ)
= $\frac{4m_1m_2}{(m_1 + m_2)^2}$

এই ফলাফলটি (6.28) নং সমীকরণ থেকে প্রতিস্থাপিত করেও যাচাই করা যায়।

ডয়টেরিয়ামের জন্য $m_2 = 2m_1$ এবং আমরা পাই, $f_1 = 1/9$ কিন্তু $f_2 = 8/9$. নিউট্রনের প্রায় 90% শক্তি ডয়টেরিয়ামে সঞ্জালিত হয়। কার্বনের ক্ষেত্রে, $f_1 = 71.6\%$ এবং $f_2 = 28.4\%$ । বাস্তবে মুখোমুখি সংঘর্ষ বিরল হওয়াতে এই সংখ্যাটি খুবই কম।

যদি কোনো সংঘর্ষে উভয় বস্তুর প্রাথমিক ও অন্তিম গতিবেগ একই সরলরেখা বরাবর থাকে তখন এই সংঘর্ষকে একমাত্রিক সংঘর্ষ বা মুখোমুখি সংঘর্ষ বলে।

ছোটো গোলাকার বস্তুর ক্ষেত্রে, এটি তখনই সম্ভব যখন প্রথম বস্তুর গতির অভিমুখ, স্থির থাকা দ্বিতীয় বস্তুটির কেন্দ্রগামী হয়। সাধারণভাবে কোনো সংঘর্ষ দ্বিমাত্রিক হয় যখন বস্তুগুলোর প্রাথমিক ও অন্তিম গতিবেগ একই সমতলে থাকে।

6.12.3 দ্বিমাত্রিক সংঘর্ষ (Collisions in Two Dimensions)

6.10 নং চিত্রে একটি m₁ ভরের গতিশীল বস্তুর সাথে m₂ ভরের একটি স্থির বস্তুর সংঘর্ষ দেখানো হয়েছে। এই সংঘর্ষে রৈখিক ভরবেগ সংরক্ষিত থাকে। যেহেতু ভরবেগ একটি ভেক্টর রাশি, কাজেই তিন অভিমুখে {x, y, z} তিনটি সমীকরণ পাওয়া যায়। সংঘর্ষের পরে m₁ এবং m₂ ভরের বস্তুগুলোর অন্তিম বেগের অভিমুখ অনুসারে তলকে চিহ্নিত করতে হবে এবং ধরে নাও এটা x-y সমতল। রৈখিক ভরবেগের z-উপাংশের সংরক্ষণ বোঝায় যে, সংঘর্ষটি সম্পূর্ণভাবে x-y তলে সংঘটিত হয়। x- এবং y-উপাংশের সমীকরণগুলো হল,

$$m_1 v_{1i} = m_1 v_{1f} \cos \theta_1 + m_2 v_{2f} \cos \theta_2 \tag{6.29}$$

$$0 = m_1 v_{1f} \sin \theta_1 - m_2 v_{2f} \sin \theta_2$$
 (6.30)

বেশির ভাগ ক্ষেত্রে m_1, m_2 এবং v_{1i} এর মান জানা থাকে। এখানে চারটি অজানা রাশি v_{1j}, v_{2j}, θ_1 এবং θ_2 কিন্তু শুধুমাত্র দুটি সমীকরণ আছে।

 $\theta_1 = \theta_2 = 0$ হয় তবে আমরা আবার একমাত্রিক সংঘর্ষের (6.24) সমীকরণ পাই, যদি সংঘর্ষটি স্থিতিস্থাপক হয়,

$$\frac{1}{2}m_1v_{1i}^2 = \frac{1}{2}m_1v_{1f}^2 + \frac{1}{2}m_2v_{2f}^2$$
(6.31)

আমরা একটি অতিরিস্তু সমীকরণ পাই। তবুও একটি সমীকরণের ঘাটতি থাকে। সমস্যাটি সমাধানযোগ্য করার জন্য কমপক্ষে আরও একটি অজানা রাশি যথা θ_1 এর মান জানতে হবে। উদাহরণ স্বরূপ একটি নির্দেশককে কৌণিকভাবে x অক্ষ থেকে y অক্ষের দিকে ঘুরিয়ে θ_1 এর মান নির্ণয় করা যায়। $\{m_1, m_2, v_{Ii},$ এবং $\theta_1\}$ এর মান দেওয়া থাকলে আমরা (6.29), (6.30) এবং (6.31) সমীকরণগুলো ব্যবহার করে $\{v_{IJ}, v_{2J}, \theta_2\}$ এর মান নির্ণয় করতে পারি।

Example 6.13 6.10 নং চিত্রের ন্যায় দুটি সমভর সম্পন্ন (m₁ = m₂) বিলিয়ার্ড বলের মধ্যে সংঘর্ষ বিবেচনা করা হল। প্রথম বলটিকে কিউ (cue) বলা হয় এবং দ্বিতীয় বলটিকে লক্ষ্য (target) বলে। খেলোয়াড় লক্ষ্য বলটিকে θ₂ = 37° কোণে অবস্থিত পকেটে ফেলতে চায়। ধরে নাও যে, সংঘর্ষটি স্থিতিস্থাপক এবং এক্ষেত্রে ঘর্ষণ ও ঘূর্ণন গতি গুরুত্বপূর্ণ নয়। 'θ₁' এর মান নির্ণয় করো।

উত্তর যেহেতু দুটি বলের ভর সমান, কাজেই ভরবেগের সংরক্ষণের নীতি অনুসারে,

$$\mathbf{v}_{1i} = \mathbf{v}_{1f} + \mathbf{v}_{2f}$$

অথবা, $v_{1i}^{2} = (\mathbf{v}_{1f} + \mathbf{v}_{2f}) \cdot (\mathbf{v}_{1f} + \mathbf{v}_{2f})$ $= v_{1f}^{2} + v_{2f}^{2} + 2\mathbf{v}_{1f} \cdot \mathbf{v}_{2f}$ $= \left\{ v_{1f}^{2} + v_{2f}^{2} + 2v_{1f} v_{2f} \cos(\theta_{1} + 37^{\circ}) \right\} \quad (6.32)$ যেহেতু সংঘর্ষটি স্থিতিস্থাপক $m_1 = m_2$ । কাজেই গতিশস্তির সংরক্ষণ নীতি মেনে আমরা পাই,

$$v_{1i}^{2} = v_{1f}^{2} + v_{2f}^{2} \tag{6.33}$$

(6.32) এবং (6.33) নং সমীকরণ সমূহ থেকে পাই,

$$\cos\left(\theta_1 + 37^\circ\right) = 0 = \cos 90^\circ$$

অথবা
$$\theta_1 + 37^\circ = 90^\circ$$

কাজেই, $\theta_1 = 53^{\circ}$

এটি নিম্নলিখিত তথ্যটি প্রমাণ করে : "যখন সমভর সম্পন্ন দুটি বস্তুর মধ্যে একটি স্থির অবস্থায় আছে এবং অপরটি এর সঙ্গে তির্যক স্থিতিস্থাপক সংঘর্ষে লিপ্ত হয় তবে সংঘর্ষের পর, ওরা পরস্পর সমকোণে গতিশীল হয়।"

ঘটনাটি অনেকটাই সহজ হয়ে যায়, যখন আমরা মসৃণ গোলাকার ভরের বস্তুর মধ্যে শুধুমাত্র স্পর্শতলের মধ্যে সংঘর্ষ হওয়ার কথা মনে করি। এটি মার্বেল, ক্যারম এবং বিলিয়ার্ড খেলার সময় ঘটে।

আমাদের প্রাত্যহিক জীবনে, দুটি বস্তুর স্পর্শেই শুধুমাত্র সংঘর্ষ ঘটে। কিন্তু আমরা ধরে নিতে পারি, একটি ধূমকেতু অনেক দূর থেকে সূর্যের অভিমুখে আসছে অথবা একটি আলফা কণা কোনো নিউক্লিয়াসের অভিমুখে আসতে আসতে অন্য কোনো দিকে চলে যাচ্ছে।.

এক্ষেত্রে আমাদের দূর থেকে ক্রিয়ারত বলগুলো নিয়ে ভাবতে হয়। এই রকম ঘটনাটিকে বিক্ষেপণ (scattering) বলে।

সংঘর্ষের পর দুটি কণার গতিবেগ এবং অভিমুখ কোন্ দিকে হবে এইগুলো নির্ভর করে কণাগুলোর প্রাথমিক বেগ, সংঘাতের প্রকৃতি, এদের ভর, আকৃতি এবং আকারের উপর।

সারাংশ (SUMMARY)

কার্য শক্তি উপপাদ্য অনুসারে একটি বস্তুর গতিশন্তির পরিবর্তন হল বস্তুটির উপর মোট বলের দ্বারা কৃতকার্য।

$$K_f - K_i = W_{net}$$

- একটি বল সংরক্ষী হবে যদি (i) বস্তুর উপর উক্ত বর্লের দ্বারা কৃতকার্য শুধুমাত্র অন্তিম বিন্দুগুলো {x_e, x_e} এর উপর নির্ভর করে কিন্তু পথের উপর নির্ভরশীল হয় না। (ii) বল দ্বারা যে কোনো বন্দ্বপথের উপর কৃতকার্য শূন্য হবে যেখানে বস্তুটি নিজের প্রাথমিক অবস্থানে ফিরে আসে।
- 3. একমাত্রিক একটি সংরক্ষী বলের জন্য স্থিতিশক্তি অপেক্ষক *V(x)* কে এমনভাবে সংজ্ঞায়িত করা যায় যে,

$$F(x) = -\frac{\mathrm{d}V(x)}{\mathrm{d}x}$$

অথবা,

$$V_i - V_f = \int_{x_i} F(x) \,\mathrm{d}x$$

- 4. যান্ত্রিক শক্তির সংরক্ষণ নীতি অনুসারে, যদি কোনো বস্তুর উপর সংরক্ষী বল কার্যকর করা হয়, তাহলে বস্তুর মোট যান্ত্রিক শক্তি অপরিবর্তিত থাকে।
- 5. 'm' ভরের একটি কণার ভূপৃষ্ঠ থেকে 'x' উচ্চতায় অভিকর্ষীয় স্থিতিশক্তি হল,

$$V(x) = m g x$$

যেখানে উচ্চতার সাথে 'g' এর মানের পরিবর্তন উপেক্ষা করা হয়েছে।

6. বল ধ্রুবক k বিশিষ্ট একটি স্প্রিং এর x পরিমাণ প্রসারণের জন্য স্থিতিস্থাপক স্থিতিশস্তি হল,

$$V(x) = \frac{1}{2} k x^2$$

7. A এবং B এর স্কেলার বা ডট্ গুণ (dot product) কে A.B লেখা হয় এবং এটি একটি স্কেলার রাশি। A·B = AB cos θ, যেখানে θ হল A এবং B এর অর্ত্তবর্তী কোণ। θ এর মানের উপর নির্ভর করে এটি ধনাত্মক, ঋণাত্মক বা শূন্য হতে পারে। দুটি ভেক্টরের স্কেলার গুণ (scalar product) কে একটি ভেক্টরের মান এবং অপর ভেক্টরের প্রথম ভেক্টরের অভিমুখে উপাংশের গুণফলের সমান।

একক ভেক্টরের জন্য :

 $\hat{\mathbf{i}} \cdot \hat{\mathbf{i}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{k}} \cdot \hat{\mathbf{k}} = 1$ and $\hat{\mathbf{i}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{k}} = \hat{\mathbf{k}} \cdot \hat{\mathbf{i}} = 0$

স্কেলার গুণ বিনিময় (commutative) এবং বিচ্ছেদ সূত্র (distributive) সূত্র মেনে চলে।

কাৰ্য, শক্তি ও ক্ষমতা

প্রাকৃতিক রাশি	সংকেত	মাত্রা	একক	মন্তব্য
কার্য	W	$[ML^2T^{-2}]$	J	$W = \mathbf{F.d}$
গতিশস্তি	K	$[\mathrm{ML}^{2}\mathrm{T}^{-2}]$	J	$K = \frac{1}{2}mv^2$
স্থিতিশন্তি	V(x)	$[ML^2T^{-2}]$	J	$F(x) = -\frac{\mathrm{d}V(x)}{\mathrm{d}x}$
যান্ত্ৰিক শক্তি	Ε	$[ML^2T^{-2}]$	J	E = K + V
স্প্রিং ধ্রুবক	k	[MT ⁻²]	N m ⁻¹	$F = -kx$ $V(x) = \frac{1}{2}kx^{2}$
ক্ষমতা	Р	[ML ² T ⁻³]	w	$P = \mathbf{F.v}$ $P = \frac{dW}{dt}$

ভেবে দেখার বিষয়সমূহ [POINTS TO PONDER]

- "কৃতকার্য নির্ণয় কর" এই বাক্যাংশটি সম্পূর্ণ নয়। কৃতকার্যকে প্রকাশ করার জন্য আমাদের কোনো বিশেষ বল অথবা বলসমূহের দ্বারা বস্তুটির একটি নিশ্চিত সরণের উল্লেখ করতে হবে।
- 2. কৃতকার্য একটি স্কেলার রাশি। এটি ধনাত্মক বা ঋণাত্মক হতে পারে। কিন্তু ভর এবং গতিশস্তি ধনাত্মক স্কেলার রাশি। একটি গতিশীল বস্তুর উপর ঘর্ষণ বল বা সান্দ্রতাজনিত বলের জন্য কৃতকার্য ঋণাত্মক হয়।
- নিউটনের তৃতীয় সূত্রানুসারে, দুটি বস্তুর মধ্যে পারস্পরিক ক্রিয়াশীল বলের যোগফল শূন্য হয়।
 F₁₂ + F₂₁ = 0

কিন্তু দুটি বলের দ্বারা কৃতকার্যের যোগফল সবসময় শূন্য নাও হতে পারে, অর্থাৎ $W_{_{12}} + W_{_{21}} \neq 0$ যদিও এটি কখনো কখনো সত্যি হয়।

- কখনো কখনো বলের সঠিক প্রকৃতি জানা না থাকলেও বলের দ্বারা কৃতকার্য নির্ণয় করা যায়। এটি (6.2) উদাহরণ থেকে অনেকটা স্পন্ট হয়, যেখানে কার্যশন্তি উপপাদ্য প্রয়োগ করা হয়েছে।
- 5. কার্য শস্ত্তি উপপাদ্য নিউটনের দ্বিতীয় সূত্র থেকে স্বতন্ত্র নয়। কার্য শস্ত্তি উপপাদ্যকে নিউটনের দ্বিতীয় সূত্রের স্কেলার রূপ হিসাবে দেখানো যেতে পারে। সংরক্ষী বলের ক্ষেত্রে যান্ত্রিক শস্তির সংরক্ষণ নীতিকে কার্যশস্তি উপপাদ্যের পরিনাম হিসাবে দেখা যেতে পারে।
- 6. কার্য শস্তি উপপাদ্য সকল জড়ত্বীয় নির্দেশতন্ত্রে প্রযোজ্য হয়। এটি অজড়ত্বীয় নির্দেশতন্ত্রেও প্রয়োগ করা যেতে পারে যদি আমরা বিবেচনাধীন বস্তুর উপর মোট ক্রিয়াশীল বলের গণনায় অলীক বলকেও (pseudoforces) অন্তর্ভুক্ত করি।
- 7. সংরক্ষী বলের অধীনে একটি বস্তুর স্থিতিশক্তি একটি ধ্রুবক মান পর্যন্ত সর্বদা অনির্ণেয় থাকে। উদাহরণস্বরূপ, কোনো বিন্দুতে স্থিতিশন্তির মান শূন্য ধরা হবে তা নিজের পছন্দ মতো নেওয়া যায়। ভূপৃষ্ঠে অভিকর্যজ স্থিতিশন্তি শূন্য ধরা হলে, তবেই h উচ্চতায় m ভরের কোনো বস্তুত অভিকর্যজ স্থিতিশন্তি mgh হয়। স্প্রিং-এ সঞ্চিত স্থিতিশন্তি kx²/2 এর ক্ষেত্রে, এর সঙ্গো যুক্ত দোলায়মান ভরের সাম্যাবস্থানে স্থিতিশন্তি শূন্য মান ধরা হয়েছে।
- বলবিদ্যার অন্তর্গত প্রতিটি বলের সাথে স্থিতিশন্তি সম্পর্কযুক্ত হয় না। যথা, একটি বন্ধপথে ঘর্ষণ বলের দ্বারা কৃতকার্যের মান শূন্য হয় না এবং তাই ঘর্ষণ বলের সাথে কোনো স্থিতিশন্তি যুক্ত থাকে না।
- 9. একটি সংঘর্ষের সময় : (a) সংঘর্ষের প্রতিটি মুহুর্তে মোট রৈখিক ভরবেগ সংরক্ষিত থাকে; (b) গতিশন্তির সংরক্ষণ নীতিটি (স্থিতিস্থাপক সংঘর্ষের ক্ষেত্রেও) সংঘর্ষ সমাপ্ত হওয়ার পরেই প্রয়োগ করা যায় কিন্তু সংঘর্ষের সময় প্রতিটি মুহুর্তে এটা প্রযোজ্য হয় না। বস্তুত সংঘাতে লিপ্ত বস্তু দুটির বিকৃতি ঘটে এবং পারস্পরিকভাবে এরা তাৎক্ষণিক স্থিতাবস্থায় থাকতে পারে।

অনুশীলনী

- 6.1 কোনো বস্তুর উপর বলের দ্বারা কৃতকার্যের চিহ্ন সম্পর্কে বোঝা খুবই গুরুত্বপূর্ণ। ভালোভাবে বিবেচনা করে বলো নিম্নলিখিত কৃতকার্যগুলো ধনাত্মক নাকি ঋণাত্মক :
 - (a) দড়ি বাঁধা বালতি দিয়ে একটি কুঁয়ো থেকে জল উঠাতে কোনো ব্যক্তি দ্বারা কৃতকার্য।
 - (b) উপরিউক্ত ক্ষেত্রে অভিকর্ষীয় বল দ্বারা কৃতকার্য।
 - (c) একটি নততল বরাবর একটি বস্তুর পিছলে
 পড়ার সময় ঘর্ষণ দ্বারা কৃতকার্য,
 - (d) একটি অমসৃণ অনুভূমিক তলের উপর সমবেগে গতিশীল বস্তুর উপর প্রযুক্ত বলের দ্বারা কতকার্য,
 - (e) একটি আবর্তনশীল দোলকের উপর বায়ুর পরিরোধজনিত বলের দ্বারা দোলকটিকে স্থির অবস্থায় আনার জন্য কৃতকার্য।
- 6.2 প্রাথমিকভাবে স্থিরাবস্থায় থাকা 2 kg ভরের একটি বস্তু 0.1 গতীয় ঘর্ষণ গুণাংক বিশিষ্ট একটি টেবিলের মুক্ত তলের উপর দিয়ে 7 N মানের একটি অনুভূমিক বলের দ্বারা গতিশীল আছে। নির্ণয় করো :
 - (a) 10 s সময় অবকাশে প্রযুক্ত বলের দ্বারা কৃতকার্য,
 - (b) 10 s সময় অবকাশে ঘর্ষণ বলের দ্বারা কৃতকার্য,
 - (c) 10 s সময় অবকাশে বস্তুর উপর মোটবলের দ্বারা কৃতকার্য,
 - (d) 10 s সময়ে বস্তুর গতিশক্তির পরিবর্তন এবং
 প্রাপ্ত ফলাফলের ব্যাখ্যা দাও।
- 6.3 6.11 নং চিত্রে একমাত্রিক দেশে স্থিতিশস্তি অপেক্ষকের কিছু উদাহরণ দেখানো হয়েছে। কণাটির মোটশস্তি কোটি অক্ষের উপর ক্রস চিহ্ন দিয়ে দেখানো হয়েছে। প্রত্যেক ক্ষেত্রে, এমন কোনো অঞ্জল আছে কিনা দেখাও যেখানে কণাটির অস্তিত্ব প্রদন্ত শস্তির জন্যে হতে পারে না। এর সঙ্গে প্রতিক্ষেত্রে কণাটির ন্যূনতম মোটশস্তি কত হবে তা নির্ণয় করো। এমন কিছু ভৌত ঘটনার প্রসঙ্গা ভেবে দেখো, যেখানে এইসব স্থিতিশস্তির লেখচিত্রের আকৃতি প্রাসজোক।

- 6.4 সরল দোলগতি নিয়ে আন্দোলিত এমন একটি কণার স্থিতিশক্তি অপেক্ষকটি হল, V(x) = kx²/2, যেখানে k হল দোলকের বল ধ্রুবক। k = 0.5 N m⁻¹ এর জন্য V(x) বনাম x এর লেখচিত্র (6.12) নং চিত্রে দেখানো হয়েছে। দেখাও যে, এই বিভবের অন্তর্গত 1 J মোটশক্তি নিয়ে গতিশীল কোনো কণা, x = ± 2 m পৌঁছে, অবশ্যই আবার ফিরে আসবে।
- 6.5 নিম্নলিখিত প্রশ্নের উত্তর দাও :
 - (a) একটি রকেটের উড্ডয়নের সময় ঘর্ষণের ফলে এর বাইরের আবরণটি জ্বলে পুড়ে যায়। দহনের জন্য প্রয়োজনীয় তাপশস্তি কোথা থেকে পাওয়া যায়? রকেট না বায়বীয় পরিমণ্ডল?
 - (b) ধৃমকেতুগুলো সূর্যের চারিদিকে অধিক মাত্রার উপবৃত্তাকার কক্ষপথে ঘুরে। সাধারণত ধৃমকেতুর উপর সূর্যের মহাকর্যীয় বল ধুমকেতুর গতিবেগের

উপর লম্ব হয় না। তথাপি ধূমকেতুর সম্পূর্ণ কক্ষপথের উপর মহাকর্ষীয় বলের দ্বারা কৃতকার্য শূন্য হয়। কেন ?

- (c) একটি কৃত্রিম উপগ্রহ পৃথিবীর চারিদিকে খুবই হাল্কা বায়ুমণ্ডলে প্রদক্ষিণ করার সময় বায়ুমণ্ডলের প্রতিরোধ জনিত বলের জন্য এর শন্তির অপচয় ঘটে, যা খুবই কম। তা হলে এটি পৃথিবীর কাছাকাছি ক্রমাগত আসতে থাকলে এর দ্রুতি ক্রমশ বৃদ্ধি পায় কেন ?
- (d) 6.13(i) নং চিত্রে এক ব্যক্তি 15 kg ভর হাতে নিয়ে 2 m হেঁটে যান। 6.13(ii) নং চিত্রে উনি একই দূরত্ব পিছন থেকে দড়ি টেনে হাঁটলেন। দড়িটি একটি পুলির (pulley) উপর দিয়ে গেছে এবং এর অপর প্রান্ত 15 kg ভর বাঁধা আছে। কোন্ ক্ষেত্রে কৃতকার্য অধিক হবে ?
- 6.6 সঠিক বিকল্পটিকে রেখাঙ্কিত (Underline) করো :
 - (a) যখন কোনো সংরক্ষী বল একটি বস্তুর উপর ধনাত্মক কার্য করে, তখন বস্তুটির স্থিতিশক্তি বৃদ্ধি পায় / হ্রাস পায়
 / অপরিবর্তিত থাকে।
 - (b) ঘর্ষণ বলের বিরুদ্ধে একটি বস্তুর উপর কৃতকার্য, সবসময় এর গতিশক্তির / স্থিতিশক্তির হ্রাস ঘটায়।
 - (c) বহুকণা সমষ্টির একটি সংস্থায় কণাগুলোর মোট ভরবেগের পরিবর্তনের হার সংস্থাটির উপর বাহ্যিক বল / অভ্যন্তরিণ বল সমষ্টির সঙ্গো সমানুপাতিক।
 - (d) দুটি বস্তুর অস্থিতিস্থাপক সংঘর্ষে, যে রাশিগুলো সংঘর্ষের পর পরিবর্তিত হয় না, এগুলো হল মোট গতিশক্তি
 / মোট রৈখিক ভরবেগ / বস্তুদ্বয় সংস্থাটির মোট শক্তি।
- 6.7 নিম্নলিখিত বিবৃতিগুলোর ক্ষেত্রে সত্য বা মিথ্যা উল্লেখ করো। উত্তর সাপেক্ষে কারণ দর্শাও।
 - (a) দুটি বস্তুর মধ্যে স্থিতিস্থাপক সংঘর্ষে প্রতিটি বস্তুর ভরবেগ ও শক্তি সংরক্ষিত থাকে।
 - (b) কোনো বস্তুর উপর অভ্যন্তরীণ এবং বাহ্যিক বল যাই হোক না কেন, একটি সংস্থার মোট শক্তি সবসময় সংরক্ষিত থাকে।
 - (c) প্রকৃতির প্রতিটি বলের ক্ষেত্রে, কোনো বদ্ধপথের উপর বস্তুর গতিতে কৃতকার্য সবসময় শূন্য হয়।
 - (d) একটি অস্থিতিস্থাপক সংঘর্ষে, কোনো সংস্থার অন্তিম গতিশন্তি সবসময় প্রাথমিক গতিশন্তি থেকে কম থাকে।
- **6.8** যত্ন সহকারে কারণসহ উত্তর দাও :
 - (a) দুটি বিলিয়ার্ড বলের মধ্যে স্থিতিস্থাপক সংঘর্ষে, বলগুলোর মধ্যে সংঘর্ষ চলাকালীন অল্প সময়ে (যখন তারা সংস্পর্শে ছিল), তখন তাদের মোট গতিশক্তি সংরক্ষিত থাকে কি?
 - (b) দুটি বলের মধ্যে স্থিতিস্থাপক সংঘর্ষ চলাকালীন ক্ষুদ্র সময়ে তাদের মোট রৈখিক ভরবেগ সংরক্ষিত থাকে কি ?
 - (c) একটি অস্থিতিস্থাপক সংঘর্ষের ক্ষেত্রে (a) এবং (b) এর উত্তরগুলো কী হবে ?

- (d) দুটি বিলিয়ার্ড বলের স্থিতিশস্তি যদি তাদের কেন্দ্রের মধ্যবর্তী দূরত্বের উপর নির্ভর কর, তাহলে সংঘর্ষটি কি স্থিতিস্থাপক না অস্থিতিস্থাপক? (উল্লেখীয় যে আমরা এখানে সংঘর্ষ চলাকালীন বলের সাথে সম্পর্কযুক্ত স্থিতিশস্তিকে বিবেচনা করব, কিন্তু অভিকর্ষীয় স্থিতিশস্তিকে নয়)।
- 6.9 একটি বস্তু প্রাথমিকভাবে স্থির অবস্থায় আছে। এটি স্থির ত্বরণে এক মাত্রায় গতিশীল হয়। 't' সময়ে এটির উপর প্রদেয় ক্ষমতা সমানুপাতিক হবে —

(i) $t^{1/2}$ (ii) t (iii) $t^{3/2}$ (iv) t^2

6.10 একটি স্থির ক্ষমতার উৎসের প্রভাবে একটি বস্তু একই অভিমুখে গতিশীল আছে। '*i*' সময়ে বস্তুটির সরণ সমানুপাতিক হবে —

(i) $t^{1/2}$ (ii) t (iii) $t^{3/2}$ (iv) t^2

6.11 একটি বস্তুকে স্থানাংক পম্বতির z-অক্ষ বরাবর গতিশীল হতে বাধ্য করার জন্য একটি স্থির বল F প্রয়োগ করা হল, যেখানে F = -i + 2 j + 3 k N

এখানে **i**, j, **k** হল সংস্থার *x-, y-* এবং *z-*অক্ষ বরাবর যথাক্রমে একক ভেক্টর। এই বল দ্বারা *z-*অক্ষ বরাবর 4 m দূরত্ব পর্যন্ত যেতে কী পরিমাণে কৃতকার্যের প্রয়োজন ?

- 6.12 কোনো মহাজাগতিক রশ্মির পরীক্ষায় একটি ইলেকট্রন এবং একটি প্রোটন সনাক্ত করা হল যার মধ্যে প্রথমটির গতিশক্তি 10 keV এবং দ্বিতীয়টির 100 keV । ইলেকট্রন এবং প্রোটনটির মধ্যে কোনটি দ্রুতগামী? তাদের দ্রুতির অনুপাত নির্ণয় করো। (ইলেকট্রনের ভর = 9.11×10⁻³¹ kg, প্রোটনের ভর = 1.67×10⁻²⁷ kg, 1 eV = 1.60×10⁻¹⁹J).
- 6.13 2 mm ব্যাসার্ধের একটি বারিবিন্দু ভূপৃষ্ঠ থেকে 500 m উপর থেকে পড়ছে। এটি তার প্রাথমিক উচ্চতার অর্ধেক উচ্চতা পর্যন্তব্রুম ক্রমহ্রাসমান ত্বরণ নিয়ে (বায়ুর বাধাদানকারী সান্দ্রতাজনিত বলের জন্য) পড়ার পর, এটি অধিকতম (প্রান্তিক) দুতি অর্জন করে এবং তারপর সমদ্রুতি নিয়ে পড়তে থাকে। বারিবিন্দুটির মোট যাত্রাপথের প্রথম ও দ্বিতীয় অর্ধে অভিকর্ষীয় বলের দ্বারা কৃতকার্য নির্ণয় করো। এটি ভূপৃষ্ঠে 10 m s⁻¹ দ্রুতিতে পৌঁছালে মোট যাত্রাপথে বাধা প্রদানকারী বলের দ্বারা কৃতকার্য কির্ণয় করে। এটি ভূপৃষ্ঠে 10 m s⁻¹ দ্রতিতে পৌঁছালে মোট যাত্রাপথে বাধা প্রদানকারী বলের দ্বারা কৃতকার্য কির্বায় করে।
- 6.14 কোনো গ্যাস পাত্রে অনুভূমিক তলে একটি গ্যাসীয় অণু 200 m s⁻¹ দ্রুতি নিয়ে অভিলম্বের সাথে 30° কোণে আঘাত করে এবং একই দ্রুতি নিয়ে প্রতিক্ষিপ্ত হয়। এই সংঘর্ষে ভরবেগ কী সংরক্ষিত থাকে ? সংঘর্ষটি স্থিতিস্থাপক নাকি অস্থিতিস্থাপক ?
- 6.15 একটি দালান বাড়ির ভূতল থেকে পাম্প মেশিন দিয়ে 30 m³ আয়তনের একটি ট্যাঙ্ককে জলপূর্ণ করতে 15 মিনিট সময় লাগে। যদি ট্যাঙ্কটি ভূতল থেকে 40 m উপরে থাকে এবং পাম্পের দক্ষতা 30% হয়, তাহলে পাম্প মেশিন দ্বারা ব্যয়িত তড়িৎ ক্ষমতা কত হবে তা নির্ণয় করো।
- 6.16 পারস্পরিক সংস্পর্শে থাকা দুটি একই রকম বল বিয়ারিং একটি ঘর্ষণহীন টেবিলের উপর স্থির অবস্থায় আছে এবং অপর একটি সমভরের অনুরূপ বল বিয়ারিং প্রাথমিক বেগে গতিশীল হয়ে এটিকে আঘাত করে। সংঘর্ষটি স্থিতিস্থাপক হলে, নিম্নলিখিত 6.14 নং চিত্রে বর্ণিত কোন্ ক্ষেত্রটি সংঘর্ষের পর সম্ভাব্য ফলাফল প্রকাশ করে?

চিত্র 6.14

- 6.17 একটি দোলকের পিশু A কে উলম্বের সাথে 30° কোণে ছাড়া হলো। এটি টেবিলের উপর স্থির অবস্থায় রাখা সমভরের অপর একটি পিশু B কে আঘাত করে, 6.15 নং চিত্রের ন্যায়। সংঘাতের পর A পিশুটি কতটা উচ্চতা পর্যন্ত উঠবে ? গোলকীয় পিশুগুলোর আকৃতি উপেক্ষীয় এবং সংঘাতটিকে স্থিতিস্থাপক ধরে নাও।
- 6.18 একটি দোলকের পিগুকে অনুভূমিক অবস্থান থেকে ছেড়ে দেওয়া হল। যদি দোলকটির দৈর্ঘ্য 1.5 m হয়, তবে দোলকটির গতিপথের সর্বনিম্ন বিন্দুতে এর পিগুটির দ্রুতি কত হবে? দেওয়া আছে, এটির প্রাথমিক শক্তির 5% বায়ুর প্রতিরোধের জন্য ক্ষয় পায়।
- 6.19 300 kg ভরের একটি ট্রলি 25 kg ভারের একটি বালির বস্তা নিয়ে একটি ঘর্ষণহীন পথে 27 km/h সমদুতি নিয়ে গতিশীল। কিছুক্ষণ পর ট্রলির মেঝেতে অবস্থিত একটি ছিদ্র দিয়ে 0.05 kg s⁻¹ হারে বালি বেরিয়ে আসতে থাকে। বালির বস্তাটি সম্পূর্ণ খালি হওয়ার পর ট্রলির দ্রুতি নির্ণয় করো।

- 6.20 0.5 kg ভরের একটি বস্তু সরলরেখা বরাবর $v = a x^{3/2}$ বেগে গতিশীল আছে। যেখানে $a = 5 \text{ m}^{-1/2} \text{ s}^{-1}$ । বস্তুটির x = 0 থেকে x= 2 m পর্যন্ত সরণের জন্য মোট বলের দ্বারা কৃতকার্য নির্ণয় করো।
- 6.21 একটি বায়ুকলের পাখার (blade) অতিক্রান্ত বৃত্তাকার অঞ্জলের ক্ষেত্রফল হল 'A'। (a) যদি বায়ু v বেগে বৃত্তটির ক্ষেত্রফলের সঙ্গো লম্বভাবে প্রবাহিত হয় তা হলে t সময়ে প্রবাহিত বায়ুর ভর কত হবে? (b) বায়ুর গতিশক্তি কত হবে? (c) ধরে নাও যে, বায়ুকলটি প্রবাহিত বায়ুশস্তির 25% তড়িৎশস্তিতে রূপান্তরিত করে এবং A = 30 m², v = 36 km/h এবং বায়ুর ঘনত্ব 1.2 kgm⁻³। উৎপাদিত তড়িৎ ক্ষমতা কত হবে?
- 6.22 এক ব্যক্তি ওজন কমানোর (খাদ্যাভ্যাসকারী (dieter)) জন্য 10 kg ভরকে 1000 বার প্রতিক্ষেত্রে 0.5 m পর্যন্ত উঠায়। ধরে নাও যে, প্রতিবার ভরটিকে নিচে নামানোর ফলে যে পরিমাণ স্থিতিশক্তির হ্রাস ঘটে তার অপচয় হয়। (a) অভিকর্ষীয় বলের বিরুদ্ধে কৃতকার্য কত হবে? (b) প্রতি কিলোগ্রাম চর্বি 3.8 × 10⁷J শক্তি সরবরাহ করে যা 20% দক্ষতা হারে যান্ত্রিক শক্তিতে রূপান্তরিত হয়। খাদ্যাভ্যাসকারী ব্যক্তি কি পরিমাণ চর্বি ব্যয় করবে?
- 6.23 একটি পরিবার 8 kW ক্ষমতার তড়িৎশস্তি ব্যবহার করে। (a) একটি অনুভূমিক তলে যে পরিমাণ সৌরশস্তি আপতিত হয় তা হল গড়ে 200 W প্রতি বর্গমিটার ক্ষেত্রফল। যদি এই সৌরশস্তির 20% ব্যবহারযোগ্য তড়িৎশস্তিতে রূপান্তরিত হয়, তাহলে 8 kW ক্ষমতার তড়িৎ শস্তি সরবরাহ করার জন্য কতটা ক্ষেত্রফলের প্রয়োজন হবে? (b) এই ক্ষেত্রফলটি কোনো একটি বিশেষ বাড়ির ছাদের ক্ষেত্রফলের সাথে তুলনা করো।

অতিরিক্ত অনুশীলনী (Additional Exercises)

- 6.24 0.012 kg ভরের একটি বুলেট 70 m s⁻¹ অনুভূমিক বেগে 0.4 kg ভরের একটি ব্লককে আঘাত করে এবং তাৎক্ষণিকভাবে ব্লকের সাপেক্ষে স্থির অবস্থায় চলে আসে। ব্লকটিকে সরু তার দিয়ে ছাদ থেকে ঝুলানো আছে। ব্লকটি কত উচ্চতা পর্যন্ত উঠবে তা নির্ণয়. করো। ব্লকটিতে কী পরিমাণে তাপের উদ্ভব হবে ?
- 6.25 দুটি ঘর্ষণহীন আনত পথের একটির নতি কোণ কম ও অপরটির নতি কোণ অধিক এবং এমন দুটি তল A শীর্ষ বিন্দুতে পরস্পরের সাথে মিলিত হয়। প্রতিটি তলে একটি করে পাথর স্থির অবস্থা থেকে ছাড়া হল যাতে এরা নততল বরাবর হড়কিয়ে পড়তে থাকে (চিত্র 6.16)। দুটি পাথর কি একই সময়ে নিচে নেমে আসবে ? ওরা কি একই দুতি নিয়ে নিচে পৌঁছবে ? ব্যাখ্যা দাও। দেওয়া হল যে, θ₁ = 30⁰, θ₂ = 60⁰, এবং h = 10 m, দুটি পাথরের অন্তিম দুতি ও অতিবাহিত সময়গুলো নির্ণয় করো।

137

6.26 একটি অমসৃণ তলের উপর 1 kg ভরের একটি ব্লক। 100 N m⁻¹ স্প্রিং ধ্রুবক সম্পন্ন একটি স্প্রিং-এর সাথে যুক্ত করা হয়েছে, যা (6.17) নং চিত্রে দেখানো হয়েছে। স্প্রিংটির টানহীন অবস্থায় (unstretched position) ব্লকটিকে স্থির অবস্থা থেকে ছাড়া হল। ব্লকটি নততল বরাবর 10 cm নামার পর স্থির অবস্থায় চলে আসে। ব্লক এবং নততলের মধ্যে ঘর্ষণ গুণাংক নির্ণয় কর। ধরে নাও, স্প্রিংটির ভর উপেক্ষণীয় এবং পুলিটি (pulley) ঘর্ষণহীন।

চিত্র 6.17

- 6.27 0.3 kg ভরের একটি বোল্ট নিচের দিকে 7 m s⁻¹ সমদ্রুতি নিয়ে গতিশীল একটি লিফটের ছাদ থেকে পড়ছে। এটি লিফটের মেঝেতে আঘাত করে (লিফটের উচ্চতা 3 m) এবং তা প্রতিক্ষিপ্ত হয় না। এই সংঘাতে উৎপাদিত তাপ নির্ণয় কর। লিফটি স্থির অবস্থায় থাকলে তোমার উত্তরটির কী কোনো পরিবর্তন হবে?
- 6.28 200 kg ভরের একটি ট্রলি একটি ঘর্ষণহীন পথের উপর 36 km/h সমদ্রুতি নিয়ে গতিশীল। 20 kg ভরের একটি শিশু ট্রলির উপর একপ্রান্ত থেকে অপর প্রান্তে (10 m দূরত্ব) ট্রলির (trolley) সাপেক্ষে 4 m s⁻¹ দ্রুতিতে বিপরীত মুখে দৌড়াল এবং ট্রলি থেকে লাফ দিয়ে বেরিয়ে যায়। ট্রলিটির অন্তিম দ্রুতি কত হবে ? শিশুটি দৌড়ানো শুরু করার সময় থেকে ট্রলিটি কত দূরত্ব অতিক্রম করল ?
- 6.29 নিম্নলিখিত (6.18) চিত্রে কোন্ স্থিতিশস্তি বর্ররেখাগুলো দুটি বিলিয়ার্ড বলের মধ্যে স্থিতিস্থাপক সংঘর্ষকে সম্ভবত প্রকাশ করে না। এখানে বলগুলোর কেন্দ্রের মধ্যে দূরত্ব হল 'r'।

চিত্র 6.18

6.30 স্থির অবস্থা থেকে একটি মুক্ত নিউট্রনের ভাঙ্গান বিবেচনা করি : n → p + e⁻ দেখাও যে, এই রকম দুটি বস্তুর ভাঙনের ক্ষেত্রে অবশ্যই স্থির মানের শক্তির ইলেকট্রন নির্গত হয় এবং এই কারণে একটি নিউট্রন বা নিউক্লিয়াসের β-ক্ষয়ে পর্যবেক্ষিত (observed) নিরবচ্ছিন্ন শক্তি বিতরণ প্রক্রিয়ার জন্য দায়ী নয়। (চিত্র 6.19).

[দ্রন্টব্য : W. Pauli তাঁর এগিয়ে নিয়ে যাওয়া অনেক সিম্ধান্তগুলোর মধ্যে একটি অন্যতম সিম্ধান্ত হল এই অনুশীলনীর একটি সহজ সরল ফল যেখানে তিনি β-কণা নিঃসরণে যে কণাগুলো উৎপন্ন হয়, এতে একটি তৃতীয় কণার অস্তিত্ব সম্পর্কে পূর্বাভাস করেছিলেন। এই কণাটিকে বলা হল নিউট্রিনো (neutrino)। আমরা এখন জানি যে, এটি একটি নিজস্ব ঘূর্ণণ ½ [intrinsic spin ½] বিশিষ্ট কণা (e⁻, p বা n এর মতো) এবং এটি নিস্তড়িৎ ভরহীন অথবা একেবারে অতীব ক্ষুদ্র ভরের (ইলেকট্রনের ভরের তুলনায়) এবং পদার্থের সাথে খুবই দুর্বলভাবে পারস্পরিক ক্রিয়া (interact) করে। নিউট্রনের সত্যিকারের ভাঙন প্রক্রিয়াটি নিম্নরুপ : n → p + e⁻+ v ।

পদার্থবিদ্যা

পরিশিষ্ট 6.1 : হাঁটার সময় ব্যায়িত শক্তি

নিম্নেবর্ণিত সারণিতে, 60 kg ভরের একজন প্রাপ্তবয়ষ্ক ব্যক্তির ব্যায়িত শক্তির ক্ষমতা (প্রায়) সূচিবদ্ধ করা হল।

সারণি 6.4 আনুমানিক ব্যয়িত শক্তির হার (Approximate power consumption)

ক্রিয়াকলাপ	শক্তি (W)
ক্রিয়াকলাপ	75
শয়ন	200
সাইকেল চালানো	500
হৃদস্পন্দন	1.2

যান্ত্রিক কার্যের অর্থ দৈনন্দিন জীবনে ব্যবহৃত শব্দ 'কার্য' থেকে সম্পূর্ণ ভিন্ন। একজন মহিলা একটি ভারী বোঝা (heavy load) মাথার উপর রেখে ক্লান্ত হয়ে যেতে পারে কিন্তু এক্ষেত্রে কোনো যান্ত্রিক কার্য সম্পাদিত হয় না। এটার অর্থ এই নয় যে, মানুযের সাধারণ ক্রিয়াকলাপ যান্ত্রিক কার্যের পরিমাপ করা সম্ভবপর নয়। ধরে নাও যে, এক ব্যক্তি v_0 সমদ্রুতিতে হাঁটছে। উক্ত ব্যাক্তি দ্বারা যান্ত্রিক কার্য আমরা কার্য শক্তি উপপাদ্য ব্যবহার

করে সহজভাবে বের করতে পারি। ধরা যাক :

(a) হাঁটার সময় কৃতকার্যের অধিকাংশই পায়ের প্রত্যেক কদমের ত্বরণ ও মন্দনের জন্য সম্পাদিত হয়। (চিত্র 6.20)।

(b) বায়ুর প্রতিরোধ উপেক্ষণীয়।

(c) অভিকর্ষীয় বলের বিরুদ্ধে পাগুলো উঠানোর জন্য প্রয়োজনীয় কৃতকার্য উপেক্ষণীয়।

(d) হাঁটার সময় সাধারণভাবে হাতগুলোর দোলগতি ইত্যাদি উপেক্ষণীয়।

6.20 নং চিত্রে আমরা দেখতে পাই যে, প্রতি কদমে প্রত্যেক পা স্থির অবস্থা থেকে একটি দ্রুতি লাভ করে। যা আনুমানিকভাবে হাঁটার দ্রুতির সমান এবং পরবর্তিতে আবার স্থির অবস্থায় চলে আসে।

চিত্র 6.20 হাঁটার সময় একটি কদমের বিভিন্ন অবস্থানের চিত্র। প্রথম পা যখন ভূপৃষ্ঠ থেকে অধিকতম উপরে থাকে তখন দ্বিতীয় পা ভূপৃষ্ঠে থাকে এবং বিপরীতক্রমেও সত্য।

কার্য শক্তি উপপাদ্য অনুযায়ী, প্রতি পদক্ষেপে প্রত্যেক পা কর্তৃক কৃতকার্য হল $m_l v_0^2$ । এখানে m_l হল একটি পা এর ভর । উল্লেখ্য যে, পায়ের পাতা স্থির অবস্থা থেকে v_0 দ্রুতিতে নিয়ে আসতে পায়ের এক সেট পেশীসমূহ দ্বারা $m_l v_0^2/2$ শক্তি ব্যয়িত হয় । কিন্তু পায়ের আরেক সেট পূরক পেশীসমূহ দ্বারা পায়ের পাতাকে v_0 দ্রুতি থেকে স্থির অবস্থায় আনতে অতিরিক্ত $m_l v_0^2/2$ শক্তি ব্যয়িত হয় । কাজেই প্রতি পদক্ষেপে উভয় পা দ্বারা সম্পাদিত কৃতকার্য হল, (6.20 চিত্রকে অধ্যয়ন করো)

$$W_s = 2m_l v_0^2$$
(6.34)

ধরা যাক, $m_{_l} = 10~{
m kg}$ এবং মাইল প্রতি নয় মিনিট এই ধীর গতিতে দৌড়ালে যা SI এককে 3 m s⁻¹ দ্রুতির সমান। আমরা পাই, $W_{_S} = 180~{
m J}$ প্রতি পদক্ষেপ

যদি আমরা প্রতি পদক্ষেপের দৈর্ঘ্য $2 \,\mathrm{m}$ ধরি এবং কোনো এক ব্যক্তি $3 \,\mathrm{m \, s^{-1}}$ দুতিতে প্রতি সেকেন্ডে 1.5 পদক্ষেপ অতিক্রম করে, তাহলে ব্যয়িত ক্ষমতা

$$P = 180 \frac{J}{\gamma \mu$$
ক্ষেপ $\times 1.5 \frac{\gamma \mu$ ক্ষেপ}{ সেকেণ্ড

= 270 W

এটি আমাদের মনে রাখতে হবে যে, এই হিসাবটা বাস্তবিক মানের চেয়ে কম কারণ শক্তি ব্যয় এর বিভিন্ন পম্থা তথা হাতের দোলন, বায়ুর প্রতিরোধ প্রভৃতি উপেক্ষা করা হয়েছে। মজার বিষয় হল আমরা এখানে সংশ্লিষ্ট বলগুলোকে গুরুত্ব দিই নি। বলগুলোর মধ্যে প্রধানত ঘর্ষণবল এবং শরীরের অন্যান্য অংশের মাংসপেশী সমূহের দ্বারা পায়ের উপর প্রযুক্ত বলগুলোর হিসাব করা খুবই কঠিন। স্থিত ঘর্ষণ কোনো কার্য করে না এবং কার্য শক্তি উপপাদ্য প্রয়োগ করে মাংসপেশীসমূহ দ্বারা কৃতকার্য নির্ণয়ের মতো অসম্ভব প্রক্রিয়া আমরা এড়িয়ে গেছি। এক্ষেত্রে, আমরা একটি চাকার সুবিধাও দেখতে পাই। স্তন্যপায়ী প্রাণীদের চলনের মতো ক্রমাগত চলা ও থামা না করে, চাকা একটি অবিরাম মস্যণ গতি প্রদান করে।

অধ্যায় : সপ্তম

কণা সংস্থা এবং আবর্ত গতি (Systems of Particles and Rotational Motion)

7.1 ভূমিকা

- 7.2 ভরকেন্দ্র
- 7.3 ভরকেন্দ্রের গতি
- 7.4 একটি কণা সংস্থার রৈখিক ভরবেগ
- 7.5 দুটি ভেক্টরের ভেক্টর গুণ
- 7.6 কৌণিক বেগ এবং রৈখিক বেগের সঙ্গে এর সম্পর্ক
- 7.7 টর্ক এবং কৌণিক ভরবেগ
- 7.8 একটি দৃঢ় বস্তুর সাম্যাবস্থা
- 7.9 জড়তা (জাড্য) লামক
- 7.10 লম্ব এবং সমান্তরাল অক্ষ সমৃহের উপপাদা
- 7.11 একটি স্থির অক্ষ সাপেক্ষে আবর্তগতির সৃতি বিজ্ঞান (kinematics)
- 7.12 একটি স্থির অক্ষ সাপেক্ষে আবর্তগতির গতিবিদ্যা (dynamics)
- 7.13 একটি স্থির অক্ষ সাপেক্ষে আবর্তনের ক্ষেত্রে কৌণিক ভরবেগ
- 7.14 গড়িয়ে চলা গতি
 - সারাংশ ভেবে দেখার বিষয়সমূহ অনুশীলনী
 - অতিরিক্ত অনুশীলনী

7.1 ভূমিকা (Introduction)

পূর্বের অধ্যায়ে আমরা প্রাথমিকভাবে একটি কণার গতি নিয়ে আলোচনা করেছি। (একটি কণাকে বিন্দুভর হিসেবে উপস্থাপন করা হয়েছে। বাস্তবে এর কোন আকার নেই) এমনকি লব্ধ জ্ঞানকে আমরা সসীম আকারের বস্তুর গতির ক্ষেত্রেও প্রয়োগ করেছি। সেক্ষেত্রে ঐ সব বস্তুর গতিকে একটি কণার গতি হিসেবে বর্ণনা করেছি।

প্রাত্যহিক জীবনে আমাদের দেখা যে-কোন বাস্তব বস্তুরই একটি সসীম আকার আছে। বিস্তৃত (extended) বস্তুর গতি নিয়ে চর্চায় একটি কণার আদর্শায়িত মডেল প্রায়শই অপ্রতুল। এই অধ্যায়ে আমরা অপ্রতুলতার সীমাকে অতিক্রম করার চেস্টা করব। বিস্তৃত বস্তুর গতির বিষয়ে একটি ধারণা তৈরির চেস্টা করব। একটি বিস্তৃত বস্তু প্রথমত: একটি বস্তু সংস্থা। আমরা সামগ্রিকভাবে একটি সংস্থার গতি বিবেচনা করব। একটি বস্তু সংস্থার ভরকেন্দ্রই হবে এখানে মূল ধারণা। বিস্তৃত বস্তুর গতির ধারণা নিতে আমরা বস্তু সংস্থার ভরকেন্দ্রের গতি নিয়েই আলোচনা করব।

বিস্তৃত বস্তুর নানাবিধ সমস্যা সমাধান কল্পে এদের দৃঢ় বস্তু হিসেবে ধরে নেব। আদর্শ দৃঢ় বস্তু হল সে সব বস্তু যাদের যথার্থই নির্দিষ্ট এবং অপরিবর্তনীয় আকৃতি আছে। ঐসব বস্তুর আন্তঃআণবিক দূরত্বের পরিবর্তন হয়না। বলের প্রভাবে যেহেতু আদর্শ বস্তুর বিকৃতি ঘটে, দৃঢ় বস্তুর এই সংজ্ঞা থেকে ইহাই প্রতীয়মান হয় যে, কোনো বাস্তব বস্তুই প্রকৃত দৃঢ় নয়। কিন্তু অনেক ক্ষেত্রেই এই বিকৃতিগুলো নগণ্য। অনেক অবস্থায় বস্তুসমূহ যেমন চাকা, লাটিম, স্টালবিম, অণুগুলো এবং অন্যদিকে গ্রহগুলো, তাদের মোচড়ানো, বেঁকে যাওয়া বা কম্পন প্রভৃতিকে আমরা উপেক্ষা করে ধরে নিই যে এরা দৃঢ়।

7.1.1 দৃঢ় বস্তুর কী ধরনের গতি থাকতে পারে ? (What kind of motion can a rigid body have?)

চল, আমরা দৃঢ় বস্তুর গতির কয়েকটি উদাহরণ নিয়ে এই প্রশ্নের উত্তর খোঁজার চেস্টা করি। ধরো, পাশের দিকে গতি ছাড়া নততলে একটি আয়তাকার ব্লক নীচের দিকে পিছলে পড়ছে। ব্লকটি একটি দৃঢ় বস্তু। তল বরাবর বস্তুটির নীচের দিকে গতি

চিত্র 7.1 (নততল বরাবর একটি ব্লকের চলন গতি (পিছলে পড়া)। ব্লকের P₁ বা P₂ যে কোনো বিন্দুর যে কোনো মৃহুর্তে একই বেগ।)

এমন হয় যে, এর সব কণাগুলো একত্রে গতিশীল অর্থাৎ যে-কোনো মুহূর্তে কণাগুলোর বেগ সমান। দৃঢ় বস্তুটি এখানে প্রকৃত চলন গতিতে (translational motion) আছে (চিত্র 7.1)।

প্রকৃত চলন গতির (translational motion) যে-কোনো মুহুর্ত্তে বস্তুর সব কণাগুলোর বেগ সমান থাকে।

ধর, একই নততলে (চিত্র 7.2) একটি নিরেট ধাতব বা কাঠের চোঙ গড়িয়ে নীচের দিকে পড়ছে। এই সমস্যায় দৃঢ় বস্তুটি এখানে চোঙটির, নততলের শীর্ষ থেকে পাদদেশে স্থানাস্তর হয় এবং এভাবে চলন গতি হয়। কিন্তু 7.2 নং চিত্র দেখাচ্ছে, যে কোন মুহূর্তে বস্তুর সব কণাগুলোর বেগ সমান নয়। অতএব, বস্তুটি প্রকৃত চলন গতিতে নেই। এর গতিতে চলন ছাড়াও অন্য কিছু আছে।

চিত্র 7.2 চোঙের ঘূর্ণায়মান (গড়িয়ে পড়া) গতি। এটি প্রকৃত চলন গতি নয়। P_,, P₂, P₃ এবং P₄বিন্দুগুলো যে-কোনো মুহুর্তে বিভিন্ন বেগে (তীর চিহ্নে দেখানো) আছে। প্রকৃতপক্ষে যদি চোঙটি না পিছলে গড়িয়ে পড়ে, যে-কোনো মুহুর্তে স্পর্শবিন্দু P₃ তে বেগ শূন্য।

চলন গতির সঙ্গে 'এই অন্য কিছু' বুঝতে ধরো, দৃঢ় বস্তুটি এমন বাধ্যতায় আছে যে এর চলন গতি থাকতে পারে না। দৃঢ় বস্তুকে বাধ্যতায় রাখার সর্বাপেক্ষা সাধারণ উপায় হল এটিকে একটি সরল রেখা বরাবর যুক্ত করা যাতে এর চলনগতি না থাকে। একটি দৃঢ় বস্তুর ঐ রূপ সম্ভাব্য গতি হল ঘূর্ণন (rotation)। যে রেখা বরাবর বস্তুটিকে আটকানো হল তাকে ঘূর্ণন অক্ষ বলা হয়। তোমার চারদিকে তাকিয়ে তুমি ঐ রকম অক্ষকে কেন্দ্র করে ঘূর্ণনের অনেক উদাহরণ পাবে যেমন, সিলিংফ্যান, কুম্ভকারের চাকা, উইন্ডমিল, নাগরদোলা ইত্যাদি।

চিত্র 7.3 একটি স্থির অক্ষকে কেন্দ্র করে ঘূর্ণন (a) সিলিংফ্যান (b) কুন্ডকারের চাকা

ঘূর্ণন কী এবং কোন্ বিশেষত্ব ঘূর্ণনের জন্য দায়ী, চল আমরা তা বুঝার চেস্টা করি।

চিত্র 7.4 z-অক্ষ সাপেক্ষে একটি দৃঢ় বস্তুর ঘূর্ণন। (বস্তুটির প্রতিটি বিন্দু যেমন P₁ বা P₂ একটি বৃত্তকে বর্ণনা করে এর কেন্দ্র (C₁ বা C₂) অক্ষের উপর। বৃত্তটির ব্যাসার্ধ (r₁ বা r₂) হল অক্ষ থাকে বিন্দুটির (P₁ বা P₂) লম্ব দূরত্ব। অক্ষের উপর P₃ এর মতো একটি বিন্দু স্থির থাকে।)

তুমি হয়তো লক্ষ করে থাকবে, স্থির অক্ষ সাপেক্ষে একটি দৃঢ় বস্তুর ঘূর্ণনে, বস্তুর প্রতিটি কণা একটি বৃত্তাকার পথে গতিশীল, ইহা অক্ষের সঞ্চো লম্ব একটি তলে অবস্থান করে এবং কেন্দ্রটি অক্ষের উপরে থাকে। 7.4 নং চিত্রটি একটি স্থির অক্ষ (fixed axis) (নির্দেশ ফ্রেমের z-অক্ষটি) সাপেক্ষে একটি দৃঢ় বস্তুর ঘূর্ণনগতিকে দেখাচ্ছে। ধরো, স্থির অক্ষ থেকে r, দূরত্বে দৃঢ় বস্তুটির যে-কোনো একটি কণা P । স্থির অক্ষের উপর এর কেন্দ্র C , এবং P , কণাটি r া বাসার্ধের একটি বৃত্ত বর্ণনা করছে। বৃত্তটি অক্ষের সঙ্গে লম্ব একটি তলে অবস্থান করছে। চিত্রটি আরও দেখাচ্ছে যে, দৃঢ় বস্তুটির অন্য একটি কণা P, এবং P, স্থির অক্ষ থেকে r, দূরত্বে আছে। P, কণাটি r_2 ব্যাসার্ধের একটি বৃত্তে যুরছে এবং C_2 কেন্দ্রটি অক্ষের উপর। এই বৃত্তটিও অক্ষের উপর লম্ব একটি তলে অবস্থিত। লক্ষ্যণীয় P, এহং P, দ্বারা বর্ণিত বৃত্তগুলো ভিন্ন তলে অবস্থান করতে পারে, অবশ্য এই তলগুলোর উভয়েই স্থির অক্ষটির সঙ্গো লম্ব তলে অবস্থান করে। অক্ষের উপর যে কোন কণার জন্য যেমন P₂, r=0. যখনই বস্তুটি ঘুরে, ঐ ধরনের কণা স্থির থাকে। অক্ষটি স্থির, কাজেই এটাই প্রত্যাশিত।

চিত্র 7.5 (b) একটি দোলায়মান টেবিল ফ্যান। ফ্যানটির পিভট 'O' স্থির।

ঘূর্ণনের অন্য কিছু উদাহরণে অবশ্য অক্ষটি স্থির নাও থাকতে পারে। এ ধরনের ঘূর্ণনের একটি লক্ষ্যণীয় উদাহরণ হল কোন স্থানে একটি লাটিমের ঘূর্ণন (7.5 a নং চিত্র)। [আমরা ধরে নিয়েছি যে, লাটিমটি পিছলে (বা হড়কিয়ে) স্থানান্তরিত হচ্ছে না এবং এজন্যই এতে চলন গতি নেই]। অভিজ্ঞতা থেকে আমরা জানি যে ঐ ধরনের ঘূর্ণনশীল লাটিমের অক্ষটি, ভূমির সঙ্গে স্পর্শ বিন্দুগামী উল্লম্বটির চারদিকে ঘুরে এবং 7.5(a) নং চিত্রের মতো একটি শঙ্কুর আকৃতি দেয়। লাটিমের অক্ষটির উল্লম্বের চারদিকে এ ধরনের গতিকে বলে অয়নচলন(precession)। লক্ষ করো, ভূমির সঙ্গো লাটিমের স্পর্শ বিন্দুটি স্থির। লাটিমের ঘূর্ণাক্ষটি যে কোন মুহূর্তে স্পর্শ বিন্দুটি অতিক্রম করে যায়। এ ধরনের ঘূর্ণাক্ষেটি যে কোন মুহূর্তে স্পর্শ বিন্দুটি অতিক্রম টেবিল ফ্যান অথবা স্ট্যান্ড ফ্যান। তুমি হয়তো লক্ষ করে থাকবে যে, ঐ ধরনের ফ্যানের ঘূর্ণাক্ষের একটি দোলায়িত (পাশের দিকে) গতি আছে। এই গতি একটি অনুভূমিক তলে উল্লম্ব অক্ষ সাপেক্ষে হচ্ছে এবং অক্ষটি ঐ তলের একটি বিন্দুতে কীলগ করা (pivoted) আছে। (7.5 (b) নং চিত্রে 'O' বিন্দু)

যখন ফ্যানটি ঘুরে এবং অক্ষটির গতি পাশের দিকে হয় তখন এ বিন্দুটি স্থির থাকে। এভাবে ঘূর্ণনের অনেক সাধারণ ক্ষেত্রগুলোতে যেমন — লাটিমের ঘূর্ণন অথবা স্ট্যান্ড ফ্যান, দৃঢ় বস্তুটির একটি রেখা নয়, একটি বিন্দু স্থির থাকে। এই ক্ষেত্রে অক্ষটি স্থির নয় যদিও এটি সবসময় স্থির বিন্দুটি অতিক্রম করে। যা হোক, আমরা বেশিরভাগ সরলতর এবং ঘূর্ণনের বিশেষ ক্ষেত্রগুলো নিয়ে চর্চা করব

চিত্র 7.6(a) দৃঢ় বস্তুর গতি, যেটি বিশুদ্ধ চলনগতি।

চিত্র 7.6(b) দৃঢ় বস্তুর গতি যা চলনগতি ও ঘূর্ণন গতির সমন্বয়

7.6 (a) এবং 7.6 (b) নং চিত্রে একই বস্তুর বিভিন্ন গতি চিত্রিত। লক্ষ কর, P বস্তুটির যে কোন একটি বিন্দু; O হল এর ভরকেন্দ্র, যা পরের বিভাগে সংজ্ঞায়িত করা হবে। এখানে বলা চলে যে, O এর প্রক্ষেপ পথ হল বস্তুটির চলন প্রক্ষেপ পথ Tr₁ এবং Tr₂। 7.6 (a) নং এবং 7.6 (b) নং উভয় চিত্রে O এবং P এর অবস্থান সময়ের তিনটি ভিন্ন মুহুর্তে যথাক্রমে O₁, O₂, O₃, এবং P₁, P₂ এবং P₃ - তে দেখানো হল। 7.6 (a) নং চিত্রে যেমন দেখা যায়, বিশুম্ব চলন গতির যে কোন মুহুর্তে বস্তুটির 'O' এবং 'P' কণার বেগ সমান। লক্ষ্যণীয়, এক্ষেত্র OP এর ঝোঁক (orientation) অর্থাৎ একটি নির্দিন্ট দিকের সজো, ধরো, অনুভূমিকের সজো OP যে কোণ উৎপন্ন করে তা একই থাকে। অর্থাৎ α₁ = α₂ = α₃ 7.6 (b) নং চিত্রে চলন এবং ঘূর্ণনের সমন্বয়ের ঘটনাটি চিত্রায়িত। এক্ষেত্রে যে কোন মুহুর্তে O এবং P এর বেগ ভিন্ন। এছাড়াও α₁, α₂ এবং α₃ সবই বিভিন্ন হতে পারে। যেখানে একটি রেখা (অর্থাৎ অক্ষটি) স্থির। এভাবে অন্য কিছু বলা না থাকলে আমরা বুঝব, ঘূর্ণন কেবল একটি স্থির অক্ষকে কেন্দ্র করে হয়।

নততল বরাবর একটি চোঙের গড়িয়ে নীচে পড়া হচ্ছে একটি অক্ষকে কেন্দ্র করে ঘূর্ণন এবং চলনের (translation) সমন্বয়। এভাবে গড়িয়ে চলার ক্ষেত্রে পূর্বে উল্লেখিত 'কিছু একটা' হল ঘূর্ণন গতি । এ পরিপ্রেক্ষিতে তুমি 7.6(a) এবং 7.6 (b) নং শিক্ষনীয় চিত্রগুলো দেখবে । উভয় চিত্রই একই বস্তুর এক রকম প্রক্ষেপ পথে চলন দেখাচ্ছে । 7.6(a) নং চিত্রে এটি বিশুম্ব চলন এবং অন্য ক্ষেত্রে [7.6(b) নং চিত্রে] এটি একটি চলন ও ঘূর্ণনের সমন্বয় । (একটি ভারী বইয়ের মতো দৃঢ়বস্তুকে নিয়ে তুমি দু'প্রকার গতি পুনঃসৃষ্টির চেন্টা করতে পার ।)

আমরা এখন বর্তমান বিভাগের খুবই গুরুত্বপূর্ণ পর্যবেক্ষণগুলোর সারসংক্ষেপ করব : একটি দৃঢ় বস্তু কীলকাবন্দ্ধ করা (pivoted) না থাকলে বা অন্য কেনোভাবে স্থির করা না থাকলে — এর গতি হয় বিশুদ্ধ চলন অথবা চলন ও ঘূর্ণনের সমন্বয়। কীলকাবন্দ্ধ করা (pivoted) বা অন্য কোনোভাবে স্থির করা দৃঢ়বস্তুর গতি হল ঘূর্ণন। ঘূর্ণন হবে একটি অক্ষ সাপেক্ষে যেটি স্থির (যেমন সিলিং ফ্যান) অথবা চলমান (যেমন একটি দোলায় মান টেবিল ফ্যান)। বর্তমান অধ্যায়ে আমরা কেবল একটি স্থির অক্ষ সাপেক্ষে ঘূর্ণন গতিই বিবেচনা করব।

7.2 ভরকেন্দ্র (Centre of Mass)

আমরা প্রথম দেখব একটি কণা সংস্থার ভরকেন্দ্র কী এবং এরপর এটির তাৎপর্য আলোচনা করব। আলোচনার সরলতার জন্য আমরা দুটি কণার একটি সংস্থা নিয়েই শুরু করব। আমরা দুটি কণাকে যোগ করে প্রাপ্ত রেখাকে X- অক্ষ হিসেবে নেব।

ধরো, কোন মূলবিন্দু O থেকে কণা দুটির দূরত্ব যথাক্রমে x_1 এবং x_2 । কণা দুটির ভর যথাক্রমে m_1 ও m_2 । সংস্থাটির ভরকেন্দ্র C বিন্দুতে এবং O থেকে X দূরত্বে অবস্থিত হলে লেখা যায়

$$X = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2} \tag{7.1}$$

7.1 নং সমীকরণে X কে $x_1 \, {}^{\varsigma} \, x_2$ এর ভর পরিমিত গড় (massweighted mean) হিসেবে গণ্য করা হয়। যদি দুটি কণার একই ভর থাকে অর্থাৎ $m_1 = m_2 = m$ ়হয়, তবে

$$X = \frac{mx_1 + mx_2}{2m} = \frac{x_1 + x_2}{2}$$

এভাবে সমান ভরের দুটি কণার ভরকেন্দ্র এদের ঠিক মধ্যবিন্দুতে হয়।

x অক্ষরূপে নেওয়া একটি সরললেখা বরাবর, যদি আমাদের কাছে, যথাক্রমে $m_1, m_2, ...m_n$ ভরের n সংখ্যক কণা থাকে তখন সংজ্ঞানুযায়ী কণা সংস্থার ভরকেন্দ্রের অবস্থান হবে

$$X = \frac{m_1 x_1 + m_2 x_2 + \dots + m_n x_n}{m_1 + m_2 + \dots + m_n} = \frac{\sum_{i=1}^n m_i x_i}{\sum_{i=1}^n m_i} = \frac{\sum_{i=1}^n m_i x_i}{\sum_{i=1}^n m_i}$$
(7.2)

যেখানে $x_1, x_2, ..., x_n$ হল মূলবিন্দু থেকে কণাসমূহের দূরত্ব। X ও একই মূলবিন্দু থেকে পরিমেয়। Σ প্রতীকটি (গ্রিক অক্ষর সিগমা) এখানে *n* সংখ্যক কণার সমন্টি বুঝায়। সংস্থাটির মোট ভরের সমন্টি

 $\sum m_i = M$

ধরো, একই সরলরেখায় অবস্থিত নয় এমন তিনটি কণা আছে। কণাগুলো যে তলে অবস্থিত সেই তলে x এবং y অক্ষ নিয়ে তিনটি কণার অবস্থানকে যথাক্রমে (x₁, y₁), (x₂, y₂) এবং(x₃, y₃) স্থানাজ্বের সাহায্যে সূচিত করা যায়। ধরো, কণা তিনটির ভর যথাক্রমে m₁, m₂ এবং m₃। তিনটি কণা দ্বারা গঠিত সংস্থার ভরকেন্দ্র C যেভাবে সংজ্ঞায়িত এবং এদের অবস্থানের স্থানাজ্ঞ্ব (X, Y) কে লেখা যায়

$$X = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3}{m_1 + m_2 + m_3}$$
(7.3a)

$$Y = \frac{m_1 y_1 + m_2 y_2 + m_3 y_3}{m_1 + m_2 + m_3}$$
(7.3b)

$$X = \frac{m(x_1 + x_2 + x_3)}{3m} = \frac{x_1 + x_2 + x_3}{3}$$

সমভরের কণাগুলোর জন্য $m = m_1 = m_2 = m_3$,

$$Y = \frac{m(y_1 + y_2 + y_3)}{3m} = \frac{y_1 + y_2 + y_3}{3}$$

এভাবে সমভরের তিনটি কণার জন্য ভরকেন্দ্রটি (centre of mass) এবং কণাগুলো দ্বারা গঠিত ত্রিভুজটির ভরকেন্দ্র (centroid) সমাপতিত (coincide)।

7.3 a নং এবং 7.3 b নং সমীকরণের ফলাফল দিয়ে *n* সংখ্যক কণা সংস্থার জন্য সাধারণীকরণ (geralised) করা যায়। এরা একই তলে অবস্থান করতে হবে এমনটা নয় কিন্তু একই স্থানে বণ্টিত থাকবে। সেরকম একটা সংস্থার ভরকেন্দ্র হবে (*X*, *Y*, *Z*), যেখানে

$$X = \frac{\sum m_i x_i}{M} \tag{7.4a}$$

$$Y = \frac{\sum m_i y_i}{M} \tag{7.4b}$$

এবং
$$Z = \frac{\sum m_i z_i}{M}$$
 (7.4c)

এখানে $M = \sum m_i$ হল সংস্থার মোট ভর। i সূচকটি1 থেকে nপর্যন্ত বিস্তৃত; m_i হল i-তম কণার ভর এবং i-তম কণার অবস্থানকে (x_i, y_i, z_i) দিয়ে লেখা যায়। অবস্থান ভেক্টরের চিহ্ন ব্যবহার করে (7.4a), (7.4b) এবং (7.4c) নং সমীকরণ তিনটির সমন্বয়ে একটি সমীকরণ তৈরি করা যায়।

ধর, \mathbf{r}_i হল i-তম কণার অবস্থান ভেক্টর এবং ভরকেন্দ্রের অবস্থান ভেক্টর \mathbf{R} হলে :

$$\mathbf{r}_{i} = x_{i} \hat{\mathbf{i}} + y_{i} \hat{\mathbf{j}} + z_{i} \hat{\mathbf{k}}$$

$$\mathbf{R} = X \hat{\mathbf{j}} + Y \hat{\mathbf{j}} + Z \hat{\mathbf{k}}$$

এব

তখন
$$\mathbf{R} = \frac{\sum m_i \mathbf{r}_i}{M}$$
 (7.4d)

ডান পক্ষের রাশিটি হল একটি ভেক্টর সমষ্টি।

লক্ষ করো, ভেক্টর ব্যবহার করে আমরা রাশিমালার সংখ্যা কমিয়েছি।যদি নির্দেশ ফ্রেমের মূলবিন্দু (স্থানাঙ্ক প্রথা) ভরকেন্দ্রকে ধরা হয় তবে প্রদত্ত কণা সংস্থার জন্য $\sum m_i \mathbf{r}_i = 0$.

মিটার স্টিক বা উড়স্ত চাকার মতো দৃঢ়বস্তু হল ঘন সন্নিবিষ্ট কণার সংস্থা।অতএব, সমীকরণ (7.4a), (7.4b), (7.4c) এবং (7.4d) একটি দৃঢ় বস্তুর ক্ষেত্রে প্রযোজ্য। ঐ ধরনের বস্তুতে কণার সংখ্যা (অণু বা পরমাণু সমূহ) এত বেশি যে, এ সমীকরণগুলোতে স্বতন্ত্র কণাগুলোর উপর সমষ্টি সম্পন্ন করা সম্ভব নয়। যেহেতু কণাগুলোর মধ্যে ব্যবধান খুব ছোটো সে জন্য বস্তুটিতে ভর নিরবচ্ছিন্ন ভাবে বণ্টিত আছে— ধরে নিতে পারি। বস্তুটিকে $\Delta m_1, \Delta m_2... \Delta m_2$ ভর সম্পন্ন n সংখ্যক কণায় পুনঃবিভাজিত করি। i-তম কণাটির ভর Δm_i এবং এর অবস্থান (x_i, y_i, z_i) । তখন ভরকেন্দ্রটির স্থানাঞ্চ আনুমানিকভাবে লেখা যায় -

$$X = \frac{\sum (\Delta m_i) x_i}{\sum \Delta m_i}, Y = \frac{\sum (\Delta m_i) y_i}{\sum \Delta m_i}, Z = \frac{\sum (\Delta m_i) z_i}{\sum \Delta m_i}$$

n কে বৃহৎ থেকে বৃহত্তর এবং Δm_i কে ক্ষুদ্র থেকে ক্ষুদ্রতর করলে এসব রাশিমালার সঠিক প্রকাশ হয়। সেক্ষেত্রে i -এর সমষ্টিগুলোকে সমাকলন দিয়ে চিহ্নিত করতে পারি। এভাবে

$$\sum \Delta m_i \to \int dm = M,$$

$$\sum (\Delta m_i) x_i \to \int x \, dm,$$

$$\sum (\Delta m_i) y_i \to \int y \, dm,$$

$$\sum (\Delta m_i) z_i \to \int y \, dm,$$

এবং $\sum (\Delta m_i) z_i \to \int z \, \mathrm{d}m$

এখানে M হল বস্তুটির মোট ভর। এখন ভরকেন্দ্রটির স্থানাঞ্চ হবে –

$$X = \frac{1}{M} \int x \, \mathrm{d}m, Y = \frac{1}{M} \int y \, \mathrm{d}m \text{ and } Z = \frac{1}{M} \int z \, \mathrm{d}m \quad (7.5a)$$

এ তিনটি স্কেলার রাশিমালার তুল্য ভেক্টর রাশিমালাটি হবে—

$$\mathbf{R} = \frac{1}{M} \int \mathbf{r} \, \mathrm{d}m \tag{7.5b}$$

যদি আমরা ভরকেন্দ্রটিকে আমাদের স্থানাঙ্ক প্রথায় মুলবিন্দু হিসেবে ধরে নিই – তবে

$$\mathbf{R} = \mathbf{0}$$

অর্থাৎ $\int \mathbf{r} \, \mathrm{d}m = \mathbf{0}$
বা $\int x \, \mathrm{d}m = \int y \, \mathrm{d}m = \int z \, \mathrm{d}m = \mathbf{0}$ (7.6)

আমাদের প্রায়শই রড, গোলক, চাকতি, রিং প্রভৃতি সমসত্ত্ব (homogeneous) বস্তুর ভরকেন্দ্র গণনা করতে হয়। (সমসত্ত্ব বস্তু বলতে আমরা ভর সমভাবে বন্টিত এমন বুঝাচ্ছি)। প্রতিসাম্য বিবেচনায় আমরা সহজেই দেখাতে পারব যে, এসব বস্তুর ভরকেন্দ্র এদের জ্যামিতিক ভরকেন্দ্রেই অবস্থিত।

চিত্র 7.8 একটি সরু রডের ভরকেন্দ্র নির্ণয়

ধরো, একটি সরু রড, যার প্রস্থ ও বেধ (রডটির প্রস্থচ্ছেদ আয়তক্ষেত্রাকার) অথবা ব্যাসার্ধ (রডটির প্রস্থচ্ছেদ চোঙাকার) এর দৈর্ঘ্যের তুলনায় খুব ছোটো। মূল বিন্দুটি রডটির জ্যামিতিক কেন্দ্রে এবং x-অক্ষকে রডটির দৈর্ঘ্য বরাবর ধরে আমরা বলতে পারি, রডের x - অবস্থানের প্রতিটি উপাদান dm এর প্রতিফলন জনিত প্রতিসাম্যতার জন্য '-x' অবস্থানে একই ভরের dm আছে (চিত্র 7.8)

এ ধরনের প্রতিটি জোড়ের সমাকলন $\int x \, \mathrm{d}m$ নিজেই শূন্য হয়। 7.6 নং সমীকরণ থেকে যে বিন্দুটির জন্য সমাকলনটি নিজেই শূন্য সেটিই হল ভরকেন্দ্র। এভাবে সমসত্ত্ব রডটির ভরকেন্দ্র এর জ্যামিতিক কেন্দ্রেই সমাপতিত (coincides)। প্রতিফলন জনিত প্রতিসাম্যের উপর ভিত্তি করে এটি বুঝা যায়।

একই প্রতিসাম্যের যুক্তি রিং, চাকতি, গোলক, এমনকি বৃত্তাকার বা আয়তক্ষেত্রাকার প্রস্থচ্ছেদের মোটা রডের ক্ষেত্রেও প্রয়োগ করা যাবে। এধরনের সব বস্তুর জন্য তুমি অনুধাবন করবে যে, (x, y, z) বিন্দুতে প্রত্যেক উপাদান dm এর জন্য (-x, -y, -z) বিন্দুতে সম ভরের একটি উপাদান আছে। (অন্যভাবে বলা যায়, এসব বস্তুসমূহের জন্য মূলবিন্দুটি হল প্রতিফলন জনিত প্রতিসাম্য বিন্দু)। ফলস্বরুপ (7.5 a) নং সমীকরণের সব সমাকলনগুলো শূন্য। এটি বুঝায় যে, উপরে বর্ণিত সবগুলো বস্তুর ভরকেন্দ্র এবং এদের জ্যামিতিক কেন্দ্র এক।

7.9 নং চিত্রে যেভাবে দেখানো আছে সেই মতো *x*−অক্ষ, *y*−অক্ষ এবং মূলবিন্দু O নেয়া হল। O, A এবং B দ্বারা গঠিত সমবাহু ত্রিভুজটির তিনটি শীর্যবিন্দুর স্থানাঞ্চ যথাক্রমে (0,0), (0.5,0), (0.25,0.25 √3)।ধরো, 100 g, 150g এবং 200g ভরগুলো যথাক্রমে O, A এবং B বিন্দুতে অবস্থিত। তখন —

$$X = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3}{m_1 + m_2 + m_3}$$

= $\frac{\left[100(0) + 150(0.5) + 200(0.25)\right] \text{ g m}}{(100 + 150 + 200) \text{ g}}$
= $\frac{75 + 50}{450} \text{ m} = \frac{125}{450} \text{ m} = \frac{5}{18} \text{ m}$
$$Y = \frac{\left[100(0) + 150(0) + 200(0.25\sqrt{3})\right] \text{ g m}}{450 \text{ g}}$$

$$=\frac{30\sqrt{3}}{450}\,\mathrm{m}=\frac{\sqrt{3}}{9}\,\mathrm{m}=\frac{1}{3\sqrt{3}}\,\mathrm{m}$$

চিত্রে ভরকেন্দ্র C দেখানো হল। লক্ষ্যকরো, এটি ত্রিভুজ OAB এর জ্যামিতিক কেন্দ্র নয়। কেন?

উদাহরণ 7.2 : ত্রিভুজাকৃতি একটি পাতলা পাতের (lamina)
 ভরকেন্দ্র নির্ণয় করো।

উত্তর : পাতলা পাত ΔLMN কে কতকগুলো সরু স্ট্রিপে পুনঃ বিভাজন করা হল। 7.10 নং চিত্রের মতো পাতগুলো ভূমির (MN) সমান্তরাল।

চিত্র 7.10

প্রতি সাম্যের সাহায্যে প্রতিটি স্ট্রিপের ভরকেন্দ্র এদের মধ্য বিন্দুতে থাকে। যদি আমরা মধ্যবিন্দুগুলো যোগ করি তবে মধ্যমা LP পাই।অতএব সামগ্রিকভাবে ত্রিভুজটির ভরকেন্দ্র মধ্যমা LP এর উপর অবস্থিত। একইভাবে, এটি মধ্যমা MQ এবং NR এর উপর অবস্থিত। এ থেকে বুঝা যায় যে, ভরকেন্দ্রটি মধ্যমা তিনটির সমবিন্দুতে অবস্থিত অর্থাৎ ত্রিভুজটির ভরকেন্দ্র G তে অবস্থিত।

উদাহরণ 7.3 L- আকৃতির সুষম পাতলা পাতের (lamina) (একটি পাতলা তল) ভরকেন্দ্র নির্ণয় করো। এর মাত্রাগুলো চিত্রে দেখানো হল। পাতটির ভর 3 kg।

উত্তর : X এবং Y অক্ষকে 7.11 নং চিত্রে দেখানো হল । L-আকৃতির পাতলা পাতটির শীর্ষবিন্দুগুলোর স্থানাজ্বুও চিত্রের মতো ধরা হল । আমরা ভেবে নিতে পারি যে, L- আকৃতিটি তিনটি বর্গক্ষেত্র নিয়ে গঠিত এবং প্রত্যেকটি বর্গক্ষেত্রের প্রতি বাহুর দৈর্ঘ্য 1m । যেহেতু এটি সুষম পাতলা পাত, তাই প্রতিটি বর্গক্ষেত্রের ভর 1kg । প্রতিসাম্যতার জন্য বর্গক্ষেত্র তিনটির ভরকেন্দ্র C₁, C₂ এবং C₃ এদের জ্যামিতিক কেন্দ্রে অবস্থিত । এদের স্থানাজ্ক যথাক্রমে (1/2,1/2), (3/2, 1/2) এবং (1/2, 3/2) । আমরা ধরে নিই যে, বর্গক্ষেত্রগুলোর ভর এই বিন্দুগুলোতে কেন্দ্রীভূত । সমগ্র L-আকৃতির পাতটির ভরকেন্দ্রই (X, Y) হল এ বিন্দুভরগুলোর ভরকেন্দ্র ।

$$X = \frac{\left[1(1/2) + 1(3/2) + 1(1/2)\right] \text{kg m}}{(1+1+1) \text{kg}} = \frac{5}{6} \text{m}$$
$$Y = \frac{\left[\left[1(1/2) + 1(1/2) + 1(3/2)\right]\right] \text{kg m}}{(1+1+1) \text{kg}} = \frac{5}{6} \text{m}$$

L-আকৃতির পাতটির ভরকেন্দ্র OD রেখার উপর অবস্থিত। গণনা ছাড়া আমরা এটি অনুমান করতে পারি। বলতে পারো কেন ? ধরো, যে তিনটি বর্গক্ষেত্র দিয়ে L আকৃতির পাতটি গঠিত হল — এরা বিভিন্ন ভরযুক্ত। তুমি কীভাবে পাতলা পাতটির ভরকেন্দ্র নির্ণয় করবে?

7.3 ভরকেন্দ্রের গতি (Motion of Centre of Mass)

ভরকেন্দ্রের ধারণার উপর ভিত্তি করে আমরা এখন কণা সংস্থায় এর বাস্তবিক গুরুত্ব নিয়ে আলোচনা করব। 7.4 d নং সমীকরণকে আমরা এভাবে লিখতে পারি —

$$M\mathbf{R} = \sum m_i \mathbf{r}_i = m_1 \mathbf{r}_1 + m_2 \mathbf{r}_2 + \dots + m_n \mathbf{r}_n \qquad (7.7)$$

সমীকরণটির উভয় পক্ষকে সময়ের সাপেক্ষে অবকলন করে পাই —

$$M \frac{\mathrm{d}\mathbf{R}}{\mathrm{d}t} = m_1 \frac{\mathrm{d}\mathbf{r}_1}{\mathrm{d}t} + m_2 \frac{\mathrm{d}\mathbf{r}_2}{\mathrm{d}t} + \dots + m_n \frac{\mathrm{d}\mathbf{r}_n}{\mathrm{d}t}$$

বা,

$$\boldsymbol{M} \, \mathbf{V} = \boldsymbol{m}_1 \mathbf{v}_1 + \boldsymbol{m}_2 \mathbf{v}_2 + \ldots + \boldsymbol{m}_n \mathbf{v}_n \tag{7.8}$$

যেখানে $\mathbf{v}_1 \left(= d\mathbf{r}_1 / dt\right)$ হল প্রথম কণাটির বেগ, $\mathbf{v}_2 \left(= d\mathbf{r}_2 / dt\right)$ হল দ্বিতীয় কণাটির বেগ ইত্যাদি এবং $\mathbf{V} = d\mathbf{R} / dt$ হল ভরকেন্দ্রটির বেগ। আমরা ধরে নিয়েছি যে, সময়ের সঙ্গো m_1, m_2, \dots ইত্যাদি ভরগুলোর কোনো পরিবর্তন হয় না। অতএব সমীকরণটিকে সময়ের সাপেক্ষে অবকলনের সময় এদের ধ্রুবক হিসেবে নিয়েছি।

7.8 নং সমীকরণকে সময়ের সাপেক্ষে অবকলন করে পাই —

$$M \frac{\mathrm{d}\mathbf{V}}{\mathrm{d}t} = m_1 \frac{\mathrm{d}\mathbf{v}_1}{\mathrm{d}t} + m_2 \frac{\mathrm{d}\mathbf{v}_2}{\mathrm{d}t} + \dots + m_n \frac{\mathrm{d}\mathbf{v}_n}{\mathrm{d}t}$$

বা $M\mathbf{A} = m_1\mathbf{a}_1 + m_2\mathbf{a}_2 + ... + m_n\mathbf{a}_n$ (7.9) থেখানে $\mathbf{a}_1 (= d\mathbf{v}_1/dt)$ হল প্রথম কণাটির ত্বরণ, $\mathbf{a}_2 (= d\mathbf{v}_2/dt)$ হল দ্বিতীয় কণাটির ত্বরণ ইত্যাদি এবং $\mathbf{A} (= d\mathbf{V}/dt)$ কণা সংস্থার ভরকেন্দ্রের ত্বরণ।

এখন, নিউটনের দ্বিতীয় সূত্র থেকে, প্রথম কণাটির উপর প্রযুক্ত বল $\mathbf{F}_1 = m_1 \mathbf{a}_1$, দ্বিতীয় কণাটির উপর প্রযুক্ত বল $\mathbf{F}_2 = m_2 \mathbf{a}_2$ এবং এভাবে 7.9নং সমীকরণকে লেখা যায়

$$M\mathbf{A} = \mathbf{F}_1 + \mathbf{F}_2 + \dots + \mathbf{F}_n \tag{7.10}$$

এভাবে কণা সংস্থার মোট ভর এবং ভরকেন্দ্রের ত্বরণের গুণফল

হল কণা সংস্থার উপর প্রযুক্ত সব বলের ভেক্টর যোগ।

লক্ষ্যকরো, যখন আমরা কণাটির উপর প্রযুক্ত F₁ বলের কথা বলছি তা কেবল একটি বল নয় কিন্তু এটা হল প্রথম কণাাটির উপর প্রযুক্ত সব বলগুলোর ভেক্টর যোগ। প্রত্যেক কণার উপর এ বলগুলোর মধ্যে রয়েছে সংস্থার বাইরের বস্তু কর্তৃক প্রযুক্ত বাহ্যিক বল এবং কণাগুলোর পারস্পরিক অভ্যন্তরীণ বল। নিউটনের তৃতীয় সূত্র থেকে আমরা জানি, এসব অভ্যন্তরীণ বলগুলো সমান ও বিপরীত এবং জোড়ায় জোড়ায় উৎপন্ন হয় এবং 7.10 নং সমীকরণে বলগুলোর যোগফল শূন্য। এ সমীকরণে কেবলমাত্র বাহ্যিক বলেরই অবদান আছে। 7.10 নং সমীকরণের পুনরায় নিম্নলিখিত রুপে লেখা যায়

$$M\mathbf{A} = \mathbf{F}_{ext} \tag{7.11}$$

যেখানে $\mathbf{F}_{\mathrm{ext}}$ দিয়ে কণা সংস্থার উপর প্রযুক্ত বাহ্যিক বলগুলোর সমষ্টি বুঝায়।

7.11 নং সমীকরণটি বিবৃত করে যে, একটি কণা সংস্থার ভরকেন্দ্রটি এমনভাবে গতিশীল যে, সংস্থাটির সব ভর যেন এর ভরকেন্দ্রেই কেন্দ্রীভূত এবং সব বাহ্যিক বলসমূহ ঐ বিন্দুতে ক্রিয়াশীল।

লক্ষ করো, ভরকেন্দ্রটির গতি নির্ণয় করতে সংস্থার অভ্যন্তরীণ বল সম্পর্কে জ্ঞানের প্রয়োজন নেই। এর জন্য শুধু বাহ্যিক বল সম্পর্কে জানলেই হবে।

7.11 নং সমীকরণটি পেতে কণা সংস্থার প্রকৃতি সম্পর্কে উল্লেখ করার প্রয়োজন নেই। সংস্থাটি অনেকগুলো কণার সংকলন হতে পারে যেখানে সব ধরনের অভ্যন্তরীণ গতি থাকতে পারে বা এমন দৃঢ় বস্তু যার হয় বিশুম্ব চলন গতি আছে অথবা চলন এবং ঘূর্ণন গতির সমন্বয়। সংস্থাটি এবং এর স্বতন্ত্র কণাগুলোর বেগ যা হোক না কেন ভরকেন্দ্রটির গতি হবে 7.11নং সমীকরণ অনুযায়ী।

পূর্ববর্তী অধ্যায়গুলোর মত বিস্তৃত বস্তুকে কেবল একটি (single) কণা হিসেবে ব্যবহার করার পরিবর্তে এখন আমরা এদের কণা সংস্থা হিসেবে ব্যবহার করতে পারি। সমগ্র সংস্থার ভর এর ভরকেন্দ্রে ঘনীভূত এবং সংস্থার উপর প্রযুক্ত বাহ্যিক বল ভরকেন্দ্রের উপর ক্রিয়াশীল এমন ধরে নিয়ে আমরা এদের গতির চলন উপাংশ অর্থাৎ সংস্থাটির ভরকেন্দ্রের গতি পেতে পারি।

পম্বতির যথার্থতা এবং স্পফ্টভাবে এর সীমারেখার উল্লেখ না করে বস্তুর উপর প্রযুক্ত বলের বিশ্লেষণ এবং সমস্যা সমাধানের

কণা সংস্থা এবং আবর্তগতি

পম্বতি আমরা অনুসরণ করে আসছি। আমরা এখন উপলব্ধি করছি যে, পূর্বের অধ্যয়ণে কণাগুলোর ঘূর্ণনগতি এবং / বা অভ্যন্তরীণ গতি হয় অনুপস্থিত অথবা নগন্য — এসব উল্লেখ না করে আলোচনা করেছি। এটা করার প্রয়োজন নেই। নীচের ক্ষেত্রদ্বয়ে পূর্বে অনুসৃত পম্বতির শুধুমাত্র যে যথার্থতা পেয়েছি এমন নয় বরং এও পেয়েছি কী করে চলন গতিকে বর্ণনা করতে হয় এবং পৃথক করতে হয় যখন (1) একটি দৃঢ়বস্তু, হতে পারে সেটি ঘূর্ণায়মান। অথবা

(2) সব ধরনের অভ্যন্তরীণ গতি সম্পন্ন একটি কণা সংস্থা।

পথে ক্রমাগত চলতে থাকে যে পথে প্রাসটি চলে যদি কোনো বিস্ফোরণ না ঘটে

7.12 নং চিত্রটি হল 7.11 নং সমীকরণের একটি ভালো উদাহরণ। একটি প্রাস গতানুগতিক অধিবৃত্তাকার প্রক্ষেপ পথের মাঝে বায়ুতে বিস্ফোরিত হয়ে ক্ষুদ্রাংশে পরিণত হল। অভ্যন্তরীণ বলের জন্যই এ বিস্ফোরণ ঘটল। ভরকেন্দ্রের গতিতে এদের কোন অবদান নেই। মোট বাহ্যিক বল যেমন বস্তুর উপর প্রযুক্ত অভিকর্ষ বল বিস্ফোরণের আগে ও পরে একই থাকছে। অতএব কোন বিস্ফোরণ না ঘটলে বাহ্যিক বলের প্রভাবে ভরকেন্দ্রটি একই অধিবৃত্তাকার প্রক্ষেপ পথে ক্রমাগত চলতে থাকবে।

7.4 একটি কণা-সংস্থার রৈখিক ভরবেগ : (Linear Momentum of a system of Particles)

স্মরণ করো, একটি কণার রৈখিক ভরবেগ সংজ্ঞায়িত হয় $\mathbf{p} = m \, \mathbf{v}$ দ্বারা (7.12)

আরও স্মরণ করো যে, কেবল একটি (single) কণার জন্য নিউটনের সূত্রকে সাংকেতিকভাবে লেখা যায়

$$\mathbf{F} = \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} \tag{7.13}$$

যেখানে F হল কণাটির উপর প্রযুক্ত বল। ধরো, একটি সংস্থায় n

সংখ্যক কণা আছে। এদের ভর এবং বেগ যথাক্রমে $m_1, m_2,...m_n$ এবং $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_n$ । কণাগুলো পরস্পরের সঞ্চো ক্রিয়াশীল এবং এদের উপর বাহ্যিক বল ক্রিয়াশীল। কণাগুলোর রৈখিক ভরবেগ যথাক্রমে $m_1\mathbf{v}_1, m_2\mathbf{v}_2 m_n\mathbf{v}_n$ ।

n সংখ্যক কণা বিশিষ্ট সংস্থাটির রৈখিক ভরবেগ সংজ্ঞায়িত হয় স্বতন্ত্র কণাগুলোর ভরবেগের ভেক্টর যোগফল দিয়ে।

 $\mathbf{P} = M \mathbf{V} \tag{7.15}$

এভাবে একটি কণা সংস্থার মোট ভরবেগ হল সংস্থাটির মোট ভর এবং এর ভরকেন্দ্রটির বেগের গুণফলের সমান। সময়ের সাপেক্ষে 7.15 নং সমীকরণকে অবকলন করে পাই —

$$\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}t} = M \frac{\mathrm{d}\mathbf{V}}{\mathrm{d}t} = M\mathbf{A} \tag{7.16}$$

7.16 নং এবং 7.11 নং সমীকরণ তুলনা করে পাই —

$$\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}t} = \mathbf{F}_{ext} \tag{7.17}$$

এটিই হল একটি কণা সংস্থার উপর নিউটনের দ্বিতীয় সূত্রের বিস্তৃত রূপ।

এখন ধরো, একটি কণা সংস্থার উপর প্রযুক্ত বাহ্যিক বলসমূহের যোগফল শূন্য। তখন 7.17 নং সমীকরণ থেকে

$$\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}t} = \mathbf{O} \quad \text{বা } \mathbf{P} = \mathfrak{L} \mathbf{q} \mathbf{q} \mathbf{q}$$
(7.18a)

এভাবে কোনো কণা সংস্থার উপর প্রযুক্ত বাহ্যিক বল যখন শূন্য হয়, সংস্থাটির মোট রৈখিক ভরবেগ ধ্রুবক হয়। এটিই হল কণা সংস্থার জন্য রৈখিক ভরবেগের সংরক্ষণ সূত্র। কারণ 7.15 নং সমীকরণ থেকে বুঝা যায় যে, যখন সংস্থার উপর প্রযুক্ত মোট বাহ্যিক বল শূন্য হয় তখন ভরকেন্দ্রের বেগ ধ্রুবক থাকে। (এই অধ্যায়ে কণা সংস্থা সংক্রান্ত সব আলোচনায় আমরা ধরে নিয়েছি যে, সংস্থার মোট ভর ধ্রুবক থাকে।)

লক্ষ করো, অভ্যন্তরীণ বলের দরুণ অর্থাৎ কণাগুলোর একে অন্যের উপর প্রযুক্ত বল সমূহের জন্য স্বতন্ত্র কণাটির একটি জটিল প্রক্ষেপ পথ (trojectory) থাকতে পারে। যদি সংস্থার উপর বাহ্যিক বলের ক্রিয়া শূন্য হয় তবে ভরকেন্দ্র একটি স্থির বেগে গতিশীল থাকে অর্থাৎ অবাধ কণার মতো একটি সরল রেখায় সমবেগে চলে।

7.18a নং ভেক্টর সমীকরণটি তিনটি স্কেলার সমীকরণের সমতূল্য।

$$P_x = c_1, P_y = c_2$$
 এবং $P_z = c_3$ (7.18b)

এখানে P_x , P_y এবং P_z হল x, y এবং z– অক্ষ বরাবর মোট রৈখিক ভরবেগ ভেক্টর **P** এর উপাংশসমূহ এবং c_1 , c_2 ও c_3 ধ্রুবক।

- চিত্র 7.13 (a) একটি ভারী নিউক্লিয়াস (Ra) বিভক্ত হয়ে একটি হাক্ষা নিউক্লিয়াস (Rn) এবং একটি আলফা কণা (He) উৎপন্ন হয়। সংস্থার ভরকেন্দ্রটি (CM) সুষম গতিতে আছে।
 - (b) ভরকেন্দ্রের স্থিরাবস্থায় ভারী একই নিউক্লিয়াসের (Ra) বিভাজন। উৎপন্ন কণা দুটির গতি পরস্পরের বিপরীতমুখী।

উদাহরণ হিসেবে রেডিয়াম নিউক্লিয়াসের মতো, একটি গতিশীল অস্থির কণার তেজস্ক্রিয় বিঘটন বিবেচনা করা যান। রেডিয়াম নিউক্লিয়াসটি একটি র্যাডন এবং একটি আলফা কণায় বিভাজিত হয়। সংস্থাটির অভ্যন্তরীণ বলের জন্যই এই বিঘটন এবং সংস্থার উপর বাহ্যিক বল নগণ্য। সুতরাং বিঘটনের আগে এবং পরে সংস্থার মোট রৈখিক ভরবেগ একই হয়। এই বিঘটনে দুটি কণা উৎপন্ন হয় র্যাডন নিউক্লিয়াস এবং আলফা কণা। এরা বিভিন্ন দিকে এমনভাবে গতিশীল যে, এদের ভরকেন্দ্রের গতিপথ এবং মূল বিঘটনশীল রেডিয়াম নিউক্লিয়াসটির গতিপথ একই হয় (চিত্র 7.13 a)।

যদি আমরা বিঘটনকে এমন একটি নির্দেশ তন্ত্র থেকে পর্যবেক্ষণ করি যেখানে ভরকেন্দ্রটি স্থির অবস্থায় আছে তবে বিঘটনে জড়িত কণাগুলোর গতিকে অতিশয় সরল দেখায়। উৎপন্ন কণাগুলো

 (a) দুটি তারার সঞ্জার পথ S₁ (ডট দিয়ে দেখানো) এবং S₂ (টানা লাইন) দিয়ে তৈরি দ্বৈত সংস্থা। এদের ভরকেন্দ্র C সুষম গতিতে গতিশীল।
 (b) একই দ্বৈত সংস্থার ভরকেন্দ্র C স্থির অবস্থায়।

এদের ভরকেন্দ্র স্থির রেখে 7.13 b নং চিত্রের মত পরস্পর পশ্চাদ অভিমুখে গতিশীল।

উপরের তেজস্ক্রিয় বিঘটন সমস্যার মতো কণা সংস্থার অনেক সমস্যায় ল্যাবরেটরি নির্দেশ ফ্রেম অপেক্ষা বরং ভরকেন্দ্র ফ্রেমে কাজ করা সুবিধাজনক।

মহাকাশ বিজ্ঞানে দ্বৈত তারা (Binary stars) একটি সাধারণ ঘটনা। যদি কোনো বাহ্যিক বল না থাকে তবে দ্বৈত তারার ভরকেন্দ্রের গতি একটি মুক্ত কণার মতো যেমনটা 7.14 (a) চিত্রে দেখানো হয়েছে। সমভরের দ্বৈত তারার সঞ্চার পথও চিত্রে দেখানো হচ্ছে, এদের দেখতে জটিল। যদি আমরা ভরকেন্দ্র ফ্রেমে যাই তবে আমরা দেখি যে, স্থির ভরকেন্দ্রকে কেন্দ্র করে দ্বৈত তারা বৃত্তাকার পথে ঘুরছে। লক্ষ করো, তারা দুটি ব্যাস বরাবর পরস্পরের বিপরীত অবস্থানে আছে (চিত্র 7.14(b))। এভাবে আমাদের নির্দেশতন্ত্রে তারাদের সঞ্চার পথ হল (i) একটি সরলরেখায় ভরকেন্দ্রটির সুযমগতি। (ii) ভরকেন্দ্র সাপেক্ষে বৃত্তাকার কক্ষপথ — এ দুয়ের সমন্বয়।

দুটি উদাহরণ থেকে দেখা যায় যে, একটি সংস্থার বিভিন্ন অংশের গতিকে ভরকেন্দ্রের গতি এবং ভরকেন্দ্র সাপেক্ষে গতি এরকম পৃথক করে নেয়ার পন্থাটি বিশেষ উপযোগী কৌশল এবং এটি সংস্থার গতিকে বুঝতে সাহায্য করবে।

7.5 দুটি ভেক্টরের ভেক্টর গুণ (Vector Product of Two Vectors)

পদার্থ বিদ্যায় ভেক্টর এবং এদের ব্যবহার সম্পর্কে আমরা যথারীতি পরিচিত। ষষ্ঠ অধ্যায়ে (কার্য, শক্তি, ক্ষমতা) আমরা দুটি ভেক্টরের স্কেলার গুণকে সংজ্ঞায়িত করেছি। একটি গুরুত্বপূর্ণ ভৌতরাশি কার্যকে বল এবং সরণ — এ দুটি ভেক্টর রাশির স্কেলার গুণফল হিসেবে সংজ্ঞায়িত করা হয়েছে। আমরা এখন দুটি ভেক্টরের অন্য গুণফল সংজ্ঞায়িত করব। এক্ষেত্রে গুণফলটি একটি ভেক্টর। ঘূর্ণন গতির অধ্যয়ণে দুটি গুরুত্বপূর্ণ রাশি যেমন বলের ভ্রামক এবং কৌণিক ভরবেগের ক্ষেত্রে গুণ ফলটি ভেক্টর গুণ হিসেবে সংজ্ঞায়িত।

ভেক্টর গুণের সংজ্ঞা :

a এবং b দুটি ভেক্টরের গুণফল c ভেক্টর হলে

- (i) c এর মান c = ab sin θ যেখানে a এবং b হল a ও b এর মান এবং θ ভেক্টর দুটির মধ্যবর্তী কোণ।
- (ii) c হল a এবং b -এর ধারক তলের উপর লম্ব।
- (iii) যদি আমরা ডান পাকের একটি স্কু নিই এবং তার শীর্ষটি a এবং b -এর ধারকতলের উপর অবস্থিত হয় এবং স্কুটি ঐ তলের উপর লম্ব এবং যদি আমরা স্কু এর মাথাকে a থেকে b এর দিকে ঘুরাই তবে স্কু -এর ডগাটি (tip) c এর অভিমুখে অগ্রসর হয়। 7.15a নং চিত্রে দক্ষিণাবর্তী বা ডানাবর্তী স্কুর নিয়মটি চিত্রের সাহায্যে ব্যাখ্যা করা হয়েছে।

অন্যভাবে বললে, যদি কেউ a এবং b ভেক্টরের তলের উপর লম্ব এমন একটি রেখাকে ঘিরে ডান হাতের আঙুলগুলোকে ভাঁজ করে ধরে এবং আঙুলগুলোর বব্রুদিকের অভিমুখ a থেকে b এর দিকে হয় তখন বৃদ্ধাঞ্চাুষ্ঠ c এর দিকে অগ্রসর হয় (7.15b নং চিত্রে যেমন দেখানো আছে)।

- চিত্র 7.15 (a) দুটি ভেক্টরের ভেক্টর গুণফলের অভিমুখ দেখানোর জন্য দক্ষিণাবর্তী বা ডানাবর্তী স্ক্র নিয়ম।
 - (b) ভেক্টর গুণফলের অভিমুখ দেখানোর জন্য ডানহস্ত নিয়ম।

ডানহস্ত নিয়মের সরল সংস্করণটি এমন : তোমার ডান হাতের তালুকে প্রসারিত করো এবং আঙুলগুলোকে a থেকে b এর দিকে বাঁকাও তোমার প্রসারিত বৃদ্ধাঙ্গুষ্ঠ c এর অভিমুখে নির্দেশ করবে। এটা মনে রাখতে হবে যে, a এবং b ভেক্টরের মধ্যে দুটি কোণ আছে। 7.15 (a) অথবা (b) নং চিত্রে সংশ্লিফ্ট কোণগুলোকে heta এবং (360°– heta) দেখানো আছে। উপরের নিয়মগুলোর যে প্রয়োগের সময় a থেকে b তে ঘুর্ণনের ক্ষেত্রে ক্ষুদ্রতর কোণটি (<180°) নিতে হবে। এখানে এ কোণটি heta। ভেক্টরের ভেক্টর গুণ বুঝাতে ক্রস চিহ্ন ব্যবহৃত হয় বলে একে ক্রস গুণ (cross product)ও বলা হয়।

 লক্ষ করো, পূর্বেই বলা হয়েছে — দুটি ভেক্টরের স্কেলার গুণ বিনিময় নিয়ম মেনে চলে।অর্থাৎ a.b = b.a কিন্ডু ভেক্টর গুণ বিনিময় নিয়ম মানে না। অর্থাৎ a × b ≠ b × a

a × b এবং b × a এর সাংখ্যমান সমান ($ab\sin\theta$)। উভয় ক্ষেত্রেই এরা a এবং b এর তলের উপর লম্ব। কিন্তু a × b এর ক্ষেত্রে ডানহস্ত স্কুটি a থেকে b এর দিকে ঘুরে। অপরপক্ষে, b × a এর ক্ষেত্রে এটি b থেকে a এর দিকে। এটা বুঝায় যে, দুটি ভেক্টর পরস্পরের বিপরীত দিকে।

অর্থাৎ, $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$

 ভেক্টর গুণের অন্য একটি মজাদার ধর্ম হল প্রতিফলনে এদের আচরণ। প্রতিফলনের ক্ষেত্রে (অর্থাৎ দর্পণে প্রতিবিম্ব নিলে) আমরা পাই x→-x, y→-yএবং z→-z ফল স্বরূপ ভেক্টরের সব উপাংশেরই চিত্রের পরিবর্তন হয় এবং এভাবে a→-a, b→-b হয়।

তাহলে, a × b এর প্রতিফলনে কী হবে?

 $\mathbf{a} \times \mathbf{b} \rightarrow (-\mathbf{a}) \times (-\mathbf{b}) = \mathbf{a} \times \mathbf{b}$

এভাবে প্রতিফলনের দরুণ a × b এর চিহ্নের পরিবর্তন হয় না। ভেক্টর যোগ প্রসঙ্গো স্কেলার ও ভেক্টর উভয় গুণেই বন্টন

নিয়ম মান্য হয়।

এভাবে,

$$\mathbf{a}.(\mathbf{b}+\mathbf{c}) = \mathbf{a}.\mathbf{b} + \mathbf{a}.\mathbf{c}$$

$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$

 উপাংশ রুপে আমরা লিখতে পারি c = a × b । এ জন্য প্রথমে আমাদের প্রয়োজন কয়েকটি প্রাথমিক ক্রস গুণফল :

 (i) a × a = 0 (0 হল একটি শূন্য ভেক্টর অর্থাৎ যে ভেক্টরের মান শূন্য)

এটি এর্প দেখায়, যেহেতু $\mathbf{a} imes \mathbf{a}$ এর মান হল $a^2 \sin 0^\circ = 0$ · একইভাবে

- (i) $\hat{\mathbf{i}} \times \hat{\mathbf{i}} = \mathbf{0}$, $\hat{\mathbf{j}} \times \hat{\mathbf{j}} = \mathbf{0}$, $\hat{\mathbf{k}} \times \hat{\mathbf{k}} = \mathbf{0}$
- (ii) $\hat{\mathbf{i}} \times \hat{\mathbf{j}} = \hat{\mathbf{k}}$

লক্ষ করো যে, $\hat{\mathbf{i}}_{\times}\hat{\mathbf{j}}$ এর মান $\sin 90^{\circ}$ বা 1, যেহেতু $\hat{\mathbf{i}}$ এবং $\hat{\mathbf{j}}$ উভয়ই একক মানের এবং এদের মধ্যে কোণ 90° । এভাবে, $\hat{\mathbf{i}}_{\times}\hat{\mathbf{j}}$ হল একটি একক ভেক্টর। $\hat{\mathbf{i}}$ ও $\hat{\mathbf{j}}$ ভেক্টরের তলের উপর লম্ব এবং ডানহস্ত স্কু নিয়ম সম্পর্কিত একটি একক ভেক্টর হল $\hat{\mathbf{k}}$ । এভাবেই উপরের ফলাফল পাওয়া গেল। একইভাবে তুমি যাচাই করে নিতে পারো —

$$\hat{\mathbf{j}} \times \hat{\mathbf{k}} = \hat{\mathbf{i}}$$
 $\hat{\mathbf{k}} \times \hat{\mathbf{i}} = \hat{\mathbf{j}}$

ক্রস গুণের বিনিময় নিয়ম অনুসারে

 $\hat{\mathbf{j}} \times \hat{\mathbf{i}} = -\hat{\mathbf{k}}, \quad \hat{\mathbf{k}} \times \hat{\mathbf{j}} = -\hat{\mathbf{i}}, \quad \hat{\mathbf{i}} \times \hat{\mathbf{k}} = -\hat{\mathbf{j}}$

লক্ষ করো, উপরের ভেক্টর গুণফল সম্পর্কে যদি í, j, k চক্রাকারে (cyclically) আসে তবে ভেক্টর গুণফল ধনাত্মক। যদি ĭ, j, k চক্রাকারে না আসে তবে ভেক্টর গুণফল ঋণাত্মক।

এখন,

$$\mathbf{a} \times \mathbf{b} = (a_x \,\hat{\mathbf{i}} + a_y \,\hat{\mathbf{j}} + a_z \,\hat{\mathbf{k}}) \times (b_x \,\hat{\mathbf{i}} + b_y \,\hat{\mathbf{j}} + b_z \,\hat{\mathbf{k}})$$
$$= a_x b_y \,\hat{\mathbf{k}} - a_x b_z \,\hat{\mathbf{j}} - a_y b_x \,\hat{\mathbf{k}} + a_y b_z \,\hat{\mathbf{i}} + a_z b_x \,\hat{\mathbf{j}} - a_z b_y \,\hat{\mathbf{i}}$$
$$= (a_y b_z - a_z b_y) \,\hat{\mathbf{i}} + (a_z b_x - a_x b_z) \,\hat{\mathbf{j}} + (a_x b_y - a_y b_x) \hat{\mathbf{k}}$$

উপরের সম্পর্কগুলো পেতে আমরা ক্রস গুণফল ব্যবহার করছি। a × b এর রাশিমালাকে সহজে মনে রাখার জন্য একটি নির্ণায়কে (determinant) তা প্রকাশ করতে পারি।

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

ট্রদাহরণ 7.4 দুটি ভেক্টরের স্কেলার এবং ভেক্টর গুণফল নির্ণয় করো a = (3î–4j+5k) এবং b = (–2î+j–3k)

উত্তর :

$$\mathbf{a} \cdot \mathbf{b} = (3 \, \mathbf{i} - 4 \, \mathbf{j} + 5 \, \mathbf{k}) \cdot (-2 \, \mathbf{i} + \, \mathbf{j} - 3 \, \mathbf{k})$$

= $-6 - 4 - 15$
= -25

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 3 & -4 & 5 \\ -2 & 1 & -3 \end{vmatrix} = 7 \, \hat{\mathbf{i}} - \hat{\mathbf{j}} - 5 \, \hat{\mathbf{k}}$$

লক্ষ করো, $\mathbf{b} \times \mathbf{a} = -7\hat{\mathbf{i}} + \hat{\mathbf{j}} + 5\hat{\mathbf{k}}$

7.6 কৌণিক বেগ এবং এর সঙ্গে রৈখিক বেগের সম্পর্ক : (Angular velocity and its Relation with Linear velocity)

এ বিভাগে আমরা কৌণিক বেগ সম্পর্কে এবং ঘূর্ণন গতিতে এর ভূমিকা নিয়ে আলোচনা করব। আমরা দেখেছি, ঘূর্ণনশীল বস্তুর প্রতিটি কণা একটি বৃত্তকার পথে গতিশীল। কণাটির রৈখিক বেগটি কৌণিক বেগের সঞ্চো সম্পর্কযুক্ত। এ দুটি রাশির মধ্যে সম্পর্কটি একটি ভেক্টর গুণের সঞ্চো যুক্ত যা আমরা পূর্বেই শিখেছি।

চল আমরা পূর্বের 7.4 নং চিত্রটি দেখি। উপরে যেমন বলা হয়েছে যে, একটি নির্দিন্ট অক্ষ সাপেক্ষে ঘূর্ণায়মান দৃঢ় বস্তুর প্রতিটি

একটি স্থির অক্ষ সাপেক্ষে ঘূর্ণন (দৃঢ় বস্তুটির একটি কণা P স্থায়ী অক্ষ (z-অক্ষ) কে কেন্দ্র করে বৃত্তাকার পথে ঘূর্ণায়মান এবং এর কেন্দ্রটি (C) অক্ষের উপর অবস্থিত)

কণা একটি বৃত্তাকার পথে ঘুরে এবং এটি অক্ষের সঙ্গো লম্ব এমন একটি তলে অবস্থিত। বৃত্তটির কেন্দ্রটি অক্ষের উপর অবস্থিত। আমরা 7.16 নং চিত্রে,7.4 নং চিত্রটি পুনঃঅঙ্কন করি যেখানে স্থায়ী অক্ষ (Z-অক্ষকে নেয়া হয়েছে) সাপেক্ষে ঘূর্ণায়মান দৃঢ় বস্তুর উপর

কণা সংস্থা এবং আবর্তগতি

প্রতীকস্বরূপ একটি কণাকে (P বিন্দুতে) দেখানো হয়েছে। অক্ষের উপর C বিন্দুকে কেন্দ্র করে কণাটি একটি বৃত্তাকার পথ বর্ণনা করে। বৃত্তটির ব্যাসার্ধ r, যা অক্ষ থেকে P বিন্দুর লম্ব দূরত্ব। P বিন্দুতে কণাটির রৈখিক বেগ v (একটি ভেক্টর) কে দেখানো হয়েছে। এটি P বিন্দুতে বৃত্তটির স্পর্শক বরাবর।

ধরো, Δt সময় পর কণাটির অবস্থান P' বিন্দুতে (চিত্র 7.16), PCP' কোণটি Δt সময়ে কণাটির সরণ Δθ -কে সূচিত করে। Δt সময়ের ব্যবধানে কণাটির গড় কৌণিক বেগ Δθ/Δt। যেহেতু Δt শূন্যের খুব কাছে (tends to zero) (অর্থাৎ ক্ষুদ্র থেকে ক্ষুদ্রতর মান)Δθ/Δt অনুপাতটি একটি সীমায় অগ্রসর হয় যা P বিন্দুতে কণাটির তাৎক্ষণিক কৌণিক বেগ dθ/dt। তাৎক্ষণিক কৌণিক বেগকে আমরা ω (গ্রিক অক্ষর ওমেগা) দিয়ে চিহ্নিত করি। বৃত্তাকার গতি অধ্যয়ণ থেকে আমরা জানি যে, বৃত্তাকার পথে গতিশীল কণার রৈথিক বেগ v এর মান এবং কণাটির কৌণিক বেগ ω একটি সরল সম্পর্ক $v = \omega r$ দ্বারা যুন্তু। যেখানে r হল বৃত্তটির ব্যাসার্ধ।

আমরা দেখি, যেকোনো মুহূর্তে $v = \omega r$ সম্পর্কটি দৃঢ় বস্তুটির সব কণার ক্ষেত্রে প্রযোজ্য। এভাবে স্থির অক্ষ থেকে r_i লম্ব দূরত্বে অবস্থিত কোনো নির্দিষ্ট মুহূর্তে একটি কণার কৌণিক বেগ v_i হলে —

 $v_i = \omega r_i$

এখানে i সূচকটি 1 থেকে n পর্যন্ত বিস্তৃত, যেখানে n হল বস্তুতে মোট অণু সংখ্যা।

(7.19)

অক্ষের উপর কর্ণাগুলোর জন্য, r = 0 অতএব $v = \omega r = 0$ । এভাবে অক্ষের উপর কণাগুলো স্থির। এ থেকে প্রতিপন্ন হয় যে, অক্ষটি স্থির।

লক্ষ করো, সব কণাগুলোর জন্য আমরা একই কৌণিক বেগ ω ব্যবহার করেছি। অতএব **আমরা সমগ্র বস্তুটির কৌণিক বেগকে** *ω* **দিয়ে বুঝাব।**

যে কোনো মুহূর্তে কোনো বস্তুর সকল অংশ সমবেগ সম্পন্ন ধরে নিয়েই আমরা বস্তুর বিশুদ্ধ চলন বর্ণনা করেছি। একইরকমভাবে সময়ের যেকোনো মুহূর্তে বস্তুর সকল অংশ একই কৌণিক বেগ সম্পন্ন ধরে নিয়ে বস্তুটির বিশুদ্ধ ঘূর্ণন বর্ণনা করব। লক্ষ করো যে, কোনো স্থির অক্ষ সাপেক্ষে কোনো দৃঢ়বস্তুর আবর্তগতি হল 7.1 নং বিভাগে আলোচিত বস্তুব্যকে ঠিক অন্যভাবে বলা। অর্থাৎ বস্তুর প্রতিটি কণা বৃত্তাকার পথে গতিশীল এবং বৃত্তটি অক্ষের লম্ব তলে অবস্থিত এবং এর কেন্দ্রটি অক্ষের উপর অবস্থিত।

আমরা যতদুর আলোচনা করেছি তা থেকে মনে হয় কৌণিক বেগ একটি স্কেলার। প্রকৃতপক্ষে এটি একটি ভেক্টর। আমরা এর যথার্থতা বিচারে যাব না কিন্তু এটি স্বীকার করে নেব। স্থির অক্ষ সাপেক্ষে ঘূর্ণনে 'কৌণিক বেগ' ভেক্টরটি ঘূর্ণন অক্ষ বরাবর হয় এবং স্কু শীর্ষটি যদি বস্তুর সঙ্গে ঘুরে তবে ডানপাকের স্কুটি যে দিকে অগ্রসহ হয় কৌণিক বেগের অভিমুখও সেই দিকে হয়। (চিত্র 7.17a দেখ)।

উপরে উল্লিখিত এই ভেক্টরটির মান $\,\omega = d heta/dt\,$

চিত্র 7.17 (a) যদি একটি ডান পাকের স্কু এর মাথাটি বস্তুর সঙ্গে ঘুরে, স্কুটি কৌণিক বেগ w -এর দিকে অগ্রসর হয়। যদি বস্তুর ঘূর্ণনের অভিমুখ (ঘড়ির কাঁটার দিকে বা বিপরীত দিকে) পরিবর্তিত হয় তবে w এর অভিমুখ ও সেদিকে পরিবর্তিত হয়।

চিত্র 7.17 (b) কৌণিক বেগ ভেক্টরটির অভিমুখ চিত্রের মত স্থির অক্ষ বরাবর। P বিন্দুতে রৈখিক বেগ v = w r এটি w এবং r উভয়ের সঙ্গে লম্ব এবং এর অভিমুখ হল কণাটি যে বৃত্তে পরিক্রমা করে সেই বৃত্তের স্পর্শক বরাবর।

আমরা এখন দেখব, **w** r ভেক্টর গুণফলটি কোন্ বিশেষ ভেক্টরের অনুরূপ হয়। 7.17(b) নং চিত্রটি দেখ, এটি P কণাটির পথ নির্দেশক 7.16 নং চিত্রেরই অংশ। চিত্রটি দেখায় যে, **w** ভিক্টরটির অভিমুখ স্থির *z*–অক্ষ বরাবর এবং মূলবিন্দু 'O' সাপেক্ষে দৃঢ় বস্তুর P কণাটির অবস্থান ভেক্টর **r** = **OP** লক্ষ করো, মূল বিন্দুটি ঘূর্ণন অক্ষের উপর নেয়া হয়েছে।

এখন	$\boldsymbol{\omega} \times \mathbf{r} = \boldsymbol{\omega} \times \mathbf{OP} = \boldsymbol{\omega} \times (\mathbf{OC} + \mathbf{CP})$
কিন্তু	$ω \times OC = 0$ যেহেতু $ω$, OC বরাবর
অতএব	$\boldsymbol{\omega} \times \mathbf{r} = \boldsymbol{\omega} \times \mathbf{CP}$

ω × CP ভেক্টরটি ω এর উপর লম্ব অর্থাৎ z- অক্ষ এবং কণাটি P বিন্দুতে যে বৃত্ত পরিক্রমা করে তার ব্যাসার্ধ CP এর উপরও লম্ব। অতএব, এটি P বিন্দুতে অঙ্কিত স্পর্শক বরাবর। যেহেতু ω এবং CP পরস্পর লম্ব, ω×CP এর সংখ্যামানও ω (CP)। আমরা CP ক r_⊥ দিয়ে চিহ্নিত করব এবং আগের মতো r দিয়ে করব না।

এভাবে, $\boldsymbol{\omega} \times \mathbf{r}$ হল $\omega \mathbf{r}_{\perp}$ মানের একটি ভেক্টর এবং এটি বৃত্তটির P বিন্দুতে স্পর্শক বরাবর। P বিন্দুতে রৈখিক বেগ ভেক্টর v এর একই মান ও অভিমুখ আছে।

অতএব,
$$\mathbf{v} = \mathbf{\omega} \times \mathbf{r}$$
 (7.20)

প্রকৃতপক্ষে, 7.20 নং সমীকরণের সম্পর্কটি এমনকি একটি বিন্দু স্থির এমন একটি দৃঢ় বস্তুর ঘূর্ণনের ক্ষেত্রে প্রযোজ্য যেমন, একটি লাটিমের ঘূর্ণন [চিত্র নং7.6(a)]। এক্ষেত্রে স্থির বিন্দুটিকে মূলবিন্দু ধরে r হল কণাটির অবস্থান ভেক্টর।

আমরা লক্ষ করেছি যে, স্থির অক্ষ সাপেক্ষে ঘূর্ণনে সময়ের সঙ্গো ভেক্টর ৩ এর অভিমুখের পরিবর্তন হয় না। ক্ষণিক পরপর অবশ্য এর মানের পরিবর্তন হতে পারে। আরও সাধারণ ঘূর্ণনের ক্ষেত্রে ক্ষণিক পরপর ৩ এর মান এবং অভিমুখ উভয়েরই পরিবর্তন হতে পারে।

7.6.1 কৌণিক ত্বরণ (Angular acceleration)

তোমরা হয়তো লক্ষ করে থাকবে যে, চলন গতির ধাঁচেই আমরা আবর্ত গতির জ্ঞান বাড়াচ্ছি। চলন গতির সঙ্গে তোমরা যথারীতি পরিচিত। চলন গতি সম্পর্কিত রৈখিক সরণ এবং বেগ (v) -এ সব চলরাশির মতো ঘূর্ণন গতিতে কৌণিক সরণ এবং কৌণিক বেগ (**w**) আছে। চলন গতিতে সময়ের সঙ্গে বেগ পরিবর্তনের হারকে রৈখিক ত্বরণ বলে তেমনি ঘূর্ণন গতিতেও কৌণিক ত্বরণের ধারণা তৈরি করব। আমরা কৌণিক ত্বরণ **α** কে সময়ের সঙ্গে কৌণিক বেগ পরিবর্তনের হার হিসেবে সংজ্ঞায়িত করব।

অর্থাৎ
$$\boldsymbol{\alpha} = \frac{\mathrm{d}\boldsymbol{\omega}}{\mathrm{d}t}$$
 (7.21)

যদি ঘূর্ণাক্ষ স্থির হয় তবে 🗴 এবং 🏾 এর অভিমুখ স্থির। এক্ষেত্রে ভেক্টর সমীকরণটি একটি স্কেলার সমীকরণে পরিণত হয়।

$$\alpha = \frac{\mathrm{d}\omega}{\mathrm{d}t} \tag{7.22}$$

7.7 টর্ক এবং কৌণিক ভরবেগ (Torque and Angular Momentum)

এ অংশে আমরা এমন দুটি ভৌত রাশির সঞ্চো পরিচিত হব যেগুলো দুটি ভেক্টরের ভেক্টর গুণফল হিসেবে সংজ্ঞায়িত। কণা সংস্থার গতি বিষয়ক আলোচনায় বিশেষ করে দৃঢ় বস্তুর ক্ষেত্রে আমরা দেখব যে এগুলো বিশেষ গুরুত্বপূর্ণ।

7.7.1 বলের ভামক (টর্ক) [Moment of force (Torque)]

আমরা জানলাম যে, একটি দৃঢ়বস্তুর গতি সাধারণত ঘূর্ণনগতি এবং চলন গতির সমন্বয়। যদি বস্তুটি কোনো বিন্দুতে বা একটি রেখা বরাবর স্থির থাকে তবে বস্তুটির শুধু ঘূর্ণনগতি আছে। আমরা জানি যে, বস্তুর চলন-অবস্থার পরিবর্তনের জন্য অর্থাৎ রৈখিক ত্বরণ সৃষ্টির জন্য বলের প্রয়োজন। আমরা তখন প্রশ্ন রাখতে পারি — ঘূর্ণন গতির ক্ষেত্রে অনুরূপ বল কোন্টি? একটি বাস্তব পরিস্থিতির নিরিখে প্রশ্নটি দেখতে চল, আমরা একটি দরজা খোলা এবং বন্ধ করার উদাহরণটি নিই। দরজা একটি দৃঢ়বস্তু যেটি কজ্ঞাগামী একটি স্থির উল্লম্ব অক্ষ সাপেক্ষে ঘুরতে পারে। দরজাটি কিজাগামী একটি স্থির উল্লম্ব অক্ষ সাপেক্ষে ঘুরতে পারে। দরজাটি কী কারণে ঘুরে? এটা পরিষ্কার যে, যতক্ষণ না একটি বল দরজায় প্রযুক্ত হচ্ছে সেটি ঘুরে না। কজার লাইনে প্রযুক্ত বল কোন ঘূর্ণনই সৃষ্টি করতে পারে না। অথচ একই মানের বল, দরজার বাইরের কিনারায় লম্বভাবে প্রযুক্ত হলে ঘূর্ণন সৃষ্টির জন্য খুবই কার্যকরী হয়। ঘূর্ণনগতির ক্ষেত্রে এটি কেবলমাত্র বল নয়, বলটি কীভাবে, কোথায় প্রযুক্ত হচ্ছে স্টোও গুরুত্বপূর্ণ।

ঘূর্ণনের ক্ষেত্রে বলের অনুরূপ রাশিটি হল বলের ভ্রামক। এটি টর্ক বা দ্বন্দুকেও বুঝায়। [আমরা বলের ভ্রামক এবং টর্ক শব্দগুলোকে বিনিময়যোগ্য ভাবে (interchangeably) ব্যবহার করব।] কেবল একটি (single) কণার বিশেষ ক্ষেত্রের জন্য বলের ভ্রামককে আমরা প্রথমে সংজ্ঞায়িত করব। পরবর্তী সময়ে এ ধারণাকে দৃঢ়বস্তুসহ কণা সংস্থায় সম্প্রসারিত করব। ঘূর্ণন গতির অবস্থা পরিবর্তন অর্থাৎ একটি দৃঢ়বস্তুর কৌণিক ত্বরণের সঞ্চোও সম্পর্ক স্থাপন করব।

১এ 7.18 τ = r × F, τ ২ল r এবং F ধারকতলের (যে তলে আছে) উপর লম্ব এবং এর অভিমুখ ডানপাকের স্কু নিয়মে নির্দেশিত।

যদি একটি বল কেবল একটি (single) কণার উপর P বিন্দুতে ক্রিয়া করে এবং মূলবিন্দু O সাপেক্ষে এর অবস্থান ভেক্টর r (চিত্র 7.18) হয়, তবে মূলবিন্দু O সাপেক্ষে কণাটির উপর ক্রিয়াশীল বলের ভামকটি যে ভেক্টর গুণ দ্বারা সংজ্ঞায়িত হবে সেটি হল —

অক্ষরটাও) প্রতীকটি ব্যবহার করা হয়। r এর মান

τ = r F sinθ
 (7.24a)
 (ষখানে r হল অবস্থান ভেক্টর r এর মান অর্থাৎ দৈর্ঘ্য OP, F হল
 বল F এর মান এবং θ হল r ও F এর মধ্যবর্তী কোণ, চিত্রে যেতাবে
 (দেখানো আছে।

বলের ভ্রামকের মাত্রাগুলো M L² T ⁻²। এগুলো কার্য বা শক্তির মাত্রার মতো। যদিও এটি কার্য অপেক্ষা ভিন্ন একটি ভৌতরাশি। বলের ভ্রামক একটি ভেক্টর রাশি কিন্তু কার্য একটি স্কেলার রাশি। বলের ভ্রামকের SI একক হল নিউটন-মিটার (Nm)।বলের ভ্রামকের মানকে লেখা যায়

 $\tau = (r\sin\theta)F = r_{\perp}F \tag{7.24b}$

যেখানে $\mathbf{r}_{\perp} = r \sin\theta$ হল মূলবিন্দু থেকে F বলের ক্রিয়ারেখার লম্ব দুরত্ব এবং $F_{\perp} (= F \sin \theta)$ হল F এর উপাংশ এবং এটি r. এর লম্বঅভিমুখী।যদি r=0, F=0 বা $\theta=0^{\circ}$ বা 180° হয় তবে $\tau=0$ । এভাবে যদি বলের মান শূন্য হয় বা বলের ক্রিয়া রেখা যদি মূলবিন্দুগামী হয় তবে বলের ভ্রামক থাকে না [vanishes]।

লক্ষণীয় বিষয়, যেহেতু r × F একটি ভেক্টর গুণ তাই এক্ষেত্রে দুটি ভেক্টরের ভেক্টর গুণের বৈশিফ্টগুলো প্রযোজ্য। যদি F এর অভিমুখ বিপরীত (reversed) করা হয়, তবে বলের ভ্রামকের অভিমুখও বিপরীত হয়। আবার যদি, r এবং F উভয়ের অভিমুখ বিপরীত করা হয় তবে বলের ভ্রামকের অভিমুখ একই থাকে।

7.7.2 একটি কণার কৌণিক ভরবেগ (Angular momentum of a particle)

বলের ভ্রামক যেমন ঘূর্ণন গতিতে বলের অনুরূপ তেমনি কৌণিক ভরবেগ রাশিটি হল ঘূর্ণন গতিতে রৈখিক ভরবেগের অনুরূপ। আমরা প্রথমে কেবলমাত্র একটি (single) কণার বিশেষ ক্ষেত্রের জন্য কৌণিক ভরবেগ সংজ্ঞায়িত করব এবং কেবল একটি কণার গতির প্রেক্ষিতে এর উপযোগিতা দেখব। পরবর্তী সময়ে কৌণিক ভরবেগের সংজ্ঞাকে দৃঢ়বস্থুসহ কণা সংস্থার ক্ষেত্রে প্রসারিত করব।

বলের ভ্রামকের মতো কৌণিক ভরবেগ ও একটি ভেক্টর গুণফল। একে ভরবেগের (রৈখিক) ভ্রামক হিসেবে ও উল্লেখ করা যেতে পারে। এ শব্দবন্ধ থেকে কেউ অনুমান করতে পারে কীভাবে কৌণিক ভরবেগ সংজ্ঞায়িত হবে।

ধরো, একটি কণার ভর *m* এবং রৈখিক ভরবেগ p । মূলবিন্দু O সাপেক্ষে এর অবস্থান ভেক্টর r। মূলবিন্দু O সাপেক্ষে কণাটির কৌণিক ভরবেগ *l* নিম্নরুপে সংজ্ঞায়িত হবে

$$\mathbf{l} = \mathbf{r} \times \mathbf{p} \tag{7.25a}$$

কৌণিক ভরবেগ ভেক্টরটির মান হবে

$$l = r \, p \sin \theta \tag{7.26a}$$

যেখানে p হল **p** এর মান এবং heta হল **r** ও **p** এর মধ্যবর্তী কোণ। আমরা লিখতে পারি

$$l = r p_{\perp} \text{ or } r_{\perp} p \tag{7.26b}$$

যেখানে **r**_⊥ (= $r \sin\theta$) হল মূলবিন্দু থেকে **p** এর অভিমুখ রেখার লম্ব দূরত্ব এবং $p_{\perp}(=p\sin\theta)$ হল **p** এর উপাংশ যা **r** এর লম্ব অভিমুখী। আমরা আশা করতে পারি কৌণিক ভরবেগ শূন্য হবে (l=0), যদি রৈখিক ভরবেগ না থাকে (vanishes) (p=0), আবার যদি কণাটি মূলবিন্দুতে (r=0) অবস্থান করে, বা যদি **p** এর অভিমুখ রেখাটির মূলবিন্দু গামী হয়, অর্থাৎ $\theta = 0^{\circ}$ বা 180° হয়। বলের ভ্রামক এবং কৌণিক ভরবেগ — এ ভৌত রাশিগুলোর মধ্যে একটি গুরুত্বপূর্ণ সম্পর্ক আছে। এটি ঘূর্ণন গতির ক্ষেত্রে বল এবং রৈখিক ভরবেগের মধ্যে সম্পর্কের অনুরূপ। একটি মাত্র কণার (single particle) ক্ষেত্রে সম্পর্কটি প্রতিষ্ঠার জন্য আমরা **l** = **r** × **p** কে সময়ের সাপেক্ষে অবকলন করি

$$\frac{\mathrm{d}\mathbf{l}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{r} \times \mathbf{p})$$

ডানপক্ষে অবকলনের গুণের নিয়ম প্রয়োগ করে পাই —

$$\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{r} \times \mathbf{p}) = \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} \times \mathbf{p} + \mathbf{r} \times \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t}$$

কণাটির বেগ $\mathbf{v} = \mathrm{d}r/\mathrm{d}t$ এবং $\mathbf{p} = m$ v

এ কারণে
$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} \times \mathbf{p} = \mathbf{v} \times m \ \mathbf{v} = 0,$$

যেহেতু দুটি সমান্তরাল ভেক্টরের ভেক্টর গুণফল থাকে না (vanishes) আবার যেহেতু dp / dt = F,

$$\mathbf{r} \times \frac{d\mathbf{p}}{dt} = \mathbf{r} \times \mathbf{F} = \mathbf{\tau}$$

সুতরাং $\frac{d}{dt} (\mathbf{r} \times \mathbf{p}) = \mathbf{\tau}$
বা $\frac{d\mathbf{l}}{dt} = \mathbf{\tau}$ (7.27)

এভাবে, একটি কণার সময়ের সাপেক্ষে কৌণিক ভরবেগের পরিবর্তনের হার, এর উপর প্রযুক্ত টর্কের সমান। ঘূর্ণন গতিবিদ্যায় এটি চলন গতিবিদ্যার F = dp/dt সমীকরণের অনুরূপ, যা একটি মাত্র কণার চলন গতিতে নিউটনের দ্বিতীয় সূত্রটিকে প্রকাশ করে।

একটি কণা সংস্থার টর্ক এবং কৌণিক ভরবেগ (Torque and angular momentum for a system of particles)

একটি বিন্দু সাপেক্ষে একটি কণা সংস্থার মোট কৌণিক ভরবেগ পেতে হলে আলাদাভাবে প্রত্যেকটি কণার কৌণিক ভরবেগের ভেক্টর যোগ করতে হবে। এভাবে, *n* সংখ্যক কণা বিশিষ্ট একটি কণা সংস্থার জন্য,

$$\mathbf{L} = \mathbf{l}_1 + \mathbf{l}_2 + \ldots + \mathbf{l}_n = \sum_{i=1}^n \mathbf{l}_i$$

i -তম কণার কৌণিক ভরবেগকে লেখা যায়

$$\mathbf{l}_i = \mathbf{r}_i \times \mathbf{p}_i$$

যেখানে **r**_i হল প্রদন্ত মূলবিন্দু সাপেক্ষে *i* -তম কণার অবস্থান ভেক্টর এবং **p** = (*m*,**v**) কণাটির রৈখিক ভরবেগ (কণাটির ভর *m*, এবং বেগ

একটি বাইসাইকেল রীম নাও এবং এর অক্ষকে উভয় দিকে বাড়িয়ে দাও। পাশের চিত্রেরমতোদুপ্রান্ত A এবং B এর সঙ্গে দুটি সূতা বেঁধে দাও। উভয় সূতাকে একত্রে

এক হাতে এমনভাবে ধরো যেন রীমটি উল্লম্বভাবে থাকে। যদি তুমি একটি সূতা ছেড়ে দাও তবে রীমটি কাত হয়ে যাবে। এখন উভয় সূতাকে এক হাতে ধরে রীমটিকে উল্লম্বভাবে রাখ। অন্যহাত দিয়ে রীমটিকে অক্ষের চারদিকে দ্রুত ঘুরাও। এখন হাত থেকে একটি সূতা, ধর B, ছেড়ে দাও এবং কী ঘটে পর্যবেক্ষণ করো।

পরে

রীমটি উল্লম্ব তলে ঘুরতে থাকবে এবং ঘূর্ণন তলটি A সূতাটির (যেটি তুমি ধরে রেখেছ) চারদিকে পাক খাবে। আমরা বলি যে, রীমটির ঘূর্ণন অক্ষ বা একইভাবে এর কৌণিক ভরবেগ সূতা A -এর সাপেক্ষে হয়।

আবর্তনশীল রীমটি একটি কৌণিক ভরবেগ সৃষ্টি করে। এক কৌণিক ভরবেগের অভিমুখ নির্ণয় করো। যখন তুমি A সূতার সাহায্যে ঘূর্ণনশীল রীমটি ধরে রাখ তখন একটি টর্ক উৎপন্ন হয়। (যেটি আমরা তোমার জন্য রাখলাম, তুমি নির্ণয় করো — কীভাবে টর্ক উৎপন্ন হয় এবং এর অভিমুখ কী?) কৌণিক ভরবেগের উপর টর্কের প্রভাব হল কৌণিক ভরবেগ এবং টর্ক উভয়ের সঞ্চো লম্ব একটি অক্ষের চারদিকে এর অগ্রগমন (Precess)। সব বস্তুব্যগুলোকে যাচাই করে দেখ।

v,)। কণা সংস্থার মোট কৌণিক ভরবেগকে লেখা যায় —

$$\mathbf{L} = \sum_{i} \mathbf{l}_{i} = \sum_{i} \mathbf{r}_{i} \times \mathbf{p}_{i}$$
(7.25b)

এটি একটি কণা সংস্থায় কেবল একটি কণার জন্য কৌণিক ভরবেগের (সমীকরণ 7.25a) সাধারণীকৃত সংজ্ঞা।

7.23 নং এবং 7.25b নং সমীকরণ ব্যবহার করে আমরা পাই ---

$$\frac{\mathrm{d}\mathbf{L}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\sum \mathbf{l}_i \right) = \sum_i \frac{\mathrm{d}\mathbf{l}_i}{\mathrm{d}t} = \sum_i \boldsymbol{\tau}_i$$
(7.28a)

যেখানে τ_i হল *i* -তম কণার উপর ক্রিয়াশীল টর্ক;

 $\boldsymbol{\tau}_i = \boldsymbol{r}_i \times \boldsymbol{F}_i$

i-তম কণার উপর ক্রিয়াশীল **F**_i বলটি হল কণাাটির উপর প্রযুক্ত বাহ্যিক বলগুলো **F**^{ext} এবং সংস্থাটির অন্য কণাগুলো দ্বারা প্রযুক্ত অভ্যন্তরীণ বল **F**^{int} এর ভেক্টর সমন্টি। অতএব আমরা মোট টর্ক $\boldsymbol{\tau} = \sum_{i} \boldsymbol{\tau}_{i} = \sum_{i} \mathbf{r}_{i} \times \mathbf{F}_{i}$ থেকে বাহ্যিক এবং অভ্যন্তরীণ বলগুলোকে পৃথক করে লিখতে পারি —

$$\boldsymbol{\tau} = \boldsymbol{\tau}_{ext} + \boldsymbol{\tau}_{int}$$

যেখানে $\boldsymbol{\tau}_{ext} = \sum_{i} \mathbf{r}_{i} \times \mathbf{F}_{i}^{ext}$
এবং $\boldsymbol{\tau}_{int} = \sum_{i} \mathbf{r}_{i} \times \mathbf{F}_{i}^{int}$

আমরা শুধু নিউটনের তৃতীয় সূত্রকেই, অর্থাৎ সংস্থার যে কোন দুটি কণার মধ্যে পারস্পরিক বল সমান ও বিপরীত বিবেচনা করব না কিন্তু আরও ধরে নেব যে এ বলগুলোর অভিমুখ কণাদ্বয়ের সংযোজী রেখা বরাবর। এক্ষেত্রে যেহেতু প্রত্যেক ক্রিয়া-প্রতিক্রিয়া যুগ্মবল-জনিত টর্ক শূন্য তাই, সংস্থার উপর প্রযুক্ত মোট টর্কে অভ্যন্তরীণ বলগুলোর অবদান শূন্য। এভাবে আমরা পাই **r**_{int} = **0** অতএব

τ = τ_{ext}. যেহেতু τ = Στ_i, 7.28a নং সমীকরণ অনুসরণ করে

$$\frac{\mathrm{d}\mathbf{L}}{\mathrm{d}t} = \mathbf{\tau}_{ext} \tag{7.28 b}$$

এভাবে, একটি বিন্দু সাপেক্ষে (আমাদের নির্দেশ ফ্রেমে মূলবিন্দু) একটি কণা সংস্থার মোট কৌণিক ভরবেগের সময়ের সঙ্গে পরিবর্তনের হার (time rate) বাহ্যিক টর্কগুলোর সমষ্টির সমান (অর্থাৎ বাহ্যিক বলগুলোর দরুণ টর্ক সমূহ)। 7.28 b নং সমীকরণটি একটি কণা সংস্থায় কেবল একটি কণার (single particle) ক্ষেত্রে 7.23 নং সমীকরণের সাধারণীকৃত রূপ।লক্ষ করো, যখন আমাদের কেবল একটি মাত্র কণা থাকে তখন কোনো অভ্যন্তরীণ বল বা টর্ক থাকে না। ঘূর্ণনগতির 7.28 b সমীকরণটি

$$\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}t} = \mathbf{F}_{ext} \tag{7.17}$$

লক্ষ করো, 7.17 নং সমীকরণের মতো (7.28b) নং সমীকরণটি যে কোনো কণা সংস্থার জন্য, এটি একটি দৃঢ়বস্তুই হোক বা সব ধরনের অভ্যন্তরীণ গতিযুক্ত এর স্বতন্ত্র কণা সমূহই হোক।

কৌণিক ভরবেগের সংরক্ষণ (Conservation of angular momentum)

যদি $\mathbf{\tau}_{_{ext}} = \mathbf{0}$, হয়, তবে 7.28b নং সমীকরণটি দাঁড়ায়

$$\frac{\mathrm{d}\mathbf{L}}{\mathrm{d}t} = 0$$

বা L = ধ্রুবক (7.29a)

অতএব কোন কণা সংস্থায় যদি মোট বাহ্যিক টর্ক শূন্য হয় তবে সংস্থার মোট কৌণিক ভরবেগ সংরক্ষিত থাকে অর্থাৎ ধ্রুবক থাকে। (7.29a) নং সমীকরণটি তিনটি স্কেলার সমীকরণের সমতুল্য।

$$L_x = K_1, L_y = K_2 and L_z = K_3$$
 (7.29 b)

এখানে K_1, K_2 এবং K_3 হল ধ্রুবক। L_x, L_y এবং L_z হল মোট কৌণিক ভরবেগ ভেক্টর L এর যথাক্রমে x, y এহং z -অক্ষ বরাবর উপাংশ। মোট কৌণিক ভরবেগ সংরক্ষিত থাকে — এই বিবৃতিটি বুঝায় যে, এ তিনটি উপাংশের প্রত্যেকটি সংরক্ষিত থাকে।

(7.18a) নং সমীকরণটির ঘূর্ণায়মান অনুরূপ হল (7.29a) সমীকরণ, যাহা একটি কণা সংস্থার জন্য মোট রৈখিক ভরবেগের সংরক্ষণ সূত্র। (7.18a) নং সমীকরণের মতো ব্যবহারিক ক্ষেত্রে এর অনেক প্রয়োগ আছে। পরে এ অধ্যায়ে আমরা এর কয়েকটি মজাদার প্রয়োগ লক্ষ করব।

উত্তর: এখানে $\mathbf{r} = \hat{\mathbf{j}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}$

$$\mathbf{F} = 7\,\mathbf{\hat{i}} + 3\,\mathbf{\hat{j}} - 5\,\mathbf{\hat{k}}$$

টর্ক **τ = r × F** নির্ণয়ের জন্য আমরা নির্ণায়ক (determinant) সূত্রটি ব্যবহার করব।

$$\tau = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & -1 & 1 \\ 7 & 3 & -5 \end{vmatrix} = (5-3)\hat{\mathbf{i}} - (-5-7)\hat{\mathbf{j}} + (3-(-7))\hat{\mathbf{k}}$$

$$\overrightarrow{\tau} = 2\hat{\mathbf{i}} + 12\hat{\mathbf{j}} + 10\hat{\mathbf{K}}$$

উদাহরণ 7.6 দেখাও যে, নির্দিষ্ট বেগ নিয়ে গতিশীল একটি (single) কণার যে কোন বিন্দু সাপেক্ষে কৌণিক ভরবেগ সমগ্র গতিপথেই ধ্রুবক। উত্তর : ধরো, কোনো t মুহূর্তে P বিন্দুতে কণাটির বেগ v । যে কোনো ইচ্ছাধীন বিন্দু O সাপেক্ষে কণাটির কৌণিক ভরবেগ আমরা গণনা করতে চাই।

কৌণিক ভরবেগ l = r × mv। এর মান হল mvr sin θ , যেখানে θ হল r এবং v এর মধ্যবর্তী কোণ, যেমনটা 7.19 নং চিত্রে দেখানো আছে। যদিও সময়ের সঙ্গো কণাটি অবস্থান পরিবর্তন করে, v এর অভিমুখ একই থাকে। অতএব OM = r sin θ একটি ধ্রুবক।

অধিকন্তু l এর অভিমুখ r এবং v এর তলের উপর লম্ব, এটি চিত্রটির পাতার ভেতরের দিকে। সময়ের সঙ্গো এর অভিমুখ পরিবর্তিত হয় না।

এভাবে, l মানে এবং দিকে একই থাকে অর্থাৎ সংরক্ষিত থাকে। কণাটির উপর কোনো বাহ্যিক টর্ক আছে কি?

7.8 একটি দৃঢ় বস্তুর সাম্যাবস্থা (Equilibrium of a rigid Body)

সাধারণ কণা সংস্থার গতিকে ছেড়ে বরং এখন দৃঢ়বস্তুর গতির উপর আমাদের আলোচনাকে কেন্দ্রীভূত করতে যাচ্ছি।

দৃঢ়বস্থুর উপর বাহ্যিক বলের কী প্রভাব- এর একটি সারসংক্ষেপ আমরা তৈরি করব। (অতপর আমরা 'বাহ্যিক' এ বিশেষণটি বাদ দেব, কারণ যদি না অন্যথায় বিবৃত হয়, আমরা কেবল বাহ্যিক বল এবং টর্কগুলো নিয়ে আলোচনা করব)। বলগুলো দৃঢ়বস্থুর গতির চলন অবস্থার পরিবর্তন করবে অর্থাৎ এগুলো 7.17 নং সমীকরণ অনুযায়ী এদের মোট রৈখিক ভরবেগের পরিবর্তন করবে। কিস্তু এটিই শুধুমাত্র বলগুলোর প্রভাব নয়। বস্থুর উপর মোট টর্ক শূন্য নাও হতে পারে। এ ধরনের টর্ক দৃঢ়বস্থুর ঘূর্ণন গতীয় অবস্থার পরিবর্তন করে অর্থাৎ 7.28 b নং সমীকরণ অনুসারে বস্থুটির মোট কৌণিক ভরবেগের পরিবর্তন করে।

একটি দৃঢ়বস্থু যান্ত্রিক সাম্যাবস্থায় আছে বলা হয় যদি এর রৈথিক ভরবেগ এবং কৌণিক ভরবেগ উভয়েরই সময়ের সঙ্গো পরিবর্তন না হয় অথবা একইভাবে, বস্তুটির রৈথিক ত্বরণ বা কৌণিক ত্বরণ কোনটিই না থাকে। এ থেকে বুঝা যায় যে,

 মোট বল অর্থাৎ দৃঢ় বস্তুর উপর বলগুলোর ভেক্টর সমষ্টি হয় শূন্য;

$$\mathbf{F}_1 + \mathbf{F}_2 + \dots + \mathbf{F}_n = \sum_{i=1}^n \mathbf{F}_i = \mathbf{0}$$
 (7.30a)

যদি বস্তুর উপর মোট বল শূন্য হয় তবে সময়ের সঞ্চো বস্তুর মোট রৈখিক ভরবেগের পরিবর্তন হয় না। 7.30a নং সমীকরণ থেকে বস্তুটির চলন গতির সাম্যাবস্থার শর্ত পাওয়া যায়।

(2) মোট টর্ক অর্থাৎ দৃঢ়বস্তুটির উপর টর্কগুলোর ভেক্টর সমষ্টি
 শূন্য।

$$\boldsymbol{\tau}_1 + \boldsymbol{\tau}_2 + \ldots + \boldsymbol{\tau}_n = \sum_{i=1}^n \boldsymbol{\tau}_i = \boldsymbol{0}$$
 (7.30b)

যদি বস্তুর উপর মোট টর্ক শূন্য হয়, তবে সময়ের সঙ্গে বস্তুটির মোট কৌণিক ভরবেগের পরিবর্তন হয় না। 7.30b নং সমীকরণ থেকে বস্তুটির ঘূর্ণনগতির সাম্যাবস্থার শর্ত পাওয়া যায়।

কেউ বা হয়তো প্রশ্ন তুলতে পারে যে মূলবিন্দু সাপেক্ষে টর্কসমূহ নেয়া হয়েছে, যদি সেটি সরে যায়, তবে কী ঘূর্ণনগতির সাম্যাবস্থার শর্ত [7.30b নং সমীকরণ] বৈধ থাকবে? কেউ দেখাতে পারে যে, যদি দৃঢ়বস্থুর চলনগতির সাম্যাবস্থার শর্ত [7.30a নং সমীকরণ] যথার্থ (holds) হয় তবে মূলবিন্দুর সেরকম স্থানান্তর কোন ব্যাপারই নয় অর্থাৎ ঘূর্ণনগতির সাম্যাবস্থার শর্ত মূলবিন্দুর (যে বিন্দু সাপেক্ষে টর্ক সমূহ নেয়া হল) অবস্থান নিরপেক্ষ। 7.7 উদাহরণটি একটি দ্বন্দের বিশেষ ক্ষেত্রে এই ফলাফলের একটি প্রমাণ দেয় অর্থাৎ চলনগতির সাম্যাবস্থায় থাকা একটি দৃঢ়বস্থুর উপর দুটি বল ক্রিয়া করছে। এ ফলাফল *n* সংখ্যক বলের জন্য সাধারণীকরণের একটি অনুশীলনী হিসেবে রেখে দেয়া হল।

7.30a নং এবং 7.30b নং উভয়েই ভেক্টর সমীকরণ। এগুলো তিনটি স্কেলার সমীকরণের সমতুল্য। 7.30a নং এর অনুরূপ সমীকরণ হল —

$$\sum_{i=1}^{n} F_{ix} = 0$$
, $\sum_{i=1}^{n} F_{iy} = 0$ and $\sum_{i=1}^{n} F_{iz} = 0$ (7.31a)

যেখানে F_{ix} , F_{iy} এবং F_{iz} হল বলসমূহ \mathbf{F}_i এর যথাক্রমে x, y এবং zউপাংশ। একইভাবে, 7.30b নং সমীকরণের সমতুল্য তিনটি স্কেলার সমীকরণগুলো হল —

$$\sum_{i=1}^{n} \tau_{ix} = 0$$
, $\sum_{i=1}^{n} \tau_{iy} = 0$ and $\sum_{i=1}^{n} \tau_{iz} = 0$ (7.31b)

যেখানে au_{ix} , au_{iy} এবং au_{iz} হল টর্ক au_i এর যথাক্রমে x, y এবং z উপাংশ।

7.20a নং চিত্রের B বিন্দুর বলটিকে 7.20b নং চিত্রে বিপরীতমুখী করা হল। এভাবে একই রডের দুপ্রান্তে দুটি সমান এবং বিপরীতমুখী বল লম্বভাবে ক্রিয়া করে। একটি বল A প্রান্তে এবং অপরটি B প্রান্তে। এখানে উভয় বলের ভ্রামক সম মানের কিন্তু এরা বিপরীতমুখী নয়। এরা একই অভিমুখে ক্রিয়া করে এবং রডটির বামাবর্তী (anticlockwise) ঘূর্ণনের কারণ হয়। বস্তুটির উপর মোট বল শূন্য; সুতরাং বস্তুটি চলন গতির সাম্যাবস্থায় আছে; কিন্তু এটি ঘূর্ণনগতির সাম্যাবস্থায় নেই। যদিও রডটি কোনভাবে স্থির (আটকানো) নয়, এটি বিশুদ্ধ ঘূর্ণনগতি সম্পন্ন করে (অর্থাৎ চলনগতি ছাড়া ঘূর্ণন)।

ভিন্ন ক্রিয়া রেখায় একজোড়া সমান এবং বিপরীতমুখী বলের ক্রিয়াকে **দ্বন্দু বা টর্ক** বলে। একটি দ্বন্দু চলন ছাড়া ঘূর্ণন সৃষ্টি করে।

যখন আমরা একটি বোতলের ঢাকনাকে ঘুরিয়ে খুলি, আমাদের অঙুলগুলো ঢাকনাটিতে একটি দ্বন্দু প্রয়োগ করে [7.21(a) নং চিত্র]। অন্য একটি জানা উদাহরণ হল ভূ-চৌম্বক ক্ষেত্রে একটি সূচিচুম্বক, 7.21(b) নং চিত্রে যেমন দেখনো আছে। ভূ-চৌম্বক ক্ষেত্র উত্তরমেরু এবং দক্ষিণ মেরুর উপর সমান বল প্রয়োগ করে। উত্তর মেরুর উপর বলটি উত্তরদিকে এবং দক্ষিণ মেরুর উপর বলটি দক্ষিণ দিকে ক্রিয়া করে। এর ব্যতিক্রম হয় যখন সূচি চুম্বকটি উত্তর-দক্ষিণমুখী থাকে। দুটি বলের ক্রিয়ারেখা একই রেখায় থাকে না। এভাবে ভূ-চৌম্বক ক্ষেত্রের জন্য সৃচিচুম্বকটির উপর একটি দ্বন্দু ক্রিয়া করে।

একটি দৃঢ়বস্তুর যান্ত্রিক সাম্যাবস্থার শর্ত পূরণের জন্য 7.31a নং এবং 7.31b নং সমীকরণগুলো ছয়টি স্বতন্ত্র শর্ত দেয়। বহু সংখ্যক সমস্যায় বস্তুর উ পর প্রযুক্ত সব বলগুলো হল সমতলীয় (coplanar)। সেক্ষেত্রে যান্ত্রিক সাম্যাবস্থার জন্য আমাদের মাত্র তিনটি শর্ত পূরণের প্রয়োজন হয়। সেগুলোর মধ্যে দুটি শর্ত চলনগতির সাম্যাবস্থার অনুরূপ; তলটিতে যে কোন দুটি লম্ব অক্ষ বরাবর বলের উপাংশগুলোর সমষ্টি অবশ্যই শূন্য হতে হবে। তৃতীয় শর্তটি আবর্তগতির সাম্যাবস্থার অনুরূপ। বলের তলের উপর লম্ব কোনো অক্ষ বরাবর টর্ক সমূহের উপাংশগুলোর সমষ্টি অবশ্যই শূন্য হবে।

পূর্বের অধ্যায়গুলোতে আলোচিত হয়েছে কীভাবে একটি কণার সাম্যাবস্থার শর্তগুলো একটি দৃঢ়বস্থুর ক্ষেত্রে তুলনা করা যেতে পারে। যেহেতু ঘূর্ণনগতির বিবেচনা একটি কণায় প্রয়োগ করা হয় না, কেবলমাত্র চলনগতির সাম্যাবসথার (7.30 a নং সমীকরণ) শর্তগুলো একটি কণায় প্রযুক্ত হয়, কাজেই একটি কণার সাম্যাবস্থার জন্য সব বলের ভেক্টর সমষ্টি অবশ্যই শূন্য হবে। যেহেতু এসব বলগুলো কেবল একটি (বা একক) কণার উপর ক্রিয়া করে, এগুলো সব সমবিন্দু। পূর্বের অধ্যায়ে সমবিন্দু বলগুলোর সাম্যাবস্থা নিয়ে আলোচনা হয়েছে।

একটি বস্তু আংশিক সাম্যাবস্থায় থাকতে পারে অর্থাৎ বস্তুটি চলনগতির সাম্যাবস্থায় থাকতে পারে এবং ঘূর্ণনগতির সাম্যাবস্থায় নেই, অথবা এটি হয়তো ঘূর্ণনগতির সাম্যাবস্থায় আছে এবং চলনগতির সাম্যাবস্থায় নেই।

ধরো, একটি হাল্কা (অর্থাৎ ভর নগণ্য) রড (AB) যার দু-প্রান্তে (A এবং B) দুটি সমান্তরাল এবং উভয়ই সমমানের বল রডটিতে লম্বভাবে প্রযুক্ত হয় (7.20 a নং চিত্রে যেমন দেখানো আছে)।

ধরো AB এর মধ্যবিন্দু C, CA = CB = a | A এবং B বিন্দুতে বলের ভ্রামক দুটি সমমানের (*aF*), কিন্ডু বিপরীতমুখী হবে, চিত্রে যেমন দেখানো আছে। রডটির উপর নিট ভ্রামক শূন্য হবে। সংস্থাটি ঘূর্ণনগতির সাম্যাবস্থায় থাকবে কিন্ডু চলনগতির সাম্যে নয় :

 $\sum F \neq 0$

চিত্র 7.21(b) ভূ-চৌম্বক ক্ষেত্র কম্পাসের মেরুগুলোতে সমান এবং বিপরীতমুখী বল প্রয়োগ করে। এ দুটি বল একটি দ্বন্দু সৃষ্টি করে।

Fig. 7.22

ধর, 7.22 নং চিত্রের মতো একটি দ্বন্দু একটি দৃঢ়বস্তুর উপর ক্রিয়া করছে। B এবং A বিন্দুতে ক্রিয়াশীল বলগুলো যথাক্রমে F এবং -F। মূলবিন্দু O সাপেক্ষে বিন্দুগুলোর অবস্থান ভেক্টর \mathbf{r}_1 এবং \mathbf{r}_2 । চল আমরা মূলবিন্দু সাপেক্ষে বলের ভ্রামকগুলোকে নিই।

দ্বন্দুটির ভ্রামক = দ্বন্দু সৃষ্টিকারী বল দুটির ভ্রামকের সমষ্টি

 $= \mathbf{r}_1 \times (-\mathbf{F}) + \mathbf{r}_2 \times \mathbf{F}$ $= \mathbf{r}_2 \times \mathbf{F} - \mathbf{r}_1 \times \mathbf{F}$ $= (\mathbf{r}_2 - \mathbf{r}_1) \times \mathbf{F}$ কিন্তু $\mathbf{r}_1 + \mathbf{AB} = \mathbf{r}_2$ এবং $\mathbf{AB} = \mathbf{r}_2 - \mathbf{r}_1$.
অতএব দ্বন্দুটির ভ্রামক হল $\mathbf{AB} \times \mathbf{F}$ |

স্পষ্টত এটি মূলবিন্দু (যে বিন্দুটি সাপেক্ষে আমরা বলগুলোর ভ্রামক নিয়েছি) নিরপেক্ষ।

7.8.1 ভ্রামকের নীতি (Principle of moments)

একটি আদর্শ লিভার হল মূলত একটি হাল্ধা (অর্থাৎ নগন্য ভর) রড, যেটি দৈর্ঘ্য বরাবর একটি বিন্দুতে কীলকাবন্ধ করা (pivoted)। ঐ বিন্দুটিকে বলে আলম্ব (fulcrum)। একটি লিভারের প্রতীক স্বরূপ উদাহরণ হল বাচ্চাদের খেলার মাঠে একটি সী-শ (see-saw বা ঢেঁকিকল)। দুটি বল F_1 এবং F_2 পরস্পর সমান্তরাল এবং সাধারণত লিভারের উপর লম্ব; এখানে যেভাবে দেখানো আছে, আলম্ব থেকে যথাক্রমে d_1 এবং d_2 দূরত্বে বল দুটি লিভারের উপর ক্রিয়া করে, 7.23 নং চিত্রে যেমন দেখানো আছে।

লিভার হল যান্ত্রিক সাম্যাবস্থায় থাকা একটি সংস্থা। ধরো, R হল আলম্ব বিন্দুতে অবলম্বন দ্বারা প্রতিক্রিয়া। R এর অভিমুখ F_1 ও F_2 বলের বিপরীত। চলন সাম্যাবস্থায় —

$$R - F_1 - F_2 = 0$$
 (i)

ঘূর্ণন সাম্যাবস্থার জন্য আমরা আলম্ব সাপেক্ষে ভ্রামক নিই। ভ্রামকগুলোর সমষ্টি অবশ্যই শূন্য হবে।

$$d_1F_1 - d_2F_2 = 0$$
 (ii)

সাধারণত বামাবর্তী (anticlockwise) ভ্রামককে ধনাত্মক এবং দক্ষিণাবর্তী (clockwise) ভ্রামককে ঋণাত্মক ধরা হয়। লক্ষণীয় যে, আলম্বতে *R* ক্রিয়া করে এবং আলম্ব সাপেক্ষে এর ভ্রামক শূন্য।

লিভারের ক্ষেত্রে, সাধারণত বল F_1 হল একটি ওজন, যাকে উপরে তুলতে হবে। একে ভার বলে। আলম্ব থেকে এর দূরত্ব d_1 কে ভার বাহু (load arm) বলে। বল F_2 হল ঐ ভারকে তোলার প্রচেষ্টা (effort)। আলম্ব থেকে এর দূরত্ব d_2 কে বল বাহু বা প্রচেষ্টা বাহু (effort arm) বলে।

(ii) নং সমীকরণকে লেখা যেতে পারে —

$$d_1F_1 = d_2F_2$$
বা ভারবাহু × ভার = বল বা প্রচেষ্টা বাহু × বল
(7.32a)

উপরের সমীকরণটি একটি লিভারের জন্য ভ্রামকের নীতিকে প্রকাশ করে। প্রসঙ্গক্রমে F_1/F_2 অনুপাতটিকে বলে যান্ত্রিক সুবিধা (M.A. — Mechanical Advantage);

M.A.
$$=\frac{F_1}{F_2} = \frac{d_2}{d_1}$$
 (7.32b)

যদি বল বাহুটি, ভার বাহু অপেক্ষা বড়ো হয় তবে যান্ত্রিক সুবিধা 1 অপেক্ষা বড়ো হয়। যান্ত্রিক সুবিধা 1অপেক্ষা বড় বলতে বুঝায় — অল্প প্রচেন্টায় বেশি ভারকে তোলা যাবে। সী-শ (see-saw) ছাড়াও তোমার চারদিকে লিভারের অনেক উদাহরণ রয়েছে। তুলাযন্ত্রের দণ্ডটি (beam) একটি লিভার। এ ধরনের আরও উদাহরণ খোঁজে

কণা সংস্থা এবং আবর্তগতি

দেখ এবং প্রতিক্ষেত্রে এদের আলম্ব থেকে আলম্ব, বল বাহু এবং ভার, ভারবাহু চিহ্নিত কর।

সমান্তরাল বল F_1 এবং F_2 লিভারের উপর লম্ব না হয়ে কোনো কোণে ক্রিয়া করলেও ভ্রামকের নীতি যে প্রযোজ্য হয়, তুমি এটি সহজে দেখাতে পার।

7.8.2 ভারকেন্দ্র (Centre of gravity)

আঙুলের ডগায় নোট বইকে ভারসাম্যে রাখার অভিজ্ঞতা তোমাদের অনেকেরই আছে। অনুরূপ একটি পরীক্ষা 7.24 চিত্রে দৃষ্টান্ত হিসেবে আছে এবং তুমি এটি সহজেই করে দেখাতে পার। একটি অনিয়মিত আকৃতির কার্ডবোর্ড এবং পেন্সিলের মত সরু ডগাযুক্ত একটি বস্তু নাও। 'প্রচেষ্টা এবং ত্রুটি' (trial and error) প্রক্রিয়ায় এমন একটি বিন্দু G তুমি সনাস্তু করতে পার যেখানে কার্ডবোর্ডটি পেন্সিলের ডগায় রাখলে এটি ভারসাম্যে তাকে (এ অবস্থানে কার্ডবোর্ডটি অনুভূমিক তাকে)। ঐ সাম্য বিন্দুটি হল কার্ডবোর্ডটির ভারকেন্দ্র (CG)। পেন্সিলের ডগাটি একটি ঊর্ধ্বমুখী বল যোগায় যার জন্য কার্ডবোর্ডটি যান্ত্রিক সাম্যাবস্থায় থাকে। 7.24 নং চিত্রে যেমন দেখানো আছে, পেনিন্সলের ডগাটি কার্ডবোর্ডটির মোট ওজন Mg (অর্থাৎ অভিকর্ষ বল) এর সমান এবং বিপরীত প্রতিক্রিয়া দেয়; এ কারণেই কার্ডবোর্ডটি চলন সাম্যাবস্থায় আছে । এটি ঘূর্ণন সাম্যাবস্থায়ও আছে: যদি তা না হয়, অসাম্য টর্কের জন্য এটি কাত হয়ে যাবে এবং পড়ে যাবে। কার্ডবোর্ডের স্বতন্ত্র কণাগুলোর উপর অভিকর্ষ বলগুলো যেমন m,g, m,g প্রভৃতি ক্রিয়া করে বলে কার্ডবোর্ডে টর্কগুলো উৎপন্ন হয়।

চিত্র 7.24 সেন্সিলের ডগায় কার্ডবোর্ডের ভারসাম্যতা। ভারবহন বিন্দুটি G এবং এটিই ভারকেন্দ্র।

কার্ডবোর্ডের ভারকেন্দ্রটি এমনভাবে সনাক্ত করা হয়েছে যে,

এর উপর $m_1 \mathbf{g}, m_2 \mathbf{g} \dots$ প্রভৃতি বলগুলোর মোট টর্ক শূন্য হবে। যদি একটি বিস্তৃত বস্তুর CG সাপেক্ষে *i*-তম কণার অবস্থান ভেক্টর \mathbf{r}_i হয়, তখন CG সাপেক্ষে অভিকর্ষ বলের জন্য টর্ক $\mathbf{\tau}_i = \mathbf{r}_i$ × $m_i \mathbf{g}$ । CG সাপেক্ষে মোট অভিকর্ষ জনিত টর্কটি শূন্য হবে।

অর্থাৎ
$$\mathbf{\tau}_g = \sum \mathbf{\tau}_i = \sum \mathbf{r}_i \times m_i \mathbf{g} = \mathbf{0}$$
 (7.33)

অতএব, আমরা একটি বস্তুর CGকে এভাবে সংজ্ঞায়িত করতে পারি — CG হল এমন একটি বিন্দু যেখানে বস্তুর উপর মোট অভিকর্ষজ টর্ক শূন্য।

7.33 নং সমীকরণে আমরা লক্ষ করেছি যে, g সব কণাগুলোর জন্য সমান এবং এটি আসে সমষ্টি থেকে। এটি দেখায়, যেহেতু g শূন্য নয় (Non-zero), $\sum m_i \mathbf{r}_i = \mathbf{0}$ । স্মরণ করো, অবস্থান ভেক্টর \mathbf{r}_i কে CG সাপেক্ষে নেয়া হয়েছে। এখন, 7.2 নং বিভাগের (7.4a) নং সমীকরণের দেয়া যুক্তি অনুসারে যদি সমষ্টি (sum) শূন্য হয়, তবে মূলবিন্দুটি অবশ্যই বস্তুটির ভারকেন্দ্র হবে। এভাবে সুযম অভিকর্যে বা অভিকর্যহীন স্থানে ভারকেন্দ্রটি বস্তুর ভরকেন্দ্রেই সমাপতিত (coincides) হবে। আমরা লক্ষ করেছি যে, এটি সত্য, কারণ বস্তুটি ছোট, g বস্তুটির এক কণা থেকে অন্যকণায় ভিন্ন হয়

চিত্র 7.25 একটি অনিয়মিতাকার বস্তুর ভারকেন্দ্র নির্ণয়। ভারকেন্দ্র G, বস্তুটির ঝুলনবিন্দু A গামী উল্লম্ব রেখা AA, এর উপর অবস্থিত।

না। যদি বস্তুটি এতই বিস্তৃত হয় যে, g বস্তুটির এক অংশ থেকে অন্য অংশে ভিন্ন হয় তখন ভারকেন্দ্র এবং ভরকেন্দ্র একই বিন্দুতে সমাপতিত হয় না। মূলত এ দুটি ভিন্ন ধারণা। অভিকর্যের উপর ভরকেন্দ্র নির্ভর করে না। এটি নির্ভর করে শুধু বস্তুতে ভরের বন্টনের উপর।

7.2 নং বিভাগে আমরা বিভিন্ন নিয়মিত, সমসত্ত্ব পদার্থের ভরকেন্দ্রের অবস্থান বের করেছি। স্পষ্টতই, যদি বস্তুটি যথেষ্ট ছোটো হয়, তবে সেখানে ব্যবহৃত পদ্ধতিতে আমরা ঐ সব বস্তুর ভারকেন্দ্র ও পেতে পারি।

কার্ডবোর্ডের মতো নিয়মিত আকৃতির বস্তুর CG নির্ণয়ের জন্য 7.25 নং চিত্রে অন্য একটি পম্থা চিত্রায়িত হয়েছে। তুমি যদি বস্তুটিকে A এর মতো কোন বিন্দু থেকে বুলাও তবে A এর মধ্যদিয়ে উল্লম্ব রেখাটি CG গামী হয়। আমরা একে উল্লম্ব রেখা AA₁ হিসেবে চিহ্নিত করি। আমরা তারপর বস্তুটিকে B এবং C এর মতো অন্য বিন্দু থেকে ঝুলাই। এভাবে প্রাপ্ত উল্লম্ব রেখাগুলোর ছেদ বিন্দুই হবে বস্তুটির CG। এ পদ্ধতি কেনো কার্যকর সেটি ব্যাখ্যা করো। যেহেতু বস্তুটি যথেষ্ট ছোট, তাই এ পদ্ধতি বস্তুটির ভরকেন্দ্র নির্ণয়েও সহায়ক হবে।

উদাহরণ 7.8 একটি ধাতব দণ্ডের দৈর্ঘ্য 70 cm এবং ভর 4.00 kg। দণ্ডটির প্রতি প্রান্ত থেকে 10 cm দুরে অবস্থিত দুটি ক্ষুর-ধারের (knife-edges) উপর এটিকে বসানো আছে। একটি 6.00 kg ভার এক প্রান্ত থেকে 30 cm দূরে ঝুলানো হল। ক্ষুর-ধারগুলোতে প্রতিক্রিয়া নির্ণয় কর। (ধরে নাও, দণ্ডটি সমপ্রস্থচ্ছেদ যুক্ত এবং সমসত্ত)

7.26 নং চিত্রে AB একটি রড। ক্ষুর-ধারগুলোর অবস্থান K₁ এবং K₂। রডটির ভারকেন্দ্র G এবং P অবস্থানে ভারটি ঝুলানো আছে।

লক্ষ করো, রডটির ওজন W এর ভারকেন্দ্র G তে ক্রিয়া করে। রডটি সুযম সমপ্রস্থচ্ছেদের এবং সমসত্ত্ব। যেহেতু G রডটির কেন্দ্রে এবং AB = 70 cm সুতরাং AG = 35 cm, AP = 30 cm, PG = 5 cm, AK₁ = BK₂ = 10 cm এবং K₁G = K₂G = 25 cm, *W*= রডটির ওজন পদার্থবিদ্যা

(i)

= 4.00 kg এবং W_1 = ঝুলানো ভার = 6.00 kg; R_1 এবং R_2 হল ক্ষুর-ধার প্রান্তদ্বয়ে লম্ব প্রতিক্রিয়া।

রডটির চলন সাম্যাবস্থার জন্য —

 $R_1 + R_2 - W_1 - W = 0$

লক্ষণীয়, W_1 এবং W উল্লম্বভাবে নীচের দিকে এবং R_1 ও R_2 উল্লম্বভাবে উপরের দিকে ক্রিয়া করে।

ঘূর্ণন সাম্যাবস্থার বিবেচনায় আমরা বলগুলোর ভ্রামক নেব। ভ্রামক নেয়ার জন্য একটি সুবিধাজনক বিন্দু G। R₂ এবং W₁ এর ভ্রামকগুলো বামাবর্তী (+ve) এবং R₁ এর ভ্রামক দক্ষিণাবর্তী (-ve)।

ঘূর্ণন সাম্যাবস্থার জন্য $-R_1(K_1G) + W_1(PG) + R_2(K_2G) = 0$ (ii) দেয়া আছে, W = 4.00g N এবং $W_1 = 6.00g$ N, যেখানে g = 2

অভিকর্ষজ ত্বরণ = 9.8 m/s².

মানগুলো বসিয়ে সমীকরণ (i) নং থেকে পাই — $R_1 + R_2 - 4.00g - 6.00g = 0$ বা $R_1 + R_2 = 10.00g$ N (iii) = 98.00 N

(ii) নং সমাকরণ থেকে
$$-0.25 R_1 + 0.05 W_1 + 0.25 R_2 = 0$$

বা $R_1 - R_2 = 1.2g$ N = 11.76 N (iv)
(iii) নং এবং (iv) নং সমীকরণ থেকে $R_1 = 54.88$ N,

$$(11)$$
 אל שלל (10) אל אאולאלי (געל $R_1 = 54.88$ N,
 $R_1 = 43.12$ N

এভাবে K₁ এ আলম্ব প্রতিক্রিয়া 55 N এবং K₂ এ আলম্ব প্রতিক্রিয়া 43 N।

► উদাহরণ 7.9 20 kg ভরের একটি 3m লম্বা মই একটি ঘর্ষণহীন দেওয়ালে হেলানো আছে। 7.27 নং চিত্রের মতো মইয়ের গোড়াটি দেওয়াল থেকে 1m দূরে মেঝেতে স্থির আছে। মেঝেতে এবং দেওয়ালে প্রতিক্রিয়া বল নির্ণয় কব।

উত্তর :

মই AB, 3 m লম্বা। এর গোড়া A বিন্দুতে এবং দেওয়াল থেকে দুরত্ব AC = 1 m। পীথাগোরাসের উপপাদ্য থেকে BC = $2\sqrt{2}$ m মইয়ের উপর প্রযুক্ত বলগুলো হল এর ভারকেন্দ্রে (D) ওজন W এবং দেওয়াল ও মেঝের প্রতিক্রিয়া বল যথাক্রমে $F_1 \otimes F_2$ । যেহেতু দেওয়ালটি ঘর্ষণহীন, বল F_1 দেওয়ালের উপর লম্ব। F_2 বলটি দুটি উপাংশে বিভাজিত। একটি হল লম্ব প্রতিক্রিয়া N এবং অপরটি ঘর্ষণ বল F। লক্ষ করো, বল F মইটিকে দেওয়াল থেকে দুরে পিছলে সরে যাওয়াকে আটকায়, অতএব এর অভিমুখ দেওয়ালের দিকে।

চলন সাম্যাবস্থার জন্য, উলস্ব অভিমুখে বলগুলো নিয়ে — N-W=0 (i)

অনুভূমিক দিকে বলগুলোকে নিয়ে

 $F - F_1 = 0$ (ii)

ঘূর্ণন সাম্যাবস্থার জন্য, A সাপেক্ষে বলের ভ্রামকগুলো নিয়ে

$$2\sqrt{2}F_1 - (1/2)W = 0$$
 (iii)

এখন, $W = 20 \text{ g} = 20 \times 9.8 \text{ N} = 196.0 \text{ N}$

(i) নং সমীকরণ থেকে *N*=196.0 N

(iii) নং সমীকরণ থেকে
$$F_1 = W/4\sqrt{2} = 196.0/4\sqrt{2} = 34.6 \,\mathrm{N}$$

(ii) নং সমীকরণ থেকে $F = F_1 = 34.6 \,\mathrm{N}$

 $F_2 = \sqrt{F^2 + N^2} = 199.0 \,\mathrm{N}$

 $F_{_2}$ বলটি অনুভূমিকের সঙ্গে lpha কোণ উৎপন্ন করে

 $\tan \alpha = N/F = 4\sqrt{2}$, $\alpha = \tan^{-1}(4\sqrt{2}) \approx 80^{\circ}$

7.9 জড়তা ভ্রামক (Moment of Inertia)

ইতিমধ্যেই আমরা উল্লেখ করেছি যে, আমাদের পরিচিত চলন গতির সঞ্চো সমান্তরালভাবে ঘূর্ণন গতি বিষয়ে অধ্যয়নের উন্নয়ন করছি। এ প্রসঞ্চো এখনো আমরা একটি মুখ্য প্রশ্নের উত্তর পাইনি। **ঘূর্ণনগতিতে ভরের অনুরূপ কী** ? বর্তমান বিভাগে আমরা এ প্রশ্নের উত্তর দেয়ার প্রয়াস নেব। আলোচনাকে সরল করার জন্য আমরা কেবল একটি স্থির অক্ষের চারদিকে ঘূর্ণনকে বিবেচনায় রাখব। চল, আমরা একটি **ঘূর্ণায়মান বস্তুর গতিশন্তির** একটি রাশিমালা পেতে চেম্টা করি। আমরা জানি যে, একটি স্থির অক্ষ সাপেক্ষে ঘূর্ণায়মান বস্তুর প্রতিটি কণা একটি বৃত্তাকার পথে 7.19 নং সমীকরণে দেয়া রৈখিক বেগ নিয়ে ঘুরে (7.16 নং চিত্র প্রসঞ্চিত)। অক্ষ থেকে r_i দূরত্বে অবস্থিত একটি কণার জন্য রৈখিক বেগ v_i = r_iw । কণাটির গতিশক্তি

$$k_i = \frac{1}{2}m_iv_i^2 = \frac{1}{2}m_ir_i^2\omega^2$$

যেখানে *m*, হল কণাটির ভর। বস্তুটির মোট গতিশক্তি হল পৃথক পৃথক কণাগুলোর গতিশক্তির সমষ্টি।

$$K = \sum_{i=1}^{n} k_i = \frac{1}{2} \sum_{i=1}^{n} (m_i r_i^2 \omega^2)$$

এখানে *n* হল বস্তুতে কণাগুলোর সংখ্যা। লক্ষণীয় যে, *ω* সব কণাগুলোর জন্য সমান। অতপর *ω* কে সমন্টি (sum) থেকে বাইরে রেখে

$$K = \frac{1}{2}\omega^2(\sum_{i=1}^n m_i r_i^2)$$

দৃঢ়বস্তুটির বৈশিষ্ট্য সূচক একটি নতুন প্রাচল কে আমরা জড়তা ভ্রামক হিসেবে সংজ্ঞায়িত করি। জড়তা ভ্রামক,

$$I = \sum_{i=1}^{n} m_i r_i^2$$
(7.34)

এ সংজ্ঞাটি নিয়ে

$$K = \frac{1}{2}I\omega^2 \tag{7.35}$$

লক্ষ করো যে, প্রাচল I, কৌণিক বেগের মান নিরপেক্ষ। এটি যে অক্ষ সাপেক্ষে দৃঢ়বস্তুটি ঘুরে তার উপর নির্ভরশীল এবং এটি দৃঢ়বস্তুটির একটি বৈশিষ্ট্য।

একটি বস্তুর রৈখিক (চলন) গতির গতিশস্তির রাশিমালার সঙ্গে ঘূর্ণায়মান বস্তুর গতি শস্তির 7.35নং সমীকরণের রাশিমালার তুলনা করো।

$$K = \frac{1}{2}mv^2$$

এখানে *m* = বস্তুটির ভর এবং এর বেগ *v*, ইতিমধ্যেই আমরা কৌণিক বেগ *w* (একটি স্থির অক্ষ সাপেক্ষে ঘূর্ণনগতির ক্ষেত্রে) এবং রৈখিক বেগ *v* এর (রৈখিক গতির ক্ষেত্রে) সাদৃশ্যতার সঙ্গে সুপরিচিত হয়েছি। এটি এখন স্পফ্ট যে, ঘূর্ণনগতির ক্ষেত্রে জড়তা লামক *I* প্রাচলটি প্রত্যাশিতভাবে রৈখিক গতির ভরের অনুরূপ। ঘূর্ণন গতিতে (একটি স্থির অক্ষ সাপেক্ষে) জড়তা ল্রামক রাশিটি রৈখিক গতির ভরের অনুরূপ ভূমিকা পালন করে।

আমরা এখন দুটি সরল ক্ষেত্রে জড়তা ভ্রামক গণনা করতে 7.34 নং সমীকরণের সংজ্ঞাটি প্রয়োগ করব।

(a) ধরো, R ব্যাসার্ধ এবং Μ ভরের একটি পাতলা রিং ω

কৌণিক বেগ নিয়ে এর নিজস্ব তলে এবং এর কেন্দ্রের চারদিকে যুরছে। রিংটির প্রতিটি ভর-উপাদান অক্ষ থেকে R দূরত্বে আছে এবং *Rա* দ্রুতিতে গতিশীল। অতএব, গতিশক্তি

আমরা পাই রিংটির

$$K = \frac{1}{2}Mv^{2} = \frac{1}{2}MR^{2}\omega^{2}$$
(7.35) নং সমীকরণের সঞ্চো তুলনা করে
জন্য $I = MR^{2}$

(b) পরে, একটি ভরহীন, একজোড়া ক্ষুদ্র ভরযুক্ত l দৈর্ঘ্যের দৃঢ় রড নাওযা ভরকেন্দ্রগামী একটি উল্লম্ব অক্ষ সাপেক্ষে ঘুরছে (7.28 নং চিত্র)। অক্ষ থেকে l/2 দূরত্বে প্রতিটি ভর M/2। অতএব, ভরগুলোর জড়তা ভ্রামককে লেখা যাবে

$$(M/2)(l/2)^2 + (M/2)(l/2)^2$$

এভাবে ভরকেন্দ্রগামী এবং রডের উপর লম্ব অক্ষ সাপেক্ষে ঘূর্ণায়মান জোড়াভরের জড়তা ভ্রামক

 $I = Ml^2/4$

7.1 নং টেবিলে পরিচিত নিয়মিতাকার বিভিন্ন কঠিন পদার্থসমূহের, নির্দিন্ট অক্ষ সাপেক্ষে, জড়তা ভ্রামক দেয়া আছে।

রৈখিক গতিতে যেমন বস্তুর ভর এর গতীয় অবস্থা পরিবর্তনে বাধা দেয়, এজন্য রৈখিক গতিতে বস্তুর ভরই জড়তার পরিমাপ। একইভাবে, ঘূর্ণন গতিতে প্রদত্ত অক্ষকে কেন্দ্র করে ঘূর্ণনের সময় জড়তা ভ্রামক, ঘূর্ণনগতির পরিবর্তনকে বাধা দেয়। এজন্য একে ঘূর্ণন জড়তার পরিমাপ হিসেবে গণ্য করা যেতে পারে; এটি হল পরিমাপের একটি উপায় যেখানে বস্তুর বিভিন্ন অংশ অক্ষ থেকে বিভিন্ন দূরত্বে বন্টিত। বস্তুর ভরের মতো জড়তা ভ্রামক ধ্রুবক নয় কিন্তু এটি সমগ্র বস্তু সাপেক্ষে ঘূর্ণন অক্ষের অবস্থান এবং বিন্যাস অর্থাৎ এটি কীভাবে আছে (orientation) তার উপর নির্ভর করে। পরিমাপের একটি উপায় হিসেবে, যেখানে একটি ঘূর্ণায়মান দৃঢ়বস্থুর ভর ঘূর্ণন অক্ষ সাপেক্ষে বন্টিত, আমরা একটি নতুন প্রাচল (parameter) **'চক্রগতির ব্যাসার্ধ'**কে সংজ্ঞায়িত করতে পারি। এটি জড়তা ভ্রামক এবং বস্থুর মোট ভর সম্পর্কিত।

7.1 নং টেবিলটি লক্ষ করলে দেখা যায় যে, সব ক্ষেত্রে আমরা লিখতে পারি I = Mk², যেখানে k হল দৈর্ঘের মাত্রা। একটি রডের জন্য, এর মধ্যবিন্দুতে উল্লম্ব অক্ষ সাপেক্ষে $k^2 = L^2/12$ অর্থাৎ $k = L/\sqrt{12}$ । একইভাবে, একটি বৃত্তাকার ডিস্কের জন্য এর ব্যাস সাপেক্ষে k = R/2। k দৈর্ঘ্যটি হল বস্তুর এবং এক ঘূর্ণন অক্ষের জ্যামিতিক ধর্ম। একে চক্রগতির ব্যাসার্ধ বলে। কোন একটি অক্ষ সাপেক্ষে একটি বস্তুর চক্রগতির ব্যাসার্ধ বলে। কোন একটি অক্ষ সাপেক্ষে একটি বস্তুর চক্রগতির ব্যাসার্ধকে ভরবিন্দুগামী অক্ষ এবং ঐ অক্ষের মধ্যবর্তী লম্ব দূরত্ব হিসেবে সংজ্ঞায়িত করা যেতে পারে, যেখানে ভরবিন্দুর ভর সমগ্র বস্তুর ভরের সমান এবং ভরবিন্দুগামী অক্ষের সাপেক্ষে বস্তুটির জড়তা ভ্রামক ঐ অক্ষের সাপেক্ষে বস্তুটির জডতা ভ্রামকের সমান।

এভাবে, একটি দৃঢ়বস্তুর জড়তা ভ্রামক বস্তুটির ভর, আকৃতি, আয়তন, ঘূর্ণন অক্ষ সাপেক্ষে ভরের বন্টন এবং ঘূর্ণন অক্ষের বিন্যাস ও অবস্থানের উপর নির্ভর করে।

(7.34) নং সমীকরণে নেয়া সংজ্ঞা থেকে আমরা সিম্পাস্ত নিতে পারি যে, জড়তা ভ্রামকের মাত্রা ML² এবং এর SI একক kg m²।

বস্তুটির ঘূর্ণন জড়তার পরিমাপ হিসেবে খুবই গুরুত্বপূর্ণ রাশি এই *I* ধর্মটির একটি বিশেষ গুরুত্বপূর্ণ ব্যবহারিক প্রয়োগ আছে। যন্ত্রসমূহ যেমন স্টীম ইঞ্জিন এবং অটোমোবাইল ইঞ্জিন প্রভৃতি, যেগুলো ঘূর্ণন গতি সৃষ্টি করে, এদের একটি অধিক জড়তা ভ্রামক সম্পন্ন ডিস্ক থাকে, একে চলন্ত চাকা (flywheel) বলে। অধিক জড়তা ভ্রামকের কারণে চলন্ত চাকাটি যানের গতির হঠাৎ বৃদ্ধি বা হ্রাসকে বাধা দেয়। এটি গতিতে ক্রমিক পরিবর্তনকে অনুমোদন দেয় এবং ঝাঁকুনিযুক্ত গতি রোধ করে। যার ফলে যানের যাত্রীদের একটি মসৃণ আরোহণ নিশ্চিত করে।

7.10 উল্লম্ব এবং সমান্তরাল অক্ষ সমূহের উপপাদ্য (Theorems of perpendicular and parallel axes)

জড়তা ভ্রামক সম্পর্কিত দুটি প্রয়োজনীয় উপপাদ্য আছে। আমরা প্রথমে উল্লম্ব অক্ষসমূহের উপপাদ্য নিয়ে আলোচনা করব এবং কিছু নিয়মিত আকৃতির বস্তু সমূহের জড়তা ভ্রামক নির্ণয়ে সরল ও নির্দেশপূর্ণ প্রয়োগ দেখব।

z	বস্তু	অক্ষ	চিত্র	I
(1)	সরু (Thin) বৃত্তাকার রিং, ব্যাসার্ধ <i>R</i>	কেন্দ্রে, তলের উপর লম্ব		MR ²
(2)	সরু বৃত্তাকার রিং, ব্যাসার্ধ <i>R</i>	ব্যাস		$M R^2/2$
(3)	সরু রড, দৈর্ঘ্য L	মধ্যবিন্দুতে, রডের উপর লম্ব	x y	M L²/12
(4)	বৃত্তাকার ডিস্ক, ব্যাসার্ধ <i>R</i>	ডিস্কের কেন্দ্রে লম্ব		M R ² /2
(5)	বৃত্তাকার ডিস্ক, ব্যাসার্ধ <i>R</i>	ব্যাস		$M R^{2}/4$
(6)	ফাঁপা চোঙ, ব্যাসার্ধ R	চোঙের অক্ষ	€ ∧	MR^2
(7)	নিরেট চোঙ, ব্যাসার্ধ R	চৌঙের অক্ষ	÷	$M R^2/2$
(8)	নিরেট গোলক, ব্যাসার্ধ R	ব্যাস		2 M R ² /5

সারণি 7.1 নির্দিষ্ট অক্ষ সাপেক্ষে কিছু নিয়মিত আকৃতির বস্তুসমূহের জড়তা ভ্রামক :

ব্যাসার্ধ) তুলনায় খুব ছোটো। 7.29 নং চিত্রে উপপাদ্যটি চিত্রিত হয়েছে। বিবৃতিটি হল কোনো সামতলিক বস্তুর (পাতলা পাতের) তলে অবস্থিত পরস্পর লম্ব দুটি অক্ষের সাপেক্ষে ঐ বস্তুর জড়তা ভ্রামকের সমষ্টি, ঐ অক্ষদ্বয়ের ছেদবিন্দুগামী এবং বস্তুর তলের লম্ব অক্ষের সাপেক্ষে বস্তুটির জড়তা ভ্রামকের সমান।

উল্লম্ব অক্ষ সমূহের উপপাদ্য (Theorem of perpendicular axes)

যে সব বস্তু সামতলিক (planar) তাদের ক্ষেত্রে উপপাদ্যটি প্রযোজ্য। বাস্তবে এটি বুঝায় যে, উপপাদ্যটি ফ্ল্যাট (flat) বস্তুতে প্রযোজ্য হয়, এদের বৈধ অন্যমাত্রাগুলোর (যেমন, দৈর্ঘ্য, প্রস্থা বা

চিত্র 7.29 সামতলিক বস্তুতে লম্ব অক্ষ সমূহের উপপাদ্য প্রযোজ্য; তলেx এবংy দুটি লম্ব অক্ষ এবংz- অক্ষটি তলটির উপর লম্ব।

চিত্রে একটি দ্বিমাত্রিক বস্তুকে দেখানো হচ্ছে। বস্তুটির একটি বিন্দু O গামী লম্বকে z-অক্ষ হিসেবে নেওয়া হল। বস্তুটির তলে অবস্থিত পরস্পর লম্ব দুটি অক্ষ এবং z-অক্ষ সমবিন্দু অর্থাৎ O বিন্দু দিয়ে যায়। এদের x এবং y-অক্ষ হিসেবে নেয়া হয়েছে। উপপাদ্যটি বিবৃত করে যে,

$$I_z = I_x + I_y \tag{7.36}$$

চল, একটি উদাহরণের সাহায্যে আমরা উপপাদ্যটির উপযোগিতা দেখব।

চিত্র 7.30 একটি চাকতির একটি ব্যাস সাপেক্ষে জড়তা ভ্রামক হল এর কেন্দ্রগামী লম্ব সাপেক্ষে জড়তা ভ্রামক।

উত্তর : আমরা ধরি, একটি চাকতির উপর লম্ব এবং এর কেন্দ্রগামী একটি অক্ষ সাপেক্ষে জড়তা ভ্রামক জানা আছে এবং তা হল *MR*²/2, যেখানে M হল চাকতির ভর এবং এর ব্যাসার্ধ *R* (সারণি 7.1)।

চাকতিটিকে একটি সামতলিক (planar) বস্তু হিসেবে বিবেচনা করা যেতে পারে। অতএব, লম্ব অক্ষসমূহের উপপাদ্যটি এতে প্রযোজ্য হবে। 7.30 নং চিত্রে যেমন দেখানো আছে, চাকতিটির কেন্দ্র O গামী তিনটি সমবিন্দু অক্ষ x, y এবং z ধরে নিই. যেখানে x এবং y- অক্ষ চাকতির তলে এবং z - অক্ষটি ঐ তলের উপর লম্ব। লম্ব অক্ষসমূহের উপপাদ্যের সাহায্যে

$$I_z = I_x + I_y$$

এখন, x এবং y অক্ষগুলো চাকতিটির দুটি ব্যাস বরাবর এবং প্রতিসাম্যের সাহায্যে চাকতিটির জড়তা ভ্রামকটি এর যে-কোনো ব্যাস সাপেক্ষে একই।

কাজেই	$I_x = I_y$
এবং	$I_z = 2I_x$
কিন্তু	$I_{z} = MR^{2}/2$
সুতরাং,	$I_x = I_z/2 = MR^2/4$

এইভাবে, যে-কোনো ব্যাস সাপেক্ষে একটি চাকতির জড়তা ভ্রামক $MR^2/4$.

একইভাবে, একটি রিং এর যে-কোনো ব্যাস সাপেক্ষে জড়তা ভ্রামক নির্ণয় কর। এই উপপাদ্য কি একটি নিরেট চোঙের ক্ষেত্রে প্রযোজ্য হবে ?

চিত্র 7.31 সমান্তরাল অক্ষসমূহের উপপাদ্য। z এবংz' অক্ষগুলো হল দুটি সমান্তরাল অক্ষ এবং এরা পরস্পর a দুরত্বের ব্যবধানে আছে; বস্তুটির ভরকেন্দ্র O; OO' = a.

কণা সংস্থা এবং আবর্তগতি

7.10.1 সমান্তরাল অক্ষ সমূহের উপপাদ্য (Theorem of parallel axes)

এই উপপাদ্যটি যে কোনো আকৃতির বস্তুতে প্রযোজ্য। এই উপপাদ্যটি কোনো একটি বস্তুর ভরকেন্দ্রগামী একটি সমান্তরাল অক্ষ সাপেক্ষে বস্তুটির প্রদত্ত জড়তা ভ্রামকের সাহায্যে বস্তুটির যে কোনো অক্ষ সাপেক্ষে জড়তা ভ্রামক নির্ণয়ে সাহায্য করে। আমরা শুধু উপপাদ্যটি বিবৃত করব এবং এর কোনো প্রমাণ দেব না। যা হোক, আমরা কয়েকটি সরল ক্ষেত্রে এটি প্রয়োগ করব এবং এগুলোই উপপাদ্যটির উপযোগিতা নিয়ে আমাদের যথেষ্ট সন্তুষ্টি দেবে। উপপাদ্যটিকে এভাবে বিবৃত করা যেতে পারে —

যে কোনো অক্ষ সাপেক্ষে কোন বস্তুর জড়তা ভ্রামক, বস্তুর ভরকেন্দ্রগামী, ঐ অক্ষের সমান্তরাল অক্ষ সাপেক্ষে জড়তা ভ্রামক ও বস্তুর ভর এবং ঐ দুই সমান্তরাল অক্ষের মধ্যবর্তী দূরত্বের বর্গের গুণফলের সমষ্টির সমান। 7.31 নং চিত্রে যেভাবে দেখানো আছে z এবং z' দুটি সমান্তরাল অক্ষ পরস্পর থেকে a দুরত্বে পৃথকভাবে আছে। z- অক্ষটি বস্তুটির ভরকেন্দ্র O বিন্দুগামী।

সমান্তরাল অক্ষসমূহের উপপাদ্য অনুসারে

$$I_{z'} = I_z + Ma^2$$
 (7.37)
যেখানে I_z এবং $I_{z'}$ যথাক্রমে z এবং z' - অক্ষ সাপেক্ষে বস্তুটির

জড়তা ভ্রামক। বস্তুটির মোট ভর M এবং সমান্তরাল অক্ষ দ্বয়ের মধ্যে লম্ব দূরত্ব a ।

(7.37)

উত্তর : M ভরের এবং l দৈর্ঘ্যের রডের জন্য I=Ml²/12। সমান্তরাল অক্ষ সমূহের উপপাদ্য ব্যবহার করে পাই —

 $I' = I + Ma^2$ এবং এর সজ্গে a = l/2 বসিয়ে পাই

$$I' = M \frac{l^2}{12} + M \left(\frac{l}{2}\right)^2 = \frac{Ml^2}{3}$$

যেহেতু I, 2M ভরের এবং 2l দৈর্ঘ্যের একটি রডের মধ্যবিন্দু সাপেক্ষে জড়তা ভ্রামকের অর্ধেক, আমরা স্বতন্ত্রভাবে এটি পরীক্ষা করে দেখতে পারি —

$$I' = 2M \cdot \frac{4l^2}{12} \times \frac{1}{2} = \frac{Ml^2}{3}$$

উদাহরণ 7.12 একটি রিং এর স্পর্শক সাপেক্ষে রিংটির জড়তা ভ্রামক নির্ণয় করো।

উত্তর :

রিংটির তলে রিং এর স্পর্শকটি এর কোনো একটি ব্যাসের সমান্তরাল।

এই দুটি সমান্তরাল অক্ষের মধ্যে দূরত্ব R এর রিংটির ব্যাসার্ধ।

চিত্র 7.32

সমান্তরাল অক্ষসমূহের উপপাদ্য ব্যবহার করে পাই —

$$I = I_{\text{T}} + MR^2 = \frac{MR^2}{2} + MR^2 = \frac{3}{2}MR^2.$$

একটি স্থির অক্ষ সাপেক্ষে ঘূর্ণনগতির সৃতি বিজ্ঞান 7.11 (Kinematics of Rotational Motion about a fixed axis)

চলন গতি এবং ঘূর্ণন গতির মধ্যে সাদৃশ্যতার ইঞ্চিাত আমরা যথারীতি দিয়েছি। উদাহরণ স্বরুপ চলন গতির রৈখিক বেগ v এর মতো ঘূর্ণন গতিতে কৌণিক বেগ 🛛 একই ভূমিকা নেয়। আমরা এ সাদৃশ্যতাকে আরও প্রসারিত করতে চাই। এরজন্য আমাদের আলোচনাকে শুধু স্থির অক্ষ সাপেক্ষে ঘূর্ণনের ক্ষেত্রেই সীমাবন্ধ রাখব। এ ধরনের গতির ক্ষেত্রে স্বাধীনতার মাত্রা কেবল একটি অর্থাৎ গতিটি বর্ণনার জন্য কেবল একটি স্বতন্ত্র চল (variable) প্রয়োজন। এটি রৈখিক গতিরই অনুরুপ। এই বিভাগটি শুধু সৃতি বিজ্ঞানেই (kinematics) সীমাবন্ধ। পরবর্তী বিভাগে আমরা গতিবিদ্যা নিয়ে আলোচনা করব।

আমরা স্মরণ করব যে, ঘুর্ণনশীল বস্তুতে কৌণিক সরণের উল্লেখ করতে বস্তুটির P এর মতো কোনো একটি কণাকে (7.33 নং চিত্র) নিয়েছি। কণাটির তলে এর কৌণিক সরণ *θ* এবং সমগ্র বস্তুটির কৌণিক সরণ ও heta। P এর গতির তলে heta কে একটি স্থির অভিমুখ থেকে পরিমাপ করা হয়, যাকে আমরা x -অক্ষের সমান্তরাল x'-অক্ষ হিসেবে ধরে নেব। চিত্র 7.33 যেমন দেখাচ্ছে, z – অক্ষ হল ঘূর্ণন অক্ষ এবং কণাটির গতির তলটি x - y । 7.33 নং চিত্র আরও দেখাচ্ছে যে, t = 0 হলে কৌণিক সরণ θ_0 ।

আমরা আরও স্মরণ করব যে, কৌণিক বেগ হল সময়ের সাপেক্ষে কৌণিক সরণের পরিবর্তনের হার, $\omega = d\theta/dt$ । যেহেতু ঘূর্ণাক্ষটি স্থির, কৌণিক বেগকে ভেক্টর হিসেবে বিবেচনার কোনো প্রয়োজন নেই। অধিকন্তু, কৌণিক ত্বরণ, $lpha = {
m d} \omega / {
m d} t.$

আবর্ত গতিতে সৃতি বিজ্ঞান সম্পর্কিত রাশিগুলো যেমন, কৌণিক সরণ (θ), কৌণিক বেগ (ω) কৌণিক ত্বরণ (α) এর অনুরূপ রৈখিক গতিতে রাশিগুলো হল সরণ (x), বেগ (v) এবং ত্বরণ (a)। আমরা জানি, সুযম (অর্থাৎ ধ্রুবক) ত্বরণ নিয়ে রৈখিক গতির সৃতি বিজ্ঞান সম্পর্কিত সমীকরণগুলো হল —

$$\upsilon = \upsilon_0 + at \tag{a}$$

$$x = x_0 + v_0 t + \frac{1}{2}at^2$$
 (b)

$$v^2 = v_0^2 + 2ax \tag{c}$$

যেখানে $x_0 =$ প্রারম্ভিক সরণ $\upsilon_0 =$ প্রারম্ভিক বেগ এবং 'প্রারম্ভিক' শব্দটি t = 0 তে রাশিগুলোর মানকে নির্দেশ করে।

সুষম কৌণিক ত্বরণসহ ঘূর্ণন গতির জন্য অনুরূপ সৃতি বিজ্ঞান সম্পর্কিত সমীকরণগুলো হল

$$\boldsymbol{\omega} = \boldsymbol{\omega}_0 + \boldsymbol{\alpha} t \tag{7.38}$$

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2 \tag{7.39}$$

এবং
$$\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)$$
 (7.40)

যেখানে, $heta_0 =$ ঘূর্ণায়মান বস্তুটির প্রারম্ভিক কৌণিক সরণ এবং $\omega_0 =$ বস্তুটির প্রারম্ভিক কৌণিক বেগ।

চিত্র 7.33 একটি দৃঢ় বস্তুর কৌণিক অবস্থানের উল্লেখীকরণ।

উদাহরণ 7.13 প্রথম সূত্র থেকে 7.38 নং সমীকরণটি কীভাবে পাওয়া যায় ?

উত্তর : কৌণিক ত্বরণটি সুষম, অতএব

 $\omega = \mathrm{d} heta / \mathrm{d} t$ সংজ্ঞাটি নিয়ে 7.38 নং সমীকরণের সমাকলন করে 7.39 নং সমীকরণটি পাই। এটি নির্ণয় করতে এবং 7.40 নং সমীকরণ নির্ণয়ের কাজটি অনুশীলনী হিসেবে রেখে দেয়া হল।

উদাহরণ 7.14 একটি মোটর হুইলের কৌণিক দ্রুতি 16 sec এ 1200 rpm থেকে 3120 rpm এ বাড়ানো হল। (i) ত্বরণটি সুষম ধরে নিয়ে এর কৌণিক ত্বরণ নির্ণয় করো। (ii) এই সময়ের মধ্যে ইঞ্জিনটি কত সংখ্যক আবর্তন সম্পন্ন করল?

উত্তর :

(i) আমরা
$$\omega = \omega_0 + \alpha t$$
 সম্পর্কটি ব্যবহার করব।
 $\omega_0 =$ প্রারম্ভিক কৌণিক দ্রুতি, rad/s এককে
 $= 2\pi \times$ কৌণিক দ্রুতি rev/s এককে
 $= \frac{2\pi \times$ কৌণিক দ্রুতি, rev / min একক
 $= \frac{2\pi \times 1200}{60}$ rad/s

=
$$40\pi$$
 rad/s

একইভাবে, $\omega = চূড়াস্ত কৌণিক দ্রুতি rad/s$

$$= \frac{2\pi \times 3120}{60} \text{ rad/s}$$
$$= 2\pi \times 52 \text{ rad/s}$$
$$= 104 \pi \text{ rad/s}$$

∴ কৌণিক ত্বরণ,

$$\alpha = \frac{\omega - \omega_0}{t} = 4 \pi \text{ rad/s}^2$$

(ii) t সময়ে কৌণিক সরণকে লেখা যায় —

$$\theta = \omega_0 t + \frac{1}{2} \alpha t^2$$
$$= (40\pi \times 16 + \frac{1}{2} \times 4\pi \times 16^2) \text{ rad}$$
$$= (640\pi + 512\pi) \text{ rad}$$
$$= 1152\pi \text{ rad}$$

আবর্তন সংখ্যা = $\frac{1152\pi}{2\pi}$ =576

7.12 একটি স্থির অক্ষ সাপেক্ষে আবর্তগতির গতিবিদ্যা (Dynamics of Rotational motion about a fixed axis)

7.2 নং সারণিতে তালিকাভুক্ত রাশিগুলো হল রৈখিক গতি সম্পর্কিত এবং ঘূর্ণন গতিতে এদের অনুরূপ রাশিগুলো। আমরা যথারীতি দু-প্রকার গতির সৃতি বিজ্ঞান তুলনা করেছি। আমরা আরও জানি যে, রৈখিকগতিতে ভর এবং বল যেই ভূমিকা পালন করে ঘূর্ণন গতিতে জড়তা ভ্রামক এবং টর্কের সেই ভূমিকা। টেবিলে উল্লেখিত অন্যান্য সাদৃশ্যতাগুলো আমরা অনুমান করতে পারি। উদাহরণস্বরূপ আমরা জানি রৈখিক গতিতে কৃতকার্যকে প্রকাশ করা হয় *F dx* দিয়ে এবং একটি স্থির অক্ষ সাপেক্ষে ঘূর্ণন গতিতে এটি হবে *τdθ*, কারণ আমরা যথারীতি *dx* → *dθ* এবং *F* → *τ* আনুসঞ্জিক সম্পর্কগুলো জানি। যা হোক, সাবলীল গতিশীলতার বিবেচনায় এসব প্রয়োজনীয় সম্পর্কগুলো প্রতিষ্ঠিত। এ বিষয়ে আমরা এখন আলোকপাত করব।

শুরু করার আগে আমরা একটি স্থির অক্ষের সাপেক্ষে ঘূর্ণন গতির ক্ষেত্রে উদ্ভূত একটি সরলীকরণকে লক্ষ করব। যেহেতু অক্ষটি স্থির, কেবল টর্কের উপাংশসমূহ, যেগুলোর অভিমুখ স্থির অক্ষ বরাবর, আমাদের আলোচনায় এগুলো বিবেচনায় আনা প্রয়োজন। কেবল এসব উপাংশসমূহ বস্তুটিকে অক্ষ সাপেক্ষে ঘুরানোর কারণ হতে পারে। টর্কের একটি উপাংশ, যেটি ঘূর্ণন অক্ষের সঙ্গে লম্ব, অক্ষটিকে এর অবস্থান থেকে ঘুরানোর প্রবণতায় থাকে। আমরা সুনির্দিন্টভাবে ধরে নেব যে, টর্কের লম্ব উপাংশ (বাহ্যিক) সমূহের প্রভাবকে প্রশমিত করতে প্রয়োজনীয় অবরোধ বল সমূহের উদ্ভব হবে যাতে অক্ষটির স্থির অবস্থানটি বজায় থাকে। অতএব, টর্কসমূহের উপাংশগুলোকে হিসেবে রাখার প্রয়োজন নেই। এটি বুঝায় যে, একটি দৃঢ়বস্থুর উপর টর্কসমূহের গণনার জন্য :

- আমাদের কেবল সেই বলগুলোকেই বিবেচনায় আনা প্রয়োজন যেগুলো অক্ষের সঙ্গে লম্ব এমন তলে অবস্থিত। যে বলগুলো অক্ষের সঙ্গে সমান্তরাল সেগুলো অক্ষের সঙ্গে লম্ব টর্কসমূহ দেবে এবং এগুলোকে হিসেবে নেয়ার প্রয়োজন নেই।
- (2) আমাদের শুধু অবস্থান ভেক্টর সমূহের সেইসব উপাংশ সমূহকে বিবেচনা করা উচিত যেগুলো অক্ষের সঙ্গো লম্ব। অবস্থান ভেক্টরসমূহের অক্ষ বরাবর উপাংশগুলোর পরিণামেই অক্ষের সঙ্গো লম্ব উপাংশসমূহ এবং এগুলোকে হিসেবে নেয়ার প্রয়োজন নেই।

একটি টর্কের দ্বারা কৃতকার্য (Work done by a torque)

চিত্র 7.34 একটি স্থির অক্ষ সাপেক্ষে ঘূর্ণায়মান বস্তুর একটি কণার উপরক্রিয়াশীল একটি বলের F, দ্বারা কৃতকার্য; কণাটি অক্ষের উপর অবস্থিত C কে কেন্দ্র করে একটি বৃত্তাকার পথ বর্ণনা করে; চাপ P,P',(ds,) কণাটির সরণ নির্দেশ করে।

7.34 নং চিত্রটি একটি স্থির অক্ষ সাপেক্ষে ঘূর্ণায়মান একটি দৃঢ় বস্থুর প্রস্থচ্ছেদকে দেখাচ্ছে, যেটি z-অক্ষ হিসেবে নেয়া হয়েছে (কাগজের তলের উপর লম্ব; 7.33 নং চিত্র দেখ)। উপরে বর্ণিত তথ্য অনুযায়ী, অক্ষের সঙ্গো লম্ব তলে অবস্থিত বলগুলোকে কেবল বিবেচনা করা উচিত। ধর, নমুনা স্বরূপ ঐরকম একটি বল F₁ বস্তুটির একটি কণার উপর P₁ বিন্দুতে ক্রিয়াশীল এবং এর ক্রিয়ারেখা অক্ষের সঙ্গো লম্ব এমন একটি তলে অবস্থিত। সুবিধার জন্য আমরা একে x'-y'তল বলব (একই কাগজের তলের সঙ্গো সমাপতিত)। অক্ষের উপর C কে কেন্দ্র করে P₁ বিন্দুতে কণাটি r_1 ব্যাসার্ধের একটি বৃত্তাকার পথের বর্ণনা করে; CP₁ = r_1 .

 Δt সময়ে কণাটি \mathbf{P}_1' অবস্থানে যায়। কণাটির সরণ $d\mathbf{s}_1$, অতএব এর মান $ds_1 = r_1 d\theta$ এবং এর অভিমুখ প্রদর্শিত বৃত্তাকার পথটির \mathbf{P}_1 বিন্দুতে স্পর্শক বরাবর। এখানে কণাটির কৌণিক সরণ $d\theta =$ $\angle \mathbf{P}_1 \mathbf{C} \mathbf{P}_1'$. কণাটির উপর বলটি দ্বারা কৃতকার্য

 $dW_1 = \mathbf{F}_1 \cdot d\mathbf{s}_1 = F_1 ds_1 \cos \phi_1 = F_1 (r_1 d\theta) \sin \alpha_1$

5						
()	ৰল '	72	500	এবং	আবতগাঁতব	তলনা
			V - 1 1	- 11		9-1-1

	রৈখিক গতি	একটি স্থির অক্ষ সাপেক্ষে আবর্ত গতি
1	সরণ <i>x</i>	কৌণিক সরণ <i>Ө</i>
2	বেগ $v = dx/dt$	কৌণিক বগ $\omega = \mathrm{d} heta/\mathrm{d}t$
3	ত্বিরণ $a = dv/dt$	কৌণিক ত্বরণ $lpha$ = d $arnotheta/dt$
4	ভর M	জড়তা ভ্রামক I
5	বল <i>F</i> = <i>Ma</i>	টর্ক $ au = I \alpha$
6	কার্য <i>dW</i> =F ds	কার্য $W = \tau \ d\theta$
7	গতি শক্তি K = Mv ² /2	গতিশক্তি, $K\!=\!I\omega^2/2$
8	ক্ষমতা, P=F U	ক্ষমতা, $P = \tau \omega$
9	রৈখিক ভরবেগ <i>p</i> = M u	কৌণিক ভরবেগ L = Iw

যেখানে ϕ_1 হল \mathbf{F}_1 এবং \mathbf{P}_1 বিন্দুতে স্পর্শকের মধ্যবর্তী কোণ এবং \mathbf{F}_1 ও ব্যাসার্ধ ভেক্টর \mathbf{OP}_1 এরমধ্যে কোণ α_1 ; $\phi_1 + \alpha_1 = 90^\circ$.

মূলবিন্দু সাপেক্ষে **F**₁ এর জন্য টর্ক **OP**₁ × **F**₁ । এখন **OP**₁ = **OC** + **CP**₁ (7.17(b) নং চিত্র দেখ) যেহেতু **OC** হল অক্ষ বরাবর এবং এর থেকে উৎপন্ন টর্ককে আমাদের বিবেচনার বাইরে রাখা হল । **F**₁ এর জন্য কার্যকরী টর্ক **τ**₁ = **CP**₁ × **F**₁; এটি ঘূর্ণন অক্ষ অভিমুখী এবং এর একটি মান আছে *τ*₁ = *r*₁*F*₁ sinα,অতএব,

$$\mathrm{d}W_1 = \tau_1 \mathrm{d}\theta$$

যদি বস্তুটির উপর একাধিক বল ক্রিয়া করে তবে সব কয়টি বলের জন্য কৃতকার্য যোগ করে বস্তুটির উপর মোট কৃতকার্য পাওয়া যাবে। বিভিন্ন বলের জন্য প্রাপ্ত টর্কসমূহের মানকে $\tau_1, \tau_2, ...$ প্রভৃতি দ্বারা চিহ্নিত করলে

 $\mathrm{d}W = (\tau_1 + \tau_2 + \ldots)\,\mathrm{d}\theta$

স্মরণ করো, বলগুলো দ্বারা সৃষ্ট টর্কসমূহ বিভিন্ন কণার উপর ক্রিয়া করে কিন্ডু কৌণিক সরণ d θ সব কণার জন্যই সমান। যেহেতু সব টর্কসমূহকে স্থির অক্ষটির সমান্তরাল হিসেবে ধরা হয়েছে তাই মোট টর্ক *τ* এর মান হবে টর্ক সমূহের বীজগণিতিক সমষ্টি অর্থাৎ

$$\tau = \tau_1 + \tau_2 + \dots$$

অতএব $dW = \tau d\theta$ (7.41)

এই সমীকরণ থেকে স্থির অক্ষসাপেক্ষে ঘূর্ণনশীল বস্তুটির উপর ক্রিয়াশীল মোট (বাহ্যিক) টর্ক τ দ্বারা কৃতকার্যের রাশিমালা পাওয়া যায়। স্পন্টতঃই রৈখিক চলন গতির সংশ্লিষ্ট সমীকরণ

d*W=F* ds এর সঙ্গে এর সাদৃশ্যতা আছে। 7.41নং সমীকরণের উভয় পক্ষকে dt দ্বারা ভাগ করে পাই —

$$P = \frac{\mathrm{d}W}{\mathrm{d}t} = \tau \frac{\mathrm{d}\theta}{\mathrm{d}t} = \tau\omega$$

or $P = \tau\omega$ (7.42)

এটি হল তাৎক্ষণিক ক্ষমতা। একটি স্থির অক্ষ সাপেক্ষে আবর্তগতির ক্ষেত্রে ক্ষমতার এই সমীকরণকে রৈখিক গতির ক্ষেত্রে ক্ষমতার সমীকরণ P=F৩ এর সঙ্গে তুলনা করো।

একটি সম্পূর্ণ দৃঢ় বস্তুতে কোনো অভ্যস্তরীণ গতি নেই। অতএব, বাহ্যিক টর্কদ্বারা কৃতকার্যের কোনো অপচয় হয় না এবং এটি বস্তুটির গতিশক্তিকে বৃদ্ধি করে। বস্তুর উপর যে হারে কার্য সম্পাদন হয় তা 7.42 নং সমীকরণে দেয়া হয়েছে। যে হারে গতিশক্তি বৃদ্ধি হচ্ছে তাকে সমীকরণের আকার দিতে হবে। গতিশক্তি বৃদ্ধির হারটি হল

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{I\omega^2}{2}\right) = I\frac{(2\omega)}{2}\frac{\mathrm{d}\omega}{\mathrm{d}t}$$

আমরা ধরে নিয়েছি যে, সময়ের সঙ্গো জড়তা ভ্রামকের পরিবর্তন হয় না। এটি বুঝায় যে, বস্তুটির ভরের পরিবর্তন হয় না, বস্তুটি দৃঢ় থাকে এবং বস্তু সাপেক্ষে এর অক্ষটিও এর অবস্থান পরিবর্তন করে না।

যেহেতু $\alpha = \mathrm{d}\omega/\mathrm{d}t$, আমরা পাই

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{I\omega^2}{2}\right) = I\,\omega\,\alpha$$

কৃতকার্যের হার এবং গতিশক্তির বৃদ্ধিকে সমীকরণে প্রকাশ করলে —

$$\tau \omega = I \omega \alpha$$

কণা সংস্থা এবং আবর্তগতি

 $\overline{\mathsf{T}}, \tau = I\alpha \tag{7.43}$

7.43 নং সমীকরণটি রৈখিক গতির জন্য নিউটনের দ্বিতীয় সূত্রের অনুরূপ এবং একে প্রতীকের সাহায্যে F = ma হিসেবে প্রকাশ করা হয়। বল যেমন ত্বরণ সৃষ্টি করে ঠিক তেমনি টর্ক একটি বস্তুতে কৌণিক ত্বরণ সৃষ্টি করে। কৌণিক ত্বরণটি প্রযুক্ত টর্কের সঙ্গো সমানুপাতিক এবং বস্তুটির জড়তা ভ্রামকের সঙ্গো ব্যস্তানুপাতিক। 7.43 নং সমীকরণকে স্থির অক্ষ সাপেক্ষে ঘূর্ণন গতির জন্য নিউটনের দ্বিতীয় সূত্র বলা যেতে পারে।

উদাহরণ 7.15 উপেক্ষণীয় ভরের একটি দড়ি, একটি ফ্লাই হুইলের রীমের চারদিকে জড়ানো হল। হুইলটির ভর 20 kg এবং ব্যাসার্ধ 20 cm। 25 N মানের একটি স্থিরমানের টান দড়িটিতে প্রয়োগ করা হল, যেমনটা 7.35নং চিত্রে দেখাচ্ছে। ফ্লাই-হুইলটি একটি অনুভূমিক অক্ষের সঞ্চো ঘর্ষণহীন বিয়ারিংসহ আটকানো হল।

- (a) হুইলটির কৌণিক ত্বরণ নির্ণয় কর।
- (b) টানের দ্বারা কৃতকার্যের পরিমাপ কর, যখন দড়িটির 2m জড়ানো পাক খোলে।
- (c) এই বিন্দুতে হুইলটির গতিশক্তি ও নির্ণয় করো। ধরে নাও, হুইলটি স্থিরাবস্থা থেকে যাত্রা শুরু করেছিল।
- (d) (b) অংশ এবং (c).অংশের উত্তরের তুলনা করো।

চিত্র 7.35

(a) আমরা ব্যবহার করব
$$I \alpha = \tau$$

টর্কটি $\tau = F R$
= 25 × 0.20 Nm (যেহেতু R = 0.20m)
= 5.0 Nm

I = অক্ষ সাপেক্ষে হুইলের জড়তা ভ্রামক =
$$\frac{MR^2}{2}$$

= $\frac{20.0 \times (0.2)^2}{2}$ = 0.4 kg m²
 α = কৌণিক ত্বরণ
= 5.0 N m/0.4 kg m² = 12.5 s⁻²
দড়িটির 2m জড়ানো পাক মুক্ত করতে টানের দ্বারা

- (b) দড়িটির 2m জড়ানো পাক মুক্ত করতে টানের দ্বারা কৃতকার্য = 25 N × 2m = 50 J
- (c) ধরো, চূড়ান্ত কৌণিক বেগ $=\omega$

অর্জিত গতিশন্তি = $\frac{1}{2}I\omega^2$,

যেহেতু হুইলটি স্থিরাবস্থা থেকে ঘূর্ণন শুরু করেছিল এখন

$$\omega^2 = \omega_0^2 + 2\alpha\theta, \quad \omega_0 = 0$$

কৌণিক সরণ $\theta=$ জড়ানো মুক্ত দড়ির দৈর্ঘ্য/হুইলের ব্যাসার্ধ = 2m/0.2~m = 10~rad

$$\omega^2 = 2 \times 12.5 \times 10.0 = 250 \,(\text{rad/s})^2$$

∴অর্জিত গতিশক্তি = $\frac{1}{2}$ × 0.4 × 250 = 50 J

- (d) উত্তরগুলোর একই অর্থাৎ হুইল কর্তৃক অর্জিত গতিশক্তি = বলের দ্বারা কৃতকার্য। ঘর্ষণের জন্য শক্তির কোনো অপচয় হয় না।
- 7.13
 একটি স্থির অক্ষ সাপেক্ষে যূর্ণনের ক্ষেত্রে কৌণিক ভরবেগ (Angular Momentum in case of Rotation about a Fixed Axis)

7.7 নং বিভাগে আমরা কণা সংস্থার কৌণিক ভরবেগ নিয়ে অধ্যয়ন করেছি। সেখান থেকে আমরা যথারীতি জানি যে, একটি বিন্দু সাপেক্ষে কণা সংস্থার সময়ের সাপেক্ষে মোট কৌণিক ভরবেগের পরিবর্তনের হার, একই বিন্দু সাপেক্ষে নেয়া সংস্থার মোট বাহ্যিক টর্কের সমান। যখন মোট বাহ্যিক টর্ক শূন্য হয়, সংস্থাটির মোট ভরবেগ সংরক্ষিত থাকে।

আমরা এখন একটি স্থির অক্ষ সাপেক্ষে ঘূর্ণনের বিশেষ ক্ষেত্রে কৌণিক ভরবেগ নিয়ে অধ্যয়ন করতে চাই। সংস্থাটির মোট কৌণিক ভরবেগের সাধারণ সমীকরণটি হল —

$$\mathbf{L} = \sum_{i=1}^{N} \mathbf{r}_{i} \times \mathbf{p}_{i}$$
(7.25b)

ঘূর্ণায়মান দৃঢ়বস্তুটির যে কোনো একটি কণার কৌণিক ভরবেগকে আমরা নমুনা স্বরূপ প্রথম বিবেচনা করব। সমগ্র বস্তুটির L পাওয়ার জন্য আমরা তখন পৃথক কণাগুলোর কৌণিক ভরবেগের সমষ্টি নেব। নমুনার একটি কণার জন্য $l = r \times p$. পূর্বের অনুচ্ছেদে আমরা যেমন দেখেছি r = OP = OC + CP [7.17(b) নং চিত্র]. এবং **p** = m **v**,

 $l = (\mathbf{OC} \times m \mathbf{v}) + (\mathbf{CP} \times m \mathbf{v})$

P অবস্থানে কণাটির রৈখিক বেগ v এর মান v = ∞r_⊥, যেখানে r_⊥ হল CP এর দৈর্ঘ্য বা ঘূর্ণন অক্ষ থেকে P এর লম্ব দূরত্ব। অধিকন্তু, কণাটি কর্তৃক পরিক্রমাকৃত (বা বর্ণিত) বৃত্তটির P অবস্থানে স্পর্শক বরাবর বেগ v । ডানহস্ত নিয়ম ব্যবহার করে পরীক্ষা করে দেখা যেতে পারে যে, CP × v হল স্থির অক্ষটির সমান্তরাল। স্থির অক্ষটি (*z*-অক্ষ হিসেবে নেয়া) বরাবর একক ভেক্টর _k . অতপর,

$$\mathbf{CP} \times m \mathbf{v} = r_{\perp} (mv) \hat{k}$$

= $mr_{\perp}^2 \omega \hat{k}$ (ARE $\upsilon = \omega r_{\perp}$)

একইভাবে, আমরা যাচাই করে দেখতে পারি যে, OC × v হল স্থির অক্ষের উপর লম্ব। চল, আমরা স্থির অক্ষ (অর্থাৎ z- অক্ষটি) বরাবর **/** এর অংশকে *I*ূদ্বারা চিহ্নিত করি, তখন

$$l_z = \mathbf{C}\mathbf{P} \times m\mathbf{v} = mr_{\perp}^2 \omega \hat{k}$$

এবং $l = l_z + \mathbf{OC} \times m \mathbf{v}$

আমরা লক্ষ করলাম যে, *I* ুস্থির অক্ষটির সমান্তরাল কিন্তু *I* নয়। সাধারণভাবে একটি কণার জন্য কৌণিক ভরবেগ *I* ঘূর্ণাক্ষ বরাবর নয় অর্থাৎ একটি কণার জন্য *I* এবং **ত** অপরিহার্যভাবে সমান্তরাল নয়। অনুরূপ তথ্য নিয়ে চলন গতিতে এর তুলনা কর। একটি কণার জন্য **p** এবং v সর্বদা পরস্পর সমান্তরাল।

সমগ্র দৃঢ়বস্তুটির মোট কৌণিক ভরবেগ গণনার জন্য, আমরা বস্তুটির প্রত্যেকটি কণার কৌণিক ভরবেগকে যোগ করে নেব।

এভাবে,
$$\mathbf{L} = \sum \mathbf{l}_i = \sum \mathbf{l}_{iz} + \sum \mathbf{OC}_i \times m_i \mathbf{v}_i$$

L এর উপাংশগুলোকে যথাব্রুমে *z*-অক্ষের লম্ব বরাবর ${f L}_{\perp}$ এবং *z*- অক্ষ বরাবর ${f L}_{,}$ দ্বারা চিহ্নিত করব।

$$\mathbf{L}_{\perp} = \sum \mathbf{OC}_{i} \times m_{i} \mathbf{v}_{i} \tag{7.44a}$$

যেখানে m_i এবং \mathbf{v}_i যথাক্রমে i -তম কণার ভর এবং বেগ এবং কণাটি যে বৃত্ত পরিক্রমা করে তার কেন্দ্র \mathbf{C}_i ;

এবং
$$\mathbf{L}_{z} = \sum \mathbf{l}_{iz} = \left(\sum_{i} m_{i} r_{i}^{2}\right) \boldsymbol{\omega} \hat{k}$$

বা

 $\mathbf{L}_{z} = I\boldsymbol{\omega}\hat{k} \tag{7.44b}$

শেষ ধাপটি দেখায় যে, যেহেতু অক্ষ থেকে i-তম কণাটির লম্ব দূরত্ব r_i এবং সংজ্ঞানুসারে ঘূর্ণাক্ষ সাপেক্ষে বস্তুটির জড়তা ভ্রামক, $I = \sum m_i r_i^2$. লক্ষ করো, $\mathbf{L} = \mathbf{L}_z + \mathbf{L}_\perp$ (7.44c)

দৃঢ়বস্তুসমূহ, যাদের আমরা এ অধ্যায়ে প্রধানত বিবেচনায় নিয়েছি এগুলো ঘূর্ণাক্ষ সাপেক্ষে প্রতিসম অর্থাৎ ঘূর্ণাক্ষটি এদের প্রতিসম অক্ষগুলোর মধ্যে একটি। ঐ ধরনের বস্তুগুলো, প্রদন্ত একটি OC_i এর জন্য, v_i বেগ সম্পন্ন প্রতিটি কণার অন্য একটি কণা আছে যার বেগ —v_i এবং কণাটি C_i কে কেন্দ্র করে যে বৃত্তে পরিক্রমা করে এর ব্যাস রেখায় বিপরীত অবস্থানে অবস্থিত। ঐ ধরনের যুগলের সন্মিলিত ফলস্বরূপ L₁ = 0 এবং প্রতিসম বস্তুসমূহের ফলস্বরূপ L₁ = 0 অতএব

$$\mathbf{L} = \mathbf{L}_z = I\omega\hat{k} \tag{7.44d}$$

ঘূর্ণাক্ষ সাপেক্ষে প্রতিসম নয় এমন বস্তু সমৃহের জন্য L, L_z এর সমান নয় এবং L ঘূর্ণাক্ষ বরাবর অবস্থান করে না।

তুমি কি বলতে পার 7.1 নং টেবিলের কোন্ ক্ষেত্রগুলোতে L = L_ প্রযোজ্য হবে না ?

চল আমরা 7.44bনং সমীকরণকে অবকলন করি। যেহেতু \hat{k} একটি স্থির (ধ্রুবক) ভেক্টর, আমরা পাই —

$$\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{L}_z) = \left(\frac{\mathrm{d}}{\mathrm{d}t}(I\,\omega)\right)\hat{k}$$

এখন, 7.28b নং সমীকরণ বিবৃত করে যে,

$$\frac{\mathrm{d}\mathbf{L}}{\mathrm{d}t} = \mathbf{\tau}$$

পূর্বের অনুচ্ছেদে আমরা দেখেছি যে, যখন আমরা স্থির অক্ষ সাপেক্ষে ঘূর্ণন নিয়ে আলোচনা করব, তখন কেবল বাহ্যিক টর্কের ঘূর্ণাক্ষ বরাবর উপাংশগুলোকে হিসেবে নেয়া প্রয়োজন। এটা বুঝায় যে আমরা $\mathbf{\tau} = \tau \hat{k}$ কে নিতে পারি। যেহেতু $\mathbf{L} = \mathbf{L}_z + \mathbf{L}_{\perp}$ এবং \mathbf{L}_z এর অভিমুখ (ভেক্টর \hat{k}) স্থির, তবে লেখা যায় যে, একটি স্থির অক্ষ সাপেক্ষে ঘূর্ণনের জন্য

$$\frac{\mathrm{d}\mathbf{L}_z}{\mathrm{d}t} = \tau \,\hat{k} \tag{7.45a}$$

এবং
$$\frac{\mathrm{d}\mathbf{L}_{\perp}}{\mathrm{d}t} = 0$$
 (7.45b)

এভাবে, স্থির অক্ষ সাপেক্ষে ঘূর্ণনের জন্য, অক্ষটির সঙ্গো লম্ব কৌণিক ভরবেগের উপাংশটিধ্রুবক। যেহেতু $\mathbf{L}_z = I \omega \hat{k}$, (7.45a) নং সমীকরণ থেকে আমরা পাই —

$$\frac{\mathrm{d}}{\mathrm{d}t}(I\omega) = \tau \tag{7.45c}$$

যদি জড়তা ভ্রামক I, সময়ের সঙ্গে পরিবর্তিত না হয় তবে

$$\frac{\mathrm{d}}{\mathrm{d}t}(I\omega) = I\frac{\mathrm{d}\omega}{\mathrm{d}t} = I\alpha$$

এবং 7.45c নং সমীকরণ থেকে পাই —

 $\tau = I\alpha \tag{7.43}$

আমরা যথারীতি 'কার্য গতিশক্তি' থেকে এ সমীকরণটি প্রতিষ্ঠা করেছি।

7.13.1 কৌণিক ভরবেগের সংরক্ষণ (Conservation of angular momentum)

আমরা এখন স্থির অক্ষ সাপেক্ষে ঘূর্ণন প্রসঙ্গে কৌণিক ভরবেগের সংরক্ষণ নীতিটি পুনরায় পর্যালোচনা করব। 7.45c নং সমীকরণ থেকে, যদি বাহ্যিক টর্ক শূন্য হয়, তবে

 $L_{z} = I\omega =$ ধুবক (7.46)

প্রতিসাম্য বস্তুর জন্য, 7.44d নং সমীকরণ থেকে $L_{_{z}}$ কে L দ্বারা প্রতিস্থাপিত করা যেতে পারে। (L এবং $L_{_{z}}$ যথাক্রমে L এবং L $_{_{z}}$ এর মান)

এটি হল স্থির অক্ষে ঘূর্ণনের জন্য 7.29a নং সমীকরণের প্রয়োজনীয় রূপ এবং এটি কণাসংস্থার কৌণিক ভরবেগের সংরক্ষণের সাধারণ সূত্রকে প্রকাশ করে। 7.46 নং সমীকরণটি, প্রাত্যহিক জীবনে আমরা যেসব বিভিন্ন অবস্থার সম্মুখীন হই, সেগুলোতে প্রযোজ্য হবে। তোমার বন্ধুদের নিয়ে তুমিও পরীক্ষাটি করে দেখতে পার। তুমি একটি ঘূর্ণনক্ষম চেয়ারে বস। তোমার হাতগুলোকে ভাঁজ করে এবং পা ঝুলিয়ে অর্থাৎ ভূমি স্পর্শ না করে বস। তোমাদের বন্ধুদের বল চেয়ারটিকে দ্রুতগতিতে ঘুরাতে। চেয়ারটি যখন একটি বিবেচিত কৌণিক দ্রুতিতে ঘুরে তখন তোমার দু হাতকে অনুভূমিক ভাবে ছড়িয়ে দাও। কী ঘটছে? তোমার কৌণিক দ্রুতি কমে গেল। যদি তুমি হাত দুটো শরীরের কাছে নিয়ে আস, কৌণিক দ্রুতি আবার বাড়ছে। এটি এমন একটি অবস্থা যেখানে কৌণিক ভরবেগের সংরক্ষণ নীতিটি প্রযোজ্য। যদি ঘূর্ণন প্রক্রিয়াটিতে ঘর্ষণকে উপেক্ষা করা হয়, চেয়ারটির ঘূর্ণাক্ষের সাপেক্ষে কোন বাহ্যিক টর্ক না থাকে তবে *Iw* ধ্রুবক। হাত ছড়িয়ে রাখলে ঘূর্ণাক্ষ সাপেক্ষে *I* বেড়ে যায় ফলস্বরূপ কৌণিক দ্রুতি *w* কমে যায়। হাতকে শরীরের কাছে আনলে বিপরীত ঘটনা ঘটে।

একজন সার্কাস অ্যাক্রোব্যাট এবং একজন ডুবুরি এই নীতির সুবিধা নেয়। তাছাড়া, স্কেইটারগণ এবং ক্র্যাসিক্যাল, ভারতীয় বা পাশ্চাত্য নৃত্যশিল্পীরা এক পায়ের একটি আঙুলে ভর দিয়ে এ নীতির উপর পরম দক্ষতা প্রদর্শন করেন। তুকি কী বাখ্যা করতে পার?

7.14 গড়িয়ে চলা গতি (Rolling Motion)

প্রাত্যহিক জীবনে দেখা খুবই সাধারণ গতিগুলোর মধ্যে একটি হল গড়িয়ে চলা গতি। যানবাহনে ব্যবহৃত সব হুইলেরই এই গতি আছে। নির্দিন্ট করণের জন্য আমরা একটি ডিস্ক (চাকতি) নিয়ে শুরু করব কিন্তু এর ফলাফলের প্রয়োগ করা হবে পৃষ্ঠ তলে গড়িয়ে চলা যে কোন বস্তুতে। আমরা ধরে নেব যে, ডিস্কটি না পিছলে শুধু গড়াচ্ছে। এ থেকে বুঝা যায় যে, সময়ের যে কোনো মুহূর্তে ডিস্কটির যা তলের সংস্পর্শে আছে সেটি তলের উপর স্থির।

কৌণিক ভরবেগ সংরক্ষণের প্রদর্শন। একটি ঘূর্ণনক্ষম চেয়ারে এক মেয়ে বসে আছে এবং তার হাত দুটো ছড়াচ্ছে/ শরীরের কাছে হাত দুটো নিয়ে আসছে।

চিত্র 7.36 (b)

একজন অ্যাক্রোব্যাট কৌণিক ভরবেগের সংরক্ষণ নীতি প্রয়োগে তার কর্মদক্ষতা দেখাচ্ছে।

পূর্বেই আমরা মন্তব্য করেছিলাম যে, গড়িয়ে চলা হল ঘূর্ণনগতি এবং চলন গতির সমবায়। আমরা জানি যে, কণাসংস্থার চলন গতি হল এর ভরকেন্দ্রের গতি।

চিত্র 7.37 সমতল পৃষ্ঠতলে একটি ডিস্কের গড়িয়ে (না পিছলে) চলা। লক্ষ করো, যে কোনো মুহুর্তে ডিস্কটির স্পর্শবিন্দুটি P_o স্থির।ডিস্কটির ভরকেন্দ্রটি v_{cm} গতিতে চলছে। ডিস্কটির কেন্দ্র C এবং কেন্দ্রগামী অক্ষ সাপেক্ষে ডিস্কটি w কৌণিক বেগে ঘুরছে; v_{cm} =Rw,যেখানে R হচ্ছে ডিস্কটির ব্যাসার্ধ।

ধরো, ভরকেন্দ্রটির বেগ \mathbf{v}_{cn} , অতএব এটি ডিস্কটির চলন গতির বেগ। যেহেতু ঘূর্ণমান ডিস্কটির ভরকেন্দ্র এর জ্যামিতিক কেন্দ্র C তে অবস্থিত (7. 37 নং চিত্র), অতএব C এর বেগ ও \mathbf{v}_{cm} । এটি সমতল পৃষ্ঠের সমান্তরাল। ডিস্কটির ঘূর্ণনগতি C বিন্দুগামী প্রতিসম অক্ষের সাপেক্ষে হয়। এভাবে যে কোনো বিন্দুতে যেমন $\mathbf{P}_0, \mathbf{P}_1$ বা \mathbf{P}_2 তে ডিস্কটির বেগের দুটি অংশ, একটি অংশ চলন বেগ \mathbf{v}_{cm} এবং অন্যটি হল ঘূর্ণনের জন্য রৈখিক বেগ \mathbf{v}_r । \mathbf{v}_r এর মানটি হল $v_r = r\omega$, যেখানে ω হল অক্ষটি সাপেক্ষে ডিস্কটির দূরত্ব r। বেগ \mathbf{v}_r হলো C বিন্দুর সাপেক্ষে প্রদন্ত বিন্দুটির ব্যাসার্ধ ভেক্টরের লম্ব অভিমুখী। 7.37 নং চিত্রে, \mathbf{P}_2 বিন্দুটির বেগ \mathbf{v}_2 এবং এর উপাংশগুলো \mathbf{v}_r এবং \mathbf{v}_{cm} কে দেখানো হয়েছে। এখানে \mathbf{v}_r , \mathbf{CP}_2 এর সঙ্গো লম্ব। এটা দেখানো সহজ যে \mathbf{v}_z , $\mathbf{P}_0\mathbf{P}_2$ রেখাটির উপর লম্ব। অতএব, \mathbf{P}_0 বিন্দুগামী এবং $\mathbf{\omega}$ এর সমান্তরাল রেখাটিকে ঘূর্ণনের তাৎক্ষণিক অক্ষ বলে। \mathbf{P}_{o} বিন্দুতে ঘূর্ণনের জন্য রৈখিক বেগ \mathbf{v}_{r} , চলন বেগ \mathbf{v}_{cm} . এর ঠিক বিপরীত অভিমুখী।অধিকন্তু, এখানে \mathbf{v}_{r} এর মানটি $R\omega$, যেখানে ডিস্কটির ব্যাসার্ধ R। তাৎক্ষণিকভাবে, \mathbf{P}_{o} বিন্দুটি স্থির হওয়ার প্রয়োজনীয় শর্ত হল $v_{cm} = R\omega$ । এভাবে, ডিস্কটি না পিছলে গড়িয়ে চলার জন্য শর্তটি হল

$$v_{cm} = R\omega \tag{7.47}$$

প্রসঞ্চাক্রমে, এটি বুঝায় যে, ডিস্কটির শীর্ষে অবস্থিত P₁ বিন্দুতে বেগ v₁ এর মান v_{cm} + R ω বা 2 v_{cm} এবং এটি সমতল পৃষ্ঠের সমান্তরাল অভিমুখী। 7.47 নং সমীকরণে দেয়া শর্তটি সব গড়িয়ে চলা (ঘূর্ণায়মান) বস্তুতে প্রযোজ্য।

7.14.1 গড়িয়ে চলা গতির গতিশক্তি (Kinetic Energy of Rolling Motion)

আমাদের পরবর্তী কাজ হচ্ছে গড়িয়ে চলা (ঘূর্ণায়মান) বস্তুর গতিশক্তির একটি সমীকরণ নির্ণয় করা। গড়িয়ে চলার গতিশক্তিকে - চলনে গতিশক্তি এবং ঘূর্ণনে গতিশক্তি হিসেবে পৃথক করা যায়। এটি একটি কণা সংস্থার সাধারণ ফলাফলের একটি বিশেষ ক্ষেত্র এবং সেই অনুসারে একটি কণা সংস্থার গতিশক্তিটিকে (K), ভরকেন্দ্রটির গতির (চলন) জন্য গতিশক্তি ($MV^2/2$) এবং কণা সংস্থাটির ভরকেন্দ্র সাপেক্ষে ঘূর্ণন গতির জন্য গতিশক্তি K' হিসেবে পৃথক করা যেতে পারে। অর্থাৎ

$$K = K' + MV^2 / 2 (7.48)$$

1

এটিকে আমরা সাধারণ ফলাফল হিসেবে ধরে নিয়েছি এবং গড়িয়ে চলা গতির ক্ষেত্রে এর প্রয়োগ করব। গড়িয়ে চলা বস্তুটির ভরকেন্দ্রের গতিশক্তি অর্থাৎ চলনের গতিশক্তি mv_{cm}^2 /2, যেখানে বস্তুটির ভর *m* এবং ভরকেন্দ্রটির বেগ v_{cm} । আবার যেহেতু, ভরকেন্দ্রটি সাপেক্ষে গড়িয়ে চলা বস্তুর গতিটি হল ঘূর্ণন এবং ঘূর্ণনের গতিশক্তিকে *K'* দিয়ে বুঝানো হয়, তবে $\mathbf{K}' = I\omega^2/2$, যেখানে উপযুক্ত অক্ষ সাপেক্ষে জড়তা ভ্রামক *I* এবং এটি গড়িয়ে চলা বস্তুটির প্রতিসাম্য অক্ষ। অতএব, গড়িয়ে চলা বস্তুটির গতিশক্তিকে লেখা যায় —

$$K = \frac{1}{2}I\omega^{2} + \frac{1}{2}mv_{cm}^{2}$$
(7.49a)

 $I = mk^2$ বসিয়ে, যেখানে $k = বস্তুটির চব্রুগতির ব্যাসার্ধ এবং <math>v_{cm} = R \; \omega$, আমরা পাই

$$K = \frac{1}{2} \frac{mk^2 v_{cm}^2}{R^2} + \frac{1}{2} m v_{cm}^2$$

$$\vec{A} \quad K = \frac{1}{2} m v_{cm}^2 \left(1 + \frac{k^2}{R^2} \right)$$
(7.49b)

কণা সংস্থা এবং আবর্তগতি

7.49b নং সমীকরণটি যে কোন গড়িয়ে চলা বস্তু যেমন ডিস্ক, চোঙ, রিং বা গোলকের ক্ষেত্রে প্রযোজ্য।

উদাহরণ 7.16 : তিনটি বস্তু — একটি রিং, একটি নিরেট চোঙ এবং একটি নিরেট গোলক একই নততল বরাবর না পিছলে গড়িয়ে নামছে। এরা স্থিরাবস্থা থেকে যাত্রা শুরু করেছিল। বস্তুগুলোর ব্যাসার্ধ অভিন্ন। কোন্ বস্তুটি সর্বোচ্চ বেগ নিয়ে নীচে নামবে?

উত্তর : ধরি, গড়িয়ে চলা বস্তুটির শক্তি সংরক্ষিত অর্থাৎ ঘর্ষণ ইত্যাদির জন্য শক্তির কোনো অপচয় হচ্ছে না। নততল বরাবর গড়িয়ে নিচে নামতে বস্তুর স্থিতিশক্তির (= mgh) যে হ্রাস, তা অবশ্যই অর্জিত গতিশক্তির সমান (চিত্র নং 7.38 দেখ)। যেহেতু বস্তুগুলো স্থির অবস্থা থেকে যাত্রা শুরু করে তাই অর্জিত গতিশক্তি বস্তুটির চূড়ান্ত গতিশক্তির

সমান। 7.49b নং সমীকরণ থেকে $K = \frac{1}{2}mv^2\left(1 + \frac{k^2}{R^2}\right)$,

যেখানে, v = বস্তুটির (ভরকেন্দ্রটির) চূড়াস্ত বেগ। K এবং mgh এর সমতা দেখিয়ে পাই —

$$mgh = \frac{1}{2}mv^{2}\left(1 + \frac{k^{2}}{R^{2}}\right)$$
$$ah v^{2} = \left(\frac{2gh}{1 + k^{2}/R^{2}}\right)$$

লক্ষ করো যে, এটি গড়িয়ে চলা বস্তুটির ভর নিরপেক্ষ একটি রিং এর জন্য, $k^2 = R^2$

$$v_{ring} = \sqrt{\frac{2gh}{1+1}}$$
,

= \sqrt{gh} একটি নিরেট চোঙের জন্য, $k^2 = R^2/2$

$$v_{disc} = \sqrt{\frac{2gh}{1+1/2}}$$
$$= \sqrt{\frac{4gh}{3}}$$

একটি নিরেট গোলকের জন্য, $k^2 = 2R^2/5$

$$v_{sphere} = \sqrt{\frac{2 g h}{1 + 2/5}}$$
$$= \sqrt{\frac{10 g h}{7}}$$

প্রাপ্ত ফলাফল থেকে এটি পরিষ্কার যে, নততলটির গোড়ায় তিনটি বস্তুর মধ্যে গোলকের ভরকেন্দ্রটির বেগ সর্বোচ্চ এবং রিং এর ভরকেন্দ্রটির বেগ সর্বনিন্ন।

ধরে নাও, বস্তুগুলো সমভরসম্পন্ন। নততলটির গোড়ায় পৌঁছতে কোন্ বস্তুটির আবর্ত গতিশক্তি সর্বোচ্চ হবে?

সারাংশ

- একটি আদর্শ দৃঢ় বস্তু হবে সেটি যার কণাগুলোর উপর প্রযুক্ত বল থাকা সত্ত্বেও কণাগুলোর আন্তঃকণা দূরত্বের কোনো পরিবর্তন হয় না।
- কোনো বিন্দুতে বা একটি রেখা বরাবর আবন্ধ একটি দৃঢ় বস্তুর কেবল ঘূর্ণনগতি থাকবে। কোনোভাবেই আবন্ধ নয় এমন দৃঢ় বস্তুর হয় বিশুন্দ চলন গতি থাকবে অথবা এর গতিতে চলন ও ঘূর্ণনগতির সমন্বয় থাকবে।
- একটি স্থির অক্ষ সাপেক্ষে ঘূর্ণনে, দৃঢ় বস্তুটির প্রতিটি কণা একটি বৃত্তাকার পথ পরিক্রমা করে এবং বৃত্তটি যে তলে অবস্থান করে সেই তলটি অক্ষের সঙ্গে লম্ব হয় এবং বৃত্তের কেন্দ্রটি অক্ষের উপর অবস্থিত হয়। ঘূর্ণনরত দৃঢ় বস্তুটির প্রতিটি কণার যে-কোনো মুহূর্তে একই কৌণিক বেগ থাকে।
- 4. বিশুদ্ধ চলন গতিতে বস্তুর প্রতিটি কণা যে-কোনো মুহূর্তে সমান বেগে থাকে।

- কৌণিক বেগ একটি ভেক্টর। এর মান ω = dθ/dt এবং অভিমুখ ঘূর্ণাক্ষ বরাবর। স্থির অক্ষ সাপেক্ষে ঘূর্ণনে এই ω ভেক্টরটির একটি স্থির অভিমুখ থাকে।
- 6. a এবং b দুটি ভেক্টরের ভেক্টর বা ক্রস গুণফল একটি ভেক্টর এবং একে a×b রূপে লেখা হয়। এ ভেক্টরটির মান absin0 এবং এর অভিমুখ ডান পাকের স্ক্র বা ডান হস্ত নিয়মে হয়।
- 7. একটি স্থির অক্ষ সাপেক্ষে ঘূর্ণনে একটি দৃঢ়বস্তুর একটি কণার রৈখিক বেগকে লেখা হয় v = ω × r, যেখানে r, স্থির অক্ষ বরাবর একটি মূলবিন্দু সাপেক্ষে কণাটির অবস্থান ভেক্টর। এমনকি, একটি বিন্দুতে আবন্ধ একটি দৃঢ়বস্তুর সাধারণীকৃত ঘূর্ণনেও এই সম্পর্কটি প্রয়োগ করা যায়। এই ক্ষেত্রে মূলবিন্দুকে স্থির বিন্দু হিসেবে ধরে তার সাপেক্ষে কণাটির অবস্থান ভেক্টর হলো r।
- 8. একটি কণা সংস্থার ভরকেন্দ্রটিকে এমন বিন্দু হিসেবে সংজ্ঞায়িত করা হয় যার অবস্থান ভেক্টর

$$\mathbf{R} = \frac{\sum m_i \mathbf{r}_i}{M}$$

- 9. একটি কণা সংস্থার ভরকেন্দ্রের বেগকে লেখা হয় V = P/M, যেখানে P হল সংস্থাটির রৈখিক ভরবেগ। ভরকেন্দ্রটির গতি এমন হয় যে, সংস্থাটির সমস্ত ভর ঐ বিন্দুতে কেন্দ্রীভূত এবং সব বাহ্যিক বলগুলো ঐ বিন্দুতে ক্রিয়া করে। যদি সংস্থার উপর মোট বাহ্যিক বল শূন্য হয় তবে সংস্থাটির মোট রৈখিক ভরবেগ ধ্রুবক হয়।
- 10. মূলবিন্দু সাপেক্ষে n সংখ্যক কণা বিশিষ্ট একটি সংস্থার কৌণিক ভরবেগ

$$\mathbf{L} = \sum_{i=1}^{n} \mathbf{r}_{i} \times \mathbf{p}_{i}$$

মূলবিন্দু সাপেক্ষে n সংখ্যক কণা বিশিষ্ট একটি সংস্থার টর্ক বা বলের ভ্রামক

$$\boldsymbol{\tau} = \sum_{i} \mathbf{r}_{i} \times \mathbf{F}_{i}$$

i-তম কণার উপর কার্যকরী F_i বলের মধ্যে বাহ্যিক বলের পাশাপাশি অভ্যন্তরীণ বলগুলোও অন্তর্ভুক্ত। নিউটনের তৃতীয় সূত্র ধরে নিয়ে, যে কোন দুটি কণার মধ্যে বলগুলো কণাদ্বয়ের সংযোগী রেখা বরাবর ক্রিয়া করে এবং আমরা দেখাতে পারি, **t**_{in} = **0** এবং

$$\frac{d\mathbf{L}}{dt} = \mathbf{\tau}_{ext}$$

- 11. একটি দৃঢ় বস্তু যান্ত্রিক সাম্যাবস্থায় থাকে যদি
 - (1) এটি চলন সাম্যাবস্থায় থাকে অর্থাৎ এর উপর মোট বাহ্যিক বলটি শূন্য : ∑ F_i = 0, এবং
 - (2) এটি আবর্ত সাম্যাবস্থায় থাকে অর্থাৎ এর উপর মোট বাহ্যিক টর্ক শূন্য : $\sum \mathbf{r}_i = \sum \mathbf{r}_i \times \mathbf{F}_i = \mathbf{0}$.
- 12. একটি বিস্তৃত বস্তুর (extended body) ভারকেন্দ্র এমন একটি বিন্দু যেখানে বস্তুর উপর মোট অভিকর্ষীয় টর্ক শূন্য।
- 13. একটি অক্ষ সাপেক্ষে একটি দৃঢ় বস্তুর জড়তা ভ্রামককে যে সূত্র দ্বারা সংজ্ঞায়িত করা হয় সেটি হল $I = \sum m_i r_i^2$,

যেখানে r_i হল অক্ষ থেকে *i*-তম বিন্দুর লম্ব দূরত্ব। আবর্তনের গতি শক্তি হল $K = \frac{1}{2} I\omega^2$.

14. সমান্তরাল অক্ষসমূহের উপপাদ্যটি হলো I'_z = I_z + Ma² এর সাহায্যে কোন অক্ষ সাপেক্ষে একটি দৃঢ়বস্তুর জড়তা ভ্রামক এর্পে নির্ণয় করতে পারি, যেন এটি ভরকেন্দ্র গামী একটি সমান্তরাল অক্ষ সাপেক্ষে বস্তুটির জড়তা ভ্রামক এবং দুটি সমান্তরাল অক্ষের মধ্যে লম্ব দুরত্বের বর্গ ও ভরের গুণফলের সমন্টি।

- 15. একটি স্থির অক্ষ সাপেক্ষে ঘূর্ণন হল সৃতিবিজ্ঞান এবং গতিবিদ্যা প্রসঞ্চো রৈখিক গতির সরাসরি অনুরূপ।
- 16. একটি স্থির ঘূর্ণাক্ষ (ধর z-অক্ষ) সাপেক্ষে একটি দৃঢ়বস্তুর ঘূর্ণনের জন্য L_z = Iω, যেখানে I হল Z- অক্ষ সাপেক্ষে জড়তা ভ্রামক। সাধারণত ঐ ধরনের বস্তুর জন্য কৌণিক ভরবেগ L ঘূর্ণাক্ষ বরাবর হয় না। কেবলমাত্র যদি বস্তুটি ঘূর্ণাক্ষ সাপেক্ষে প্রতিসাম্যে থাকে তবে L ঘূর্ণাক্ষ বরাবর হয়। সেক্ষেত্রে |L| = L_z = Iω. একটি স্থির অক্ষ সাপেক্ষে ঘূর্ণনশীল দৃঢ়বস্তুর কৌণিক ত্বরণকে লেখা যায় Iα = τ. যদি বস্তুর উপর বাহ্যিক টর্ক শূন্য হয়, তবে স্থির অক্ষ সাপেক্ষে (ধর, z-অক্ষ) ঐ ধরনের ঘূর্ণনশীল বস্তুর কৌণিক ভরবেগের উপাংশ L_z (=Iω) ধ্রুবক হবে।
- না পিছলে গড়িয়ে চলা গতির জন্য v_{cm} = Rω, যেখানে v_{cm} হল চলনের বেগ (ভরকেন্দ্রটির), R হল ব্যাসার্ধ এবং m বস্তুটির ভর। এ রকম গড়িয়ে চলা বস্তুর গতিশক্তি হল চলন এবং আবর্তগতি শক্তির সমষ্টি :

$$K = \frac{1}{2}mv_{cm}^{2} + \frac{1}{2}I\omega^{2} .$$

পরিমাণ	চিহ্ন	মাত্রা	একক	মন্তব্য
কৌণিক বেগ	ω	[T ⁻¹]	rad s	$v = \omega \times r$
কৌণিক ভরবেগ	L	[ML ² T ⁻¹]	Js	$L = r \times p$
কর্ট	τ	[ML ² T ⁻²]	N m	τ = r × F
জড়তা ভ্ৰামক	I	[ML ²]	kg m²	$I = \sum m_i r_i^2$

ভেবে দেখার বিষয়সমূহ

- একটি সংস্থার ভরকেন্দ্রের গতি নির্ণয় করতে সংস্থার অভ্যন্তরীণ বলগুলো সম্পর্কে জ্ঞান থাকার প্রয়োজন নেই।
 এর জন্য বস্তুর উপর বাহ্যিক বলগুলো সম্পর্কে কেবল জানা প্রয়োজন।
- 2. কণা সংস্থার গতিকে, ভরকেন্দ্রটির গতি (অর্থাৎ সংস্থাটির চলন গতি) এবং সংস্থাটির ভরকেন্দ্র সাপেক্ষে গতি, এভাবে পৃথক করে নেয়ার পম্থাটি, গতিবিদ্যায় একটি উপযোগী প্রযুক্তি। এই প্রযুক্তির একটি উদাহরণ হল কণা সংস্থার গতিশক্তি *K* কে পৃথক করে, ভরকেন্দ্র সাপেক্ষে সংস্থাটির গতিশক্তি *K'* এবং ভরকেন্দ্রটির গতিশক্তি নির্ণয় করে নেয়া। অর্থাৎ

$$K = K' + MV^2/2$$

- সসীম আকৃতির বস্তু সমূহের (বা কণা সংস্থা) জন্য নিউটনের দ্বিতীয় সূত্রটির ভিত্তি কণাগুলোর জন্য নিউটনের দ্বিতীয় সূত্র এবং তৃতীয় সূত্রের মধ্যেই নিহিত আছে।
- কণা সংস্থার সময়ের সাপেক্ষে মোট কৌণিক ভরবেগের পরিবর্তনের হারই হল সংস্থায় প্রযুক্ত মোট টর্ক এবং এটি প্রতিষ্ঠা করতে আমাদের যে শুধু কণাগুলোর জন্য নিউটনের দ্বিতীয় সূত্রের প্রয়োজন তা নয় নিউটনের তৃতীয় সূত্রেরও প্রয়োজন তবে শর্ত হল যে-কোনো দুটি কণার মধ্যে ক্রিয়াশীল বল এদের সংযোজী রেখা বরাবর হবে।
- 5. মোট বাহ্যিক বল বিলুপ্ত হওয়া (vanish) এবং মোট বাহ্যিক টর্ক বিলুপ্ত হওয়া হল দুটি স্বতন্ত্র শর্ত। একটি ছাড়া অন্যটি থাকতে পারে। একটি দ্বন্দে মোট বাহ্যিক বল শূন্য কিন্তু মোট টর্ক শূন্য হয়।
- 6. বাহ্যিক বল যদি শূন্য হয়, তবে সংস্থার উপর মোট টর্ক মূলবিন্দু নিরপেক্ষ নয়।
- যদি বস্তুর বিভিন্ন অংশে অভিকর্ষীয় ক্ষেত্রের পার্থক্য না থাকে তবে বস্তুর ভরকেন্দ্র ও ভারকেন্দ্র সমাপতিত (একই বিন্দু) হবে।
- কৌণিক ভরবেগ L এবং কৌণিক বেগ ω সমান্তরাল হবে এমনটা অপরিহার্য নয়। যা হোক, এ অধ্যায়ে আলোচিত সরলতর পরিস্থিতিতে, যখন ঘূর্ণন, দৃঢ়বস্তুটির একটি স্থির প্রতিসাম্য অক্ষের সাপেক্ষে হয়, সেক্ষেত্রে L = Iω সম্পর্কটি প্রযোজ্য হয়। যেখানে ঘূর্ণাক্ষ সাপেক্ষে বস্তুটির জড়তা ভ্রামক I ।

অনুশীলনী

- 7.1 নিম্নলিখিত গুলোর ক্ষেত্রে ভরকেন্দ্রের অবস্থান উল্লেখ কর। প্রতিটি বস্তুই সুষম ঘনত্ব সম্পন্ন। (i) গোলক, (ii) চোঙ, (iii) রিং, এবং (iv) ঘনক, ভরকেন্দ্রটি কি অপরিহার্যভাবে বস্তুর ভেতরেই হতে হবে?
- 7.2 HCI অণুতে, দুটি পরমাণুর মধ্যে ব্যবধান 1.27 Å (1 Å = 10⁻¹⁰ m)। অণুটির ভরকেন্দ্রটির আনুমানিক অবস্থান নির্ণয় করো। দেয়া আছে যে, একটি ক্লোরিণ পরমাণু একটি হাইড্রোজেন পরমাণু অপেক্ষা 35.5 গুণ ভারী এবং পরমাণুর সমস্ত ভর এর নিউক্লিয়াসেই ঘনীভূত আছে।
- 7.3 একটি লম্বা ট্রলির একপ্রান্তে একটি শিশু স্থির বসে আছে। ট্রলিটি / সুষম দ্রুতিতে একটি মসৃণ অনুভূমিক মেঝেতে চলছে। যদি শিশুটি উঠে দাঁড়ায় এবং ট্রলির মধ্যে যে-কোনোভাবে দৌড়তে থাকে তবে সংস্থাটির (ট্রলি + শিশু) ভরকেন্দ্রের দ্রুতি কত হবে?
- 7.4 দেখাও যে, a এবং b ভেক্টরগুলোর মধ্যে অন্তর্ভুক্ত ত্রিভুজটির ক্ষেত্রফল, a × b এর মানের অর্ধেক হবে।
- 7.5 দেখাও যে, তিনটি ভেক্টর ${f a},{f b}$ এবং ${f c}$ এর উপর গঠিত আয়তঘনটির আয়তন ${f a}\cdot({f b} imes{f c})$ এর মানের সমান।
- 7.6 একটি কণার কৌণিক ভরবেগ । এর x, y, এবং z অক্ষ বরাবর উপাংশগুলো নির্ণয় করো, x, y, এবং z হল অবস্থান ভেক্টর r এর উপাংশগুলো এবং ভরবেগ p এর উপাংশগুলো হল p_x, p_y এবং p_z । দেখাও যে, কণাটির গতি যদি কেবল x-y তলে হয় তবে কৌণিক ভরবেগের শৃধু একটি z- উপাংশ থাকে।
- 7.7 দুটি কণা, প্রত্যেকটির ভর m এবং দুতি v, সমান্তরাল রেখা বরাবর পরস্পর থেকে d দূরত্বের ব্যবধানে থেকে বিপরীত অভিমুখে চলছে। দেখাও যে, যে কোন বিন্দু সাপেক্ষেই কৌণিক ভরবেগ নেয়া হউক না কেন, দুই কণা সংস্থার কৌণিক ভরবেগ ভেক্টরটি সমান হবে।
- 7.8 সুষম নয় এমন একটি W ওজনের দণ্ডকে উপেক্ষণীয় ভরের দুটি তার দিয়ে স্থির অবস্থায়, 7.39 নং চিত্রে যেমন দেখানো আছে, ঝুলানো আছে। উল্লম্বের সঙ্গো তারগুলো যথাক্রমে 36.9° এবং 53.1° কোণ উৎপন্ন করে। দণ্ডটি 2 m লম্বা। দণ্ডটির বামপ্রান্ত থেকে এর ভারকেন্দ্রটির দূরত্ব d নির্ণয় করো।

চিত্র 7.39

- 7.9 একটি গাড়ির ওজন 1800 kg। এর সামনের এবং পেছনের এক্সেল দুটির মধ্যে দূরত্ব 1.8 m. । সামনের এক্সেল থেকে 1.05 m পেছনে এর ভারকেন্দ্রটি অবস্থিত। প্রতিটি সামনের চাকা এবং পেছনের চাকায় ভূমিতল কর্তৃক প্রযুক্ত বল নির্ণয় করো।
- 7.10
 (a) গোলকের একটি স্পর্শক সাপেক্ষে গোলকটির জড়তা ভ্রামক নির্ণয় করো। দেয়া আছে, এর যে-কোনো একটি ব্যাস সাপেক্ষে গোলকটির জড়তা ভ্রামক 2*MR*²/5, যেখানে *M* গোলকটির ভর এবং *R* গোলকটির ব্যাসার্ধ।
 - (b) দেওয়া আছে M ভর এবং R ব্যাসার্ধের একটি ডিস্কের যে-কোনো একটি ব্যাস সাপেক্ষে জড়তা ভ্রামক MR²/4, ডিস্কটির কিনারায় (ধারে) একটি বিন্দুগামী এবং ডিস্কের উপর লম্ব অক্ষ সাপেক্ষে ডিস্কটির জড়তা ভ্রামক নির্ণয় করো।

- 7.11 সমান ভর এবং ব্যাসার্ধ বিশিষ্ট একটি ফাঁপা চোঙ এবং একটি নিরেট গোলকের উপর সমান মানের টর্ক প্রযুক্ত হল। চোঙটি প্রতিসাম্যের প্রমাণ অক্ষ সাপেক্ষে অবাধে ঘুরতে পারে এবং গোলকটি এর কেন্দ্রগামী অক্ষ সাপেক্ষে অবাধে ঘুরতে পারে। একটি প্রদত্ত সময় পর এ দুটির মধ্যে কোন্টি বেশি কৌণিক দ্রুতি অর্জন করবে?
- 7.12
 20 kg ভরের একটি নিরেট চোঙ এর অক্ষ সাপেক্ষে 100 rad s⁻¹ কৌণিক দ্রুতিতে আবর্তিত হচ্ছে। চোঙটির ব্যাসার্ধ

 0.25 m. চোঙটির আবর্তনজনিত গতিশক্তি কত ? অক্ষ সাপেক্ষে চোঙটির কৌণিক ভরবেগের মান কত ?
- 7.13 (a) এক শিশু একটি টার্নটেবিলের কেন্দ্রে দুই বাহুকে প্রসারিত করে দাঁড়িয়ে আছে। টার্নটেবিলটি 40 rev/min. কৌণিক দ্রুতিতে ঘূর্ণনের জন্য স্থাপন করা আছে। যদি শিশুটি তার হাতগুলোকে পেছনে ভাঁজ করে নেয় এবং জড়তা ভ্রামক এর প্রারম্ভিক মানের 2/5 গুণ হয় তবে শিশুটির কৌণিক বেগ কত হবে ? ধরে নাও, টার্নটেবিলটি ঘর্ষণহীনভাবে ঘুরছে।
 - (b) দেখাও যে, শিশুটির নতুন ঘূর্ণন গতিশক্তি প্রারম্ভিক ঘূর্ণন গতিশক্তি অপেক্ষা বেশি হবে। গতিশক্তির এই বৃদ্ধি তুমি কীভাবে হিসেব করবে?
- 7.14 3 kg ভর এবং 40 cm. ব্যাসার্ধ বিশিষ্ট একটি ফাঁপা চোঙের চারদিকে উপেক্ষণীয় ভরের একটি দড়ি জড়ানো হল। যদি দড়িটিকে 30 N বলে টান দেয়া হয় তবে চোঙটির কত কৌণিক ত্বরণ উৎপন্ন হবে ? দড়িটির রৈখিক ত্বরণ কত ? ধরে নাও, দড়িটি পিছলে যায় না।
- 7.15 একটি রটারের (rotor) সুষম কৌণিক দ্রুতি 200 rad s⁻¹ বজায় রাখার জন্য একটি ইঞ্জিনকে 180 N m টর্ক প্রেরণ করার প্রয়োজন হয়। ইঞ্জিনটির ক্ষমতা কত হওয়া প্রয়োজন? (লক্ষ করো : ঘর্ষণের অনুপস্থিতিতে সুষম কৌণিক বেগ মানে শূন্য টর্ককে বুঝায়। বাস্তবে ঘর্ষণ জনিত টর্কের প্রতিরোধের জন্য টর্ক প্রয়োগের প্রয়োজন।) ধরে নাও, ইঞ্জিনটির দক্ষতা 100%।
- 7.16
 R ব্যাসার্ধের একটি সুষম ডিস্ক (চাকতি) থেকে R/2 ব্যাসার্ধের একটি বৃত্তাকার ছিদ্র কেটে নেয়া হল। ছিদ্রটির কেন্দ্র মূল ডিস্কের কেন্দ্র থেকে R/2 দুরত্বে আছে। অবশিষ্ট তলটির ভারকেন্দ্রের অবস্থান নির্ণয় করো।
- 7.17 একটি মিটার স্টিক একটি ক্ষুরধারের (knife edge) উপর এর কেন্দ্রে সাম্যাবস্থায় আছে। যখন প্রত্যেকটি 5 g ভরের দুটি মুদ্রা 12.0 cm দাগের উপর একটির উপর অপরটি রাখা আছে তখন দেখা গেল স্টিকটি 45.0 cm. দাগে সাম্য হয়। মিটার স্টিকটির ভর কত?
- 7.18 একটি নিরেট গোলক, একই উচ্চতার কিন্তু ভিন্ন কোণে আনত দুটি ভিন্ন নততল বরাবর গড়িয়ে নীচে নামছে।
 (a) প্রতিক্ষেত্রেই কী এটি সমান দুতিতে নততলের গোড়ায় পৌঁছাবে ? (b) একটি তল অপেক্ষা অন্য তলে কী এটি বেশি সময় নিয়ে নীচে নামে ? (c) যদি তেমন হয়, তবে কোন্ ক্ষেত্রে এবং কেন ?
- 7.19 একটি চাকার (hoop) ভর 100 kg. এবং ব্যাসার্ধ 2m এটি একটি অনুভূমিক মেঝেতে গড়িয়ে চলছে, এর ভরকেন্দ্রের বেগ 20 cm/s. । এটিকে থামাতে কত কার্যের প্রয়োজন ?
- 7.20 একটি অক্সিজেন অণুর ভর 5.30 × 10⁻²⁶ kg এবং এর দুটি পরমাণুর সংযোগকারী রেখার মধ্যবিন্দুগামী অক্ষসাপেক্ষে অণুটির জড়তা ভ্রামক 1.94×10⁻⁴⁶ kg m² । ধরে নাও, কোনো গ্যাসে ঐ অণুর গড়দ্রুতি 500 m/s এবং এর ঘূর্ণনের গতিশস্তি, চলন গতিশস্তির দুই-তৃতীয়াংশ। অণুটির গড় কৌণিক বেগ নির্ণয় করো।
- 7.21 একটি নিরেট চোঙ একটি নততল বরাবর গড়িয়ে উপরে উঠছে। নততলটি 30° কোণে আনত। নততলটির গোড়ায় চোঙটির ভরকেন্দ্রের দ্রুতি5 m/s.
 - (a) চোঙটি তল বরাবর কত উপরে উঠবে?
 - (b) নততলের গোড়ায় ফিরে আসতে কত সময় লাগবে?

অতিরিক্ত অনুশীলনী

7.22 7.40 নং চিত্রে যেমন দেখানো আছে একটি ধাপ সিঁড়ির দুই বাহু BA এবং CA উভয়েই 1.6 m লম্বা এবং A বিন্দুতে কজায় আটকানো। একটি 0.5 m লম্বা দড়ি DE এদের মধ্যবিন্দুতে আটকানো। একটি 40 kg ভার F বিন্দুতে BA সিঁড়ি বরাবর B থেকে 1.2 m দূরে ঝুলানো আছে। মেঝেটি ঘর্ষণহীন এবং সিঁড়ির ভর উপেক্ষণীয় ধরে দড়িতে টান এবং মেঝে কর্তৃক সিঁড়ির উপর প্রযুক্ত বল নির্ণয় করো। (ধর g = 9.8 m/s²) (ইঞ্চিত : সিঁড়ির প্রতি বাহুর সুস্থিতি আলাদাভাবে বিবেচনা করো)

পদার্থবিদ্য

- 7.23 এক ব্যক্তি তার প্রতি হাতে 5 kg ভার নিয়ে এবং হাতকে অনুভূমিকভাবে প্রসারিত করে একটি ঘূর্ণায়মান প্ল্যাটফর্মের উপর দাঁড়িয়ে আছে। প্ল্যাটফর্মটির কৌণিক দ্রুতি 30 rev/min। ঐ ব্যক্তি তখন অক্ষ থেকে প্রতিটি ভারের দূরত্ব পরিবর্তন করে 90cm থেকে 20cm-এ এনে হাত দুটোকে শরীরের কাছে নিয়ে এলো। প্ল্যাটফর্মসহ ঐ ব্যক্তির জড়তা ভ্রামক ধ্রুবক ধরে নেওয়া যেতে পারে এবং এটি 7.6 kg m² এর সমান।
 - (a) তার নতুন কৌণিক দ্রুতি কত? (ঘর্ষণ উপেক্ষা করো)
 - (b) এই প্রক্রিয়ায় কী গতিশক্তি সংরক্ষিত থাকে? যদি না হয়, তবে কোথা থেকে এই পরিবর্তন আসে?
- 7.24 10 g ভরের একটি বুলেটকে 500 m/s বেগে একটি দরজায় ছোড়া হল এবং বুলেটটি দরজার ঠিক কেন্দ্রে আবন্ধ হয়ে গেল। দরজাটি 1.0 m প্রশস্ত এবং ভার 12 kg. । এটি এক প্রান্তে কজায় আটকানো এবং ব্যবহারিক ক্ষেত্রে ঘর্ষণহীনভাবে একটি উল্লম্ব অক্ষ সাপেক্ষে ঘুরতে পারে। বুলেটটি ঠিক বিঁধে যাওয়ার পর দরজাটির কৌণিক দ্রুতি নির্ণয় কর। (ইঞ্চিাত : দরজার এক পাশের উল্লম্ব অক্ষ সাপেক্ষে এর জড়তা ভ্রামক ML²/3.)
- 7.25 দুটি ডিস্ক, এদের অক্ষ (ডিস্কের উপর লম্ব এবং কেন্দ্রগামী) সাপেক্ষে জড়তা ভ্রামক যথাক্রমে I₁ এবং I₂ এবং ω₁ ও ω₂ কৌণিক দ্রুতিতে ঘূর্ণনশীল। এদের মুখোমুখি যুক্ত করো। এদের ঘূর্ণাক্ষগুলোকে সমাপতিত করা হল।
 (a) দ্বি-ডিস্কসংস্থার কৌণিক দ্রুতি কত হবে? (b) দেখাও যে, ডিস্ক দুটির প্রারম্ভিক গতিশক্তির সমষ্টি অপেক্ষা সংযুক্ত সংস্থার গতিশক্তি কমে যায়। শক্তির এই অপচয়কে তুমি কীভাবে হিসেব করবে? ধরে নাও, ω₁ ≠ ω₂.
- 7.26 (a) উল্লম্ব অক্ষ সমূহের উপপাদ্যটি প্রমাণ কর।

(ইঞ্চিাত : x-y তলে মূলবিন্দুগামী অক্ষ থেকে একটি বিন্দু (x, y) এর দূরত্বের বর্গ এবং তলের উপর লম্ব হল x²+y²).

- (b) সমান্তরাল অক্ষসমূহের উপপাদ্যটি প্রমাণ করো।
- (ইঞ্জিত : যদি ভরকেন্দ্রকে মূলবিন্দু হিসেবে ধরা হয় $\sum m_i \mathbf{r}_i = 0$).
- 7.27 h উচ্চতা বিশিষ্ট নততলে গড়িয়ে পড়া বস্তুর (যেমন রিং, ডিস্ক বা চাকতি, চোঙ, গোলক) নততলের গোড়ায় চলন গতিবেগ v হলে প্রমাণ করো যে,

$$v^2 = \frac{2gh}{\left(1 + k^2 / R^2\right)}$$

গতিশীলতার বিয়য়গুলো (অর্থাৎ বল এবং টর্ক সমূহ) ব্যবহার করো। এখানে *k* প্রতিসাম্য অক্ষ সাপেক্ষে বিস্তুটির চক্রগতির ব্যাসার্ধ এবং R বস্তুটির ব্যাসার্ধ। বস্তুটি নততলের শীর্ষে স্থির অবস্থা থেকে যাত্রা শুরু করেছিল।

চিত্র 7.41

- 7.29 7.41 নং চিত্রে নির্দেশিত অভিমুখে চাকতিটির গড়িয়ে চলতে ঘর্ষণের প্রয়োজন কেন ? ব্যাখ্যা করো।
 - (a) যথাযথভাবে গড়িয়ে চলতে শুরু করার পূর্বে, B বিন্দুতে ঘর্ষণ বলের অভিমুখ এবং ঘর্ষণজনিত টর্কের অনুভূতি উল্লেখ করো।
 (b) যথাযথভাবে গড়িয়ে চলতে শুরু করার পর ঘর্ষণ বল কী হবে?
- 7.30
 একটি নিরেট ডিস্ক এবং একটি রিং উভয়ের ব্যাসার্ধ 10 cm। এদের একটি অনুভূমিক টেবিলে একই সঞ্চো রাখা হল। উভয়ের প্রারম্ভিক কৌণিক দ্রুতি 10 π rad s⁻¹. দুটির মধ্যে কোন্টি আগে গড়াতে শুরু করবে? গতীয় ঘর্ষণ গুণাঙ্ক μ = 0.2.
- 7.31 10 kg ভর এবং 15 cm ব্যাসার্ধের একটি চোঙ 30° কোণে আনত একটি তলে যথার্থভাবে গড়িয়ে চলছে। স্থিত ঘর্ষণ গুণাঙ্ক μ_s = 0.25.
 (a) চোঙের উপর কত ঘর্ষণবল ক্রিয়া করবে ?
 - (b) গড়ানোর সময়ে ঘর্ষণের বিরুদ্ধে কৃতকার্য কত?
 - (c) যদি তলের নতিকোণ θ কে বাড়ানো হয়, তবে θ এর কোন্ মানের জন্য চোঙটি পিছলে পড়তে শুরু করবে এবং নির্ভুলভাবে গড়াবে না?
- 7.32 নীচের বিবৃতিগুলো যত্নসহকারে পড় এবং ভুল অথবা শুম্ব কারণসহ উত্তর করো।
 - (a) গড়ানোর সময় ঘর্ষণবলের অভিমুখ এবং বস্তুর ভরকেন্দ্রে গতির অভিমুখ একই দিকে হয়।
 - (b) গড়িয়ে চলার সময় স্পর্শবিন্দুর তাৎক্ষণিক বেগ শূন্য হয়।
 - (c) গড়িয়ে চলার সময় স্পর্শবিন্দুর তাৎক্ষণিক ত্বরণ শূন্য হয়।
 - (d) যথার্থভাবে গড়িয়ে চলা গতিতে ঘর্ষণ বলের বিরুদ্ধে কৃতকার্য শূন্য।
 - (e) একটি যথার্থ ঘর্ষণহীন নততলে নিচের দিকে গতির সময় একটি চাকা পিছলে নামে (গড়িয়ে নয়)।
- 7.33 কণা সংস্থার গতিকে ভরকেন্দ্রের গতি এবং ভরকেন্দ্র সাপেক্ষে গতিতে পৃথক করো :
 - (a) (if the $\mathbf{p} = \mathbf{p}'_i + m_i \mathbf{V}$

যেখানে \mathbf{p}_i হল *i*-তম কণার (m_i ভরের) ভরবেগ এবং $\mathbf{p'}_i = m_i \mathbf{v'}_i$, ভরকেন্দ্রের সাপেক্ষে *i*-তম কণার বেগ $\mathbf{v'}_i$ । এবং ভরকেন্দ্রের সংজ্ঞা ব্যবহার করে প্রমাণ করো $\sum \mathbf{p}_i' = \mathbf{0}$

(b) (FATS $K = K' + {}^{1}/{}_{2} MV^{2}$

যেখানে *K* হল কণা সংস্থার মোট গতিশক্তি, **K'** হল সংস্থাটির মোট গতিশক্তি, যখন ভরকেন্দ্র সাপেক্ষে কণার বেগগুলো নেয়া হয় এবং *MV*²/2 হল সমগ্র সংস্থাটির চলন গতিশক্তি (অর্থাৎ সংস্থাটির ভরকেন্দ্রের গতি)। 7.14 নং বিভাগে এই ফলাফল ব্যবহৃত হয়েছে।

(c) (एथ्री $\mathbf{L} = \mathbf{L}' + \mathbf{R} \times M \mathbf{V}$

যেখানে $\mathbf{L}' = \sum \mathbf{r}'_i \times \mathbf{p}'_i$ হল ভরকেন্দ্র সাপেক্ষে সংস্থাটির কৌণিক ভরবেগ যেখানে ভরকেন্দ্রটির সাপেক্ষে বেগসমূহকে নেওয়া হয়েছে। ধরে নাও, $\mathbf{r}'_i = \mathbf{r}_i - \mathbf{R}$; অবশিষ্ট চিহ্নগুলো হল এ অধ্যায়ে ব্যবহৃত প্রমাণ চিহ্নসমূহ। \mathbf{L}' এবং $M\mathbf{R} \times \mathbf{V}$ কে কণা সংস্থার যথাক্রমে ভরকেন্দ্র সাপেক্ষে কৌণিক ভরবেগ এবং ভরকেন্দ্রটির কোণিক ভরবেগ বলা যেতে পারে।

(d) (TANG
$$\frac{d\mathbf{L}'}{dt} = \sum \mathbf{r}'_i \times \frac{d\mathbf{p}'}{dt}$$

আরও দেখাও যে,

$$\frac{d\mathbf{L}'}{dt} = \mathbf{\tau}'_{ex}$$

যেখানে au'_{ext} হল ভরকেন্দ্র সাপেক্ষে সংস্থায় প্রযুক্ত সব বাহ্যিক টর্কসমূহের সমষ্টি। (ইঞ্চিাত : ভরকেন্দ্রের সংজ্ঞা এবং নিউটনের তৃতীয় সূত্র ব্যবহার করো। ধর, অভ্যন্তরীণ বলগুলো যে কোনো দুটি কণার সংযোগী রেখা বরাবর ক্রিয়া করছে।

> প্লুটো — একটি বামন গ্রহ (Pluto - A Dwarf Planet)

আন্তর্জাতিক এস্ট্রোনমিকেল ইউনিয়ন (IAU) 2006 সালের 24 আগস্ট চেক প্রজাতন্ত্রের প্রাগে অনুষ্ঠিত IAU 2006 এর সাধারণ সভায় আমাদের সৌরজগতের গ্রহগুলোর একটি নতুন সংজ্ঞা গ্রহণ করেছে। নতুন সংজ্ঞানুযায়ী প্লুটো আর এখন গ্রহ নয়। এটি বুঝায় যে সৌরজগত আটটি গ্রহ দ্বারা গঠিত : বুধ (Mercury), শুরু (Venus), পৃথিবী (Earth), মঙ্গাল (Mars), বৃহস্পতি (Jupiter), শনি (Saturn), ইউরেনাস (Uranus) এবং নেপচুন (Neptune)। IAU এর প্রথানুযায়ী আমাদের সৌরজগতে উপগ্রহগুলো ছাড়া গ্রহ এবং অন্যান্য মহাজাগতিক বস্তুসমূহকে নিম্নলিখিতভোবে স্পস্ট তিনটি শ্রেণিতে সংজ্ঞায়িত করা হয়েছে।

- গ্রহ একটি মহাজাগতিক বস্তু যে (a) সূর্যের চারদিকে একটি কক্ষে ঘুরে। (b) এটির নিজস্ব অভিকর্যের জন্য যথেন্ট ভর আছে যা দূঢ়বস্থু বলসমূহকে (rigid body forces) অতিক্রম করতে পারে যাতে করে এটা অনুমিত হয় যে, এর একটি উদস্থৈতিক ভারসাম্য আকৃতি (প্রায় গোলাকার) থাকে। (c) এরা কক্ষের চারদিকের প্রতিবেশীদের দূরে সরিয়ে দেয়।
- বামন গ্রহ একটি মহাজাগতিক বস্তু যে, (a) সূর্যের চারদিকে কক্ষে ঘুরে। (b) এর নিজস্ব অভিকর্ষের জন্য যথেন্ট ভর আছে যা দৃঢ়বস্তু বল সমূহকে অতিক্রম করতে পারে যাতে করে এটা অনুমিত হয় যে এর একটি উদস্থৈতিক ভারসাম্য আকৃতি (প্রায় গোলাকার) থাকে (c) এর কক্ষের চারদিকের প্রতিবেশীদের দূরে সরিয়ে দেয় না এবং (d) এটি একটি উপগ্রহ নয়।
- 3. উপগ্রহগুলো ছাড়া অন্য সব বস্তুসমূহ, যেগুলো সূর্যের চারদিকের কক্ষে আবর্তিত হচ্ছে এদের সম্মিলিতভাবে 'ক্ষুদ্র সৌর জাগতিক বস্তুসমূহ' হিসেবে উল্লেখ করা যেতে পারে।

প্লুটোর কক্ষপথ সৌর জগতের অন্য আটটি গ্রহের মতো নয়, এর কক্ষপথে 'অন্যান্য বস্তুসমূহ' এবং নেপচুনের কক্ষপথ উপরিপতিত। সৌর জগতের অধিকাংশ গ্রহাণু, অধিকাংশ ট্রান্স-নেপচুনিয়ান বস্তুসমূহ (TNOs) (নবীনগ্রহ) ধূমকেতুসমূহ এবং অন্য বস্তুগুলোই — এই অন্যান্য ক্ষুদ্র বস্তু সমূহের অন্তর্ভুক্ত।

উপরের সংজ্ঞানুযায়ী প্লুটো একটি 'বামন গ্রহ' এবং একে নতুন শ্রেণিভুক্ত ট্রান্স-নেপচুনিয়ান বস্তুসমূহের একটি আদিবস্তু হিসাবে ধরা হয়।

অধ্যায় : অফ্টম

মহাকর্ষ (GRAVITATION)

8.1 ভূমিকা

- কেপলারের সূত্রাবলি 8.2

8.4

8.5

8.6

8.7

8.8

8.9

- 8.3

মহাকর্ষীয় ধ্রুবক

অভিকর্ষজ ত্বরণ

মুক্তি দ্বুতি

শক্তি

8.12 ভারশূন্যতা

সারাংশ

অনুশীলনী

মহাকর্ষীয় স্থিতিশক্তি

পৃথিবীর উপগ্রহসমূহ

8.10 কক্ষপথে আবর্তনশীল উপগ্রহের

8.11 ভূসমলয় এবং মেরু উপগ্রহ সমূহ

ভেবে দেখার বিষয়সমূহ

অতিরিস্ত অনুশীলনী

পৃথিবীর অভিকর্ষজ ত্বরণ

পৃথিবীপৃষ্ঠের নীচে এবং উপরে

- পৃথিবীর দিকে ফিরে আসে। পাহাড় থেকে নামা অপেক্ষা উপরে ওঠা কন্টসাধ্য, মেঘ সার্বজনীন মহাকর্ষ সূত্র
 - থেকে বারিবিন্দু পৃথিবীতে ফিরে আসে এবং এ ধরণের আরো অনেক ঘটনা আছে। ঐতিহাসিকভাবে স্বীকৃত সর্বপ্রথম ইতালীয় পদার্থবিদ গ্যালিলিও (1564-1642) এটা বুঝতে পেরেছিলেন- সকল বস্তু (ভর নিরপেক্ষ) একই ত্বরণে পৃথিবীর দিকে পতনশীল

8.1 ভূমিকা (INTRODUCTION)

হয়। কথিত আছে, এ সম্পর্কিত একটি পরীক্ষা উনি সর্বসাধারণের সামনে প্রদর্শন করেন। এটার সত্যতা দেখার জন্য উনি নততল বরাবর গড়িয়ে পড়ে এমন অনেক বস্তুকে নিয়ে পরীক্ষা করেন এবং অভিকর্ষজ ত্বরণের মান নির্ণয় করেন। পরবর্তীকালে নির্ভুলভাবে নির্ণয় করা অভিকর্ষজ ত্বরণের মান ওই মানের খুবই কাছাকাছি ছিল।

আমরা শৈশবকাল থেকেই অবগত আছি যে, সকল পার্থিব বস্তুরই পৃথিবীর দিকে আকর্ষিত হওয়ার প্রবণতা থাকে। কোনো বস্তুকে উপরে ছুড়ে দিলে, এটা আবার

আপাতভাবে সম্পর্কহীন কিছু ঘটনাগুলোকে জানা, নক্ষত্র ও গ্রহগুলোকে পর্যবেক্ষণ করা ও ওদের গতি সম্পর্কে জানা এসব বিষয়গুলো প্রাচীনকাল থেকেই বিভিন্ন দেশের প্রধান বিচার্য বিষয় ছিল। আদিকাল থেকেই আকাশের বিভিন্ন প্রান্তে বছরের পর বছর স্থির অবস্থায় থাকা নক্ষত্রগুলোকে দেখে, এদের নামাকরণ করা হত। নক্ষত্রমণ্ডলের স্থির পটভূমিতে গ্রহগুলোর নিয়মিত গতি যেন আরো উৎসাহ ব্যঞ্জক ছিল। গ্রহাদির গতি সম্পর্কে আদি নথিভুক্ত ভূকেন্দ্রিক মডেলটি প্রায় 2000 বছর পূর্বে টোলেমি (Ptolemy) সর্বপ্রথম প্রস্তাব করেন, যেখানে বিভিন্ন মহাজাগতিক বস্তু, নক্ষত্র, সূর্য এবং গ্রহাদি সকলে পৃথিবীকে কেন্দ্র করে ঘুরে। মহাজাগতিক বস্তুগুলোর গতি কেবলমাত্র বৃত্তাকার পথেই সম্ভব, এটা ভাবা হত। গ্রহগুলোর গতি পর্যবেক্ষণ করে, এদের গতি ব্যাখ্যা করার জন্য, টোলেমি (Ptolemy) একটি জটিল কৌশল উপস্থাপন করেন। এই তত্ত্বানুযায়ী গ্রহগুলো যে সকল বৃত্তাকার পথে ঘুরে, ওই বৃত্তাকার পথ সমুহের কেন্দ্রগুলো অন্যান্য বৃহত্তর বৃত্তাকার পথে ঘুরে। প্রায় চারশো বছর পর ভারতীয় জ্যোতির্বিদগণ অনুরূপ তত্ত্বের অবতারণা করেন। পঞ্চম শতাব্দীতে আর্যভট্ট তাঁর গ্রন্থে 'heliocentric model' বা সূর্যকেন্দ্রিক মডেলের উল্লেখ করেন এবং এই চিত্তাকর্ষক মডেলে সূর্যকে কেন্দ্র করে বিভিন্ন গ্রহগুলো ঘুরছে, এটা উল্লেখ করেন। এর প্রায় এক হাজার বছর পর পোল্যান্ডের একজন ধর্মযাজক নিকোলাস কোপারনিকাস (1473-1543) একটি নির্দিষ্ট মডেল (গঠন) প্রস্তাব করেন। যেখানে স্থির সূর্যকে কেন্দ্র করে গ্রহগুলো বৃত্তাকার পথে ঘুরছে, তাঁর এই তত্ত্বকে চার্চের ধর্মযাজকরা অবমূল্যায়ণ

করেন এবং তাঁর সমর্থকদের মধ্যে উল্লেখযোগ্য ছিলেন গ্যালিলিও যিনি এই বিশ্বাসের জন্য আদালতে বিচারের মুখোমুখি হয়েছিলেন।

গ্যালিলিওর সমসাময়িক ডেনমার্ক দেশের টাইকো ব্রাহে (Tycho Brahe) (1546-1601) নামে একজন ভদ্রলোক, তাঁর জীবনের সমস্ত সময় মুক্ত চোখে গ্রহগুলোকে পর্যবেক্ষণ করতে ব্যয় করেন। টাইকোব্রাহের লিপিবন্ধ তথ্য পরবর্তীকালে ওনার সহযোগী জোহানস্ কেপলার (1571-1640) দ্বারা বিশ্লেষিত হয়েছিল। এই তথ্যাবলি থেকে উনি তিনটি চিন্তাকর্ষক সূত্র বের করেন। যা এখন কেপলারের সূত্রাবলি নামে পরিচিত। নিউটন এই সূত্রগুলো জানতেন এবং এই বিশেষ বৈজ্ঞানিক দৃষ্টিকোণ থেকে তিনি তার সার্বজনীন মহাকর্ষ সূত্র প্রস্তাব করতে সমর্থ হন।

8.2 কেপলারের সূত্রাবলি (Kepler's laws)

কেপলারের তিনটি সূত্র নিম্নলিখিতভাবে বিবৃত করা যায় :

 কক্ষপথের সূত্র : গ্রহগুলো সূর্যের চারিদিকে উপবৃত্তাকার কক্ষপথে আবর্তন করে এবং সূর্য ওই উপবৃত্তাকার কক্ষপথের যে কোনো একটি

চিত্র 8.1(a) সূর্যের চারিদিকে উপবৃত্তাকার কক্ষপথে একটি গ্রহের পরিক্রমা। P হল সর্বনিকটবর্তী বিন্দু এবং A হল সর্বদূরবর্তী বিন্দু। P কে অনুসূর এবং A কে অপসূর বলে। AP দূরত্বের অর্ধেককে অর্ধপরাক্ষ বলে।

- চিত্র 8.1(b) একটি উপবৃত্তের অঙ্কন। একটি সুতোর দুপ্রান্ত F₁ ও F₂ বিন্দুতে যুক্ত করে, একটি পেন্সিলের তীক্ষ্ণ প্রান্ত সুতাটির সঙ্গো আটকিয়ে টানটান অবস্থায় চারিদিকে ঘুরাও।
- * 182 পৃষ্ঠায় বক্স-এ দেওয়া তথ্যানুসারে।

ফোকাসে থাকে [চিত্র 8.1 (a)] কোপারনিকাস মডেলে শুধুমাত্র যে বৃত্তাকার কক্ষপথের অবতারণা করা হয়েছিল, তা থেকে এই সৃত্রের বিচ্যুতি ঘটেছিল। উপবৃত্তাকার কক্ষপথগুলো একটি বদ্ধ বক্ররেখা এবং বৃত্ত হল এর একটি বিশেষক্ষেত্র। উপবৃত্ত অংকন করার একটি সহজ পদ্ধতি নিচে দেখানো হলো।

 $F_1 \otimes F_2$, দুটি বিন্দু নির্বাচন করো। নির্দিস্ট দৈর্ঘ্যের সুতাটির দু'প্রাস্ত $F_1 \otimes F_2$ বিন্দুতে পিন দ্বারা যুক্ত করো। পেন্সিলটির অগ্রভাগের সাহায্যে সৃতাটিকে সর্বদা টান টান রেখে, পেন্সিলটিকে ঘুরিয়ে একটি বরুরেখা আঁকো (চিত্র 8.1 b)। তুমি যে বন্ধ বরুরেখাটি পেলে, তাকে উপবৃত্ত বলে। স্পস্টত উপবৃত্তাকার পথের যে-কোনো একটি বিন্দু (T) থেকে $F_1 \otimes F_2$ এর দূরত্বের যোগফল সর্বদা ধ্রুবক। $F_1 \otimes F_2$ কে ফোকাসযুগল বলে। $F_1 \otimes F_2$ এর সংযোগকারী রেখাটিকে উভয়দিকে বর্ধিত করলে তা উপবৃত্তটিকে P ও A বিন্দুতে ছেদ করে, যা 8.1(b) চিত্রে প্রদর্শিত হলো। PA রেখাটির মধ্যবিন্দুকে উপবৃত্তের কেন্দ্র (O) বলে এবং PO = AO দৈর্ঘ্যটিকে উপবৃত্তের অর্ধপরাক্ষ বলে।বৃত্তের ব্যোসার্ধে রূপান্তরিত হয়।

 ক্ষেত্রফলের সূত্র : সূর্য ও কোনো গ্রহের মধ্যে সংযোগকারী সরলরেখা সমান সময় অবকাশে সমান ক্ষেত্রফল অতিক্রম করে (চিত্র 8.2)। গ্রহগুলো যত সূর্যের কাছে আসে তত এদের বেগ বৃদ্ধি পায় এবং যত দূরে যায়, তত এদের বেগ কমে যায় - এই পর্যবেক্ষণ থেকেই এই সৃত্রটি আসে।

Fig. 8.2 একটি গ্রহ P সূর্যের চারিদিকে উপবৃত্তাকার পথে ঘুরে। সূর্য ও গ্রহের মধ্যে সংযোগকারী সরলরেখা খুবই ক্ষুদ্র সময়ে (Δt) যে ক্ষেত্রফল অতিক্রম করে তা ΔA দ্বারা সূচিত হল এবং এটা অংশাঙ্কিত অঞ্চল দ্বারা চিহ্নিত করা হয়েছে।

3. পর্যায়কালের সূত্র : একটি গ্রহের আবর্তনকালের বর্গ ঐ গ্রহ দ্বারা বর্ণিত উপবৃত্তাকার কক্ষপথের অর্ধ পরাক্ষের ত্রিঘাতের সমানুপাতী। সূর্যের চারিদিকে আবর্তনশীল আটটি গ্রহের পর্যায়কাল ও অর্ধপরাক্ষের আনুমানিক মানগুলো 8.1 নং সারণিতে দেওয়া হলো।

মহাকর্ষ

সারণি 8.1 গ্রহগুলোর গতি সংক্রান্ত বিভিন্ন পরিমাপ থেকে প্রাপ্ত তথ্যগুলো কেপলারের সূত্রের যথার্থতা প্রমাণ করে।

- $(a \equiv \mathbf{N} \mathbf{X} \mathbf{X})$ আৰু মান আৰু 10^{10} m.
- = গ্রহের আবর্তনের পর্যায়কাল (বৎসর এককে) Т
- = (T²/a³); ভগ্নাংশটি 10 -34 y² m⁻³ এককে প্রকাশিত।

গ্রহের নাম	(a) (10 ¹⁰ m এককে)	T (বৎসর)	$\begin{array}{c} Q(\ T^2/a^3\) \\ (10\ ^{-34}\ y^2\ m^{-3}) \end{array}$
বুধ	5.79	0.24	2.95
শুব্রু	10.8	0.615	3.00
পৃথিবী	15.0	1	2.96
মঙ্গাল	22.8	1.88	2.98
বৃহস্পতি	77.8	11.9	3.01
শনি	143	29.5	2.98
ইউরেনাস	287	84	2.98
নেপচুন	450	165	2.99
প্লুটো*	590	248	2.99

যে-কোনো কেন্দ্রীয় বলের ক্ষেত্রেই প্রযোজ্য কৌণিক ভরবেগের সংরক্ষণের ফলস্বরূপ ক্ষেত্রফলের সূত্রটি প্রতিষ্ঠা করা যেতে পারে। কেন্দ্রীয় বল এমন একটি বল যা সূর্য ও গ্রহের সংযোগকারী ভেক্টর বরাবর ক্রিয়াশীল। ধরা যাক্, সূর্য মূল বিন্দুতে আছে এবং কোনো একটি গ্রহের অবস্থান ও রৈখিক ভরবেগ ভেক্টরদ্বয় যথাক্রমে r ও p দ্বারা নির্দেশিত হচ্ছে। Δt সময়ে m ভরের গ্রহটি যে ক্ষেত্রফল অতিক্রম করে, তা ΔA দ্বারা সূচিত করা হল (চিত্র 8.2)।

$$\Delta \mathbf{A} = \frac{1}{2} (\mathbf{r} \times \mathbf{v} \Delta t) \quad (8.1)$$

$$\Delta \mathbf{A} / \Delta t = \frac{1}{2} (\mathbf{r} \times \mathbf{p}) / \mathbf{m}, (\operatorname{caceg}, \mathbf{v} = \mathbf{p} / \mathbf{m})$$

$$\Delta \mathbf{A} / \Delta t = \mathbf{L} / (2 \text{ m}) \quad (8.2)$$

· . $\Delta A/\Delta t = L/(2m)$

যেখানে v হল গতিবেগ, L হল কৌণিক ভরবেগ,

এবং $\mathbf{L} = (\mathbf{r} \times \mathbf{p})$.

...

r বরাবর ক্রিয়াশীল কেন্দ্রীয় বলের ক্ষেত্রে, গ্রহটির ঘূর্ণনের সময়,

জোহান্যাস কেপলার (Johannes Kepler) (1571 - 1630)জোহান্যাস কেপলার একজন জার্মান বংশোদ্ভুত বিজ্ঞানী ছিলেন। টাইকো ব্রাহে এবং উনার সহকর্মীদের অতি কন্টসাধ্য পর্যবেক্ষণগুলোর উপর ভিত্তি করে কেপলার গ্রহাদির গতি

সংক্রান্ত তিনটি সূত্র প্রণয়ন করেন। কেপলার নিজেই ব্রাহের একজন সহায়ক ছিলেন এবং গ্রহাদির গতি সংক্রান্ত তিনটি সূত্র প্রতিষ্ঠা করার জন্য উনার দীর্ঘ যোল বছর সময় লাগে। জ্যামিতিক আলোকবিদ্যার জনক হিসাবে উনি পরিচিত এবং টেলিস্কোপে আলো প্রবেশ করার পরে কী ঘটে, উনিই সর্বপ্রথম এটা বর্ণনা করেন।

182 পৃষ্ঠায় প্রদত্ত বাক্সের তথ্যানুসারে

উহার কৌণিক ভরবেগ (L) ধ্রুবক থাকে।

সুতরাং শেষ সমীকরণ থেকে, $\Delta \mathbf{A} / \Delta t = ধ্র্বক। এটাই$ ক্ষেত্রফলের সূত্র। মহাকর্ষ বল একটি কেন্দ্রীয় বল এবং এজন্যই এটি ক্ষেত্রফলের সুত্র মেনে চলে।

উদাহরণ 8.1 ধরি, সূর্যের চারিদিকে কোনো গ্রহের কক্ষীয় পথের অনুসূর বিন্দু (P) তে বেগ v_P এবং ওই বিন্দুতে সূর্য ও গ্রহের দূরত্ব SP = r_P , [চিত্র 8.1(a)] + { r_P , v_P } এর সাথে আনুযজ্গিক অপসূর বিন্দুর রাশিগুলো $\{r_A, v_A\}$ -এর মধ্যে সম্পর্ক প্রতিষ্ঠা কর। BAC এবং CPB দূরত্ব অতিক্রম করতে গ্রহটির কী একই সময় লাগবে ?

উত্তর : P বিন্দুতে কৌণিক ভরবেগের মান হলো $L_p=m_p\,r_p\,v_p,$ (এখানে \mathbf{r}_p এবং \mathbf{v}_p পরস্পরের সঙ্গে লম্ব)। অনুরূপভাবে, $L_A = m_p r_A$ V₄. কৌণিক ভরবেগের সংরক্ষণ সূত্র থেকে পাই,

$$m_p r_p v_p = m_p r_A v_A$$

$$\sim \frac{v_p}{v_A} = \frac{r_A}{r_p}$$

যেহেতু, $r_A > r_p$ হয়, সুতরাং $v_p > v_A$ ।

8.1. চিত্র অনুযায়ি, SBAC বন্ধ অঞ্চলটির ক্ষেত্রফল (যাহা উপবৃত্ত এবং অবস্থান ভেক্টর SB এবং SC দ্বারা আবন্ধ অঞ্চল) SBPC বন্ধ অঞ্জলটির ক্ষেত্রফল অপেক্ষা বৃহত্তর। কেপলারের দ্বিতীয় সূত্র থেকে সূর্য ও গ্রহের সংযোজক সরলরেখা সমান সময়ে সমান ক্ষেত্রফল অতিক্রম করে। তাই গ্রহটির BAC পথ অতিক্রম করতে CPB পথ অপেক্ষা বেশি সময় লাগে।

8.3 সার্বজনীন মহাকর্ষ সূত্র (UNIVERSAL LAW OF **GRAVITATION**)

কথিত আছে, গাছ থেকে আপেল পড়ার দৃশ্য দেখে নিউটন অনুপ্রাণিত হয়ে সার্বজনীন মহাকর্য সূত্র সৃজন করেন, যা থেকে এই মহাবিশ্বের মহাকর্ষ সহ কেপলারের সূত্রগুলো ব্যাখ্যা করা যায়। নিউটনের মতে, পৃথিবীর অভিকর্ষজ বলের জন্য চাঁদ পৃথিবীকে কেন্দ্র করে $R_{_{\!M}}$ ব্যাসার্ধের বৃত্তাকার পথে পৃথিবীর চারিদিকে একটি অভিকেন্দ্র ত্বরণ নিয়ে আবর্তন করে।

অভিকেন্দ্র ত্বরণ,
$$a_m = \frac{V^2}{R_m} = \frac{4\pi^2 R_m}{T^2}$$
 (8.3)

V হলো চাঁদের দ্রুতি এবং T হলো পর্যায়কাল, এদের মধ্যে সম্পর্ক, V= $2\pi R_{\rm m}/T$ । পৃথিবীর চারিদিকে চাঁদের পর্যায়কাল (T) প্রায় 27.3 দিন এবং $R_{_m}$ এর মান প্রায় $3.84 imes 10^8 {
m m}$ । আমরা যদি এ সংখ্যাগুলোকে (8.3) সমীকরণে বসাই, a, এর মান পাওয়া যায়। এই অভিকেন্দ্র ত্বরণের মান পৃথিবীপৃষ্ঠে অভিকর্ষজ বলের জন্য যে অভিকর্ষজ ত্বরণের (g) সৃষ্টি হয়, তা অপেক্ষা অনেক কম।

কেন্দ্রীয় বল

আমরা জানি কোনো কণার মূলবিন্দুর সাপেক্ষে সময়ের সঙ্গে কৌণিক ভরবেগের পরিবর্তনের হার হলো,

 $\frac{\mathrm{d}\mathbf{l}}{\mathrm{d}t} = \mathbf{r} \times \mathbf{F}$

যদি প্রযুক্ত বলের জন্য বলের শ্রামক (টর্ক $\tau = r \times F$) শূন্য হয়, তবে কণাটির কৌণিক ভরবেগ সংরক্ষিত থাকবে। এটা সত্য হবে যদি প্রযুক্ত বল শূন্য হয় অথবা প্রযুক্ত বল অবস্থান ভেক্টর বরাবর হয়। আমরা ওই বলগুলোর উপর বিশেষভাবে মনযোগী হব যেগুলো দ্বিতীয় শর্তটি মেনে চলে। কেন্দ্রীয় বল এই দ্বিতীয় শর্তটি মেনে চলে। একটি কেন্দ্রীয় বল সর্বদা একটি স্থির বিন্দুর দিকে অথবা স্থির বিন্দু থেকে বাইরের দিকে ক্রিয়াশীল হয় অর্থাৎ স্থির বিন্দুটির সাপেক্ষে বলটির প্রয়োগবিন্দুর অবস্থান ভেক্টরের দিকে। (নীচের চিত্রে দেখো) এছাড়া কেন্দ্রীয় বলের মান অবস্থান ভেক্টরের (r) মানের উপর নির্ভর করে, যেখানে r হল স্থির বিন্দু থেকে বলের ক্রিয়া বিন্দুর দূরত্ব; F = F(r), কেন্দ্রীয় বলের অধীনে গতিশীল কণার কৌণিক ভরবেগ সর্বদা ধ্রুবক থাকে। এটা থেকে দুটি গুরুত্বপূর্ণ ফলাফল পাওয়া যায়:

- (1) কেন্দ্রীয় বলের অধীনে গতিশীল একটি কণার গতি সর্বদা একটি সমতলে আবন্ধ থাকে।
- (2) বলটির কেন্দ্রবিন্দুর সাপেক্ষে (অর্থাৎ স্থির বিন্দুর সাপেক্ষে) কণাটির অবস্থান ভেক্টরের ক্ষেত্রীয় বেগ ধ্রুবক থাকবে। অন্যভাবে বলা যায় কণাটি যখন কেন্দ্রীয় বলের অধীনে গতিশীল থাকে তখন কণাটির অবস্থান ভেক্টরটি সমান সময়ে সমান ক্ষেত্রফল অতিক্রম করে।

উভয় ফলাফল প্রমাণ করার চেস্টা কর। তোমাদের জানা দরকার, ক্ষেত্রীয় বেগকে এভাবে প্রকাশ করা যায়, dA/dt = ½ r ν sin α.

উপরিউক্ত আলোচনাটি হল, সূর্যের মহাকর্ষ বলের অধীনে গতিশীল গ্রহের ক্ষেত্রে একটি প্রত্যক্ষ প্রয়োগ। সূর্যের ভর অতি বেশী হওয়ায় সূর্যকে স্থির ধরাই শ্রেয়। সূর্য গ্রহগুলোর উপর যে মহাকর্ষ বল প্রয়োগ করে, এদের অভিমুখ সূর্যের দিকে। এই বল প্রয়োজনীয় শর্ত F = F(r) মেনে চলে। যেহেতু $F = G m_1 m_2 / r^2$, যেখানে m_1 এবং m_2 হল যথাক্রমে গ্রহ ও সূর্যের ভর এবং G হল সার্বজনীন মহাকর্ষ ধ্রুবক, তাই উপরে বর্ণিত দুইটি ফলাফল (1) এবং (2), গ্রহের গতির ক্ষেত্রে প্রয়োগ করা যায়। প্রকৃতপক্ষে দ্বিতীয় ফলাফলটিই হল অতি পরিচিত কেপলারের দ্বিতীয় সূত্র।

Ir হল কেন্দ্রীয় বলের অধীনে একটি কণার গতিপথ। P অবস্থানে বলটি **OP** বরাবর ক্রিয়াশীল। O হল প্রযুক্ত বলের কেন্দ্র, যাকে মূলবিন্দু হিসাবে ধরা হয়। Δt সময়ে কণাটি P বিন্দু থেকে P' বিন্দুতে গেল, বৃত্তচাপ PP' = Δs = v Δt, গতিপথের P বিন্দুতে PQ স্পর্শকটি P বিন্দুতে গতিবেগের অভিমুখকে নির্দেশ করে। Δt সময় অবকাশে অবস্থান ভেক্টরটি যে ক্ষেত্রফলটি অতিক্রম করে, তা হল POP' অঞ্চলের ক্ষেত্রফল ≈ (r sin α) PP'/2 = (r v sin a) Δt/2. এটা থেকে স্পষ্ট, দূরত্ব বৃদ্ধির সঙ্গো পৃথিবীর মহাকর্ষীয় বল হ্রাস পায়। যদি কেউ ধরে নেয়, পৃথিবীর মহাকর্ষ বল কেন্দ্র থেকে দূরত্বের বর্গের ব্যস্তানুপাতিক হারে কমে, তবে আমরা পাব,

$$a_m \propto R_m^{-2}; g \propto R_E^{-2}$$

$$\therefore \frac{g}{a_m} = \frac{R_m^2}{R_E^2} \approx 3600 \qquad (8.4)$$

উপরিউক্ত সমীকরণটি g-এর মান 9.8 m s⁻² (প্রায়) এবং (8.3) সমীকরণ থেকে প্রাপ্ত a_m -এর মানের সঙ্গো সঙ্গাতিপূর্ণ। এই পর্যবেক্ষণগুলো থেকে নিউটন নিম্নলিখিত সার্বজনীন মহাকর্ষ সূত্রের প্রস্তাব দেন।

এই বিশ্ববন্ধান্ডের যে-কোনো দুটি বস্তু পরস্পরকে আকর্ষণ করে এবং এই আকর্ষণ বল, বস্তু দুটির ভরের গুণফলের সমানুপাতিক এবং দূরত্বের বর্গের ব্যাস্তানুপাতিক।

এই বিবৃতিটি অবশ্যই নিউটনের বিখ্যাত গ্রন্থ "Mathematical Principles of Natural Philosophy" (সংক্ষেপে Principia) থেকে নেওয়া।

গাণিতিক বিবৃতির মাধ্যমে নিউটনের মহাকর্ষ সূত্রটি এইভাবে পড়া হয় : m_1 বিন্দু ভরটি অন্য একটি বিন্দু ভর m_2 -এর উপর যে বল প্রয়োগ করে, এটার মান

$$|\mathbf{F}| = G \ \frac{m_1 \ m_2}{r^2} \tag{8.5}$$

(8.5) সমীকরণটির ভেক্টর রুপ হল

$$\mathbf{F} = G \quad \frac{m_1 \quad m_2}{r^2} \left(-\hat{\mathbf{r}} \right) = -G \quad \frac{m_1 \quad m_2}{r^2} \hat{\mathbf{r}}$$
$$= -G \quad \frac{m_1 \quad m_2}{|\mathbf{r}|^3} \hat{\mathbf{r}}$$

যেখানে G হল সার্বজনীন মহাকর্ষ ধ্রুবক। $\hat{\mathbf{r}}$ হল m_1 থেকে m_2 এর দিকে একটি একক ভেক্টর, $\mathbf{r} = \mathbf{r}_2 - \mathbf{r}_1$ যা ৪.3 নং চিত্রে প্রদর্শিত।

চ্বি 8.3 m₁ এর উপর m₂ কর্তৃক প্রযুক্ত মহাকর্ষ বলের অভিমুখ r বরাবর নির্দেশিত, যেখানে r = (r₂- r₁).

মহাকর্ষ বলটি আকর্ষনজনিত বল অর্থাৎ F এর অভিমুখ হল -r বরাবর। নিউটনের তৃতীয় সূত্র অনুযায়ি অবশ্যই m_1 ভরটির উপর m_2 কর্তৃক প্রযুক্ত বল -F। এইভাবে 1 নং বস্তুর উপর 2 নং বস্তুটির মহাকর্ষ বল F_{12} এবং 2 নং এর উপর 1 নং বস্তুটির F_{21} বল দুটি $F_{12} = -F_{21}$ দ্বারা সম্পর্কযুক্ত।

(8.5) নং সমীকরণটি খুবই সতর্কতার সঙ্গে প্রয়োগ করতে হবে, কারণ এই সূত্রটি বিন্দুভরের জন্য প্রযোজ্য, যদিও এই সূত্রটিকে আমরা সীমিত আকৃতির বিস্তৃত বস্তুর ক্ষেত্রেও প্রয়োগ করব। আমরা যদি অনেকগুলো বিন্দুভরের সংগ্রহ বিবেচনা করি, তবে এদের যে-কোনো একটি বিন্দু ভরের উপর ক্রিয়াশীল বলটি হবে বাকি কণাগুলো যে মহাকর্য বল প্রয়োগ করে, তাদের ভেক্টরীয় যোগের সমান, যা ৪.4 নং চিত্রে দেখানো হয়েছে।

চিত্র 8.4 m, বিন্দু ভরের উপর m, m, এবং m, দ্বারা প্রযুক্ত মহাকর্ষ বলের ভেক্টরীয় যোগফল।

m, ভরের কণাটির উপর মোট বল

$$\mathbf{F}_{1} = \frac{Gm_{2} m_{1}}{r_{21}^{2}} \stackrel{\land}{\mathbf{r}}_{21} + \frac{Gm_{3} m_{1}}{r_{31}^{2}} \stackrel{\land}{\mathbf{r}}_{31} + \frac{Gm_{4} m_{1}}{r_{41}^{2}} \stackrel{\land}{\mathbf{r}}_{41}$$

 উদাহরণ 8.2 m kg সমভরের তিনটি কণা একটি সমবাহু ব্রিভুজের (ΔABC) তিনটি শীর্ষবিন্দুতে আছে।
 (a) 2m ভরের একটি বস্তুকে ব্রিভুজটির ভরকেন্দ্রে (G) রাখলে, এর উপর প্রযুক্ত বল কত ?
 (b) যদি শীর্ষবিন্দু (A) তে রাখা কণাটির ভর দ্বিগুণ করা হয়, তবে বলটি কত হবে ? ধরে নাও AG = BG = CG = 1 m (চিত্র 8.5 দেখ)

চিত্র 8.5 একটি সমবাহু ত্রিভুজের (∆ABC) তিনটি শীর্ষবিন্দুতে সমান ভরের তিনটি কণা আছে। ভরকেন্দ্র (centroid) তে (G) 2m ভরের একটি বস্থু রাখা হল।

উত্তর (a) GC ধনাত্মক *x*-অক্ষের মধ্যবর্তী কোণ 30° এবং অনুরূপে GB ও ঋণাত্মক *x*-অক্ষের মধ্যবর্তী কোণ একই হয়।

2m ভরের কণাটির উপর ক্রিয়াশীল বলগুলোর ভেক্টর রূপ হল

$$\mathbf{F}_{GA} = \frac{Gm(2m)}{1} \,\hat{\mathbf{j}}$$
$$\mathbf{F}_{GB} = \frac{Gm(2m)}{1} \left(-\hat{\mathbf{i}}\cos 30^{\circ} - \hat{\mathbf{j}}\sin 30^{\circ}\right)$$
$$\mathbf{F}_{GC} = \frac{Gm(2m)}{1} \left(+\hat{\mathbf{i}}\cos 30^{\circ} - \hat{\mathbf{j}}\sin 30^{\circ}\right)$$

উপরিপাতনের নীতি এবং ভেক্টরযোগের সূত্র প্রয়োগ করে, (2*m*) ভরটির উপর ক্রিয়াশীল লব্ধি বল

$$\mathbf{F}_{R} = \mathbf{F}_{GA} + \mathbf{F}_{GB} + \mathbf{F}_{GC}$$
$$\mathbf{F}_{R} = 2Gm^{2} \,\hat{\mathbf{j}} + 2Gm^{2} \left(-\hat{\mathbf{i}} \cos 30^{\circ} - \hat{\mathbf{j}} \sin 30^{\circ}\right)$$
$$+ 2Gm^{2} \left(\hat{\mathbf{i}} \cos 30^{\circ} - \hat{\mathbf{j}} \sin 30^{\circ}\right) = 0$$

নিউটনের প্রিন্সিপিয়া

বিকল্পভাবে কেউ প্রতিসাম্যের ভিত্তিতে শূন্য লব্ধি বল আশা করতে পারে।

(b) প্রতিসাম্যের জন্য বলের x-উপাংশগুলো প্রতিমিত হয়। y-উপাংশগুলো থেকে যায়।

 $F_{R} = 4Gm^{2}\hat{j} - 2Gm^{2}\hat{j} = 2Gm^{2}\hat{j}$

একটি বিস্তৃত বস্তু (যেমন-পৃথিবী) এবং একটি বিন্দু ভরের মধ্যে মহাকর্য বল নির্ণয়ের জন্য (8.5) সমীকরণটি সরাসরি প্রয়োগ করা যায় না। বিস্তৃত বস্তুটির প্রতিটি বিন্দুভর প্রদন্ত বিন্দুভরের উপর বল প্রয়োগ করবে কিন্তু এই বলগুলোর অভিমুখ একই দিকে হবে না। প্রদন্ত কণাটির উপর লব্দি বল নির্ণয় করার জন্য বিস্তৃত বস্তুটির সকল বিন্দু ভরের দ্বারা ক্রিয়াশীল বলগুলোর ভেক্টরীয় যোগফল নিতে হবে। এটা কলনবিদ্যার সাহায্যে সহজেই করা যায়। দুটো বিশেষ ক্ষেত্রের জন্য তুমি একটি সরল সূত্র পাবে।

 সুষম ঘনত্বের একটি ফাঁপা গোলীয় খোলক ও এটার বাইরে অবস্থিত একটি বিন্দু ভরের মধ্যে মহাকর্ষ বল এমন হয় যে, খোলকটির সমস্ত ভর যেন এটার কেন্দ্রে কেন্দ্রীভূত আছে, এমন ভাবা যায়।

> গুণগতভাবে এটাকে আমরা নীচে বর্ণিত উপায়ে বুঝতে পারি। খোলকটির বিভিন্ন অংশ বিন্দু ভরটির উপর যে মহাকর্ষ বল প্রয়োগ করে, এ বলগুলোর একটি উপাংশ বিন্দু ভর ও খোলকের কেন্দ্র সংযোগকারী সরলরেখা বরাবর হয় এবং অপর উপাংশগুলো এ রেখার সঙ্গো লম্ব অভিমুখে হয়। যখন আমরা খোলকটির সমস্ত অংশ বিবেচনা করব, তখন ওই রেখার উপর লম্ব উপাংশগুলো একে অপরকে প্রতিমিত করে দেয় এবং লব্দি বলটি বিন্দুভর ও খোলকের কেন্দ্র সংযোজক রেখা বরাবর ক্রিয়াশীল থাকবে। এই বলটির মান উপরে বর্ণিত বলের সমান হয়।

কেপলার তাঁর তৃতীয় সূত্রটি 1619 সালে প্রণয়ন করেন। এই ঘটনার প্রায় সন্তর বছর পর 1687 সালে নিউটন তাঁর অনবদ্য সৃষ্টি "Philosophiae Naturalis Principia Mathematica", সংক্ষেপে Principia নামক গ্রন্থ প্রকাশের মাধ্যমে উহাতে অন্তর্নিহিত সার্বজনীন মহাকর্য সূত্রের ঘোষণা করেন।1685 সাল নাগাদ এডমন্ড হ্যালি (Edmund Halley) (যার নামে বিখ্যাত হ্যালির ধূমকেতুর নামকরণ করা হয়েছে) কেমব্রিজে নিউটনের সঙ্গো সাক্ষাৎ করতে আসেন। উনি নিউটনকে বিজ্ঞাসা করেছিলেন ব্যস্তবর্গের সূত্রের প্রভাবে গতিশীল বস্তুর গতিপথের প্রকৃতি কীরূপ হবে। কোনো ইতস্তততা ছাড়াই নিউটন উত্তর দিয়েছিলেন এটা একটি উপবৃত্তাকার কক্ষপথ হবে। এর বহুপূর্বে আনুমানিক 1665 সালে প্লেগ মহামারীর

প্রাদুর্ভাবের ফলে উনি কেম্বিজ ছাড়তে বাধ্য হন এবং ঐ সময়ে নিজের খামার বাড়িতে এই তথ্যটির উপর কাজ করে রেখেছিলেন। দুর্ভাগ্যবশত নিউটন তাঁর গবেষণামূলক পত্রগুলি হারিয়ে ফেলেছিলেন। হ্যালি, নিউটনকে তাঁর গবেষণামূলক কাজকে পুস্তকের আকারে প্রকাশ করার জন্য বুঝিয়েছিলেন এবং প্রকাশনার জন্য সমস্ত খরচ বহন করার জন্য সন্মত হন। নিউটন পরবর্তী আঠারো মাস সময়ে অতিমানবীয় ক্ষমতায় এই কাজ সম্পন্ন করেন। 'প্রিন্সিপিয়া' বইটি বিজ্ঞানের জগতে এক অনন্য অমর সৃষ্টি এবং এটি মানব মস্তিষ্কের একটি সর্বোৎকৃষ্ঠ সৃজন। ভারতীয় বংশোদ্ভূত জ্যোর্তিবিজ্ঞানী এবং নোবেলজয়ী এস. চন্দ্রশেখর দশ বছর ধরে 'প্রিন্সিপিয়া' গ্রন্থের উপর একটি নিবন্ধ রচনা করেন। তাঁর রচিত গ্রন্থ ''সাধারণ পাঠকের জন্য প্রিন্সিয়ি"-তে উনি নিউটনের পন্দ্বতির সৌন্দর্য্য, স্পন্টতা ও অদ্ভুত সংক্ষিপ্ততা খুবই ভালোভাবে উপস্থাপন করেন। (2) সুষম ঘনত্বের একটি ফাঁপা গোলীয় খোলক-এর অভ্যন্তরে অবস্থিত একটি বিন্দু ভরের উপর খোলক কর্তৃক প্রযুক্ত মহাকর্য বল শূন্য হয়।

গুণগতভাবেও এই ফলাফলকে আমরা বুঝতে পারি। খোলকটির বিভিন্ন অংশ এটার অভ্যন্তরে অবস্থিত বিন্দু ভরটিকে বিভিন্ন দিকে আকর্ষণ করে। এই বলগুলো সম্পূর্ণভাবে একে অপরকে প্রতিমিত করে দেয়।

8.4 মহাকর্ষ ধ্রুবক (THE GRAVITATIONAL CONSTANT)

1798 সালে ইংরেজ বিজ্ঞানী হ্যানরি ক্যাভেনডিশ সর্বপ্রথম পরীক্ষাগারে মহাকর্ষ সূত্রের অন্তর্গত সার্বজনীন মহাকর্ষ ধ্রুবকের (G) মান নির্ণয় করেন। উনি যে যন্ত্রটি ব্যবহার করেন, একটি রূপরেখা চিত্র (8.6)-এ দেখানো হয়েছে।

চিত্র 8.6 ক্যাভেনডিশের পরীক্ষার রুপরেখাচিত্র। S₁ এবং S₂ অংশাঙ্কিত দুটি বড় গোলক A এবং B বিন্দুতে রাখা ভরদ্বয়ের সংযোগকারী রেখার বিপরীত পাশে রাখা আছে (অংশাঙ্কিত দেখানো হয়েছে)। যখন বৃহৎ গোলক দুটিকে ভরগুলোর অন্য পাশে নিয়ে যাওয়া হয় (dotted বৃত্ত দিয়ে দেখানো হয়েছে), তখন AB দণ্ডটির সামান্য ঘূর্ণন হয়। এসময় দ্বন্দ্বের ভ্রামকের অভিমুখ বিপরীত দিকে হয়। পরীক্ষাগারে ঘূর্ণন কোণটি মাপা যায়।

AB দণ্ডটির দু'প্রান্তে দুটো ছোটো সীসার গোলক লাগানো থাকে। দণ্ডটি একটি সরু তারের সাহায্যে দৃড় অবলম্বন থেকে ঝুলানো থাকে। দুটি বৃহৎ সীসার গোলককে ছোটো গোলকগুলোর কাছে AB দণ্ডটির বিপরীত পাশে আনা হয় (চিত্রের মতো)। বড় গোলকগুলো সামনের ছোটো গোলকগুলোকে সমান ও বিপরীমুখী বলে আকর্ষণ করে (চিত্রে দেখানো হয়েছে)। দণ্ডটির উপর কোনো লব্দি বল না থাকলেও কেবলমাত্র একটি দ্বন্দের ভ্রামক ক্রিয়া করে যা স্পন্টত দণ্ডটির দৈর্ঘ্যের F গুণিতকের সমান। যেখানে F হল বড় গোলকটি ও এটার প্রতিবেশী ছোটো গোলকটির মধ্যে মহাকর্ষ বল। এই দ্বন্দ্বের ভ্রামকের জন্য ঝুলস্ত তারটিতে মোচরের সৃষ্টি হয়। ফলে তারটিতে একটি প্রত্যানায়ক দ্বন্দ্বের উদ্ভব হতে থাকে যতক্ষণ না এই দ্বন্দ্বের ভ্রামক ও অভিকর্ষীয় দ্বন্দ্বের ভ্রামক পরস্পর সমান হয়। যদি ঝুলস্ত তারটিতে মোচড় কোণ heta হয়, তবে তারে উদ্ভুত প্রত্যানয়ক দ্বন্দ্বের ভ্রামক মোচড় কোণের (heta)সঞ্চো সমানুপাতিক হয়। প্রত্যানয়ক দ্বন্দ্বের ভ্রামক = $\tau \times heta$ । যেখানে τ হল প্রতি একক মোচড় কোণের জন্য প্রত্যানয়ক দ্বন্দ্বের ভ্রামক। τ কে আলাদাভাবে মাপা যায়। উদাহরণ হিসাবে বলা যায়, একটি জানা দ্বন্দ্বের ভ্রামকের প্রয়োগের ফলে মোচড় কোণ মেপে τ -এর মান নির্ণয় করা যায়। দুটি গোলীয় বলের মধ্যে মহাকর্ষ বল এমনভাবে ক্রিয়াশীল হয় যেন এদের সমস্ত ভর কেন্দ্রে কেন্দ্রিত্ব মধ্যবর্তী দূরত্ব d এবং গোলক দুটির ভর M এবং m হলে, এদের মধ্যে মহাকর্ষ বল,

$$F = G \frac{Mm}{d^2} \tag{8.6}$$

যদি AB দণ্ডটির দৈর্ঘ্য L হয়, তবে যে পরিমাণ দ্বন্দের ভ্রামকের উদ্ভব হয়, তা প্রযুক্ত বল ও দণ্ডের দৈর্ঘ্যের গুণফলের সমান হবে। সাম্যাবস্থায় এটা প্রত্যানয়ক দ্বন্দের ভ্রামকের সমান হয় এবং এজন্য

$$G \frac{Mm}{d^2} L = \tau \theta \tag{8.7}$$

ঘূর্ণন কোণ heta কে পর্যবেক্ষণ করে, এই সমীকরণ থেকে $\,G$ এর মান নির্ণয় করা যায়।

ক্যাভেনডিশের পরীক্ষার সাহায্যে G এর পরিমাপটি সংশোধিত করা হয়েছে এবং সম্প্রতি G এর গ্রহণযোগ্য মান

$$G = 6.67 \times 10^{-11} \text{ N m}^2/\text{kg}^2$$
 (8.8)

8.5 পৃথিবীর অভিকর্ষের জন্য ত্বরণ (ACCELERATION DUE TO GRAVITY OF THE EARTH)

পৃথিবীকে অনেকগুলো সমকেন্দ্রিক গোলীয় খোলকের সমষ্টি হিসাবে ভাবা যায়, যার কেন্দ্রে সবচেয়ে ছোট খোলকটি এবং পৃষ্ঠতলে সবচেয়ে বড় খোলকটি থাকে। পৃথিবীর বাইরে অবস্থিত একটি বিন্দু অবশ্যই সকল খোলকগুলোর বাইরে হবে। তাই (8.3) অংশে উদ্ধৃত ফলাফল থেকে বলা যায় গোলকটির বাইরে অবস্থিত কোনো বিন্দুতে প্রতিটি গোলীয় খোলক যে মহাকর্ষ বল প্রয়োগ করে তা এমনভাবে ক্রিয়াশীল হয়, যেন প্রতিটি খোলকের ভর এদের সাধারণ কেন্দ্রে কেন্দ্রীভূত থাকে। খোলকগুলোর মোট ভর পৃথিবীর ভরের সমান। অতএব পৃথিবীর বাইরে কোনো বিন্দুতে অভিকর্ষীয় বলটি এমন যেন পৃথিবীর সমস্ত ভর তার কেন্দ্রে কেন্দ্রীভূত।

পৃথিবীর অভ্যন্তরে অবস্থিত একটি বিন্দুর জন্য অন্য পরিস্থিতি হয়। এটা ৪.7 নং চিত্রে ব্যাখ্যা করা হলো।

পদার্থবিদ্যা

চিত্র 8.7 পৃথিবীর অভ্যন্তরে পৃষ্ঠ থেকে d গভীরতায় m ভরের একটি বস্তু। পৃথিবীর ভর ও ব্যাসার্ধ যথাক্রমে M_E ও R_E। আমরা পৃথিবীকে একটি প্রতিসাম্য গোলক হিসাবে বিবেচনা করি।

আগের মতো আবার পৃথিবীকে অনেকগুলো সমকেন্দ্রিক খোলকের সমন্টি হিসাবে বিবেচনা করি এবং একটি বিন্দুভর (m) পৃথিবীর অভ্যন্তরে, কেন্দ্র থেকে r দূরত্বে অবস্থিত। P বিন্দুটি r ব্যাসার্ধের গোলকের পৃষ্ঠে অবস্থিত। যে সকল খোলকের ব্যাসার্ধ r অপেক্ষা বেশি, সে সকল খোলকের ক্ষেত্রে P বিন্দুটি অভ্যন্তরস্থ একটি বিন্দু। অতএব শেষের অংশে উদ্ধৃত ফলাফল থেকে বলা যায়, r ব্যাসার্ধ অপেক্ষা বেশি ব্যাসার্ধের খোলকগুলো P বিন্দুটি অভ্যন্তরস্থ একটি বিন্দু। অতএব শেষের অংশে উদ্ধৃত ফলাফল থেকে বলা যায়, r ব্যাসার্ধ অপেক্ষা বেশি ব্যাসার্ধের খোলকগুলো P বিন্দুতে রাখা m ভরের বস্তুর উপর কোনো মহাকর্ষবল প্রয়োগ করবে না। যে খোলকগুলোর ব্যাসার্ধ $\leq r$, ওই খোলকগুলোর সমন্বয়ে (r) ব্যাসার্ধের গোলক হয়, এর পৃষ্ঠে P বিন্দুটির অবস্থান হয়। সুতরাং r ব্যাসার্ধের গোলকটি P বিন্দুতে থাকা m ভরের বস্তুটির উপর বল প্রয়োগ করবে, যেন (M_r) ভরের গোলকটির সমস্ত ভর এটার কেন্দ্রে কেন্দ্রীভূত থাকে। তাই P বিন্দুতে m ভরের বস্তুটির উপর বলটির মান

$$F = \frac{Gm \left(M_{\rm r}\right)}{r^2} \tag{8.9}$$

সমগ্র পৃথিবীটিকে আমরা সুষম ঘনত্বের গোলক হিসাবে ভাবতে পারি, এবং এটার ভর, $M_{\rm E}=rac{4\pi}{3}~R_{\scriptscriptstyle E}^3~
ho$, যেখানে $M_{\scriptscriptstyle E}$ হল পৃথিবীর ভর, $R_{\scriptscriptstyle E}$ হল পৃথিবীর ব্যাসার্ধ, ho হল পৃথিবীর ঘনত্ব। অপরদিকে rব্যাসার্ধের গোলকটির ভর $M_{r}=rac{4\pi}{3}
ho~r^3$,

এবং তাই
$$F = Gm \left(\frac{4\pi}{3} \ \rho\right) \frac{r^3}{r^2} = Gm \left(\frac{M_E}{R_E^3}\right) \frac{r^3}{r^2}$$
$$= \frac{GmM_E}{R_E^3} r$$
(8.10)

যদি m ভরের বস্তুটি পৃথিবীপৃষ্ঠে থাকে তবে $r = R_E$ এবং তখন এটার উপর মহাকর্ষ বল, (8.10) নং সমীকরণ হতে পাই

$$F = G \, \frac{M_E m}{R_E^2} \tag{8.11}$$

m ভরটি যে ত্বরণ অনুভব করে, একে সাধারণত g চিহ্ন দ্বারা প্রকাশ করা হয় যা F এর সঙ্গো নিউটনের দ্বিতীয় সূত্র F = mg দ্বারা সম্পর্কযুক্ত।

তাই,
$$g = \frac{F}{m} = \frac{GM_E}{R_E^2}$$
 (8.12)

অভিকর্ষজ ত্বরণ g সহজে পরিমাপযোগ্য। R_E একটি জানা রাশি। ক্যাভেনডিশের পরীক্ষার সাহায্যে (অথবা অন্যভাবে) G এর পরিমাপ, এর সঙ্গো g এর মান এবং R_E জানা থাকলে, কেউ (8.12) নং সমীকরণ থেকে M_E এর মান নির্ণয় করতে পারবে। এই কারণেই ক্যাভেনডিস সম্পর্কে একটি বহুল জনপ্রিয় কথা প্রচলিত আছে যে, "ক্যাভেনডিশ পৃথিবীর ভর নির্ণয় করেন।"

8.6 পৃথিবীর অভ্যন্তরে এবং পৃথিবীপৃষ্ঠের বাইরে অভিকর্ষজ ত্বরণ (ACCELERATION DUE TO GRAVITY BELOWANDABOVETHE SURFACE OF EARTH)

8.8(a) নং চিত্রে পৃথিবীপৃষ্ঠ থেকে h উচ্চতায় m ভরের একটি বিন্দুভর বিবেচনা করি। পৃথিবীর ব্যাসার্ধ R_E দ্বারা সূচিত করা হল। যেহেতু বিন্দুটি পৃথিবীপৃষ্ঠের বাইরে,

Fig. 8.8 (a) পৃথিবীপৃষ্ঠের বাইরে h উচ্চতায় অভিকর্ষজ ত্বরণ

তাই পৃথিবীর কেন্দ্র থেকে ওই বিন্দুটির দূরত্ব ($R_E + h$) । *m* বিন্দু ভরটির উপর প্রযুক্ত বলের মান F(h) দ্বারা সূচিত করা হলে, (8.5) নং . সমীকরণ থেকে আমরা পাই,

$$F(h) = \frac{GM_Em}{(R_E + h)^2}$$
(8.13)

এই বিন্দু ভরটি যে ত্বরণ অনুভব করে তা হল $F(h) / m \equiv g(h)$

190

সুতরাং আমরা পাই,

$$g(h) = \frac{F(h)}{m} = \frac{GM_E}{(R_E + h)^2} .$$
(8.14)

স্পষ্টতই ইহা পৃথিবীপৃষ্ঠে অভিকর্ষজ ত্বরণ (g) অপেক্ষা কম।

 $g = \frac{GM_E}{R_E^2} \cdot h \ll R_E$, এর জন্য, (8.14) সমীকরণের ডানপক্ষকে

বিস্তৃত করে পাই,

$$g(h) = \frac{GM_E}{R_E^2 (1+h/R_E)^2} = g(1+h/R_E)^{-2}$$

যেহেতু, $\frac{h}{R_E} <<1$, (দ্বিপদ বিস্তৃতি প্রয়োগ করে পাই)
 $g(h) \cong g\left(1 - \frac{2h}{R_E}\right).$ (8.15)

(8.15) সমীকরণ থেকে আমরা বলতে পারি, ক্ষুদ্র উচ্চতায় (h), g

এর মান হ্রাস পেয়ে ভূ- পৃষ্ঠে এর মানের $(1 - 2h / R_E)$ গুণ হয়। এখন পৃথিবীর অভ্যস্তরে d গভীরতায় m ভরের একটি বিন্দুভর বিবেচনা করি (চিত্র 8.8(b))। তাই পৃথিবীর কেন্দ্র থেকে এই বিন্দু ভরটির দূরত্ব $(R_E - d)$ যা চিত্রে দেখানো হয়েছে। পৃথিবীকে $(R_E - d)$ ব্যাসার্ধের একটি ক্ষুদ্র গোলক এবং d বেধের একটি গোলীয় খোলকের সমন্বয় হিসেবে ভাবা যায়। পূর্ববর্তী অংশে বর্ণিত ফলাফলের ভিত্তিতে, d বেধের গোলীয় খোলকটি বিন্দুভরটির উপর কোনো বল প্রয়োগ করবে না। কিন্তু $(R_E - d)$ ব্যাসার্ধের ক্ষুদ্র গোলকটির জন্য বিন্দুভরটি বাইরে অবস্থিত এবং তাই আগে বর্ণিত ফলাফল অনুযায়ি এই বিন্দুভরটি রাইরে উপর $(R_E - d)$ ব্যাসার্ধের গোলকটি মহাকর্ষ বল প্রয়োগ করবে এবং এই গোলকটির সমস্ত ভর যেন এটার কেন্দ্রে কেন্দ্রীভূত। যদি $(R_E - d)$) ব্যাসার্ধের গোলকটির ভর M_c হয়, তবে

$$M_s/M_E = (R_E - d)^3 / R_E^3$$
 (8.16)

যেহেতু গোলকের ভর এটার ব্যাসার্ধের ত্রিঘাতের সঙ্গে সমানুপাতিকহয়,

তাই বিন্দু ভরটির উপর বলটি হল

$$F(d) = G M_s m / (R_E - d)^2$$
 (8.17)
উপরের সমীকরণে M_s কে প্রতিস্থাপন করে পাই,

$$F(d) = G M_E m (R_E - d) / R_E^{3}$$
(8.18)

এজন্য, d গভীরতায় অভিকর্ষজ ত্বরণ

$$g(d) = \frac{F(d)}{m}$$

$$\therefore g(d) = \frac{F(d)}{m} = \frac{GM_E}{R_E^3} (R_E - d)$$

$$= g \frac{R_E - d}{R_E} = g(1 - d / R_E)$$
(8.19)

তাই, পৃথিবীর অভ্যন্তরে *d* গভীরতায় অভিকর্ষজ ত্বরণ হ্রাস পেয়ে পৃথিবীপৃষ্ঠের অভিকর্ষজ ত্বরণের $(1 - d / R_E)$ গুণ হয়। অভিকর্ষজ ত্বরণের ক্ষেত্রে একটি উল্লেখযোগ্য ঘটনা হল পৃথিবীপৃষ্ঠে অভিকর্ষজ ত্বরণ সর্বোচ্চ এবং পৃথিবীর বাইরে অথবা অভ্যন্তরে ক্রমশ অভিকর্ষজ ত্বরণ হ্রাস পায়।

8.7 মহাকর্ষীয় স্থিতিশক্তি (GRAVITATIONAL POTENTIAL ENERGY)

পূর্বে আলোচিত স্থিতিশস্তির ধারণা থেকে আমরা বলতে পারি কোনো বস্তুর অবস্থানের জন্য এতে সঞ্চিত শস্তিই হল স্থিতিশস্তি। কণাটির উপর ক্রিয়াশীল বলের জন্য যদি কণার অবস্থানের পরিবর্তন হয় তবে এর স্থিতিশস্তির পরিবর্তন হল কণার উপর প্রযুক্ত বল দ্বারা কৃতকার্য। পূর্বে আলোচনার ভিত্তিতে আমরা বলতে পারি, যে বলের অধীনে কৃতকার্য পথের উপর নির্ভরশীল নয়, সেই বলকে সংরক্ষী বল বলে।

মহাকর্ষীয় বল একটি সংরক্ষী বল এবং এই বলের জন্য স্থিতিশক্তি গণনা করা যায়। একে মহাকর্ষীয় স্থিতিশক্তি বলে। পৃথিবী পৃষ্ঠের কাছাকাছি বিবেচনাধীন বিন্দুগুলোর ভূ-পৃষ্ঠ থেকে দূরত্ব, পৃথিবীর ব্যাসার্ধ অপেক্ষা খুবই কম। তাই এসব ক্ষেত্রে কণাগুলোর উপর মহাকর্ষীয় বল বস্তুত ধ্রুবক হয় এবং এটা mg এর সমান। এ বলের অভিমুখ পৃথিবীর কেন্দ্রের দিকে। আমরা ভূপৃষ্ঠ থেকে h_1 উচ্চতায় একটি বিন্দু এবং এর উপরে উল্লম্বভাবে ভূ-পৃষ্ঠ থেকে h_2 উচ্চতায় আরেকটি বিন্দু বিবেচনা করলে m ভরের একটি কণাকে প্রথম বিন্দু থেকে দ্বিতীয় বিন্দুতে তুলতে যে পরিমাণ কার্যের প্রয়োজন তা W_1 , হলে,

$$W_{12} = \operatorname{der} \times \operatorname{সরণ}$$

= $mg (h_2 - h_1)$ (8.20)

পদার্থবিদ্যা

পৃথিবীপৃষ্ঠ থেকে h উচ্চতায় একটি বিন্দুতে স্থিতিশস্তিকে W(h)দ্বারা সূচিত করলে,

$$W(h) = mgh + W_{o}$$
 (8.21)
(যেখানে $W = একটি ধ্রবক);$

$$W_{12} = W(h_2) - W(h_1)$$
(8.22)

কণাটির অন্তিম ও প্রাথমিক অবস্থানের স্থিতিশস্তির পার্থক্য হল কণাটিকে প্রাথমিক অবস্থান থেকে অন্তিম অবস্থানে নেওয়ার জন্য প্রয়োজনীয় কৃতকার্য।লক্ষ করো (8.22) সমীকরণে W_0 ধুবকটিঅপসারিত হয়ে গেছে। (8.21) সমীকরণে h = 0 বসিয়ে পাই, $W(h = 0) = W_0$. h = 0 এটার অর্থ হলো বিন্দুটি পৃথিবীর পৃষ্ঠ তলে আছে। অতএব পৃথিবীর পৃষ্ঠতলে স্থিতিশক্তির পরিমাণ W_0 ।

আমরা যদি ভূপৃষ্ঠ থেকে যে-কোনো উচ্চতার বিন্দুগুলোকে বিবেচনা করি, তবে উপরিউন্তু ফলাফলটি প্রযোজ্য হবে না। কারণ উচ্চতা ভেদে mg ধ্রুবক এই স্বীকার্যটি আর খাটবে না। যাই হোক, আমাদের আলোচনা থেকে জানি, পৃথিবীর বাইরে অবস্থিত কোনো কণার উপর পৃথিবীর কেন্দ্রের দিকে যে মহাকর্ষ বল ক্রিয়াশীল হয় তা হলো

$$F = \frac{GM_E m}{r^2} \tag{8.23}$$

যেখানে M_E হলো পৃথিবীর ভর, m হলো কণাটির ভর, r হলো পৃথিবীর কেন্দ্র থেকে ওই কণাটির দূরত্ব। $r = r_1$ থেকে $r = r_2 (r_2 > r_1)$ এই উল্লম্ব পথে কণাটিকে তুলতে যে পরিমাণ কার্যের প্রয়োজন তা যদি আমরা গণনা করি, তবে (8.20) সমীকরণের পরিবর্তে আমরা পাব,

$$W_{12} = \int_{r_1}^{r_2} \frac{G M_E m}{r^2} dr$$

= $-G M_E m \left(\frac{1}{r_2} - \frac{1}{r_1}\right)$ (8.24)

(8.21) সমীকরণের স্থানে, r দূরত্বে স্থিতিশক্তি W(r) বসিয়ে পাই,

$$W(r) = -\frac{GM_{\rm E}m}{r} + W_1,$$
 (8.25)

এই সমীকরণটি r>R এর ক্ষেত্রে প্রযোজ্য।

আবার $W_{12} = W(r_2) - W(r_1) + (8.25)$ সমীকরণে r = অসীম বসিয়ে পাই, W (r = অসীম) = W_1 + এইভাবে অসীমে স্থিতিশক্তি W_1 + লক্ষনীয় বিষয় হলো (8.22) ও (8.24) এই দুটি সমীকরণ, দুইটি বিন্দুর মধ্যে স্থিতিশক্তির পার্থক্যের একটি সুনির্দিন্ট অর্থ বহন করছে। প্রচলিতভাবে $W_1 = 0$ বসালে, কোনো বিন্দুতে স্থিতিশক্তি বলতে বুঝায়, অসীম দূরত্ব থেকে একটি কণাকে ওই বিন্দুতে আনতে প্রয়োজনীয় কৃতকার্য। পৃথিবীর অভিকর্ষজ বলের জন্য কোনো বিন্দুতে একটি কণার

স্থিতিশক্তি আমরা গণনা করেছি এবং এটা কণাটির ভরের সঙ্গো সমানুপাতিক। পৃথিবীর অভিকর্ষজ বলের জন্য কোনো বিন্দুতে একক ভরের কোনো কণার অভিকর্ষজ স্থিতিশক্তিই হলো ওই বিন্দুর অভিকর্ষজ বিভব। পূর্ববর্তী আলোচনা থেকে আমরা জানি, m_1 এবং m_2 ভরের দুইটি কণা পরস্পর থেকে r দূরত্বে থাকলে, এদের অভিকর্ষজ স্থিতিশক্তি

$$V = -\frac{Gm_1m_2}{r} (r \to \infty \text{ হলে } V = 0 \text{ ধরে })$$

এটা উল্লেখ্য, কোনো বিচ্ছিন্ন কণা সংস্থার মোট স্থিতিশক্তি হল, ওই কণা সংস্থার সম্ভাব্য সকল কণা যুগলের স্থিতিশক্তির যোগফল। প্রতিটি কণা যুগলের স্থিতিশক্তি উপরিউক্ত সমীকরণ দ্বারা নির্ধারিত হবে। এটি উপরিপাতনের নীতির একটি প্রয়োগ।

উদাহরণ 8.3 । বাহুবিশিশ্ট একটি বর্গক্ষেত্রের 4টি শীর্ষবিন্দুতে সমভরের (*m*) 4 টি কণা আছে। সংস্থাটির স্থিতিশস্তি নির্ণয় করো। বর্গক্ষেত্রটির কেন্দ্রে মহাকর্ষীয় বিভব কত?

উত্তর *l* বাহুবিশিষ্ট একটি বর্গক্ষেত্রের 4টি শীর্ষবিন্দুতে *m* ভরের 4টি কণা আছে, বিবেচনা করি। ৪.9 নং চিত্রটি দেখো। 4টি ভর যুগল পরস্পর থেকে *l* দূরত্বে আছে এবং কর্ণ বরাবর সমভরের দুইটি ভর-যুগল পরস্পর থেকে $\sqrt{2}$ *l* দূরত্বে আছে।

অতএব, সংস্থাটির মহাকর্ষীয় স্থিতিশক্তি

$$= -\frac{2 G m^2}{l} \left(2 + \frac{1}{\sqrt{2}}\right) = -5.41 \frac{G m^2}{l}$$

বর্গাকার ক্ষেত্রের কেন্দ্রে মহাকর্ষীয় বিভব, $\left(r=\sqrt{2} l/2\right)$

$$U(r) = -4\sqrt{2} \frac{Gm}{l}.$$

8.8 মুক্তি দ্রুতি (ESCAPE SPEED)

হাত দিয়ে কোনো একটি পাথরের টুকরোকে উপরে নিক্ষেপ করলে, কিছু উচ্চতা উঠার পর, এটা আবার মাটিতে ফিরে আসে। অবশ্যই যন্ত্রের সাহায্যে কোনো একটি বস্তুকে বেশি দ্রুতিতে উপরের দিকে ছোঁড়া যায় এবং প্রাথমিক দ্রুতির ক্রম বৃদ্ধির ফলে বস্তুটি যে উচ্চতা পর্যস্ত উঠে, এটাও বৃদ্ধি পায়। তাই আমাদের মনে একটি প্রশ্ন জানা স্বাভাবিক, আমরা কী একটি বস্তুকে এমন উচ্চ দ্রুতিতে নিক্ষেপ করতে পারি, যাতে বস্তুটি পৃথিবীতে আর ফিরে না আসতে পারে?

শক্তির সংরক্ষণ নীতির সাহায্যে এই প্রশ্নের উত্তর পাওয়া যায়। ধরি বস্তুটি অসীম পর্যন্ত যেতে পারে এবং অসীমে বস্তুটির দ্রুতি V₁। বস্তুটির মোট শক্তি হল স্থিতিশক্তি ও গতিশক্তির যোগফল। পূর্বের ন্যায় W₁ হল অসীমে বস্তুর মহাকর্ষীয় স্থিতিশক্তি। তাই অসীমে প্রাসটির মোট শক্তি

$$E(\infty) = W_1 + \frac{mV_f^2}{2}$$
 (8.26)

যদি বস্তুটিকে পৃথিবীর কেন্দ্র হতে ($h+R_E$) দূরত্বে একটি বিন্দু থেকে V_i প্রাথমিক দুতিতে নিক্ষেপ করা হয়, যেখানে R_E হলো পৃথিবীর ব্যাসার্ধ, তখন বস্তুটির প্রাথমিক শক্তি ,

$$E(h+R_{E}) = \frac{1}{2}mV_{i}^{2} - \frac{GmM_{E}}{(h+R_{E})} + W_{1}$$
(8.27)

সুতরাং, শক্তির সংরক্ষণ নীতি অনুযায়ী (8.26) এবং (8.27) সমীকরণ অবশ্যই সমান হবে।

অতএব,
$$\frac{mV_i^2}{2} - \frac{GmM_E}{(h+R_E)} = \frac{mV_f^2}{2}$$
 (8.28)

ডানপক্ষটি সর্বনিম্ন মান শূন্য সহ একটি ধনাত্মক রাশি হবে, এভাবে বামপক্ষের ক্ষেত্রেও একই হয়।

অতএব কোনো একটি বস্তুকে অসীমে যাওয়ার জন্য প্রাথমিক দ্রুতি এমন হতে হবে যে,

$$\frac{mV_i^2}{2} - \frac{GmM_E}{(h+R_E)} \ge 0 \tag{8.29}$$

(8.29) সমীকরণের বামপক্ষ শূন্য হলে, গতিবেগ (V_i)-এর মান সর্বনিম্ন হবে।

অতএব কোনো একটি বস্তুকে অসীমে নিয়ে যাওয়ার জন্য যে

ন্যূনতম দ্রুতির প্রয়োজন (অর্থাৎ পৃথিবী থেকে বস্থুটিকে বন্ধনমুক্ত করতে) তার শর্তটি,

$$\frac{1}{2}m\left(V_i^2\right)_{\min} = \frac{GmM_E}{h+R_E} \tag{8.30}$$

যদি বস্তুটিকে পৃথিবীপৃষ্ঠ থেকে ছোঁড়া হয়, h = 0 হবে এবং আমরা পাব,

$$\left(V_i\right)_{\min} = \sqrt{\frac{2GM_E}{R_E}} \tag{8.31}$$

 $g = GM_E / R_E^2$, এই সম্পর্কটি প্রয়োগ করে পাই,

$$\left(V_i\right)_{\min} = \sqrt{2\,gR_E} \tag{8.32}$$

পৃথিবীর ক্ষেত্রে g এবং R_E এর মান ব্যবহার করে $(V_i)_{\min}$ এর সাংখ্যমান হবে, $(V_i)_{\min} \approx 11.2 \text{ km/s}.$

এটাকে মুক্তি দ্রুতি বলে, কোনো কোনো সময় এটাকে সাধারণত মুক্তিবেগও বলে।

(8.32) সমীকরণটি চন্দ্রপৃষ্ঠ থেকে নিক্ষেপ করা একটি বস্তুর ক্ষেত্রেও প্রযোজ্য, শুধুমাত্র g কে চন্দ্রপৃষ্ঠের অভিকর্যজ ত্বরণ এবং r_E কে চাঁদের ব্যাসার্ধ দ্বারা প্রতিস্থাপিত করতে হবে। উপরিউক্ত উভয় রাশির মানই পৃথিবীর তুলনায় কম। চন্দ্রপৃষ্ঠে মুক্তিদ্রুতির মান 2.3 km/s, যা পৃথিবীর তুলনায় প্রায় 5 ভাগের 1 অংশ। এই কারণে চাঁদের কোনো বায়ুমণ্ডল নেই। চন্দ্রপৃষ্ঠে যদি গ্যাসের অণুগুলো গঠিত হত তবে এদের দ্রুতি চন্দ্রপৃষ্ঠের মুক্তিদ্রুতি অপেক্ষা বেশি হত এবং চন্দ্রের মহাকর্যীয় প্রভাব থেকে মুক্তি পেত।

চিত্র 8.10

উত্তর প্রাসটির উপর দুইটি গোলক পরস্পরিক বিপরীতমুখী মহাকর্ষ বল প্রয়োগ করে। চিত্র (8.10) তে প্রদর্শিত নিরপেক্ষ বিন্দু 'N' হল এমন একটি বিন্দু যেখানে দুইটি বল পরস্পরকে প্রতিমিত করে। যদি ON = r হয়, তবে আমরা পাই,

$$\frac{G M m}{r^2} = \frac{4 G M m}{(6R-r)^2}$$
$$\frac{(6R-r)^2}{6R-r} = 4r^2$$
$$R = 2R$$
 অথবা – 6R.

এই উদাহারণটিতে r = -6R দূরত্বে অবস্থিত নিরপেক্ষ বিন্দুটি প্রযোজ্য হবে না। এইজন্য ON = r = 2R। ইহাই যথেস্ট যে এমন দ্রুতি সহ কণাটিকে প্রক্ষেপ করতে হবে যাতে এটি 'N' বিন্দুতে পৌঁছতে পারে। N বিন্দুটিকে অতিক্রম করার পর 4M ভরের গোলকটির মহাকর্ষ টান বলবৎ হবে। M ভরের গোলকটির পৃষ্ঠতলে মোট যান্ত্রিক শক্তি

$$E_i = \frac{1}{2} m v^2 - \frac{G M m}{R} - \frac{4 G M m}{5 R}.$$

নিরপেক্ষ বিন্দুতে (N) কণাটির দ্রুতি শৃন্যের কাছাকাছি হয়। 'N' বিন্দুতে কণাটির যান্ত্রিক শক্তি সম্পূর্ণভাবে স্থিতিশক্তি।

$$E_N = -\frac{GMm}{2R} - \frac{4GMm}{4R}$$

∴ যান্ত্রিক শক্তির সংরক্ষণ নীতি অনুযায়ী,

$$\frac{1}{2}v^2 - \frac{GM}{R} - \frac{4GM}{5R} = -\frac{GM}{2R} - \frac{GM}{R}$$
$$\implies v^2 = \frac{2}{R} \frac{GM}{R} \left(\frac{4}{5} - \frac{1}{2}\right)$$
$$\therefore v = \left(\frac{3}{5} \frac{GM}{5}\right)^{1/2}$$

এটা খুবই উল্লেখযোগ্য বিষয় 'N' বিন্দুতে প্রাসটির দ্রুতি শূন্য, কিন্তু কর্ণাটি যখন 4 M ভরের গোলকটির উপর আঘাত করে, তখন এর দ্রুতি শূন্য হয় না। এই দ্রুতির গণনা ছাত্রদেরকে অনুশীলন করার জন্য দেওয়া হল।

8.9 পৃথিবীর উপগ্রহসমূহ (EARTH SATELLITES)

পৃথিবীর কৃত্রিম উপগ্রহগুলো হল এমন বস্তু যেগুলো পৃথিবীর চারিদিকে আবর্তন করে। এগুলোর গতি সূর্যের চারিদিকে আবর্তনশীল গ্রহগুলোর গতির অনুরূপ এবং তাই গ্রহাদির গতি সংক্রান্ত কেপলারের সূত্রাবলি এখানেও সমানভাবে প্রযোজ্য। বিশেষত পৃথিবীর চারিদিকে এদের কক্ষপথগুলো বৃত্তাকার বা উপবৃত্তাকার হয়। চাঁদ হল পৃথিবীর কেবলমাত্র একটি প্রাকৃতিক উপগ্রহ এবং এর কক্ষপথ পৃথিবীর খুবই কাছে। এই কক্ষপথে চাঁদের পর্যায়কাল প্রায় 27.3 দিন, যা এর নিজস্ব অক্ষের সাপেক্ষে আবর্তনকালের সমান। 1957 সাল হতে প্রযুন্তিবিদ্যায় অগ্রগতির ফলে ভারত সমেত বিভিন্ন দেশগুলো টেলি যোগাযোগ ব্যবস্থায়, ভূতত্ত্ব বিদ্যায়, আবহবিদ্যায় ব্যবহারিক প্রয়োগ হেতু পৃথিবীর বিভিন্ন কৃত্রিম উপগ্রহগুলো উৎক্ষেপন করে।

আমরা পৃথিবীর কেন্দ্র থেকে ($R_E + h$) দূরত্বে, বৃত্তাকার পথে আবর্তনশীল একটি উপগ্রহ বিবেচনা করি, যেখানে R_E হলো পৃথিবীর ব্যাসার্ধ। যদি উপগ্রহটির ভর *m* এবং দ্রুতি *V* হয়, তবে এই কক্ষপথের জন্য প্রয়োজনীয় অভিকেন্দ্র বল,

$$F(uভিকেন্দ্র বল) = \frac{mV^2}{(R_E + h)}$$
(8.33)

এই বলের অভিমুখ পৃথিবীর কেন্দ্রের দিকে। পৃথিবী এবং কৃত্রিম উপগ্রহের মধ্যে অভিকর্ষ বল প্রয়োজনীয় অভিকেন্দ্র বলকে সরবরাহ করবে।

$$F(uভিকৰ্যজ বল) = \frac{GmM_E}{(R_E + h)^2}$$
(8.34)

যেখানে $M_{_F}$ হল পৃথিবীর ভর।

সমীকরণ (8.33) ও (8.34) এর ডানপক্ষকে সমান ধরে এবং উভয় পক্ষে m কে বাদ দিয়ে পাই,

$$V^2 = \frac{GM_E}{(R_E + h)} \tag{8.35}$$

তাই উচ্চতা '*h*' বৃদ্ধির সঙ্গো *V* হ্রাস পায়। (8.35) সমীকরণে *h* = 0 বসিয়ে,

$$V^2 (h=0) = GM_E / R_E = gR_E$$
 (8.36)

এখানে $g = GM_E / R_E^2$ সম্পর্কটি ব্যবহার করা হয়েছে। প্রতিটি কক্ষপথে উপগ্রহটি V দ্রুতি নিয়ে $2\pi(R_E + h)$ দূরত্ব অতিক্রম করে।

: এদের পর্যায়কাল,

$$T = \frac{2\pi (R_E + h)}{V} = \frac{2\pi (R_E + h)^{3/2}}{\sqrt{GM_E}}$$
(8.37)

(8.35) সমীকরণ হতে *V* এর রাশিমালা বসানো হলো। সমীকরণ (8.37) কে উভয়পক্ষে বর্গ করে পাই,

 $T^2 = k (R_E + h)^3 (<math>T^2 = k (R_E + h)^3 ($ েখেগনে $k = 4 \pi^2 / GM_E)$ (8.38) এটা হল কেপলারের পর্যায়কালের সূত্র, যা পৃথিবীর চারিদিকে আবর্তনরত কৃত্রিম উপগ্রহের ক্ষেত্রে প্রযোজ্য। পৃথিবীর খুবই কাছে অবস্থিত কৃত্রিম উপগ্রহের জন্য h কে R_E এর তুলনায় উপেক্ষা করা যেতে পারে। এসব উপগ্রহগুলোর জন্য T হল T₀, যেখানে

$$T_0 = 2\pi \sqrt{R_E / g} \tag{8.39}$$

উপরিউক্ত সমীকরণে g ; 9.8 m s⁻² এবং $R_E = 6400$ km. এই সংখ্যমানগুলো বসিয়ে পাই,

$$T_0 = 2\pi \sqrt{\frac{6.4 \times 10^6}{9.8}}$$
 সেকেণ্ড

যার সাংখ্যমান হল প্রায় ৪5 মিনিট।

মহাকর্ষ

উদাহরণ 8.5 মঙ্গালগ্রহের দুটি চাঁদ হলো ফোবস্ (Phobos) এবং ডেমস্ (delmos). (i) ফোব্সের পর্যায়কাল 7 ঘন্টা 39 মিনিট এবং এর কক্ষপথের ব্যাসার্ধ 9.4 ×103 km । মঙ্গালগ্রহের ভর গণনা করো। (ii) ধরে নাও পৃথিবী এবং মঞ্চাল গ্রহ সূর্যের চারিদিকে বৃত্তাকার পথে ঘুরছে, যেখানে মঙ্গালের কক্ষপথের ব্যাসার্ধ, পৃথিবীর কক্ষপথের ব্যাসার্ধের 1.52 গুণ। মঞ্চালগ্রহের এক বৎসরের দৈর্ঘ্য দিন এককে কত হবে ?

উত্তর (i) সমীকরণ (8.38) এ সূর্যের ভরকে মঞ্চালের ভর (M_m) দ্বারা প্রতিস্থাপিত করে পাই,

$$T^2 = \frac{4\pi^2}{GM_m} R^3$$

$$M_{m} = \frac{4\pi^{2}}{G} \frac{R^{3}}{T^{2}} = \frac{4 \times (3.14)^{2} \times (9.4)^{3} \times 10^{18}}{6.67 \times 10^{-11} \times (459 \times 60)^{2}}$$

$$M_{m} = \frac{4 \times (3.14)^{2} \times (9.4)^{3} \times 10^{18}}{6.67 \times (4.59 \times 6)^{2} \times 10^{-5}}$$

= 6.48 × 10²³ কেজি ৷ (ii) কেপলারের তৃতীয় সূত্র থেকে পাই,

$$\frac{T_M^2}{T_E^2} = \frac{R_{MS}^3}{R_{ES}^3}$$

যেখানে $R_{\scriptscriptstyle MS}$ হল মঞ্চালগ্রহ ও সূর্যের মধ্যে দূরত্ব এবং $R_{\scriptscriptstyle ES}$ হল পৃথিবী ও সূর্যের মধ্যবর্তী দূরত্ব।

 $\therefore T_M = (1.52)^{3/2} \times 365 = 684$ मिन।

এটা উল্লেখনীয় যে, বুধ, মঞ্চাল ও প্লুটো* ছাড়া সকল গ্রহের কক্ষপথ

অনেকখানি বৃত্তাকার। উদাহরণ হিসাবে পৃথিবীর কক্ষপথের ক্ষেত্রে অর্ধ

উপাক্ষ ও অর্ধ পরাক্ষের অনুপাত হলো b/a = 0.99986.

উদাহরণ 8.6 পৃথিবীর ভর নির্ণয় : তোমাকে নীচে বর্ণিত তথ্যগুলো দেওয়া হল, যেখানে $g = 9.81 \text{ ms}^{-2}$, $R_E = 6.37 \times 10^6 \, {
m m}$, (পৃথিবীর ব্যাসার্ধ), পৃথিবী থেকে চাঁদের দুরত্ব $R = 3.84 \times 10^8 \text{ m}$ এবং চাঁদের পৃথিবীর চারিদিকে আবর্তনকাল 27.3 দিন। দুটি ভিন্ন উপায়ে পৃথিবীর ভর নির্ণয় করো।

উত্তর (8.12) সমীকরণ থেকে আমরা পাই,

$$M_E = \frac{g R_E^2}{G}$$

182 নং পৃষ্ঠায় box এ দেওয়া তথ্য অনুসরণীয়।

রাশিমালা প্রতিষ্ঠায় (সমীকরণ 8.38 দেখো)।
$$T^2 = \frac{4\pi^2 R^3}{G M_E}$$
 $M_{e} = \frac{4\pi^2 R^3}{4\pi^2 R^3}$

 $=\frac{9.81\times(6.37\times10^6)^2}{6.67\times10^{-11}}=5.97\times10^{24}\,\mathrm{kg}.$

চাঁদ পৃথিবীর একটি প্রাকৃতিক উপগ্রহ। কেপলারের তৃতীয় সূত্রের

$$M_{E} = \frac{4\pi^{2}R^{3}}{G T^{2}}$$
$$= \frac{4 \times 3.14 \times (3.84)^{3} \times 1}{6.67 \times 10^{-11} \times (27.3 \times 24 \times 60)^{3}}$$

$$M_{E} = \frac{4\pi^{2}R^{3}}{G T^{2}}$$
$$= \frac{4\times 3.14\times 3.14\times (3.84)^{3}\times 10^{24}}{6.67\times 10^{-11}\times (27.3\times 24\times 60\times 60)^{2}}$$

$$=\frac{4\times3.14\times3.14\times(3.84)^3\times10^{24}}{6.67\times10^{-11}\times(27.3\times24\times60\times60)^2}$$

$$=\frac{4\times3.14\times3.14\times(3.84)\times10}{6.67\times10^{-11}\times(27.3\times24\times60\times6)}$$

$$=\frac{4\times3.14\times3.14\times(3.84)^3\times10^{24}}{6.67\times10^{-11}\times(27.3\times24\times60\times60)^{-11}\times(27.3\times24\times60\times60)^{-11}\times10^{-11}\times$$

$$\frac{4\times3.14\times3.14\times(3.84)\times10}{6.67\times10^{-11}\times(27.3\times24\times60\times60)}$$

$$=6.02 \times 10^{24} kg$$

উদাহরণ 8.7 (8.38) সমীকরণে থাকা k ধ্রুবকটিকে দিন ও কিলোমিটার এককের সাপেক্ষে প্রকাশ করো। দেওয়া আছে, $k = 10^{-13} s^2 m^{-3}$ । পৃথিবী থেকে চাঁদের দূরত্ব $3.84 \times 10^5 km$ ।

পৃথিবীর চারিদিকে চাঁদের আবর্তনকালের মান দিন এককে প্রকাশ

 $= 10^{-13} \left| \frac{1}{(24 \times 60 \times 60)^2} d^2 \right| \left| \frac{1}{(1/1000)^3 km^3} \right|$

(8.38) সমীকরণটি ব্যবহার করে এবং k এর প্রদত্ত মান থেকে,

এটা উল্লেখীয় (8.38) সমীকরণটি অধিবৃত্তাকার কক্ষপথের ক্ষেত্রেও

প্রযোজ্য, যদি আমরা (R_E+h) কে উপবৃত্তাকার পথের অর্ধপরাক্ষ দ্বারা প্রতিস্থাপিত করি। তখন পৃথিবী এই উপবৃত্তাকার কক্ষপথের একটি

8.10 কক্ষপথে ঘূর্ণনরত একটি কৃত্রিম উপগ্রহের শক্তি

(8.35) সমীকরণ ব্যবহার করে বৃত্তাকার কক্ষপথে v দ্রুতিসহ আবর্তনরত

(8.40)

(ENERGY OF AN ORBITING SATELLITE)

দেওয়া আছে, $k=10^{-13}\,{
m s}^2\,{
m m}^{-3}$

 $= 1.33 \times 10^{-14} d^2 km^{-3}$

 $T^2 = (1.33 \times 10^{-14})(3.84 \times 10^5)^3$

$$=\frac{4\times 3.14\times (3.04)\times 10}{6.67\times 10^{-11}\times (27.3\times 24\times 60\times 60)}$$

$$6.67 \times 10^{-11} \times (27.3 \times 24 \times 60 \times 60)$$
$$= 6.02 \times 10^{24} kg$$

$$=\frac{4\times3.14\times3.14\times(3.84)^{3}\times10^{24}}{6.67\times10^{-11}\times(27.3\times24\times60\times60)^{24}}$$

$$=6.02\times10^{24}$$
 kg

$$\frac{1}{6.67 \times 10^{-11} \times (27.3 \times 24 \times 60 \times 60^{-11} \times (27.3 \times 24 \times 60 \times 60^{-11} \times 60^{-$$

পার্থক্য এক শতাংশের কম।

করো।

চাঁদের পর্যায়কাল হল,

T = 27.3 দিন

নাভিতে অবস্থান করবে।

একটি কৃত্রিম উপগ্রহের গতিশস্তি হয়,

 $K E = \frac{1}{2}mv^2$

 $=\frac{GmM_{E}}{2(R_{E}+h)}$

উত্তর

অসীমে অভিকর্ষজ স্থিতিশক্তি শূন্য বিবেচনা করে, পৃথিবীর কেন্দ্র থেকে (R_+h) দূরত্বে স্থিতিশক্তি হলো,

$$P.E = -\frac{G \, m \, M_E}{(R_E + h)} \tag{8.41}$$

গতিশস্তি হল ধনাত্মক যেখানে স্থিতিশস্তি হল ঋণাত্মক। যাই হোক গতিশস্তির মান স্থিতিশস্তির মানের অর্ধেক, তাই মোট শস্তি,

$$E = K.E + P.E = -\frac{G m M_E}{2(R_E + h)}$$
(8.42)

বৃত্তাকার পথে আবর্তনশীল কৃত্রিম উপগ্রহের মোট শক্তি ঋণাত্মক, যেখানে স্থিতিশক্তি ঋণাত্মক এবং এই স্থিতিশক্তির মান ধনাত্মক গতিশক্তির দ্বিগুণ।

যখন উপগ্রহের কক্ষপথ অধিবৃত্তাকার তখন গতিশক্তি ও স্থিতিশক্তি উভয়ই বিন্দু ভেদে বিভিন্ন হয়। এক্ষেত্রেও উপগ্রহের মোট শক্তি বৃত্তাকার কক্ষপথের ন্যায় ধ্রুবক এবং ঋণাত্মক হয়। যদি মোট শক্তি ধনাত্মক বা শূন্য হয় তবে পূর্বের আলোচনার ভিত্তিতে আমরা বুঝতে পারি যে বস্তুটি অসীমে মুক্তি পেয়ে যাবে। উপগ্রহগুলো সর্বদাই পৃথিবী থেকে একটি নির্দিষ্ট দূরত্বে থাকে এবং তাই এদের শক্তি ধনাত্মক বা শূন্য হতে পারে না।

 উদাহরণ 8.8 400 kg ভরের একটি কৃত্রিম উপগ্রহ 2R_E ব্যাসার্ধের বৃত্তাকার পথে পৃথিবীর চারিদিকে ঘুরছে। 4R_E ব্যাসার্ধের একটি বৃত্তাকার পথে উপগ্রহটিকে উন্নীত করতে, কী পরিমাণ শক্তির প্রয়োজন হবে ? এক্ষেত্রে গতিশন্তি ও স্থিতিশন্তির কীরূপ পরিবর্তন হবে ?

উত্তর প্রাথমিক মোট শক্তি

$$E_i = - \frac{G M_E m}{4 R_E}$$

অন্তিম মোট শক্তি,

$$E_f = - \frac{G M_E m}{8 R_E}$$

সুতরাং, মোট শক্তির পরিবর্তন $\Delta E = E_f - E_i$

$$= \frac{G M_E m}{8 R_E} = \left(\frac{G M_E}{R_E^2}\right) \frac{m R_E}{8}$$

 $\Delta E = \frac{g \ m \ R_E}{8} = \frac{9.81 \times 400 \times 6.37 \times 10^6}{8} = 3.13 \times 10^9 \text{ J}$

এক্ষেত্রে গতিশন্তির হ্রাস ঘটে এবং ইহা ΔE এর অনুরূপ, যথা, $\Delta K = K_f - K_i = -3.13 \times 10^9 \, {\rm J}.$

স্থিতিশস্তির পরিবর্তন মোট শস্তির পরিবর্তনের দ্বিগুণ হয়, অর্থাৎ, ΔV = V_f − V_i = − 6.25 × 10⁹ J

8.11 ভূসমলয় এবং মেরু উপগ্রহ (GEOSTATIONARY AND POLAR SATELLITES)

একটি উল্লেখযোগ্য ঘটনার উপস্থাপন হয়, যদি আমরা $(R_{_{E}} + h)$ এর এমন মান নির্ধারণ করি যাতে (8.37) সমীকরণে T এর মান 24 ঘণ্টা হয়। যদি উপগ্রহটি পৃথিবীর নিরক্ষীয় তলগামী কোনো সমতলের উপর একটি বৃত্তীয় কক্ষপথে থাকে এবং এটির পর্যায়কাল পৃথিবীর নিজ অক্ষের সাপেক্ষে ঘূর্ণনের পর্যায়কালের সমান হয়, তখন পৃথিবীর কোনো বিন্দু হতে দেখলে, উপগ্রহটিকে স্থির বলে মনে হবে। এক্ষেত্রে $R_{_{E}}$ হতে $(R_{_{E}} + h)$ এর মান অনেক বেশি হয়।

$$R_E + h = \left(\frac{T^2 G M_E}{4\pi^2}\right)^{1/3}$$
(8.43)

মহাকাশে ভারতের সফল পদচারণা

1975 সালে আর্যভট্ট নামে নিম্ন কক্ষপথের কৃত্রিম উপগ্রহ উৎক্ষেপন করে ভারত মহাকাশ যুগে প্রথম প্রবেশ করে। এই প্রকল্পের প্রথম কয়েক বছর উৎক্ষেপণ যানগুলো (launch vehicle) পূর্বতন সোভিয়েত ইউনিয়ন যোগান দিত। 1980 সালের গোড়ার দিকে দেশীয় প্রযুক্তিতে তৈরি উৎক্ষেপন যানগুলো ব্যবহার করে রোহিনী শ্রেণির কৃত্রিম উপগ্রহগুলোকে মহাকাশে প্রেরণ করা হয়। 1980 সালের শেষের দিকে মেরু উপগ্রহগুলোকে মহাকাশে স্থাপন করার প্রকল্প শুরু হয়। IRS (Indian Remote Sensing Satellites) নামের উপগ্রহ শ্রেণি ওই সময় উৎক্ষেপণ করা হয়েছিল এবং ধারণা করা হয়েছিল ভবিয্যতে, এরূপ পরিকল্পনা চালু থাকবে। এই উপগ্রহগুলো বিভিন্ন পরিদর্শন, পরিমাপন, আবহাওয়ার পূর্বাভাস এবং মহাকাশের বিভিন্ন পরীক্ষা নিরীক্ষা করার কাজে নিযুক্ত করা হয়। 1982 সালে INSAT (Indian National Satellite) শ্রেণির উপগ্রহগুলোর নক্সা তৈরি করা হয়েছিল এবং এগুলো টেলি যোগাযোগ ব্যবস্থা এবং আবহাওয়ার ভবিয়ৎবাণী করার উদ্ধেশ্যে ব্যবহৃত হয়। INSAT শ্রেণির উপগ্রহগুলোকে উৎক্ষেপণ করার জন্য ইউরোপে তৈরি উৎক্ষেপণ যান (rocket) ব্যবহৃত হত। ভারত 2001 সালে (GSAT-1) নামের একটি ভূসমলয় কৃত্রিম উপগ্রহ উৎক্ষেপণ করে ওই উৎক্ষেপণ যানটির ক্ষমতা যাচাই করে। 1984 সালে রাকেশ শর্মা প্রথম ভারতীয় নভোশ্চর হন। ইস্রো (I SRO) Indian space research organisation সংস্থার ছত্রছায়ায় একাধিক কেন্দ্র কাজ করে। এই সংস্থার প্রধান কেন্দ্র শ্রীহরিকোটা (SHAR), চেন্নাই থেকে 100 km উত্তরে অবস্থিত। The National Remote Sensing Agency (NRSA) হায়দ্রাবাদের নিকট অবস্থিত। মহাকাশ ও আনুযাঞ্চিক বিভিন্ন বিজ্ঞান শাখার গবেষণার জাতীয় কেন্দ্র (PRL) (Physical Research Laboratory) আমেদাবাদে অবস্থিত। পর্যায়কাল T=24 ঘন্টার জন্য, পৃথিবীপৃষ্ঠ থেকে উচ্চতা h পাওয়া গেল 35800 km, যা পৃথিবীর ব্যাসার্ধ অপেক্ষা অনেক বেশি। যে উপগ্রহগুলো পৃথিবীর নিরক্ষীয় তলে পৃথিবীর চারিদিকে বৃত্তাকার কক্ষপথে T=24ঘন্টা পর্যায়কাল নিয়ে আবর্তন করে, তাদেরকে ভূসমলয় উপগ্রহ বলে। যেহেতু পৃথিবী নিজ অক্ষের সাপেক্ষে একই পর্যায়কাল নিয়ে ঘুরে, স্পন্টতই পৃথিবীর যে-কোনো বিন্দুর সাপেক্ষে উপগ্রহটিকে স্থির দেখাবে। পৃথিবীপৃষ্ঠ থেকে এত উঁচু কক্ষপথে স্থাপন করার জন্য খুবই উচ্চ ক্ষমতা সম্পন্ন রকেটের সাহায্যে উপগ্রহটিকে উৎক্ষেপ করতে হয় কিন্তু বিভিন্ন ব্যবহারিক প্রয়োগের সুবিধার জন্যই বাস্তবে এটা করা হয়ে থাকে।

আমরা জানি একটি নির্দিষ্ট কম্পাংকের বেশি তড়িৎচুম্বকীয় তরঙ্গাগুলো আয়ন মঙ্চল হতে প্রতিফলিত হয় না। বেতার যোগাযোগ ব্যবস্থায় যে বেতার তরঙ্গাগুলো ব্যবহৃত হয়, এদের কম্পাংকের সীমা 2 MHz হতে 10 MHz পর্যন্ত, যাহা সংকট কম্পাংক হতে কম। তাই এই বেতার তরঙ্গাগুলো আয়নমগুল দ্বারা প্রতিফলিত হয়।

এজন্য একটি অ্যান্টেনা হতে প্রেরিত বেতার তরঙ্গাকে অনেক দূরের অবস্থানে সংগ্রহ করা যেতে পারে, যেখানে প্রেরিত তরঙ্গা পৃথিবীর বক্রতার জন্য সরাসরি দূরবর্তী স্থানটিতে পৌঁছতে পারে না। টেলিভিশান সম্প্রচার ব্যবস্থায় অথবা অন্যান্য যোগাযোগ ব্যবস্থায় ব্যবহৃত তরঙ্গোর কম্পাংকগুলো অনেক বেশি, এজন্যেই দৃষ্টিরেখার দূরত্বের বাইরে এই তরঙ্গাগুলোকে সংগ্রহ করা যায় না। কোনো সম্প্রচার কেন্দ্রের উপরে অবস্থিত আপাত স্থির একটি ভূসমলয় কৃত্রিম উপগ্রহ প্রেরিত সংকেতগুলোকে সংগ্রহ করে এবং পৃথিবীর অর্থেক বিস্তীর্ণ অঞ্জলে

চিত্র 8.11 একটি মেরু উপগ্রহ থেকে দেখা পৃথিবীপৃষ্ঠের উপর একটি ফালা (Strip) (অংশাঙ্কিত দেখানো হয়েছে) যাহা উপগ্রহের একবার পূর্ণ আবর্তনের সময় হয়। উপগ্রহটির পরবর্তী আবর্তনের জন্য পৃথিবী নিজঅক্ষের সাপেক্ষে কম ঘুরে, যার ফলে পাশের ফালাটি (Strip) দৃশ্যমান হয়।

সম্প্রচার করে। ভারতবর্ষ কর্তৃক প্রেরিত INSAT উপগ্রহসমূহ হল এরুপ ভূসমলয় কৃত্রিম উপগ্রহের সমষ্টি যা ভারতে টেলিযোগাযোগ ব্যবস্থায় বহুলভাবে ব্যবহৃত হয়।

আরেক শ্রেণির উপগ্রহ আছে, যেগুলোকে মেরু উপগ্রহ বলে (চিত্র 8.11)। এগুলো কম উচ্চতার উপগ্রহ (*h* ≈ 500 হতে 800 km)। এই উপগ্রহগুলো পৃথিবীর মেরু অঞ্চল দিয়ে উত্তর-দক্ষিণ অভিমুখে পৃথিবীর চারিদিকে আবর্তন করে, যদিও পৃথিবী এর নিজ অক্ষের সাপেক্ষে পূর্ব-পশ্চিমে ঘোরে। যেহেতু এদের পর্যায়কাল প্রায় 100 মিনিট, তাই এরা যে-কোনো উচ্চতাকে একদিনে অনেকবার অতিক্রম করে, যদিও এই উপগ্রহগুলোর উচ্চতা পৃথিবীপৃষ্ঠ থেকে 500-800 km, তাই এটাতে যুক্ত একটি স্থির ক্যামেরা, এর একবার আবর্তনে পৃথিবীর কেবলমাত্র একটি ক্ষুদ্র ফালা দৃশ্যমান হতে পারে। পার্শ্ববর্তী ফালাগুলো পরবর্তী আবর্তনের সময় দৃশ্যমান হয়, যার ফলস্বরূপ একটি পূর্ণদিনে সমগ্র পৃথিবীটি ফালার পর ফালা হিসাবে দৃশ্যমান হয়। এই উপগ্রহগুলো পৃথিবীর মেরু এবং নিরক্ষীয় অঞ্চলগুলোকে কাছ থেকে নিখুতভাবে পর্যবেক্ষণ করতে পারে। এই উপগ্রহগুলো দ্বারা সংগৃহীত তথ্য দূর সঞ্জার ব্যবস্থাপনায়, আবহবিদ্যায় এবং পরিবেশ বিদ্যার অধ্যয়নে বিশদভাবে ব্যবহৃত হয়।

8.12 ভারহীনতা (WEIGHTLESSNESS)

কোনো বস্তুর ওজন হল পৃথিবী কী বলে এটাকে আকর্ষণ করে। আমরা যখন কোনো তলে দাঁড়াই তখন আমরা নিজেদের ওজন অনুভব করি, কারণ তল ও আমাদের উপর ওজনের বিপরীতমুখী একটি প্রতিক্রিয়া বল প্রয়োগ করে আমাদেরকে স্থির রাখে। স্প্রিং তুলার সাহায্যে একটি স্থির বিন্দু, যেমন ছাদ থেকে ঝুলিয়ে কোনো বস্তুর ওজন মাপার ক্ষেত্রেও একই নীতি প্রযোজ্য। বস্তুর উপর মহাকর্ষ বলের বিপরীতমুখী উপযুক্ত মানের বল প্রযুক্ত না হলে বস্তুটি পড়তে থাকবে। এটিই প্রকৃতপক্ষে স্প্রিং দ্বারা বস্তুর উপর প্রযুক্ত বল। বস্তুটির মহাকর্ষ টানের জন্য স্প্রিংটির নীচের দিকে খানিকটা অবনমন হয় এবং একই সাথে স্প্রিংটিও বস্তুটির উপর একটি উর্দ্বমুখী বল প্রয়োগ করে।

এখন কল্পনা করো, তুলাযন্ত্রটির শীর্ষপ্রান্তটি আর ঘরের ছাদের সক্ষো আটকানো নয়। স্প্রিংটির উভয় প্রান্ত এবং একই সাথে বস্তুটিও একই ত্বরণ (g) নিয়ে গতিশীল হয়। তাই স্প্রিংটিতে কোনো টান পড়ে নি এবং অভিকর্ষজ বলের জন্য g ত্বরণে নীচের দিকে গতিশীল বস্তুটির উপর উর্ল্বমুখী কোনো বল প্রযুক্ত হয়নি। যেহেতু স্প্রিংটির কোনো প্রসারণ ঘটে নি, তাই স্প্রিং তুলা যন্ত্রটির পাঠ শূন্য। বস্তুর পরিবর্তে কোনো ব্যক্তি হলে, সে তার ওজন অনুভব করতে পারবে না, কারণ তার উপর কোনো উর্দ্বমুখী বল প্রযুক্ত হয় না। তাই অবাধে পতনশীল কোনো বস্তুর ওজন শূন্য হয় এবং এই ঘটনাকে সাধারণ ভারহীনতা বলে। পৃথিবীর চারিদিকে আবর্তনরত কৃত্রিম উপগ্রহের প্রত্যেকটি অংশ এবং সংশ্লিষ্ট বস্তুর পৃথিবীর কেন্দ্রের দিকে একটি ত্বরণ, যা ওই অবস্থানে পৃথিবীর অভিকর্ষজ ত্বরণের সমান হয়। কাজেই আবর্তনশীল কৃত্রিম উপগ্রহের অভ্যন্তরে প্রতিটি বস্তু অবাধে পতনশীল অবস্থায় থাকে। এই অবস্থাটি ঠিক যেন কোনো উচ্চতা থেকে পৃথিবীর দিকে আমাদের অবাধে পতনশীল অবস্থার মতো। তাই মানববাহী কৃত্রিম উপগ্রহের অভ্যন্তরে ব্যক্তি কোনো মহাকর্ষ বল অনুভব করে না। আমাদের ক্ষেত্রে মহাকর্ষ বল উল্লম্ব অভিমুখী এবং উপগ্রহের অভ্যন্তরে এর উল্লম্ব বা অনুভূমিক অভিমুখ বলতে কিছু থাকে না, সকল অভিমুখই একই হয়। কৃত্রিম উপগ্রহের অভ্যন্তরে ভাসমান নভোশ্চারীদের ছবি, এই ঘটনাটিকে ব্যক্ত করে।

সারাংশ

1. নিউটনের সার্বজনীন মহাকর্ষ সূত্র অনুযায়ী $m_1 \otimes m_2$ ভরের দুইটি কণা r দূরত্বে পরস্পরকে যে মহাকর্ষ বল প্রয়োগ করে, তার মান

$$F = G \frac{m_1 m_2}{r^2}$$

যেখানে G হল সার্বজনীন মহাকর্ষ ধ্রুবক, যার মান হলো $6.672 \times 10^{-11} \mbox{ Nm}^2 \mbox{ kg}^{-2}$.

2. m ভরের একটি কণার উপর M_1, M_2, \dots, M_n প্রভৃতি ভরের দ্বারা মহাকর্ষ বলগুলোর লব্দি বল নির্ণয় করার জন্য আমরা উপরিপাতনের নীতি প্রয়োগ করি।

ধরি, M_1, M_2, \ldots, M_n এদের প্রতিটি দ্বারা কণাটির উপর প্রযুক্ত মহাকর্ষ বল যথাক্রমে F_1, F_2, \ldots, F_n । উপরিপাতনের নীতি অনুযায়ী প্রতিটি বল নিরপেক্ষভাবে ক্রিয়াশীল এবং অন্য বস্থুর প্রভাবমুক্ত। ভেক্টর যোগের সাহায্যে লব্দি বল পাওয়া যায়।

$$F_R = F_1 + F_2 + \dots + F_n = \sum_{i=1}^n F_i$$

যেখানে '**∑' চিহ্নটি সমষ্টি বোঝা**য়।

- 3. গ্রহাদির গতি সংক্রান্ত কেপলারে সূত্রাবলির বিবৃতি,
 - (a) সূর্যের চারিদিকে গ্রহগুলো উপবৃত্তাকার কক্ষপথে আবর্তন করে এবং সূর্য ওই উপবৃত্তের যে কোনো একটি নাভিতে অবস্থান করে।
 - (b) সূর্য থেকে একটি গ্রহের অঞ্চিত অবস্থান ভেক্টর সমান সময় অবকাশে সমান ক্ষেত্রফল অতিক্রম করে। এ থেকে বলা যায় গ্রহের উপর ক্রিয়াশীল মহাকর্য বল একটি কেন্দ্রীয় বল এবং এই ক্ষেত্রে কৌণিক ভরবেগ সংরক্ষিত থাকে। (এটা থেকে গ্রহের ক্ষেত্রীয় গতিবেগ ধ্রুবক, প্রমাণ করা যায়।)
 - (c) একটি গ্রহের সূর্যের চারিদিকে প্রদক্ষিণকালের বর্গ উপবৃত্তাকার কক্ষপথের অর্ধ পরাক্ষের ত্রিঘাতের সমানুপাতিক। পর্যায়কাল T এবং সূর্যের সাপেক্ষে গ্রহের বৃত্তাকার কক্ষপথের ব্যাসার্ধ R এর মধ্যে সম্পর্ক হল

$$T^2 = \left(\frac{4\pi^2}{G M_s}\right) R^3$$

যেখানে M_s হল সূর্যের ভর। সূর্যের চারিদিকে আবর্তনরত অধিকাংশ গ্রহগুলোর কক্ষপথ বৃত্তাকার। উপবৃত্তাকার কক্ষপথের জন্য উপরোস্ত সমীকরণটি প্রযোজ্য হবে যদি R কে অর্ধপরাক্ষ (a) দ্বারা প্রতিস্থাপিত করা যায়।

4. অভিকর্ষজ ত্বরণ :-

(a) পৃথিবীপৃষ্ঠ থেকে h উচ্চতায় অভিকর্ষজ ত্বরণ

$$g(h) = \frac{GM_E}{(R_E + h)^2}$$
 $\approx \frac{GM_E}{R_E^2} \left(1 - \frac{2h}{R_E}\right)$ যখন $h \ll R_E$ হয়,
$$g(h) = g(0) \left(1 - \frac{2h}{R_E}\right)$$
 (यथाल, $g(0) = \frac{G M_E}{R_E^2}$

(b) পৃথিবীপৃষ্ঠ থেকে d গভীরতায়, অভিকর্ষজ ত্বরণ

$$g(d) = \frac{G M_E}{R_E^2} \left(1 - \frac{d}{R_E}\right) = g(0) \left(1 - \frac{d}{R_E}\right)$$

 মহাকর্ষ বল হল একটি সংরক্ষী বল এবং তাই মহাকর্ষীয় স্থিতিশক্তি অপেক্ষককে সংজ্ঞায়িত করা যায়। r দুরত্বে অবস্থিত দুটি কণা সম্বন্থীয় মহাকর্ষীয় স্থিতিশক্তি হল

$$V = - \frac{G m_1 m_2}{r}$$

r→∞ হলে V শূন্য ধরা হবে। কোনো কণা সংস্থার মোট স্থিতিশক্তি হল সকল কণাযুগলের স্থিতিশক্তির যোগফল এবং প্রতটি কণা যুগলের স্থিতিশক্তি উপরিউন্তু সমীকরণ দ্বারা নির্ধারিত হবে। এটা উপরিপাতনের নীতি থেকে পাওয়া যায়।

6. কোনো একটি বিচ্ছিন্ন সংস্থায় *m* ভরের একটি কণা, *M* ভরের একটি বৃহৎ বস্তুর কাছাকাছি অঞ্চলে *v* বেগে ধাবিত হলে, কণাটির মোট যান্ত্রিক শস্ত্তি হবে

$$E = \frac{1}{2} m v^2 - \frac{GMm}{r}$$

অর্থাৎ মোট যান্ত্রিক শক্তি হল গতিশস্তি ও স্থিতিশস্তির যোগফল। এ গতির ক্ষেত্রে মোট যান্ত্রিক শস্তি ধ্রুবক থাকে।

7. যদি M কে কেন্দ্র করে m ভরের একটি কণা a ব্যাসার্ধের বৃত্তাকার পথে আবর্তন করে, যেখানে M >> m, তখন সংস্থাটির মোট শক্তি

$$E = - \frac{G M m}{2a}$$

এই সমীকরণের মধ্যে উপরে বর্ণিত 5 নং এ দেওয়া স্থিতিশক্তির সঙ্গে একটি স্বেচ্ছাধীন ধ্রুবক যুক্ত হয়েছে। কোনো বম্ব সংস্থায় মোট শক্তি ঋণাত্মক হয় অর্থাৎ এক্ষেত্রে কক্ষপথটি বদ্ধ কক্ষপথ হয়, উদাহরণ হিসাবে বলা যায় উপবৃত্তাকার কক্ষপথ। গতিশক্তি ও স্থিতিশক্তির রাশিমালা হল,

$$K = \frac{G M m}{2a}$$
$$V = -\frac{G M m}{a}$$

৪. পৃথিবীপৃষ্ঠ থেকে মুক্তিদ্রুতির রাশিমালা $v_e = \sqrt{rac{2 \ G \ M_E}{R_E}} = \sqrt{2 g R_E}$

এবং এর মান হলো 11.2 km s⁻¹.

- সুষমভাবে বণ্টিত এরুপ কোনো প্রতিসম গোলীয় খোলক বা নিরেট গোলক তার বাইরে থাকা কোনো কণাকে এরুপে আকর্ষণ করে যেন তার মোট ভর তার কেন্দ্রে কেন্দ্রীভূত আছে।
- 10. যদি একটি কণা একটি সুষম গোলীয় খোলকের অভ্যন্তরে থাকে, তবে কণাটির উপর মহাকর্ষীয় বল শূন্য হবে। যদি কণাটি কোনো সমসত্ব নিরেট গোলকের অভ্যন্তরে থাকে, তখন কণাটির উপর ক্রিয়াশীল বল গোলকটির কেন্দ্রাভিমুখী হয়। এক্ষেত্রে কণাটি যে অবস্থানে থাকে, তার অভ্যন্তরস্থ গোলীয় ভরই কণাটির উপর মহাকর্ষ বল প্রয়োগ করে।
- একটি ভূসমলয় কৃত্রিম উপগ্রহ (geosynchronous communication) পৃথিবীর নিরক্ষীয় তলে পৃথিবীর কেন্দ্র থেকে প্রায়
 4.22 × 10⁴ km দুরে বৃত্তাকার কক্ষপথে পৃথিবীকে কেন্দ্র করে আবর্তন করে।

পদার্থবিদ্যা

প্রাকৃতিক রাশি	চিহ্ন	মাত্রা	একক	মন্তব্য
মহাকর্ষ ধ্রুবক	G	$[M^{-1}L^{3}T^{-2}]$	N m ² kg ⁻²	6.67×10^{-11}
মহাকর্ষীয় স্থিতিশক্তি	<i>V</i> (r)	$[M L^2 T^2]$	J	– <u>GMm</u> r (স্কেলার)
মহাকর্ষীয় বিভব	<i>U</i> (r)	$[L^{2}T^{-2}]$	J kg-	- <u>GM</u> (স্কেলার)
মহাকর্ষীয় প্রাবল্য	E or g	$[LT^{-2}]$	m s ⁻²	$\frac{GM}{r^2}\hat{\mathbf{r}}$ (ভেক্টর)

ভেবে দেখার বিষয়সমূহ [POINTS TO PONDER]

- অন্য কোনো বস্তুর মহাকর্ষীয় প্রভাবে যখন কোনো বস্তুর গতি বিবেচনা করি, তখন নিম্নলিখিত রাশিগুলি সংরক্ষিত থাকে।

 (a) কৌণিক ভরবেগ,
 - (b) মোট যান্ত্রিক শক্তি,

রৈখিক ভরবেগ সংরক্ষিত থাকে না।

- 2. কৌণিক ভরবেগের সংরক্ষণ সূত্র কেপলারের দ্বিতীয় সূত্রের ভিত্তিস্বরূপ। এটি কেবল মহাকর্যের ব্যস্ত বর্গের সূত্র বিশেষের জন্যই নয়। এটি যে কোনো কেন্দ্রীয় বলের ক্ষেত্রে প্রযোজ্য।
- কেপলারের তৃতীয় সূত্র অর্থাৎ I² = K_sR³ সমীকরণে K_s হল একটি ধ্রুবক যা বৃত্তাকার পথে আবর্তনরত যে-কোনো গ্রহের ক্ষেত্রে একই হবে। পৃথিবীর চারিদিকে আবর্তনরত উপগ্রহের ক্ষেত্রেও এটা প্রযোজ্য (8.38 সমীকরণ দেখো)।
- কৃত্রিম উপগ্রহে একজন নভোশ্চারী নিজেকে ওজনহীন মনে করে। ওই অবস্থানে দুর্বল মহাকর্ষীয় বলের জন্য এমনটা হয়, তা নয়। নভোশ্চারী ও কৃত্রিম উপগ্রহ উভয়ই পৃথিবীর দিকে 'মুক্তভাবে পতনশীল' হওয়ার কারণে এমনটা হয়।
- 5. পরস্পর থেকে r দূরত্বে অবস্থিত দুটি কণার মহাকর্ষীয় স্থিতিশস্তি, $V = -\frac{G m_1 m_2}{r} + ধ্রুবক। ধ্রুবকটির যে-কোনো$

মান দেওয়া যেতে পারে। সবচেয়ে সহজ পছন্দটি হলো এটিকে শূন্য ধরা।

কাজেই,
$$V = -rac{G m_1 m_2}{r}$$

এই পছন্দানুসারে, $r \to \infty$ হলে $V \to 0$ হয়। স্থিতিশস্তির রাশিতে স্বেচ্ছাধীন ধ্রুবকের চয়ন, মহাকর্ষীয় স্থিতিশস্তির শূন্য অবস্থান নির্ধারণ একই। লক্ষণীয় যে, এই ধ্রুবকের চয়নের উপর মহাকর্ষীয় বলটি পরিবর্তিত হয় না।

- 6. বস্তুর মোট যান্ত্রিক শক্তি এর গতিশন্তি ও স্থিতিশন্তির যোগফল, যেখানে গতিশন্তি সর্বদা ধনাত্মক। অসীমের সাপেক্ষে (অর্থাৎ অসীমে স্থিতিশন্তি শূন্য ধরা হলে) বস্তুর অভিকর্ষীয় স্থিতিশন্তি ঋণাত্মক হয়। একটি কৃত্রিম উপগ্রহের মোট শন্তি ঋণাত্মক হয়।
- 7. প্রায়শই ব্যবহৃত অভিকর্ষীয় স্থিতিশস্তির রাশিমালা *m g h* প্রকৃতপক্ষে উপরের 6 নং দ্রন্টব্যে বর্ণিত মহাকর্ষীয় স্থিতিশস্তির পার্থক্যের আসন্ন রূপ।
- 8. যদিও দুটি কণার মধ্যে মহাকর্ষীয় বল কেন্দ্রীয় বল, দুটি সসীম দৃঢ় বস্তুর মধ্যে মহাকর্ষ বল এদের ভরকেন্দ্র সংযোগকারী সরলরেখা বরাবর আবশ্যকীয়ভাবে নাও হতে পারে। গোলীয় প্রতিসম বস্তুর ক্ষেত্রে বাইরে অবস্থিত কোনো কণার উপর প্রযুক্ত মহাকর্ষ বল এমনভাবে ক্রিয়াশীল হয়, যেন গোলকটির সমস্ত ভর এর কেন্দ্রে কেন্দ্রীভূত থাকে এবং এই বল কেন্দ্রীয় বল।
- 9. একটি গোলীয় খোলকের ভিতর অবস্থিত কোনো কণার উপর মহাকর্ষ বল শূন্য। একটি ধাতব খোলক স্থির তড়িৎ বলের ক্ষেত্রে আচ্ছাদক হিসাবে কাজ করে, কিন্তু মহাকর্ষ বলের ক্ষেত্রে কোনো ফাঁপা খোলকের ভিতরে অবস্থিত কোনো বস্তুকে বাইরে অবস্থিত বস্তুর মহাকর্ষীয় বল থেকে আচ্ছাদিত করা যায় না অর্থাৎ মহাকর্ষীয় আচ্ছাদন সন্তবপর নয়।

মহাকর্ষ

অনুশীলনী

8.1 নিচের প্রশ্নগুলোর উত্তর দা	3 8-	
--------------------------------	------	--

- (a) তুমি একটি ফাঁপা পরিবাহীর ভিতরে একটি আধানকে রেখে, এটাকে স্থির তড়িৎ বল থেকে আচ্ছাদিত করতে পার। তুমি কী একটি ফাঁপা গোলকের ভিতরে একটি বস্তুকে স্থাপন করে অথবা অন্য কোনো উপায়ে, এটাকে বাইরের বস্তুর মহাকর্যীয় প্রভাব থেকে আচ্ছাদিত করতে পার?
- (b) পৃথিবীর চারিদিকে ভ্রাম্যমান একটি ছোটো মহাকাশ যানে কোনো নভোশ্চারী অভিকর্ষীয় বল অনুভব করতে পারে না। যদি পৃথিবীর চারিদিকে আবর্তনরত মহাকাশ স্টেশনের আকৃতি বৃহৎ হয়, তবে কি সে অভিকর্ষীয় বলকে অনুভব করার আশা করতে পারে?
- (c) সূর্য পৃথিবীকে যে মহাকর্ষ বলে টানে এবং চাঁদ পৃথিবীকে যে বলে টানে, এ দুটি বলের তুলনা করলে, দেখা যায় যে, সূর্যের টান, চাঁদের টান অপেক্ষা অনেক বেশি। (এই অধ্যায়ে যে তথ্যগুলো দেওয়া আছে, এগুলো ব্যবহার করে তুমি এটা যাচাই করো)। তবে জোয়ারভাঁটার জন্য চাঁদের প্রভাব সূর্যের প্রভাব থেকে বেশি কেন?
- 8.2 বিশুদ্ধ বিকল্পটি চয়ন করো :
 - (a) উচ্চতা বৃদ্ধির সঙ্গো অভিকর্ষজ ত্বরণ বাড়ে/কমে।
 - (b) গভীরতা বৃদ্ধির সঞ্চো অভিকর্ষজ ত্বরণ বাড়ে/কমে। (ধরে নাও, পৃথিবী একটি সুষম ঘনত্বের গোলক)।
 - (c) অভিকর্ষজ ত্বরণ পৃথিবীর ভর নিরপেক্ষ/বস্তুর ভর নিরপেক্ষ।
 - (d) পৃথিবীর কেন্দ্র থেকে r₁, r₂ দূরত্বে থাকা দুটি বিন্দুর মধ্যে স্থিতিশক্তির পার্থক্য প্রকাশ করার জন্য -G Mm(1/r₂ - 1/r₁) এই রাশিমালাটি mg(r₂ - r₁) অপেক্ষা বেশি/কম নির্ভুল।
- 8.3 ধরো সূর্যের চারদিকে আবর্তনরত একটি গ্রহের দ্রুতি, পৃথিবীর দ্রুতির দ্বিগুণ। পৃথিবীর কক্ষপথের তুলনায় ওই গ্রহের কক্ষপথের আকার কী হবে?
- 8.4 বৃহস্পতি গ্রহের উপগ্রহগুলোর মধ্যে Io (আইও) হল একটি। এর পর্যায়কাল 1.769 দিন এবং এর কক্ষপথের ব্যাসার্ধ
 4.22 × 10⁸ m, দেখাও যে বৃহস্পতি গ্রহের ভর সূর্যের ভরের 1 হাজার ভাগের 1 ভাগ।
- 8.5 ধরো, আমাদের নক্ষত্রপুঞ্জে প্রতিটি এক সৌর ভরের 2.5 × 10¹¹ টি নক্ষত্র আছে। ওই নক্ষত্রপুঞ্জের কেন্দ্র থেকে 50 আলোকবর্ষ দূরে অবস্থিত একটি নক্ষত্রের ওই কেন্দ্রের সাপেক্ষে পূর্ণ আবর্তনের জন্য কত সময় লাগবে ? ধরে নাও, ছায়াপথটির ব্যাস প্রায় 10⁵আলোকবর্ষ।
- 8.6 নির্ভুল বিকল্পটি বের করো :
 - (a) যদি অসীমে স্থিতিশন্তি শূন্য ধরা হয়়, তবে আবর্তনরত উপগ্রহের মোট শন্তি, উহার গতিশন্তি/স্থিতিশন্তির ঋনাত্মক হয়।
 - (b) একটি নির্দিষ্ট উচ্চতায় পৃথিবীর চারিদিকে আবর্তনরত একটি কৃত্রিম উপগ্রহকে পৃথিবীর অভিকর্ষজ ক্ষেত্রের বাইরে নিতে গেলে প্রয়োজনীয় শক্তি একই উচ্চতায় একটি স্থির বস্তুকে পৃথিবীর অভিকর্ষজ ক্ষেত্রের বাইরে পাঠাতে প্রয়োজনীয় শক্তির তুলনায় বেশি/কম হবে।
- 8.7 পৃথিবী হতে কোনো বস্তুর মুক্তি দ্রুতি (a) বস্তুর ভর, (b) বস্তুটিকে যে অবস্থান থেকে নিক্ষেপ করা হয়, ওই অবস্থানের উপর, (c) উৎক্ষেপের অভিমুখের উপর, (d) যে অবস্থান থেকে উৎক্ষেপ করা হয়, ওই অবস্থানের উচ্চতার উপর নির্ভর করে কী ?
- 8.8 একটি ধূমকেতু সূর্যের চারিদিকে একটি উপবৃত্তাকার কক্ষপথে ঘুরছে। ধূমকেতুটির কী ধ্রুবক হবে ? (a) রৈখিক দ্রুতি, (b) কৌণিক দ্রুতি, (c) কৌণিক ভরবেগ (d) গতিশস্তি, (e) স্থিতিশস্তি, (f) সমস্ত কক্ষপথে এর মোট শস্তি ? সূর্যের কাছাকাছি স্থানে ধূমকেতুটির ভরের কোনো পরিবর্তন উপেক্ষণীয়।
- 8.9 মহাকাশে নভোশ্চরদের কোন্ উপসর্গটি পীড়িত করে ? (a) পা ফুঁলে যাওয়া (b) মুখমন্ডল ফুঁলে যাওয়া (c) মাথাব্যাথা
 (d) নির্দিন্ট অভিমুখজনিত সমস্যা।
- 8.10 নিম্নলিখিত দুটো অনুশীলনী সঠিক উত্তরটি বের করো। সুষম ভর ঘনত্বের একটি অর্ধগোলকীয় খোলকের কেন্দ্রে মহাকর্ষীয় প্রাবল্যের অভিমুখ যে তীর চিহ্ন দ্বারা নির্দেশিত হয় তা হল (চিত্র 8.12 দেখো) (i) a, (ii) b, (iii) c, (iv) 0.

চিত্র ৪.12

- 8.11 উপরিউক্ত সমস্যায় একটি স্বেচ্ছাধীন বিন্দু P তে মহাকর্ষীয় প্রাবল্যের অভিমুখ যে তীর চিহ্ন দ্বারা নির্দেশিত হয় তা হল (i) d, (ii) e, (iii) f, (iv) g.
- 8.12 পৃথিবী থেকে সূর্যের দিকে একটি রকেট ছোঁড়া হলো। পৃথিবীর কেন্দ্র থেকে কত দূরত্বে রকেটটির উপর মহাকর্ষীয় লব্ধি বল শূন্য হবে? দেওয়া আছে, সূর্যের ভর = 2×10³⁰ kg, পৃথিবীর ভর = 6×10²⁴ kg অন্যান্য গ্রহের প্রভাব উপেক্ষণীয়। (কক্ষীয় ব্যাসার্ধ = 1.5 × 10¹¹ m)।
- 8.13 সূর্যের ভর তুমি কীভাবে নির্ধারণ করবে ? সূর্যের চারিদিকে পৃথিবীর কক্ষপথের গড় ব্যাসার্ধ 1.5 × 10⁸ km।
- 8.14 সূর্যের চারিদিকে শনি গ্রহের একবার পূর্ণ আবর্তনের জন্য যে পর্যায়কাল, তা পৃথিবীর পর্যায়কালের 29.5 গুণ। যদি সূর্য থেকে পৃথিবীর দূরত্ব 1.50 × 10⁸ km হয়, তবে সূর্য থেকে শনির দূরত্ব কত ?
- 8.15 পৃথিবীপৃষ্ঠে একটি বস্তুর ওজন 63 N। পৃথিবীপৃষ্ঠ থেকে এর ব্যাসার্ধের অর্ধেক উচ্চতায়, ওই বস্তুটির উপর পৃথিবীর অভিকর্ষীয় বল কত হবে ?
- 8.16 পৃথিবীকে একটি সুষম ঘনত্বের নিরেট গোলক বিবেচনা করা হলে, পৃথিবীপৃষ্ঠে যে বস্তুর ওজন 250 N, পৃথিবীর অভ্যন্তরে পৃথিবীর ব্যাসার্ধের অর্ধেক গভীরতায় ওই বস্তুটির ওজন কত?
- 8.17 একটি রকেটকে পৃথিবীপৃষ্ঠ থেকে উল্লম্বভাবে 5 km s⁻¹ বেগে ছোঁড়া হলো। পৃথিবীপৃষ্ঠ থেকে কত উচ্চতা পর্যন্ত রকেটটি উঠবে? পৃথিবীর ভর = 6.0×10^{24} kg; পৃথিবীর গড় ব্যাসার্ধ = 6.4×10^6 m; $G = 6.67 \times 10^{-11}$ N m² kg⁻²।
- 8.18 পৃথিবীপৃষ্ঠ হতে একটি প্রাসের মুক্তিদ্রুতি 11.2 km s⁻¹।একটি বস্তুকে ওই দ্রুতির তিনগুণ দ্রুতিতে উৎক্ষেপ করা হলে, পৃথিবী থেকে অনেক দূরে বস্তুটির দ্রুতি কত হবে ? সূর্য ও অন্যান্য গ্রহের উপস্থিতি উপেক্ষা করো।
- ৪.19 একটি উপগ্রহ পৃথিবীপৃষ্ঠ থেকে 400 km উচ্চতায় পৃথিবীর চারিদিকে ঘুরে। এই উপগ্রহটিকে পৃথিবীর অভিকর্ষীয় প্রভাব থেকে মুক্ত করতে কী পরিমাণ শক্তির প্রয়োজন হবে ? উপগ্রহটির ভর = 200 kg, পৃথিবীর ভর = 6.0×10²⁴ kg; পৃথিবীর ব্যাসার্ধ = 6.4 × 10⁶ m; G = 6.67 × 10⁻¹¹ N m² kg⁻².
- 8.20 দুটি নক্ষত্র যাদের প্রত্যেকটির ভর সূর্য ভরের সমান (= 2×10³⁰ kg), যারা পরস্পরের দিকে ধাবিত হচ্ছে মুখোমুখি সংঘর্ষের জন্য। যখন এদের মধ্যে দূরত্ব 10⁹ km ছিল তখন এদের গতিবেগ উপেক্ষণীয় ছিল। কী বেগে এরা পরস্পরের সঙ্গে সংঘর্ষে লিপ্ত হবে ? প্রতিটি নক্ষত্রের ব্যাসার্ধ 10⁴ km, ধরে নাও সংঘর্ষের আগে পর্যন্ত নক্ষত্রগুলোর কোনো বিকৃতি ঘটে নি। (*G* এর জানা মানটি ব্যবহার করো)
- 8.21 100 kg ভরের এবং 0.10 m ব্যাসার্ধের দুটি ভারি গোলক একটি অনুভূমিক টেবিলে পরস্পর থেকে 1.0 m দূরত্বে আছে। দুটো গোলকের কেন্দ্রগামী সংযোজক সরলরেখার মধ্যবিন্দুতে মহাকর্ষীয় বল ও মহাকর্ষীয় বিভব নির্ণয় করো। ওই বিন্দুতে অবস্থিত একটি বস্তু কি সাম্যবস্থায় থাকবে? যদি তাই হয় তবে ওই সাম্যবস্থা কী সুস্থির না অস্থির প্রকৃতির?

অতিরিক্ত অনুশীলনী

- 8.22 এই অধ্যায়ে তুমি জেনেছ, একটি ভূসমলয় কৃত্রিম উপগ্রহ পৃথিবীপৃষ্ঠ থেকে প্রায় 36,000 km উচ্চতায় পৃথিবীর চারিদিকে আবর্তন করে। উপগ্রহটির ওই উচ্চতায় পৃথিবীর অভিকর্ষীয় বিভব কত? (ধরে নাও অসীমে পৃথিবীর অভিকর্ষীয় স্থিতিশক্তি শূন্য)। পৃথিবীর ভর = 6.0×10²⁴ kg, ব্যাসার্ধ = 6400 km.
- 8.23 একটি নক্ষত্রের ভর সূর্যের ভরের 2.5 গুণ। সংকৃচিত হয়ে এর আকার 12 km হয় এবং 1.2 rev.s⁻¹দ্রুতিতে আবর্তন করে। (এধরনের অতীব সংকৃচিত নক্ষত্রকে নিউট্রন নক্ষত্র বলে। পাল্সার (pulsars) জাতীয় কিছু নির্দিন্ট নাক্ষত্রিক বস্তু এ ধরণের হয়।) নিরক্ষীয় অঞ্চলে একটি বস্তুকে স্থাপন করলে, এটি কি ওই তলে মহাকর্ষীয় প্রভাবে আটকে থাকবে? দেওয়া আছে সূর্যের ভর = 2×10³⁰ kg)।
- 8.24 মঙ্গাল গ্রহে একটি মহাকাশ যান স্থাপন করা হলো। সৌরজগৎ থেকে ওই মহাকাশ যানটিকে মুক্ত করতে কি পরিমাণ শক্তির প্রয়োজন হবে? দেওয়া আছে মহাকাশ যানটির ভর = 1000 kg; সূর্যের ভর = 2×10³⁰ kg; মঙ্গাল গ্রহের ভর = 6.4×10²³ kg; মঙ্গাল গ্রহের ব্যাসার্ধ = 3395 km; মঙ্গাল গ্রহের কক্ষপথের ব্যাসার্ধ = 2.28 ×10⁸ km; G = 6.67×10⁻¹¹ N m² kg⁻².
- 8.25 একটি রকেটকে মঞ্চালের পৃষ্ঠ থেকে উল্লম্বভাবে 2 km s⁻¹ দুতি উৎক্ষেপ করা হলো। যদি মঞ্চালের বায়ুমগুলের বাধাজনিত কারণে উৎক্ষিপ্ত রকেটটির প্রাথমিক শক্তির 20% নস্ট হয়ে যায় তবে রকেটটি ফিরে আসার পূর্ব পর্যন্ত কতটা উচ্চতায় যাবে? মঞ্চালের ভর = 6.4×10²³ kg; মঞ্চালের ব্যাসার্ধ = 3395 km; G = 6.67×10⁻¹¹ N m² kg⁻².

APPENDIX 8.1 : LIST OF INDIAN SATELLITES

S.No.	Name	Launch Date	Launch Vehicle	Application
1.	Aryabhata	Apr. 19, 1975	C-1 Intercosmos ^a	Experimental
2.	Bhaskara-I	Jun. 07, 1979	C-1 Intercosmos ^a	Earth Observation, Experimental
3.	Rohini Technology Payload (RTP)	Aug. 10, 1979	SLV-3E1 ^b	Experimental
4.	Rohini Satellite RS-1	Jul. 18, 1980	$SLV-3E2^{b}$	Experimental
5.	Rohini Satellite RS-D1	May 31, 1981	SLV-3D1 ^b	Earth Observation
6.	APPLE	Jun. 19, 1981	Ariane -1(V-3) ^c	Communication, Experimental
7.	Bhaskara-II	Nov. 20, 1981	C-1 Intercosmos ^a	Earth Observation, Experimental
8.	INSAT-1A	Apr. 10, 1982	Delta ^d	Communication
9.	Rohini Satellite RS-D2	Apr. 17, 1983	SLV-3 ^b	Earth Observation
10.	INSAT-1B	Aug. 30, 1983	Shuttle [PAM-D] ^d	Communication
11.	SROSS-1	Mar. 24, 1987	ASLV-D1 ^b	Experimental
12.	IRS-1A	Mar. 17, 1988	Vostok ^e	Earth Observation
13.	SROSS-2	Jul. 13, 1988	$ASLV-D2^b$	Earth Observation, Experimental
14.	INSAT-1C	Jul. 22, 1988	Ariane-3 ^c	Communication
15.	INSAT-1D	Jun. 12, 1990	Delta 4925 ^d	Communication
16.	IRS-1B	Aug. 29, 1991	Vostok ^e	Earth Observation
17.	SROSS-C	May 20, 1992	ASLV-D3 ^b	Experimental
18.	INSAT-2A	Jul. 10, 1992	Ariane-44L H10 ^c	Communication
19.	INSAT-2B	Jul. 23, 1993	Ariane-44L H10 ^{+c}	Communication
20.	IRS-1E	Sep. 20, 1993	PSLV-D1 ^b	Earth Observation
21.	SROSS-C2	May 04, 1994	ASLV-D4 b	Experimental
22.	IRS-P2	Oct. 15, 1994	$PSLV-D2^{b}$	Earth Observation
23.	INSAT-2C	Dec. 07, 1995	Ariane-44L H10-3 ^c	Communication
24.	IRS-1C	Dec. 28, 1995	Molniya ^e	Earth Observation
25.	IRS-P3	Mar. 21, 1996	PSLV-D3/IRS-P3 ^b	Earth Observation
26.	INSAT-2D	Jun. 04, 1997	Ariane-44L H10-3 ^c	Communication
27.	IRS-1D	Sep. 29, 1997	PSLV-C1/IRS-1D ^b	Earth Observation
28.	INSAT-2E	Apr. 03, 1999	Ariane-42P H10-3 ^c	Communication
29.	Oceansat (IRS-P4)	May 26, 1999	PSLV-C2/IRS-P4 ^b	Earth Observation
30.	INSAT-3B	Mar. 22, 2000	Ariane-5G ^c	Communication
31.	GSAT-1	Apr. 18, 2001	GSLV-D1/GSAT-1 ^b	Communication

পদার্থবিদ্যা

32.	The Technology Experiment Satellite (TES)	Oct. 22, 2001	PSLV-C3/TES ^b	Earth Observation
33.	INSAT-3C	Jan. 24, 2002	Ariane5-V147 ^c	Climate & Environment, Communication
34.	KALPANA-1	Sep. 12, 2002	PSLV-C4/ KALPANA-1 ^b	Climate & Environment, Communication
35.	INSAT-3A	Apr. 10, 2003	Ariane5-V160 ^c	Climate & Environment, Communication
36.	GSAT-2	May 08, 2003	GSLV-D2/GSAT-2 ^b	Communication
37.	INSAT-3E	Sep. 28, 2003	Ariane5-V162 ^c	Communication
38.	IRS-P6 / RESOURCESAT-1	Oct. 17, 2003	PSLV-C5/ RESOURCESAT-1 ^b	Earth Observation
39.	EDUSAT	Sep. 20, 2004	GSLV-F01/ EDUSAT(GSAT-3) ^b	Communication
40.	HAMSAT	May 05, 2005	PSLV-C6/ CARTOSAT-1/HAMSAT ^b	Communication
41.	CARTOSAT-1	May 05, 2005	PSLV-C6/ CARTOSAT-1/HAMSAT ^b	Earth Observation
42.	INSAT-4A	Dec. 22, 2005	Ariane5-V169c	Communication
43.	INSAT-4C	Jul. 10, 2006	GSLV-F02/INSAT-4C ^b	Communication
44.	CARTOSAT-2	Jan. 10, 2007	PSLV-C7/CARTOSAT-2 /SRE-1 ^b	Earth Observation
45.	SRE-1	Jan. 10, 2007	PSLV-C7/CARTOSAT-2 /SRE-1 ^b	Experimental
46.	INSAT-4B	Mar. 12, 2007	Ariane5 ^c	Communication
47.	INSAT-4CR	Sep. 02, 2007	GSLV-F04/INSAT-4 CR ^b	Communication
48.	IMS-1	Apr. 28, 2008	PSLV-C9/ CARTOSAT-2A ^b	Earth Observation
49.	CARTOSAT - 2A	Apr. 28, 2008	PSLV-C9/ CARTOSAT-2A ^b	Earth Observation
50.	Chandrayaan-1	Oct. 22, 2008	PSLV-C11 ^b	Planetary Observation
51.	RISAT-2	Apr. 20, 2009	PSLV-C12/RISAT-2 ^b	Earth Observation
52.	ANUSAT	Apr. 20, 2009	PSLV-C12/RISAT-2 ^b	University/ Academic Institute
53.	Oceansat-2	Sep. 23, 2009	PSLV-C14/ OCEANSAT-2 ^b	Climate & Environment, Earth Observation
54.	GSAT-4	Apr. 15, 2010	GSLV-D3 / GSAT-4 ^b	Communication
55.	CARTOSAT-2B	Jul. 12, 2010	PSLV-C15/ CARTOSAT-2B ^b	Earth Observation

204

মহাকর্ষ

56.	STUDSAT	Jul. 12, 2010	PSLV-C15/ CARTOSAT-2B ^b	University/ Academic Institute
57.	GSAT-5P	Dec. 25, 2010	GSLV-F06/GSAT-5Pb	Communication
58.	RESOURCESAT-2	Apr. 20, 2011	PSLV-C16/ RESOURCESAT-2 ^b	Earth Observation
59.	YOUTHSAT	Apr. 20, 2011	PSLV-C16/ RESOURCESAT-2 ^b	Student Satellite
60.	GSAT-8	May 21, 2011	Ariane-5 VA-202° Navigation	Communication,
61.	GSAT-12	Jul. 15, 2011	PSLV-C17/GSAT-12 ^b	Communication
62.	Megha-Tropiques	Oct. 12, 2011	PSLV-C18/Megha- Tropiques ^b	Climate & Environment, Earth Observation
63.	SRMSat	Oct. 12, 2011	PSLV-C18/ Megha-Tropiques ^b	University/ Academic Institute
64.	Jugnu	Oct. 12, 2011	PSLV-C18/ Megha-Tropiques ^b	University/Academic Institute
65.	RISAT-1	Apr. 26, 2012	PSLV-C19/RISAT-1 ^b	Earth Observation
66.	GSAT-10	Sep. 29, 2012	Ariane-5 VA-209°	Communication, Navigation
67.	SARAL	Feb. 25, 2013	PSLV-C20/SARAL ^b	Climate & Environment, Earth Observation
68.	IRNSS-1A	Jul. 01, 2013	PSLV-C22/IRNSS-1A ^b	Navigation
69.	INSAT-3D	Jul. 26, 2013	Ariane-5 VA-214 ^c	Climate & Environment, Disaster Management System
70.	GSAT-7	Aug. 30, 2013	Ariane-5 VA-215 ^c	Communication
71.	Mars Orbiter Mission Spacecraft (Mangalyaan-1)	Nov. 05, 2013	PSLV-C25 ^b	Planetary Observation
72.	GSAT-14	Jan. 05, 2014	GSLV-D5/GSAT-14 ^b	Communication
73.	IRNSS-1B	Apr. 04, 2014	PSLV-C24/IRNSS-1B ^b	Navigation
74.	IRNSS-1C	Oct. 16, 2014	PSLV-C26/IRNSS-1C ^b	Navigation
75.	GSAT-16	Dec. 07, 2014	Ariane-5 VA-221°	Communication
76.	Crew module Atmospheric Reentry Experiment	Dec. 18, 2014	LVM-3/CARE Mission ^b	Experimental
77.	IRNSS-1D	Mar. 28, 2015	PSLV-C27/IRNSS-1D ^b	Navigation
78.	GSAT-6 (INSAT-4E)	Aug. 27, 2015	GSLV-D6 ^b	Communication
79.	Astrosat	Sep. 28, 2015	PSLV-C30 ^b	Space Sciences
80.	GSAT-15	Nov. 11, 2015	Ariane-5 VA-227 ^c	Communication, Navigation
81.	IRNSS-1E	Jan. 20, 2016	PSLV-C31/IRNSS-1E ^b	Navigation

206

পদার্থবিদ্যা

82.	IRNSS-1F	Mar. 10, 2016	PSLV-C32/IRNSS-1F ^b	Navigation
83.	IRNSS-1G	Apr. 28, 2016	PSLV-C33/IRNSS-1G ^{b}	Navigation
84.	Cartosat-2 Series Satellite	Jun. 22, 2016	PSLV-C34/CARTOSAT-2 Series Satellite ^b	Earth Observation
85.	SathyabamaSat	Jun. 22, 2016	PSLV-C34/CARTOSAT-2 Series Satellite ^b	University/ Academic Institute
86.	Swayam	Jun. 22, 2016	PSLV-C34/CARTOSAT-2 Series Satellite ^b	University/ Academic Institute
87.	INSAT-3DR	Sep. 08, 2016	GSLV-F05/ INSAT-3DR ^b	Climate & Environment, Disaster Management System
88.	ScatSat-1	Sep. 26, 2016	PSLV-C35/ SCATSAT-1 ^b	Climate & Environment
89.	Pratham	Sep. 26, 2016	PSLV-C35/ SCATSAT-1 ^b	University/ Academic Institute
90.	PiSat	Sep. 26, 2016	PSLV-C35/ SCATSAT-1 ^b	University/ Academic Institute
91.	GSAT-18	Oct. 06, 2016	Ariane-5 VA-231°	Communication
92.	ResourceSat-2A	Dec. 07, 2016	PSLV-C36/ RESOURCESAT-2A ^b	Earth Observation
93.	Cartosat -2 Series Satellite	Feb. 15, 2017	PSLV-C37/Cartosat -2 Series Satellite ^{b}	Earth Observation
94.	INS-1A	Feb. 15, 2017	PSLV-C37/Cartosat -2 Series Satellite ^b	Experimental
95.	INS-1B	Feb. 15, 2017	PSLV-C37/Cartosat -2 Series Satellite ^{b}	Experimental
96.	GSAT-9	May 05, 2017	GSLV-F09/GSAT-9 ^b	Communication
97.	GSAT-19	Jun. 05, 2017	GSLV Mk III-D1/ GSAT-19 Mission ^b	Communication
98.	Cartosat-2 Series Satellite	Jun. 23, 2017	PSLV-C38/Cartosat-2 Series Satellite ^b	Earth Observation
99.	NIUSAT	Jun. 23, 2017	PSLV-C38/Cartosat-2 Series Satellite ^b	University/ Academic Institute
100.	GSAT-17	Jun. 29, 2017	Ariane-5 VA-238 ^c	Communication
101.	IRNSS-1H Mission	Aug. 31, 2017	PSLV-C39 ^b	Communication

ভারত এখন পর্যন্ত 209 টি বিদেশী কৃত্রিম উপগ্রহকে অন্দ্রপ্রদেশের শ্রী হরি কোটায় অবস্থিত সতীশ ধাওয়ান মহাকাশ কেন্দ্র থেকে উৎক্ষেপন করেছে। মে 26, 1999 (02); অক্টোবর 22, 2001 (02); জানুয়ারি 10, 2007 (02); এপ্রিল 23, 2007 (01); জানুয়ারি 21, 2008 (01); সেপ্টেম্বর 09, 2012 (02); ফেব্রুয়ারি 25, 2013 (06); জুন 30, 2014 (05); জুলাই 10, 2015 (05); সেপ্টেম্বর 28, 2015 (06); ডিসেম্বর 16, 2015 (06); জুন 22, 2016 (27); সেপ্টেম্বর 09, 2016 (05); ফেব্রুয়ারি 15, 2017 (101) এবং ইহা একটি বিশ্ব রেকর্ড। জুন 23, 2017 (29টি) উপগ্রহ উৎক্ষেপন করা হয়েছে। প্রদন্ত তথ্যগুলো www.isro.gov.in. এই ওয়েব সাইটে দেখতে পারো।

- a কাপুস্তিন ইয়ার মিসাইল এন্ড স্পেস কমপ্লেক্স, সোভিয়েত ইউনিয়ন (বর্তমান রাশিয়া) (Kapustin Yar Missile and Space Complex, Soviet Union (now Russia) থেকে উৎক্ষেপিত।
- b সতীশ ধাওয়ান স্পেশ সেন্টার, শ্রীহরিকোটা, অন্থ্রপ্রদেশ (Satish Dhawan Space Centre, Sriharikota, Andhra Pradesh) থেকে উৎক্ষেপিত।
- c সেন্টার স্পেসিয়াল গুয়ানেইজ, করুয়ু, ফ্রেঞ্চ গুয়ানা (Centre Spatial Guyanais, Kourou, French Guiana) থেকে উৎক্ষেপিত।
- d এয়ার ফোর্স ইস্টার্ন টেস্ট রেঞ্জ, ফ্লোরিডা (Air Force Eastern Test Range, Florida) থেকে উৎক্ষেপিত।
- e বৈকানুর কসমোড্রোম, কাজাখিস্থান (Baikonur Cosmodrome, Kazakhstan) থেকে উৎক্ষেপিত।

পরিশিষ্ট

পরিশিষ্ট A1

গ্রীক বর্ণমালা

আলফা	Α	α	আইয়োটা	Ι	ι	রো	Р	ρ
বিটা	В	β	কাপ্পা	Κ	κ	সিগ্মা	Σ	σ
গামা	Γ	γ	ল্যাম্ডা	Λ	λ	হার্ত	Т	τ
ডেল্টা	Δ	δ	মিউ	Μ	μ	আপসিলন	Y	υ
এপসিলন	E	3	নিউ	Ν	ν	ফাই	Φ	φ, φ
জিটা	Ζ	ς	জাই	Ξ	ξ	কাই	Х	χ
ইটা	Η	η	ওমিক্রন	0	0	সাই	Ψ	ψ
থিটা	Θ	θ	পাই	П	π	ওমেগা	Ω	ω

পরিশিষ্ট A2

গুণিতক ও উপগুণিতকের এস আই উপসর্গ এবং প্রতীক

গুণিতক			উপ-গুণিতক		
গুণক	উপসর্গ	প্রতীক	গুণক	উপসর্গ	প্রতীক
10^{18}	এক্সা	Е	10 ⁻¹⁸	অ্যাটো	a
10^{15}	পেটা	Р	10 ⁻¹⁵	ফেমটো	f
10^{12}	টেরা	Т	10 ⁻¹²	পিকো	р
109	গিগা	G	10 ⁻⁹	ন্যানো	n
10^{6}	মেগা	М	10 ⁻⁶	মাইক্রো	μ
10^{3}	কিলো	k	10 ⁻³	মিলি	m
10^{2}	হেক্টো	h	10 ⁻²	সেন্টি	с
10 ¹	ডেকা	da	10 ⁻¹	ডেসি	d

পরিশিষ্ট A3					
কিছু গুরুত্বপূর্ণ ধ্রুবক					
নাম	প্রতীক	মান			
শূন্যে আলোকের গতিবেগ	с	$2.9979 \times 10^8 \text{ m s}^{-1}$			
ইলেক্ট্রনের তড়িতাধান	е	$1.602 \times 10^{-19} \text{ C}$			
মহাকর্ষীয় ধ্রুবক	G	$6.673 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$			
প্ল্যাঙ্কের ধ্রুবক	h	$6.626 \times 10^{-34} \text{ J s}$			
বোলৎজম্যান ধ্রুবক	k	$1.381 \times 10^{-23} \mathrm{J} \mathrm{K}^{-1}$			
অ্যাভোগাড্রো সংখ্যা	N_{A}	$6.022 \times 10^{23} \text{mol}^{-1}$			
সার্বজনীন গ্যাস ধ্রুবক	R	$8.314 \text{ J mol}^{-1} \text{K}^{-1}$			
ইলেক্ট্রনের ভর	m _e	9.110×10^{-31} kg			
নিউট্রনের ভর	m _n	$1.675 \times 10^{-27} \text{ kg}$			
প্রোটনের ভর	m_p	$1.673 \times 10^{-27} \text{ kg}$			
ইলেক্ট্রনের তড়িতাধান ও ভরের অনুপাত	e/m _e	1.759×10^{11} C/kg			
ফ্যারাডে ধ্রুবক	F	9.648×10^4 C/mol			
রিডবার্গ ধ্রুবক	R	$1.097 \times 10^7 \mathrm{m}^{-1}$			
বোর ব্যাসার্ধ	a_0	$5.292 \times 10^{-11} \text{ m}$			
স্টিফেন বোলৎজম্যান ধ্রুবক	σ	$5.670 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$			
ভীনের ধ্রুবক	b	$2.898 \times 10^{-3} \text{ m K}$			
শৃন্যস্থানে তড়িৎ ভেদ্যতা	ε ₀ 1/4π ε ₀	$8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{m}^{-2}$ 8.987 × 10 ⁹ N m ² C ⁻²			
শৃন্যস্থানে চৌম্বক ভেদ্যতা	μ_0	$4\pi \times 10^{-7} \text{ T m } \text{ A}^{-1}$ $\cong 1.257 \times 10^{-6} \text{ Wb } \text{ A}^{-1} \text{ m}^{-1}$			

অন্যান্য প্রয়োজনীয় ধ্রুবক

নাম	প্রতীক	মান
তাপের যান্ত্রিক তুল্যাঙ্ক	J	4.186 J cal ⁻¹
প্রমাণ বায়ুমণ্ডলীয় চাপ	1 atm	1.013×10^{5} Pa
পরম / চরম শূন্য	0 K	−273.15 °C
ইলেক্ট্রন ভোল্ট	1 eV	$1.602 \times 10^{-19} J$
পারমাণবিক ভর একক	1 u	$1.661 \times 10^{-27} \text{kg}$
ইলেক্ট্রন স্থির শক্তি	mc ²	0.511 MeV
1 u এর তুল্যশক্তি	$1 \mathrm{uc}^2$	931.5 MeV
আদর্শ গ্যাসের আয়তন (0ºC এবং 1 atm)	V	22.4 L mol^{-1}
অভিকর্যজ ত্বরণ (সমুদ্র পৃষ্ঠ, বিষুব রেখা)	g	9.78049 m s ⁻²

পরিশিস্ট A4 গুণকের রুপান্তর

সরলতার জন্য সমীকরণ দিয়ে রুপান্তর গুণক লেখা হল :

দৈর্ঘ্য

1 km = 0.6215 mi 1 mi = 1.609 km1m = 1.0936 yd = 3.281 ft = 39.37 in 1 in = 2.54 cm1 ft = 12 in = 30.48 cm1 yd = 3 ft = 91.44 cm1 আলোকবর্ষ=1 ly=9.461 x 10¹⁵m 1 Å = 0.1 nmক্ষেত্ৰফল $1 \text{ m}^2 = 10^4 \text{ cm}^2$ $1 \text{km}^2 = 0.3861 \text{ mi}^2 = 247.1 \text{ acres}$ $1 \text{ in}^2 = 6.4516 \text{ cm}^2$ $1 \text{ft}^2 = 9.29 \text{ x} 10^{-2} \text{m}^2$ $1 \text{ m}^2 = 10.76 \text{ ft}^2$ $1 \text{ acre} = 43,560 \text{ ft}^2$ $1 \text{ mi}^2 = 640 \text{ acres} = 2.590 \text{ km}^2$ আয়তন $1m^3 = 10^6 cm^3$ $1 L = 1000 cm^3 = 10^{-3} m^3$ 1 gal = 3.786 L $1 \text{ gal} = 4 \text{ qt} (\text{quart}) = 8 \text{ pt} (\text{pint}) = 128 \text{ oz} = 231 \text{ in}^3$ $1 \text{ in}^3 = 16.39 \text{ cm}^3$ $1 \text{ft}^3 = 1728 \text{ in}^3 = 28.32 \text{ L} = 2.832 \times 10^4 \text{ cm}^3$

দুতি

```
1 \text{ km h}^{-1} = 0.2778 \text{ m s}^{-1} = 0.6215 \text{ mi h}^{-1}1 \text{ mi h}^{-1} = 0.4470 \text{ m s}^{-1} = 1.609 \text{ km h}^{-1}1 \text{ mi h}^{-1} = 1.467 \text{ ft s}^{-1}
```

চৌম্বক ক্ষেত্র

 $1 G = 10^{-4} T$ $1 T = 1 Wb m^{-2} = 10^4 G$

কোণ এবং কৌণিক দ্বুতি π rad = 180° $1 \text{ rad} = 57.30^{\circ}$ $1^{\circ} = 1.745 \times 10^{-2}$ rad $1 \text{ rev min}^{-1} = 0.1047 \text{ rad s}^{-1}$ $1 \text{ rad s}^{-1} = 9.549 \text{ rev min}^{-1}$ ভর 1 kg = 1000 g1 টন = 1000 kg = 1 Mg $1 \text{ u} = 1.6606 \times 10^{-27} \text{ kg}$ $1 \text{ kg} = 6.022 \times 10^{26} \text{ u}$ $1 \, \text{slug} = 14.59 \, \text{kg}$ $1 \text{ kg} = 6.852 \times 10^{-2} \text{ slug}$ $1 u = 931.50 MeV/c^{2}$ ঘনত্ন $1 \text{ g cm}^{-3} = 1000 \text{ kg m}^{-3} = 1 \text{ kg L}^{-1}$ বল $1 \text{ N} = 0.2248 \text{ lbf} = 10^5 \text{ dyn}$ 1 lbf = 4.4482 N $1 \, \text{kgf} = 2.2046 \, \text{lbf}$ সময় 1 h = 60 min = 3.6 ks1 d = 24 h = 1440 min = 86.4 ks1y = 365.24 d = 31.56 Msচাপ $1 \text{ Pa} = 1 \text{ N m}^{-2}$ 1 bar = 100 kPa1 atm = 101.325 kPa = 1.01325 bar $1atm = 14.7 lbf/in^2 = 760 mm Hg$ = 29.9 in Hg = 33.8 ft H₂O $1 \text{ lbf in}^{-2} = 6.895 \text{ kPa}$ 1 torr = 1 mm Hg = 133.32 Pa

শক্তি

1 kW h = 3.6 MJ 1 cal = 4.186 J 1 ft lbf = $1.356 \text{ J} = 1.286 \times 10^{-3} \text{ Btu}$ 1 L atm = 101.325 J1 L atm = 24.217 cal1 Btu = 778 ft lb = 252 cal = 1054.35 J1 eV = $1.602 \times 10^{-19} \text{ J}$ 1 u $c^2 = 931.50 \text{ MeV}$ 1 erg = 10^{-7} J

ক্ষমতা

1 অশ্বক্ষমতা (hp) = 550 ft lbf/s = 745.7 W 1 Btu min⁻¹ = 17.58 W 1 W = 1.341 × 10⁻³ hp = 0.7376 ft lbf/s তাপ পরিবাহিতাজ্ঞক 1 W m⁻¹ K⁻¹ = 6.938 Btu in/hft² °F 1 Btu in/hft² °F = 0.1441 W/m K

পরিশিষ্ট <u>A 5</u> গাণিতিক সূত্রাবলি

জ্যামিতি

r ব্যাসার্ধের বৃত্ত : পরিধি = 2πr; ক্ষেত্রফল = πr² r ব্যাসার্ধের গোলক : ক্ষেত্রফল = 4πr²;

আয়তন = $\frac{4}{3}\pi r^3$

r ব্যাসার্ধ এবং h উচ্চতার লম্ব বৃত্তাকার চোঙ :

ক্ষেত্রফল = $2\pi r^2 + 2\pi r h$; আয়তন = $\pi r^2 h$; *a* ভূমি এবং *h* উচ্চতার ত্রিভুজ :

ক্ষেত্ৰফল =
$$\frac{1}{2}$$
 a h

দ্বিঘাত সূত্র

যদি $ax^2 + bx + c = 0$,

$$= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

θ কোণের ত্রিকোণমিতির অপেক্ষক

$\sin \theta = \frac{y}{r}$	$\cos\theta = \frac{x}{r}$
$\tan \theta = \frac{y}{x}$	$\cot \theta = \frac{x}{y}$
$\sec \theta = \frac{r}{x}$	$\csc \theta = \frac{r}{y}$

পীথাগোরসের উপপাদ্য

এই সমকোণী ত্রিভুজে, $a^2+b^2=c^2$

চিত্র A 5.2

ত্রিভুজ

কোণগুলি *A, B, C*

বিপরীত বাহুগুলি *a, b, c* কোণগুলির সমষ্টি, $A + B + C = 180^0$

 $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$ $c^{2} = a^{2} + b^{2} - 2ab \cos C$ বহিঃস্থ কোণ D = A + C

210

গাণিতিক চিহ্ন এবং প্রতীক

≡ অনুরূপ, সংজ্ঞায়িত যে > বৃহত্তর (>> অধিক বৃহত্তর) < ক্ষুদ্রতর (<< অধিক ক্ষুদ্রতর) ≥ বৃহত্তর বা সমান (বা ক্ষুদ্রতর নয়)

± যোগ বা বিয়োগ ∝ সমানুপাতিক ∑ সমষ্টি

= সমান

≅ প্রায় সমান ~ মানের ক্রম ≠ অসমান

< ক্ষুদ্রতর বা সমান (বা বৃহত্তর নয়)

 \overline{x} বা < x > বা x_{av} x এর গড় মান

ত্রিকোণমিতিক অভেদাবলি : $\sin(90^0 - \theta) = \cos\theta$

 $\cos\left(90^0 - \theta\right) = \sin \theta$

 $\sin \theta / \cos \theta = \tan \theta$ $\sin^2 \theta + \cos^2 \theta = 1$

 $\sec^2 \theta - \tan^2 \theta = 1$ $\csc^2 \theta - \cot^2 \theta = 1$

 $\sin 2 \theta = 2 \sin \theta \cos \theta$

 $\cos 2 \theta = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1$

 $\tan (\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$

 $= 1-2 \sin^2 \theta$

 $\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$

 $\cos (\alpha \pm \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$

 $\sin \alpha \pm \sin \beta = 2 \sin \frac{1}{2} (\alpha \pm \beta) \cos \frac{1}{2} (\alpha \mp \beta)$

$$\cos \alpha + \cos \beta$$
$$= 2\cos\frac{1}{2}(\alpha + \beta)\cos\frac{1}{2}(\alpha - \beta)$$
$$\cos \alpha - \cos \beta$$
$$= -2\sin\frac{1}{2}(\alpha + \beta)\sin\frac{1}{2}(\alpha - \beta)$$

দ্বিপদ উপপাদ্য

$$(1 \pm x)^n = 1 \pm \frac{nx}{1!} + \frac{n(n-1)x^2}{2!} + \dots (x^2 < 1)$$

$$(1 \pm x)^{-n} = 1 \mp \frac{nx}{1!} + \frac{n(n+1)x^2}{2!} + \dots + (x^2 < 1)$$

সূচকীয় বিস্তুতি

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

লগারিদমিক বিস্তুতি

$$\ln (1 + x) = x - \frac{1}{2}x^{2} + \frac{1}{3}x^{3} - \dots (|x| < 1)$$

ত্রিকোণমিতিক বিস্তৃতি $(\theta \text{ in radians})$

$$\sin \theta = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \dots$$
$$\cos \theta = 1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \dots$$
$$\tan \theta = \theta + \frac{\theta^3}{3} + \frac{2\theta^5}{15} - \dots$$

ভেক্টরের গুণফল

ধরা যাক, x, y এবং z অভিমুখে i, j এবং k হলো একক ভেক্টর। তাহলে

 $\hat{\mathbf{i}} \cdot \hat{\mathbf{i}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{k}} \cdot \hat{\mathbf{k}} = 1, \ \hat{\mathbf{i}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{k}} = \hat{\mathbf{k}} \cdot \hat{\mathbf{i}} = 0$

 $\hat{\mathbf{i}} \times \hat{\mathbf{i}} = \hat{\mathbf{j}} \times \hat{\mathbf{j}} = \hat{\mathbf{k}} \times \hat{\mathbf{k}} = 0, \ \hat{\mathbf{i}} \times \hat{\mathbf{j}} = \hat{\mathbf{k}}, \ \hat{\mathbf{j}} \times \hat{\mathbf{k}} = \hat{\mathbf{i}}, \ \hat{\mathbf{k}} \times \hat{\mathbf{i}} = \hat{\mathbf{j}}$ $x,\,y$ এবং z অক্ষ বরাবর $a_x,\,a_y$, এবং a_z উপাংশের কোন ভেক্টর \pmb{a} কে লেখা যায়,

$$\mathbf{a} = a_x \hat{\mathbf{i}} + a_y \hat{\mathbf{j}} + a_z \hat{\mathbf{k}}$$

ধরা যাক, **a, b** এবং **c** হলো *a, b* ও *c* মানের স্বেচ্ছাধীন ভেক্টর।

তাহলে, $\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) + (\mathbf{a} \times \mathbf{c})$

 $(sa) \times b = a \times (sb) = s(a \times b)$ (s একটি স্কেলার)

ধরা যাক, a এবং b এর মধ্যবর্তী দুটি কোণের ক্ষুদ্রতরটি heta। তাহলে

 $\mathbf{a.b} = \mathbf{b.a} = a_x b_x + a_y b_y + a_z b_z = ab \cos \theta$

$$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$
$$= \left(a_y b_z - b_y a_z\right) \hat{\mathbf{i}} + \left(a_z b_x - b_z a_x\right) \hat{\mathbf{j}} + \left(a_x b_y - b_x a_y\right) \hat{\mathbf{k}}$$
$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})$$
$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$$

পরিশিষ্ট A6

 $|\mathbf{a} \times \mathbf{b}| = ab \sin \theta$

SI লব্ধ এককসমূহ

পাকনিক বামি	এস. আই. একক			
আফৃতিক রাশি	নাম	প্রতীক		
(ক্ষত্রফল	বর্গ মিটার	m ²		
আয়তন	ঘন মিটার	m ³		
দ্রুতি, গতিবেগ	মিটার প্রতি সেকেন্ড	m/s বা m s-1		
কৌণিক গতিবেগ	রেডিয়ান প্রতি সেকেন্ড	rad/s বা rad s-1		
ত্বরণ	মিটার প্রতি বর্গ সেকেন্ড	m/s² বা m s -2		
কৌণিক ত্বরণ	রেডিয়ান প্রতি বর্গ সেকেন্ড	rad/s² বা rad s-²		
তরজ্ঞা সংখ্যা	প্রতি মিটার	m-1		
ভর ঘনত্ব	কিলোগ্রাম প্রতি ঘন মিটার	kg/m ³ বা kg m ⁻³		
তড়িৎ ঘনত্ব	অ্যাম্পিয়ার প্রতি বর্গ মিটার	A/m ² বা A m ⁻²		
চৌম্বক ক্ষেত্র তীব্রতা, চৌম্বক প্রাবল্য, চৌম্বক ভ্রামক ঘনত্ব	অ্যাম্পিয়ার প্রতি মিটার	A/m বা A m-1		
(পদার্থের প্রিমাণের) গাঢ়ত্ব	মোল প্রতি ঘন মিটার	mol/m ³ বা mol m ⁻³		
আপেক্ষিক আয়তন	ঘন মিটার প্রতি কিলোগ্রাম	m ³ /kg বা m ³ kg ⁻¹		
দীপন প্রাবল্য	ক্যান্ডেলা প্রতি বর্গ মিটার	cd/m ² বা cd m ⁻²		
গতীয় সান্দ্রতা	বর্গমিটার প্রতি সেকেন্ড	m²/s বা m² s-1		
'ভরবেগ	কিলোগ্রাম মিটার প্রতি সেকেন্ড	kg m s ⁻¹		
জাড্য বা জড়তা ভ্ৰামক	কিলোগ্রাম বর্গ মিটার	kg m ²		
চক্রগতির ব্যাসার্ধ	মিটার	m		
রৈখিক / ক্ষেত্র / আয়তন প্রসারণ গুণাঙ্ক	প্রতি কেলভিন	K-1		
প্রবাহের হার	ঘনমিটার প্রতি সেকেন্ড	m ³ s ⁻¹		

A 6.1 SI মূল এককের সাহায্যে প্রকাশিত কিছু লব্ধ একক

		এস আঁ	ই একক	
প্রাকৃতিক রাশি	নাম	প্রতীক	অন্যান্য এককের রাশিমালা	এস আই মূল এককে রাশিমালা
কম্পাঞ্জ	হার্ৎজ	Hz	-	S-1
বল	নিউটন	Ν	-	kg m s ⁻² or kg m/s ²
চাপ, পীড়ন	পাস্ক্যাল	Pa	N/m ² or N m ⁻²	kg m ⁻¹ s ⁻² or kg /s ² m
শক্তি, কার্য, তাপের পরিমাণ	জুল	J	N m	kg m² s-² or kg m²/s²
ক্ষমতা, বিকিরণ প্রবাহ	ওয়াট	W	J/s or J s ⁻¹	kg m² s-³or kg m²/s³
তড়িতের পরিমাণ, তড়িতাধান	কুলম্ব	С	-	A s
তড়িৎ বিভব, বিভব পার্থক্য, তড়িচ্চালক বল	ভোল্ট	V	W/A or W A ⁻¹	kg m ² s ⁻³ A ⁻¹ or kg m ² /s ³ A
ধারকত্ব	ফ্যারাড	F	C/V	A ² s ⁴ kg ⁻¹ m ⁻²
তড়িৎরোধ	ওহম	Ω	V/A	kg m ² s - ³ A- ²
পরিবাহিতা	সিমেন্স	S	A/V	m-2 kg-1 s3 A2
চৌম্বক প্রবাহ	ওয়েবার	Wb	V s or J/A	kg m ² s ⁻² A ⁻¹
চৌম্বক ক্ষেত্র, চৌম্বক প্রবাহ ঘনত্ব, চৌম্বক আবেশ	টেসলা	Т	Wb/m ²	kg s-2 A-1
আবেশাঞ্চ	হেনরি	Н	Wb/A	kg m ² s ⁻² A ⁻²
আলোক প্রবাহ, দীপনশস্তি	লুমেন	lm	-	cd /sr
দীপন মাত্রা	লাক্স	lx	lm/m ²	m ⁻² cd sr ⁻¹
সক্রিয়তা (তেজস্ক্রিয় নিউক্লাইড/তেজস্ক্রিয় উৎস)	বেকারেল	Bq	-	S ⁻¹
শোষণ মাত্রা, শোষণমাত্রা সূচক	(II	Gy	J/kg	m^2/s^2 or $m^2 s^{-2}$

A 6.2 বিশেষ নামে এস আই লব্ধ একক

A 6.3 এস আই একক দ্বারা প্রকাশিত বিশেষ নামের কিছু লব্ধ একক

	এস অ	াই একক	
প্রাকৃতিক রাশি	নাম	প্রতীক	এস আই মূল এককে রাশিমালা
চৌম্বক ভ্রামক	জুল প্রতি টেসলা	J T ⁻¹	m ² A
দ্বিমেরু ভ্রামক	কুলম্ব মিটার	C m	s A m
গতীয় সান্দ্রতা	পয়সিউল্লেস বা পাস্কেল সেকেন্ড বা নিউটন সেকেন্ড প্রতি বর্গমিটার	Plor Pasor Nsm ⁻²	m ⁻¹ kg s ⁻¹
টর্ক, দ্বন্দু, বলের ভ্রামক	নিউটন মিটার	N m	m ² kg s ⁻²
পৃষ্ঠ টান	নিউটন প্রতি মিটার	N/m	kg s ⁻²
ক্ষমতা ঘনত্ব, দীপ্তি, তাপ প্ৰবাহ ঘনত্ব	ওয়ার্ট প্রতি বর্গ মিটার	W/m ²	kg s ⁻³

তাপধারকত্ব, এনট্রপি	জুল প্রতি কেলভিন	J/K	$m^2 kg s^{-2} K^{-1}$
আপেক্ষিক তাপ ধারকত্ব, আপেক্ষিক এনট্রপি	জুল প্রতি কিলোগ্রাম কেলভিন	J/kg K	$m^2 s^2 K^1$
আপেক্ষিক শক্তি, লীন তাপ	জুল প্রতি কিলোগ্রাম	J/kg	$m^2 s^{-2}$
বিকীর্ণ প্রাবল্য	ওয়াট প্রতি স্টেরেডিয়াম	W sr ⁻¹	$kg m^2 s^{-3} sr^{-1}$
তাপীয় পরিবাহিতাজ্ঞ্চ	ওয়াট প্রতি মিটার কেলভিন	$W m^{-1} K^{-1}$	m kg s ⁻³ K ⁻¹
শক্তির ঘনত্ব	জুল প্রতি ঘন মিটার	J/m^3	kg m ⁻¹ s ⁻²
তড়িৎ ক্ষেত্র তীব্রতা	ভোল্ট প্রতি মিটার	V/m	m kg s ³ A ⁻¹
তড়িতাধান ঘনত্ব	কুলম্ব প্রতি ঘন মিটার	C/m ³	m ⁻³ A s
তড়িৎ প্রবাহ ঘনত্ব	কুলম্ব প্রতি বর্গমিটার	C/m ²	m ⁻² A s
তড়িৎ ভেদ্যতা	ফ্যারাড প্রতি মিটার	F/m	$m^{-3} kg^{-1} s^4 A^2$
চৌম্বক ভেদ্যতা	হেনরি প্রতি মিটার	H/m	m kg s ⁻² A ⁻²
মোলার শক্তি	জুল প্রতি মোল	J/mol	m ² kg s ⁻² mol ⁻¹
কৌণিক ভরবেগ	জুল সেকেন্ড	Js	kg m ² s ⁻¹
মোলার এনট্রপি, মোলার আপেক্ষিক তাপ ধারকত্ব	জুল প্রতি মোল কেলভিন	J/mol K	$m^2 kg s^{-2} K^{-1} mol^{-1}$
উদ্ভাসক [Exposure (x-rays and y-rays)]	কুলম্ব প্রতি কিলোগ্রাম	C/kg	kg ⁻¹ s A
শোষণমাত্রা Absorbed dose rate	গ্রে প্রতি সেকেন্ড	Gy/s	$m^2 s^{-3}$
সংনম্যতা	প্রতি পাস্কেল	Pa	$m kg^{-1} s^2$
স্থিতিস্থাপক গুণাঙ্ক	নিউটন প্রতি বর্গ মিটার	N/m^2 or $N m^{-2}$	kg m ⁻¹ s ⁻²
চাপের নতি	পাস্কেল প্রতি মিটার	Pa/m or N m ⁻³	kg m ⁻² s ⁻²
পৃষ্ঠ বিভব	জুল প্রতি কিলোগ্রাম	J/kg or N m/kg	$m^2 s^2$
চাপ শক্তি	পাস্কেল ঘন মিটার	Pa m ³ or N m	kg m ² s ⁻²
বলের ঘাত	নিউটন সেকেন্ড	Ns	kg m s ⁻¹
কৌণিক ঘাত	নিউটন মিটার সেকেন্ড	Nms	kg m ² s ⁻¹
আপেক্ষিক রোধ	ওহম মিটার	Ωm	$kg m^3 s^{-3} A^{-2}$
পৃষ্ঠ শক্তি	জুল প্রতি বর্গ মিটার	J/m ² or N/m	kg s ⁻²

পরিশিশ্ট A7

প্রাকৃতিক বা ভৌত রাশি, রাসায়নিক উপাদান এবং নিউক্লাইডের প্রতীকগুলোর ব্যবহারের জন্য সাধারণ নির্দেশিকা

- প্রাকৃতিক রাশিগুলোর প্রতীক সাধারণত একটি অক্ষর এবং ইতালিয় (হেলানো) ধরনের ছাপা হয়। যদিও দুই অক্ষর বিশিষ্ট প্রতীকগুলোর ক্ষেত্রে এদের প্রতীকগুলোর গুণফল রূপে দেখানো হয়, কিন্তু এক প্রতীককে অন্যান্য প্রতীকগুলো থেকে পৃথক করতে কিছু ব্যবধানের প্রয়োজন হয়।
- ভৌত সমীকরণে সংক্ষেপকরণ অর্থাৎ নাম বা রাশিমালার সংক্ষেপ রূপ, যেমন p.e. স্থিতিশন্তির জন্য ব্যবহার করা হয় না। পাঠ্যবই-এ এই সংক্ষেপকরণগুলিকে প্রচলিত সাধারণভাবে / রোমানে (সোজা) লেখা হয়।
- ভেক্টরগুলিকে বোল্ড এবং স্বাভাবিক ভাবে / রোমানে (সোজা) ছাপানো হয়। যদিও শ্রেণিকক্ষ পরিস্থিতিতে ভেক্টরগুলি প্রতীকের মাথায় একটি তীরচিহ্ন দ্বারা নির্দেশিত করা যেতে পারে।
- দুটি ভৌত রাশির গুণফলকে এদের মধ্যে কিছু স্থান ছেড়ে লেখা হয়। একটি ভৌত রাশিকে অন্য একটি ভৌত রাশি দ্বারা ভাগ করা একটি অনুভূমিক দণ্ড টেনে অথবা দৃঢ় রেখা (solidus), স্ল্যাশ অথবা ছোট তির্যক রেখা (/) দিয়ে নির্দিন্ট করা যেতে পারে। অথবা লব ও হরের প্রথম

214

পরিশিষ্ট

ঘাতের বিপরীতক্রমের গুণফল রূপে লেখা যেতে পারে। এই গুণফলে লব তথা হর স্পষ্টভাবে পার্থক্য করতে উপযুক্ত স্থানে বন্ধনী ব্যবহার করা যায়।

- রাসায়নিক উপাদানগুলোর প্রতীক স্বাভাবিক / রোমানে (সোজা) লেখা হয়। প্রতীকের শেষে বিরাম চিহ্ন বসানো হয় না। উদাহরণ স্বরূপ, Ca, C, H, He, U, ইত্যাদি।
- একটি নিউক্লাইডকে উল্লেখ করতে সংযুক্ত অঙ্কগুলোকে রাখা হয়। বামে নিম্নলিখিত (পারমাণবিক সংখ্যা) এবং শীর্ষে লিখিত (ভরসংখ্যা)।
 উদাহরণস্বরূপ, একটি U-235 নিউক্লাইডকে ²³⁵₉₂ U লিখে প্রকাশ করা হয় (এখানে 235 ভরসংখ্যা এবং 92 পারমাণবিক সংখ্যাকে প্রকাশ করে। U ইউরেনিয়ামের রাসায়নিক চিহ্ন)
- যদি প্রয়োজন হয়, তবে ডানদিকের উপরিলিখিত অবস্থান আয়নীকরণের অবস্থা (আয়নগুলির ক্ষেত্রে) নির্দিষ্ট করতে ব্যবহার করা হয়।
 উদাহরণস্বরুপ, Ca²⁺, PO₄³⁻

পরিশিষ্ট 🗛 8

SI একক, কিছু অন্য একক SI উপসর্গের প্রতীকগুলো ব্যবহারের জন্য সাধারণ পথ নির্দেশক :

- ভৌত রাশিগুলোর এককগুলোর জন্য প্রতীকগুলো স্বাভাবিক / রোমানে (সোজা ধরনের) ছাপা বা লেখা হয়।
- এককগুলোর প্রমাণ এবং অনুমোদিত প্রতীকগুলোকে ছোট অক্ষরে আরম্ভ করে রোমানে (সোজা ধরনের) লেখা হয়। এককগুলোর ছোট নাম যেমন kg, m, s, cd, etc. ইত্যাদি হল প্রতীক, সংক্ষিপ্ত রূপ নয়। এককগুলোর নাম কখনও বড় অক্ষরে লেখা হয় না। যদিও এককের প্রতীককে কেবল তখনই বড় অক্ষরে লেখা হয়, যখন এককের প্রতীকটি কোন বৈজ্ঞানিক নাম দিয়ে উৎপন্ন করা হয়, এই অবস্থায় এককের আরম্ভ বড় রোমান অক্ষর দিয়ে করা হয়।

উদাহরণ স্বরূপ : মিটার (metre) এককের জন্য m, দিন (day) এককের জন্য d, বায়ুমণ্ডলীয় চাপ (atmospheric pressure) এককের জন্য atm, হার্টজ (hertz) এককের জন্য Hz, ওয়েবার (weber) এককের জন্য Wb, জুল (joule) এককের জন্য J, অ্যাম্পিয়ার (ampere) এককের জন্য A, ভোল্ট (volt) এককের জন্য V ইত্যাদি প্রতীকরূপে ব্যবহৃত হয়। এর একমাত্র ব্যত্তিক্রম L, যা লিটার এককের প্রতীক। আরবীয় সংখ্যা l এবং রোমানের ছোট অক্ষর l থেকে বিভ্রান্তি এড়ানোর জন্য এই ব্যতিক্রমটি নেওয়া হয়।

- এককের প্রতীককের অনুমোদিত অক্ষরের শেষে কোন চূড়ান্ত বিরাম চিহ্ন থাকে না এবং কেবলমাত্র একবচন রূপে লেখা হয়, বহু বচনে হয় না। অর্থাৎ কোন এককের প্রতীক বহুবচনে অপরিবর্তিত থাকে। উদাহরণস্বরূপ, 25 সেন্টিমিটার দৈর্ঘ্যের একক 25 cm রূপে লেখা হয়, 25 cms অথবা 25 cm. অথবা 25 cms., ইত্যাদি রূপে লেখা হয় না।
- সলিডাস অর্থাৎ (/) এর ব্যবহারের অনুমোদন করা হয় কেবল এক অক্ষরের এককের প্রতীককে অন্য এককের প্রতীক দ্বারা ভাগ নির্দেশ করতে। একের বেশি সলিডাস ব্যবহার করা যায় না।

উদাহরণ স্বরূপ :

 m/s^2 অথবা $m s^{-2}$ (m এবং s^{-2} এর মধ্যে কিছু স্থান ছেড়ে) লেখা যায় কিন্তু m/s/s লেখা যায় না;

1 Pl =1 N s m⁻² = 1 N s/m² = 1 kg/s m=1 kg m⁻¹ s⁻¹, কিন্তু 1 kg/m/s নয়;

 $J/K \ mol$ অথবা $J \ K^{-1} \ mol^{-1},$ কিন্তু J/K/mol নয়; ইত্যাদি।

 উপসর্গ প্রতীক ও একক প্রতীকের মধ্যে কোন স্থান না ছেড়ে উপসর্গ প্রতীকগুলোর একককে স্বাভাবিক / রোমান (সোজা) ধরনে ছাপা হয়। এভাবে একক প্রতীকগুলির খুব নিকটবর্তী কিছু দশমিক ভগ্নাংশ বা গুণিতক, যখন এটি এতই ছোট হয় বা বড়ো হয়, এমন কি এদের লেখা অসুবিধাজনক হলেও এদের লিখতে কিছু অনুমোদিত উপসর্গ একক প্রয়োগ করা হয়। উদাহরণ স্বরুপ :

মেগাওয়াট (1MW = 10⁶ W); নেনো সেকেন্ড (1 ns = 10⁻⁹ s); সেন্টিমিটার (1 cm = 10⁻² m); পিকো ফ্যারাড (1 pF = 10⁻¹² F);. কিলোমিটার (1 km = 10³ m); মাইক্রোসেকেন্ড (1µs = 10⁻⁶ s); মিলিভোল্ট (1 mV= 10⁻³ V); নিগা হার্টজ (1GHz = 10⁹ Hz); কিলোওয়াট ঘন্টা (1 kW h = 10^3 W h = 3.6 MJ = 3.6×10^6 J); মাইক্রো অ্যাম্পিয়ার (1 μ A = 10^{-6} A); মাইক্রন (1 μ m = 10^{-6} m); অ্যাংস্ট্রম (1 Å=0.1 nm = 10^{-10} m); etc.

একক মাইক্রন যা 10⁻⁶ m এর সমান অর্থাৎ এক মাইক্রোমিটার কেবলমাত্র একটি নাম যা মিটারের উপগুণিতককে সুবিধাজনক করে। একইভাবে একক ফার্মি যা এক ফেস্টোমিটার বা 10⁻¹⁵ m এর সমান, একে নিউক্লিয় অধ্যয়নে দৈর্ঘ্যের সুবিধাজনক একক রুপে ব্যবহার করা হয়। অনুরূপে, একক বার্ন যা 10⁻²⁸ m² এর সমান, একে অব পারমাণবিক কণার সংঘর্ষের প্রস্থচ্ছেদের ক্ষেত্রফলের সুবিধাজনক পরিমাপক রূপে ব্যবহার করা হয়। সে যা হোক, মাইক্রন একককে micrometre এর তুলনায় অধিকতর পছন্দ করা হয়। এর কারণ, micrometre একক এবং micrometer দৈর্ঘ পরিমাপের যন্ত্র, এই বিভ্রান্তি দূর করা হয়। SI এককগুলি মিটার এবং সেকেন্ডের এই নতুন তৈরি গুণিতক বা উপগুণিতকগুলির (cm, km, μm, μs, ns) সংযোজন, এককগুলির অপৃথককরণীয় প্রতীক গঠন করে।

 যখন কোন উপসর্গ কোন এককের প্রতীকের আগে স্থাপন করা হয়, তখন উপসর্গ এবং এককের সংযোজন ঐ এককের একটি নতুন প্রতীকরৃপে গণ্য হয়, যার উপর বন্ধনী ব্যবহার না করে কোন ধনাত্মক বা ঋণাত্মক ঘাতের উন্নীত হতে পারে। সংযুক্ত একক তৈরি করতে এইগুলি অন্য এককগুলির প্রতীকের সঞ্চো সংযুক্ত করা যেতে পারে। সূচকীয় বন্ধনের নিয়মগুলি সাধারণ বীজগণিতের মতো হয় না। উদাহরণ স্বরুপ :

cm³ এর সর্বদা অর্থ (cm)³ = (0.01 m)³ = (10⁻² m)³ = 10⁻⁶ m³, কিন্তু কখন 0.01 m³ বা 10⁻² m³ বা 1cm³ (এখানে উপসর্গ c এবং m³ এর মধ্যে স্থান অর্থহীন হয়, কারণ উপসর্গকে এককের সঙ্গো জোড়া হয়। কোন উপসর্গের কোন ভৌতিক তাৎপর্য অথবা নিজস্ব স্বতন্ত্র অস্তিত্ব থাকে না যতক্ষণ না একে কোন এককের সঙ্গো জোড়া হয়)।

একইভাবে, mA² সর্বদা অর্থ (mA)²= $(0.001A)^2 = (10^{-3} A)^2 = 10^{-6} A^2$, কিন্তু কখনও $0.001 A^2$ বা $10^{-3} A^2$ বা mA² হয় না:

 $1 \text{ cm}^{-1} = (10^{-2} \text{m})^{-1} = 10^2 \text{ m}^{-1}$, কিন্তু 1 cm^{-1} or 10^{-2}m^{-1} হয় না;

 $1\mu s^{-1}$ এর সর্বদা অর্থ $(10^{-6}s)^{-1}$ = $10^6~s^{-1}$, কিন্তু $1 imes 10^{-6}~s^{-1}$ হয় না;

 1 km^2 এর সর্বদা অর্থ (km)² = $(10^3 \text{ m})^2$ = 10^6 m^2 , কিন্তু 10^3 m^2 হয় না;

1mm² এর সর্বদা অর্থ (mm)²=(10⁻³ m)²=10⁻⁶ m², কিন্তু 10⁻³ m² হয় না ইত্যাদি।

 কোন উপসর্গের একা ব্যবহার হয় না। একে সর্বদা কোন একটি এককের প্রতীকের সঙ্গে জোড়া হয় এবং একে এককের প্রতীকের আগে (উপসর্গ) লেখা অথবা জোড়া হয়।

উদাহরণ স্বরুপ :

10³/m³ এর অর্থ 1000/m³ বা 1000 m⁻³, কিন্তু k/m³ or k m⁻³ হয় না। 10⁶/m³ এর অর্থ 10,00,000/m³ বা 10,00,000 m⁻³, কিন্তু M/m³ or M m⁻³ হয় না।

 উপসর্গের প্রতীককে এককের প্রতীকের সঙ্গে মধ্য কোন স্থান না ছেড়ে খুব কাছাকাছি লেখা হয়, যদিও এককগুলির পরস্পরের গুণনের সময় এককগুলোর প্রতীকগুলোর মধ্যে স্থান ছেড়ে পৃথকভাবে লেখা হয়।

উদাহরণ স্বরূপ :

m s⁻¹ (প্রতীকগুলো m এবং s⁻¹, ছোট অক্ষর m এবং s পৃথক এবং স্বতন্ত্র একক প্রতীক যার মধ্যে mমিটারের জন্য এবং s সেকেন্ডের জন্য এবং এদের মধ্যে কিছু স্থান ছেড়ে লেখা হয়) এর অর্থ মিটার প্রতি সেকেন্ড কিন্তু মিলি প্রতি সেকেন্ড হয় না।

একইভাবে, ms⁻¹ [প্রতীক m এবং s পরস্পরের খুব কাছে রেখে লেখা হয় যার মধ্যে উপসর্গ প্রতীক m (উপসর্গ মিলির জন্য) এবং নিম্ন ক্ষেত্রে ছোট অক্ষরের সঙ্গো একক প্রতীক s (একক সেকেন্ডর জন্য) মধ্যে কোন স্থান না ছেড়ে ms কে এক নতুন সংযুক্ত একক তৈরি করে) এর অর্থ প্রতি মিলি সেকেন্ড, মিটার প্রতি সেকেন্ড হয় না।

MS⁻¹ [প্রতীক m এবং S পরস্পরের খুব কাছে রেখে লেখা হয় যার মধ্যে উপসর্গ প্রতীক m (উপসর্গ মিলির জন্য) এবং বড় রোমান অক্ষর S (একক সীমেন্সের জন্য) এর সঙ্গো একক প্রতীক s এর মধ্যে কোন স্থান না ছেড়ে ms কে এক নতুন সংযুক্ত একক তৈরি করে) এর অর্থ প্রতি মিলি সিমেন্স, কিন্তু কখন প্রতি মিলি সেকেন্ড হয় না।

Cm [প্রতীক C এবং m পৃথক পৃথক লেখা। যার একক প্রতীক C (একক কুলম্বের জন্য) এবং m (একক মিটারের জন্য) কে এদের মধ্যে কিছু স্থান ছেড়ে নির্দেশিত করে।] এর অর্থ 'কুলম্ব মিটার', কিন্তু সেন্টিমিটার হয় না।

যখন একটি উপসর্গ সহজলভ্য, তখন দুটি উপসর্গের ব্যবহার বর্জন করা হয়।
 উদাহরণ স্বরপ :

পুনরায় গুরুত্ব আরোপ করা প্রয়োজন যে তোমাদের কেবল আন্তর্জাতিক মান্যতা প্রাপ্ত এবং অনুমোদিত প্রতীকগুলো ব্যবহার করা উচিৎ। যদি তুমি এককের প্রতীক লেখার সাধারণ নিয়ম ও নির্দেশিকা অনুসারে ক্রমাগত ব্যবহার করো তবে তুমি SI একক, উপসর্গ এবং এইগুলো সম্পর্কিত প্রতীকচিহ্নগুলোর উচিত পরিপ্রেক্ষিতে সুনিপুণ ব্যবহারে পটু হয়ে যাবে।

ধারণা দৃষ্টিগোচরে আসে যে ভরের একক গ্রাম (g), যা সঠিক নয়। এরকম বিষম পরিস্থিতি উদ্ভবের কারণ এই যে আমরা ভরের একক কিলোগ্রামের জায়গায় অন্য কোন উপযুক্ত একক প্রতিস্থাপিত করতে পারি না। অতএব, এক ব্যতিক্রম রূপে, ভরের এককের সঙ্গে গুণিতক বা উপগুণিতকের নাম গ্রাম শব্দটির সঙ্গে উপসর্গ জোড়া দিয়ে তৈরি করা হয়, 'কিলোগ্রামের' সঙ্গে নয়। উদাহরণ স্বরুপ :

প্রতীক h (উপসর্গ হেক্টো এবং একক ঘন্টা) c (উপসর্গ সেন্টি এবং একক ক্যারাট), d (উপসর্গ ডেসি এবং একক দিন), T (উপলর্গ টেরা এবং একক টেসলা), a (উপসর্গ অটো এবং একক আর), da (উপসর্গ ডেকা এবং একক ডেসি আর) ইত্যাদি ব্যবহার করার সময় যথেষ্ট পার্থক্য তৈরি করা উচিত। এককগুলির SI পম্বতির ভরের মূল একক কিলোগ্রাম এককগুলির cgs পম্বতির ভরের মূল একক গ্রামের সঙ্গো SI উপসর্গ কিলো একটি গুণক যা 10³এর সমান) কে জোড়া দিয়ে তৈরি হয়, যা দেখতে ব্যতিক্রম মনে হয়। এভাবে যদিও আমরা দৈর্ঘ্যের এককের (মিটার) এক সহস্রাংশকে মিলিমিটার লেখা হয়, ভরের এককের (কিলোগ্রাম) এক সহস্রাংশকে মিলি কিলোগ্রাম লেখা হয় না, বরং কেবল গ্রাম লেখা হয়। একটি অস্পষ্ট

উদাহরণ স্বরূপ : ভৌতরাশি ওজনকে (W) ভর (m) এবং অভিকর্ষজ ত্বরণের (g) এর গুণফল রূপে প্রকাশ করা যায়। একে প্রতীকগুলির পদে ইতালীয় ধরনের (ঢালু) W = mg, রুপে লেখা হয় এবং লেখার সময় m এবং g এর মধ্যে কিছু স্থান ছেড়ে দেওয়া হয়। এই এককগুলি ওয়াট (W), মিটার (m) এবং গ্রাম (g) এককের প্রতীকের সঙ্গো যাতে ভ্রম না হয়। যদিও সমীকরণ W=mg এর মধ্যে প্রতীক W ভারকে ব্যক্ত করে যায় একক প্রতীক J হয়; *m* ভরকে ব্যক্ত করে যার একক প্রতীক kg হয় এবং g অভিকর্ষজ ত্বরণকে ব্যক্ত করে যার একক প্রতীক m/s² হয়। একইভাবে সমীকরণ F = m a এর মধ্যে প্রতীক F বলকে ব্যক্ত করে যার একক প্রতীক N হয়; m ভরকে ব্যক্ত করে যার একক প্রতীক kg এবং a ত্বরণকে ব্যক্ত করে যার একক প্রতীক m/s² ভৌত রাশিগুলি এই এককগুলি ফ্যারাড (F), মিটার (m) এহং আর (a) একক প্রতীকগুলোর সঙ্গে গুলিয়ে যাওয়া উচিত নয়।

- $10^6\,\mathrm{N/m^2}$ কে $\mathrm{N/mm^2}$ লেখার চেয়ে $\mathrm{MN/m^2}$ রূপে লেখা অধিক সুবিধাজনক। যেসব সংখ্যার গুণিতক বা উপগুণিতক 1000 গুণক সন্মিলিত হয় তাদেরকে 10⁺³ⁿ (যেখানে n পুর্ণসংখ্যা) রূপে লেখার অগ্রাধিকার দেওয়া হয়। যখন সমান প্রতীক ভৌত রাশিগুলোতে এবং ভৌত রাশিগুলো এককে ব্যবহার করা হয় তখন অত্যন্ত সাবধানতা নেওয়ার প্রয়োজন পড়ে। .
- উদাহরণ স্বরুপ :

গণনার সরলীকরণে উপসর্গের প্রতীককে এককের প্রতীকের লবের সঙ্গে সংযুক্ত করা হয়, হরের সঙ্গে নয়।

K, ইত্যাদি লেখা হয় না।

লেখা হয় না। জুল প্রতি কিলোগ্রাম কেলভিনকে J/kg K বা J kg⁻¹ K⁻¹ রূপে লেখা হয়, কিন্তু J/kilog K বা joule/kg K বা J/kg kelvin বা J/kilogram

জুল প্রতি টেসলাকে J/T অথবা J T⁻¹ রুপে লেখা হয়, কিন্তু joule/T অথবা J per tesla অথবা J/tesla ইত্যাদি লেখা হয় না। নিউটন মিটার সেকেন্ডকে N m s রুপে লেখা হয়, কিন্তু Newton m second অথবা N m second অথবা N metre s বা newton metre s

উদাহরণ স্বরুপ : জুল প্রতি মোল কেলভিনকে J/mol K অথবা J mol⁻¹ K⁻¹ রূপে লেখা হয়, কিন্তু জুল / মোল K অথবা J/mol kelvin অথবা J/mole K ইত্যাদি লেখা হয় না।

হয়।

.

যখন কোন ভৌত রাশি দুই বা ততোধিক এককের সংযোগে প্রকাশ করা হয়, তখন একক বা প্রতীকগুলোর সংযোগের ব্যবহার কে বর্জন করা

10⁹ W=1 GW (গিগাওয়াট), কিন্তু 1 kMW (কিলো মেগাওয়াট) হয় না, ইত্যাদি।

 10^{-12} F= 1 pF (পিকো ফ্যারাড), কিন্তু $1\mu\mu$ F (মাইক্রো মাইক্রো ফ্যারাড) হয় না,

10⁻⁶m=1µm (মাইক্রন) কিন্তু 1mmm (মিলি মিলি মিটার) হয় না,

10⁻⁹ m = 1nm (ন্যানোমিটার), কিন্তু 1mµm (মিলিমাইক্রো মিটার) হয় না,

10³ kg =1 মেগাগ্রাম (1Mg), কিন্তু 1 কিলোকিলোগ্রাম (1 kkg) হয় না; 10⁻⁶ kg = 1 মিলিগ্রাম (1 mg), কিন্তু 1 মাইক্রো কিলোগ্রাম (1μkg) হয় না; 10⁻³ kg = 1 গ্রাম (1g), কিন্তু 1 মিলি কিলোগ্রাম (1 mkg) হয় না ইত্যাদি।

		প্রাকৃতিক রাশির মাত্রা স্	<u>वि</u> :	
ব্রুমিক নং	প্রাকৃতিক রাশি	অন্যান্য প্রাকৃতিক রাশির সঙ্গে সম্পর্ক	মাত্রা	মাত্রা সূত্র
1.	ক্ষেত্রফল	দৈর্ঘ্য × দৈর্ঘ্য	[L ²]	$[M^0 L^2 T^0]$
2.	আয়তন	দৈর্ঘ্য × প্রস্থ × উচ্চতা	[L ³]	$[M^0 L^3 T^0]$
3.	ভর ঘনত্ব	ভর / আয়তন	[M]/[L ³] or [M L ⁻³]	$[M L^{-3} T^0]$
4.	কম্পাঞ্চ	1/ পর্যায়কাল	1/[T]	$[M^0 L^0 T^{-1}]$
5.	গতিবেগ, দুতি	সরণ / সময়	[L]/[T]	$[M^0LT^{-1}]$
6.	ত্বরণ	গতিবেগ / সময়	[LT ⁻¹]/[T]	[M ⁰ LT ⁻²]
7.	বল	ভর × ত্বরণ	[M][LT ⁻²]	[M LT ⁻²]
8.	বলের ঘাত	বল × সময়	[M LT ⁻²][T]	[M LT ⁻¹]
9.	কৃতকাৰ্য, শক্তি	বল × দূরত্ব	[MLT ⁻²] [L]	[M L2 T2]
10.	ক্ষমতা	কৃতকার্য / সময়	[ML ² T ⁻²]/[T]	$[M L^2 T^3]$
11.	ভরবেগ	ভর × গতিবেগ	[M] [LT ⁻¹]	[M LT ⁻¹]
12.	চাপ, পীড়ন	বল / ক্ষেত্রফল	[M LT ⁻²]/[L ²]	$[ML^{-1}T^{-2}]$
13.	বিকৃতি	<u>মাত্রার পরিবর্তন</u> মূল মাত্রা	[L] / [L] or [L ³] / [L ³]	[M ºLº Tº]
14.	স্থিতিস্থাপক গুণাঞ্চ	পীড়ন / বিকৃতি	$\frac{[ML^{-1}T^{-2}]}{[M^0L^0T^0]}$	$[M L^{-1} T^{-2}]$
15	পৃষ্ঠটান	বল / দৈর্ঘ্য	[MLT ⁻²]/[L]	$[ML^0 T^{-2}]$
16.	পৃষ্ঠশক্তি	শক্তি / ক্ষেত্রফল	$[ML^2 T^2]/[L^2]$	$[ML^0T^{-2}]$
17.	গতিবেগ নতি	গতিবেগ / দূরত্ব	[LT ⁻¹]/[L]	$[M^0L^0T^{-1}]$
18.	চাপ নতি	চাপ / দূরত্ব	[ML ⁻¹ T ⁻²]/[L]	[ML ⁻² T ⁻²]
19.	চাপ শক্তি	চাপ × আয়তন	$[ML^{-1}T^{-2}][L^3]$	$[ML^2 T^{-2}]$
20.	সান্দ্রতা গুণাঞ্চ	বল/ক্ষেত্রফল × গতিবেগের নতি মাত্রা	$\frac{[MLT^{-2}]}{[L^2][LT^{-1} / L]}$	$[ML^{-1}T^{-1}]$
21.	কোণ, কৌণিক সরণ	বৃত্তচাপ / ব্যাসার্ধ	[L]/[L]	$[M^0L^0T^0]$
22.	ত্রিকোণমিতিক অনুপাত (Sinθ, cosθ,tanθ,etc)	দৈর্ঘ্য / দৈর্ঘ্য	[L]/[L]	$[M^0L^0T^0]$
23.	কৌণিক বেগ	কোণ / সময়	[L ⁰]/[T]	$[M^0L^0T^{-1}]$

পবিশিষ্ট A 9

24	কৌণিক ত্বরণ	কৌণিক বেগ / সময়	[T- ¹]/[T]	$[M^0L^0T^{-2}]$
	চকণচিব ব্যাহার্থ	দ্ব\ত	L- 31-3	1
25.	চন্দ্রন্যাতর ব্যাপাব	্ৰ গ গ	[L]	[M ^o LT ^o]
26.	জড়তা ভ্রামক	ভর × (চব্রুগতির ব্যাসার্ধ) ²	[M] [L ²]	$[ML^2 T^0]$
27.	কৌণিক ভরবেগ	জড়তা ভ্রামক × কৌণিক বেগ	$[ML^{2}][T^{-1}]$	[ML ² T ⁻¹]
28.	বলের ভ্রামক, দ্বন্দ্বের ভ্রামক	বল × দূরত্ব	[MLT ²] [L]	[ML ² T ⁻²]
29.	কর্ট	কৌণিক ভরবেগ / সময় বা, বল × দূরত্ব	[ML ² T ⁻¹] / [T] or [MLT ⁻²] [L]	[ML ² T ⁻²]
30.	কৌণিক কম্পাঞ্জ	2π× কম্পাঞ্জ	[T ⁻¹]	$[M^0L^0T^{-1}]$
31.	তরঙ্গ দৈর্ঘ্য	দূরত্ব	[L]	$[M^{\circ}LT^{\circ}]$
32.	হাবল ধ্রুবক	প্রত্যাবর্তন দ্রুতি / দূরত্ব	[LT ⁻¹]/[L]	$[M^0L^0T^{-1}]$
33.	তরজোর প্রাবল্য	(শক্তি / সময়) / ক্ষেত্রফল	$[ML^2 T^2/T]/[L^2]$	[ML ⁰ T ⁻³]
34.	বিকিরণ চাপ	<u>তরঙ্গের প্রাবল্য</u> আলোকের গতিবেগ	[MT ⁻³]/[LT ⁻¹]	$[ML^{-1}T^{-2}]$
35.	শক্তি ঘনত্ব	শক্তি / আয়তন	$[ML^2 T^2]/[L^3]$	$[ML^{-1}T^{-2}]$
36.	সংকট বেগ	<u>রেনোল্ডের সংখ্যা × সান্দ্রতা গুণাঙ্ক</u> ভর ঘনত্ব × ব্যাসার্ধ	$\frac{[M^0L^0T^0][ML^{-1}T^{-1}]}{[ML^{-3}][L]}$	$[M^0LT^{-1}]$
37.	মুক্তি বেগ	(2× অভিকর্যজ ত্বরণ × পৃথিবীর ব্যাসার্ধ) ¹ ⁄2	$[LT^{-2}]^{1/2} \ge [L]^{1/2}$	[M ^o LT ⁻¹]
38.	তাপশস্তি, অভ্যন্তরীণ শস্তি	কৃতকার্য (= বল × দূরত্ব)	[MLT ²][L]	[ML ² T ²]
39.	গতিশক্তি	$(1/2) \times \overline{2} \times (\mathfrak{n})^2$	$[M] [LT^{-1}]^2$	$[ML^2T^2]$
40	স্থিতিশক্তি	¹ / ₂ ভর × অভিকর্ষজ ত্বরণ × উচ্চতা	[M] [LT ⁻²] [L]	[ML ² T ⁻²]
41.	আবর্ত গতিশক্তি	¹ / ₂ × জড়তা স্রামক × (কৌণিক বেগ) ²	$[M^0L^0T^0][ML^2]x[T^{-1}]^2$	[M L2 T2]
42.	দক্ষতা	<u>আউটপুট কৃতকার্য বা শক্তি</u> ইন্পুট কৃতকার্য বা শক্তি	$\frac{[ML^2 T^2]}{[ML^2 T^2]}$	$[M^0L^0T^0]$
43.	কৌণিক ঘাত	টর্ক × সময়	$[ML^2 T^2] [T]$	[M L2 T-1]
44.	মহাকর্যীয় ধ্রুবক	<u>বল × (দূরত্ব)</u> ² ভর × ভর	$\frac{[MLT^{-2}][L^{2}]}{[M] [M]}$	$[M^{-1}L^{3}T^{-2}]$
45.	প্ল্যাঙ্ক ধ্রুবক	শক্তি / কম্পাঞ্চক	$[ML^2 T^2] / [T^{-1}]$	$[ML^2T^{-1}]$

পদার্থবিদ্যা

46. তাপধারকর, এনট্রপি তাপপত্তি / তাপমাত্রা $[ML^3 T^3/[K]]$ $[ML^3 T^3K^4]$ 47. আপেষ্কিক তাপধারকর তাপপত্তি / তর $[ML^3 T^3/[M]]$ $[M^1L^3 T^3K^4]$ 48. নীম তাপ তাপপত্তি / তর $[ML^3 T^3/[M]]$ $[M^1L^3 T^3K^4]$ 48. নীম তাপ তাপপত্তি / তর $[ML^3 T^3/[M]]$ $[M^1L^3 T^3K^4]$ 49. তাগীর প্রারণ গুণাঞ্জ <u>মারার পরিবর্তিন</u> মূল মারা × তাপমারা $[L]/[L][K]]$ $[ML^3 T^3K^4]$ 50. তাগ পরিবরিতিগঞ্জ <u>তাগপত্তি × বেধ</u> (ক্ষরফল × তাপমারা × সময়) $[L]/[L][K]]$ $[ML^3 T^3/]$ 51. আরতন বিকৃতি গুণাঞ্জ বা (সংমন্যাত) ¹¹ <u>তারতন × (চারেণ্ণ পরিবর্তন)</u> $[L^1][ML^*T^-1]]$ $[ML^* T^*]$ 52. অভিবেদ্ধ হরক (গতিবেগ) ⁷ /নাসার্ধ $[L^1][K]$ $[ML^* T^*]$ 53. সিঁটফো র্বক (গতিবেগ) ⁷ /নাসার্ধ $[ML^* T^*]$ $[ML^* T^*]$ 54. তিন র্বক তঙলখারা $[L]/[K]$ $[ML^* T^*]$ $[ML^* T^*]$ 55. বোল্ভেরানা র্বক সরিব্ / তাপমারা $[ML^* T^*]/[K]$ $[ML^* T^*]$ $[ML^* T^*] 57. ততিতাবান ততি হিং সফর [A]/[L]/[M] [ML^* T^*] [ML^* T^*$					
47. আংগষ্কিক তাপধারকল্ব তাপশন্তি ভর × তাপমাত্র। $(ML^2 T^2)(M](K)$ $(M^1L^2 T^2 K^4)$ 48. নীম তাপ তাপশন্তি / ভর $(ML^2 T^2)(M)$ $(M^1L^2 T^2)$ 49. তাগীয় প্রসারণ পূণাক্ষ <u>মারার পরিবর্তন</u> মূল মারা × তাপমাত্র। $(L] (L](K)$ $(M^1L^2 T^2)$ 50. তাগ পরিবহিতাক্ষ <u>ভাগপন্তি × বেধ</u> (ক্ষরফল × তাপমাত্র। × সময়। $(L] (L](K)$ $(ML^* T^*)$ 51. আরতন বিকৃতি গুণাক্ষ বা (সংনমাতা) ⁻¹ আরতন বেকৃতি গুণাক (আরতন পরিবর্তন) $(L^2)(ML^*T^{-2})$ $(ML^* T^*)$ 52. অভিকেন্দ্র হরক (গতিবেগ) ¹ /বাসার্য $(L^2)(ML^*T^{-2})$ $(ML^* T^*)$ 53. স্টিফেন্দ র্ববক (গতিবেগ) ¹ /বাসার্য $(L] (L](K)$ $(M^* LT^*)$ 54. ভীন র্ববক তরজ লের্ব স্বেম (জণমারা) $(L] (K)$ $(M^* LT^*)$ 55. বেল্ৎজমান র্ববক শরি / তাপমারা $(ML^2 T^2)(K)$ $(ML^2 T^2 K^4)$ 55. বেল্ৎজমান র্ববক তরিত ৎবাল (MI ' T^3) $(ML^2 T^2 K^4)$ $mol*1$ 57. ততিতাধান ততি হ সময় $(A) (T)$ $(ML^2 T^2 K^4)$ $mol*1$ 57. ততিতাধান ততি হ ং সময় $(A) (T)$ $(ML^2 T^2 A)$ $(ML^2 T^2 A)$	46.	তাপধারকত্ব, এনট্রপি	তাপশক্তি / তাপমাত্রা	[ML ² T ⁻²]/[K]	[ML ² T ⁻² K ⁻¹]
48. লীন তাপ তাপপরি / তর $[ML^{+}T^{+}]/[M]$ $[M'L^{+}T^{+}]$ 49. তাপীয় প্রসারণ গুণাঞ্জ মারায় পরিবর্তন মুল মারা × তাপমারা $[L]/[L]/[K]$ $[M'L^{+}T^{+}]$ 50. তাপ পরিবাহিতাক্ষ ত্রাপ্রশন্তর শ্রেষ (ক্ষরফল × তাপমারা × সময় $[L]/[L]/[K]$ $[ML^{+}T^{+}]$ 51. আয়তন বিকৃতি গুণাঞ্জ বা (भ:মন্যতা) ⁻¹ আয়তনর পরিবর্তন) $[L^{+}](ML^{+}T^{-1}]$ $[ML^{+}T^{-1}]$ 52. অভিকল্ম হরশ (গতিবেগ) ² /यাসার্ধ $[ML^{+}T^{+}]/[L]$ $[ML^{+}T^{+}]$ 53. স্টিফেন ধ্রবক $(*formation)^{1/}$ (আয়তনের পরিবর্তন) $[L^{+}](T]/[K]$ $[ML^{+}T^{+}]$ 54. ত্তান ধ্রবক তরজা দৈর্ঘ্য তাপমারা $[ML^{+}T^{+}]/[K]$ $[ML^{+}T^{+}]/[K]$ $[ML^{+}T^{+}K^{+}]$ 55. (বালংজমান ধ্রবক তরি / তাপমারা $[ML^{+}T^{+}]/[K]$ $[ML^{+}T^{+}]/[K]$ $[ML^{+}T^{+}]/[K]$ 56. সর্ভলীন গাস ধ্রবক তৃতি × তায়াতন (মাল × তাপমারা $[A](T]$ $[ML^{+}T^{+}]/[L]$ $[ML^{+}T^{+}]/[L]$ 57. তভিতাধান তিছিৎ কেরফেন $[A]/[L]$ $[ML^{+}T^{+}]/[L]$ $[ML^{+}T^{+}]/[A]$ 58. তভিতথোন তভিত হেকে কেরফেন $[A]/[C]/[M] [ML^{+}T^{+}]^{+}] $	47.	আপেক্ষিক তাপধারকত্ব	<u>তাপশক্তি</u> ভর × তাপমাত্রা	[ML ² T ⁻²]/[M] [K]	$[M^{0}L^{2}T^{-2}K^{-1}]$
49. তালীয় প্রসারণ ণুণাঞ্জ মান্রায় পরিবর্তন মূল মারা × তালসারা $[L]/[L][K]$ $[ML^{12}K^{1}]$ 50. তাল পরিবাহিতাঞ্জ ত্রান্সপরিবার্তি × বেধ (ক্ষেত্রযক × তালসারা × সময় বা (সংনমাতা) ⁻¹ $[ML^{12}T^{2}][L]$ ($U]$ (U] (U) (U] (U] (U) (U] (U	48.	লীন তাপ	তাপশক্তি / ভর	$[ML^2 T^2]/[M]$	$[M^0L^2 T^{-2}]$
50. তাপ পরিবাহিতাক্ষ তাপপরি < (ML T * K') (ML T * K') 51. আয়তন বিকৃতি গুণাক্ষ বা (সংনমাতা)- ¹ আয়তনর পরিবর্তন) (আয়তনের পরিবর্তন) $[L'][ML 'T - ^2]$ $[L'] (ML 'T *) 52. অভিকেস্ত্র হরণ (গতিবেগ)²/ব্যাসার্ধ [LL']'[ML 'T - ^2][L'] (ML 'T *) 53. স্টিফেন র্বক (গতিবেগ)²/ব্যাসার্ধ [LL']'[ML 'T - ^2][L'](T][K]' (ML 'T *) 54. ভীন র্বক তরজা দৈর্ঘ × তাপমাত্রা) [L][K] (ML 'T *) 55. বেণ্(জম্যান র্বক শরি / তাপমাত্রা) [ML 'T - ^2][L'][mol][K] (ML 'T *K *] 56. সর্বজনীন গ্যাস র্বক চাপ × আয়তন(মাল × তাপমাত্রা [ML - T - ^2][L][mol][K] [ML 'T - ^2] 57. তড়িতাধান তড়িং কেরফল [A][T] (M^2 L^2 T * A)mol '] 58. তড়িতথান তড়িং কেরফল [A][L'] [M' L ^2 T * A] 59. তোদেন্টজ , তড়িৎবিত্তব,তড়িডালক বল [ML ^2 T - ^2][AT][A] [ML ^2 T - ^3 A^3] 61. শ্রারকত্র তড়িডালা / বিত্র প্রডেন্্ [ML ^2 T - ^3 A^3][L^2][L] [ML ^2 T - ^3 A^3] 62. তড়িৎ রোধাক্ষ বা (তড়িছ$	49.	তাপীয় প্রসারণ গুণাঙ্ক	<u>মাত্রায় পরিবর্তন</u> মূল মাত্রা × তাপমাত্রা	[L] /[L][K]	$[M^0L^0K^{-1}]$
51. पांसछन विकृष्ठि भुषांस्क दा (त्र(नगाण)) ¹ पांसछन ४ (ठाएवत भविवर्छन) (पांसण्टतत भविवर्णन) $[L^1][ML^{-1}T^{-2}]$ $[L^1] [ML^+T^2] 52. जण्डितकख इत्रश (गण्डिवर्ण)2/रागगर्थ [LT^-1]^2/L] [M^0 LT^-] 53. गिंग्रस्म ड्र्वक (पण्डि /एक व्रक्षक × नमंस) ×(जाभग्रावा)4 [ML^2 T^2][L^1](T)[K]^4 [ML^0 T^-]K^+] 54. छीन ड्र्वक उत्रजा रेषर्घ × जाभग्रावा [L][K] (M^1 T^-K^+] 55. तरावए (ब्लग्राम ड्र्वक भषि / जाभग्रावा [ML^+T^-]/[K] [ML^2 T^-K^+] 56. गर्वकनोन गाम ड्र्वक घाम × जाभग्रावा [A][T] [M^1 T^-1]L^2][mol][K] [ML^0 T^-1 K^+] 57. उण्डिजायन उण्डि< भग्रस$	50.	তাপ পরিবাহিতাজ্ঞ	<u>তাপশস্তি × বেধ</u> ক্ষেত্রফল × তাপমাত্রা × সময়	[<u>ML²T²][L]</u> [L ²] [K] [T]	[MLT ⁻³ K ⁻¹]
52. অভিকেন্দ্র ত্বরণ (গতিবেগ) ² /ব্যাসার্ধ [LT ']'/[L] [M ⁶ LT ³] 53. ফিঁফেন ধ্রবক $(*beg / casaster × সময়) \times (oright x) = 1$ $(ML^2 T^2)^2$ $(ML^0 T^3 K^4)$ 54. ভীন ধ্রবক তরাঙ্গ দৈর্ঘ x তাপমাত্রা) ⁴ $[L][K]$ $(M^0 L^7 K]$ 55. বোলংজমান ধ্রবক শক্তি / তাপমাত্রা) $(ML^2 T^2)/[K]$ $(ML^2 T^2 K^4)$ 56. সর্বজনীন গ্যাস ধ্রবক $Di Y \times আয়তন$ (মাল × তাপমাত্রা) $[ML^1 T^2][L]$ (mol] [K] $(ML^2 T^3 K^4)$ mol ⁻¹] 57. তড়িতাধান তড়িং × সময় $[A](T]$ $(M^6 L^2 T^4 A)$ 58. তড়ি হালম্s তড়িং < ক্ষময়	51.	আয়তন বিকৃতি গুণাঞ্চ বা (সংনম্যতা) ⁻¹	<u>আয়তন × (চাপের পরিবর্তন)</u> (আয়তনের পরিবর্তন)	$\frac{[L^3][ML^{-1}T^{-2}]}{[L^3]}$	$[ML^{-1}T^{-2}]$
53. \overline{Po} (2PH 4 474 $(\underline{M'} [\frac{1}{2} / (\underline{m} + \underline{a} + \overline{x} + \overline{x} + \overline{x} + \overline{x}])^{4}}{(\underline{v} + \overline{v} + \overline{x} + \overline$	52.	অভিকেন্দ্র ত্বরণ	(গতিবেগ) ² /ব্যাসার্ধ	$[LT^{-1}]^2 / [L]$	[M ⁰ LT ⁻²]
54. මঁন ধ্রুবক তরঙ্গা দৈর্ঘ্য × তাপমাত্রা [L] [K] [M ⁰ L ⁰ K] 55. বেলিৎজয্যান ধ্রুবক শিস্তি / তাপমাত্রা $[ML^2 T^2]/[K]$ $[ML^2 T^2 K^{-1}]$ 56. সর্বজনীন গ্যাস ধ্রুবক চাপ × আয়তন মোল × তাপমাত্রা $[ML^{-1} T^2][L^3]$ [mol] [K] $[ML^2 T^2 K^{-1}]$ 57. তড়িতাধান তড়িং × সময় [A] [T] $[M^0 L^0 TA]$ 58. তড়িৎযনত্ব তড়িং কেরফল [A] /[L^1] $[M^1 L^2 T^0 A]$ 59. ভোন্টেজ, তড়িৎবিভব, তড়িচ্চালক বল কার্য / তড়িতাধান $[ML^2 T^3 A^{-1}]$ $[ML^2 T^3 A^{-1}]$ 60. রোধ বিত্রব প্রতেদ্দ তড়িৎ প্রবাহ $[ML^2 T^3 A^{-1}]$ $[ML^2 T^3 A^{-1}]$ 61. ধারকত্ব তড়িতাধান / বিতর প্রতেদ্দ তড়ি প্রবাহ $[ML^2 T^3 A^{-1}]$ $[ML^2 T^3 A^{-1}]$ 62. তড়িৎ রোধাজ্ফ বা (ডড়িং পরিবাহিতাজ্ফ)- ¹ তড়িৎবল্ব / তড়িতাধান / বিতর প্রতেদ্দ েদ্র্য্য $[ML^2 T^3 A^{-1}]$ $[ML^3 T^3 A^{-1}]$ 63. তড়িৎব্রবাহ তড়িৎবেল্ব × ক্ষেত্রফ্রন্দ $[MLT^3 A^{-1}][L^2]$ $[ML^3 T^3 A^{-1}]$ 64. তড়িৎব্রবাহ তড়িৎক্ষের × ক্ষেত্রফ্রেল / তড়িতাধান / রেজ্ ফ্রফ্রেল স $[MLT^3 A^{-1}][L^2]$ $[ML^3 T^3 A^{-1}]$	53.	স্টিফেন ধ্রুবক	(শস্তুি /ক্ষেত্রফল × সময়) × (তাপমাত্রা) ⁴	$\frac{[ML^2 T^2]}{[L^2] [T] [K]^4}$	[ML ⁰ T ⁻³ K ⁻⁴]
55. (ताल्<क्षम्प्राग धूतक भष्डि / তाপমাত্রা $[ML^2 T^2]/[K]$ $[ML^2 T^2 K^{-1}]$ 56. সর্বজনীন গ্যাস धूतक $\boxed{DIY \times আয়তন}$ (মাল × তাপমাত্রা $\boxed{[ML^1 T^2][L^1]}$ (mol] [K] $[ML^2 T^2 K^{-1}]$ mol ⁻¹] 57. তড়িতাধান $\boxed{DIY \times আয় on Minis}$ $\boxed{[ML^1 T^2][L^1]}$ (mol] [K] $[ML^2 T^2 K^{-1}]$ mol ⁻¹] 58. তড়িতাধান $\boxed{DIY \times MIR}$ $\boxed{[A][T]}$ $[M^0 L^0 TA]$ 58. তড়িৎঘনত্ব $\boxed{DIY \times MIR}$ $\boxed{[A][L^2]}$ $\boxed{[M^0 L^2 T^0 A]}$ 59. (ভালেন্টজ, তড়িৎবিভব, তড়িৎযালক বল $\boxed{Antif / DIY = Diy}$ $\boxed{[ML^2 T^3 A^{-1}]}$ $\boxed{[ML^2 T^3 A^{-1}]}$ 60. রোধ $\boxed{\frac{1 {1000} 1 2 2 2 (20 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2$	54.	ভীন ধ্রুবক	তরঙ্গা দৈর্ঘ্য × তাপমাত্রা	[L] [K]	$[M^0 LT^0K]$
56. সর্বজনীন গ্যাস ধ্রুবক চাপ × আয়তন (মাল × তাপমাত্রা $[ML^{+}T^{-1}][L^{+}]$ [mol] [K] $[ML^{2} T^{2} K^{-1}$ mol^{+}] 57. তড়িতাধান তড়িৎ × সময় [A] [T] [M ⁰ L ⁰ TA] 58. তড়িৎ ঘনত্ব তড়িৎ কেত্রফল [A] /[L^{2}] [M ⁰ L ⁰ TA] 58. তড়িৎ ঘনত্ব তড়িৎ কেত্রফল [A] /[L^{2}] [M ⁰ L ⁰ T^{4}A] 59. (ভাল্টেজ, তড়িৎবিভব, তড়িফালক বল কার্য / তড়িতাধান [ML ² T ³ A ⁻¹] [ML ² T ³ A ⁻¹] 60. রোধ বিভব প্রভেদ তড়িং প্রবাহ [ML ² T ³ A ⁻¹] [ML ² T ³ A ⁻¹] 61. ধারকত্ব তড়িতাধান / বিভব প্রভেদ তড়িং প্রবাহ [ML ² T ³ A ⁻¹] [M ¹ L ² T ⁴ A ²] 62. তড়িং রোধাঙ্ক বা (তড়িং পরিবাহিতাঙ্ক) ⁻¹ রোধ × ক্ষেত্রফল টের্ন্য [ML ² T ³ A ⁻²] [ML ³ T ³ A ⁻²] 63. তড়িংক্ষেত্র তড়িংবেল / তড়িতাধান [MLT ³ A ⁻¹][L ²] [ML ³ T ³ A ⁻¹] 64. তড়িংপ্রবাহ তড়িংক্ষেত্র×ক্ষেত্রফল [MLT ³ A ⁻¹][L ²] [ML ³ T ³ A ⁻¹]	55.	বোল্ৎজম্যান ধ্রুবক	শক্তি / তাপমাত্রা	$[ML^2 T^2]/[K]$	$[ML^2 T^{-2} K^{-1}]$
57.उष् ष् िण्धेप् प् प् प् प T 	56.	সর্বজনীন গ্যাস ধ্রুবক	<u>চাপ × আয়তন</u> মোল × তাপমাত্রা	[ML ⁻¹ T ⁻²][L ³] [mol] [K]	$[ML^2 T^{-2} K^{-1} mol^{-1}]$
58. उ छि् रिषाय उ छि रिक्स विक्रन [A] /[L ²] [M°L ⁻² T°A] 59. (ডाल्ग्नेज, ठछि रविडव, ठावि ठवे व्याप्य, ठिछेठाथान, ठिछेठाथान, ठिछेठाथान, टिया ट्रा टे [ML ² T ⁻³ A ⁻¹] [ML ² T ⁻³ A ⁻¹] 60. (রাধ विंडव व्याउम छाछि रवाय टिया ट्रा टे [ML ² T ⁻³ A ⁻¹] [ML ² T ⁻³ A ⁻²] 61. ধারকত্ব তিড়ি রোধাজ্ঞ বা (उछि रवाय टिया ट्रा टे তিড়ি তাথান / বিভব প্রভেদ [AT] [M ¹ L ⁻² T ⁴ A ²] 62. তড়ি রোধাজ্ঞ বা (उछि <u>द्राध ४ क्षिवयल</u> टिया ट्रा टे [ML ² T ⁻³ A ⁻²] [ML ³ T ⁻³ A ⁻²] 63. তড়ি ক্ষেব্র তি তিড়ি বেল / তড়িতাথান [MLT ⁻¹ J/[AT] [MLT ⁻³ A ⁻¹] 64. তড়ি ধ্রবাহ তড়ি ক্ষেব্র ফের্ফল [MLT ⁻³ A ⁻¹][L ²]	57.	তড়িতাধান	তড়িৎ × সময়	[A] [T]	[M ^o L ^o TA]
59. (ভা ল্টেজ, ৩ড়িৎবিভব, তিড়িৎবিভব, তিড়িতাধান $[ML^2T^2]/[AT]$ $[ML^2T^3A^{-1}]$ 60. রোধ বিভব প্রডেদ তড়িৎ প্রবাহ $[ML^2T^3A^{-1}]$ $[ML^2T^3A^{-2}]$ 61. ধারকত্ব তড়িতাধান / বিভব প্রডেদ তড়িৎ প্রবাহ $[AT]$ $[ML^2T^3A^{-1}]$ 62. তড়িৎ রোধাঞ্চ্ব বা (তড়িৎ পরিবাহিতাঞ্চ)^1 $\underline{(রাধ × (ফ্কেত্রফল(দর্ঘ্য) [ML^2T^3A^{-2}] [ML^3T^3A^{-2}] 63. তড়িৎক্ষেত্র তড়িৎকেত্র × (ফ্রেরফল(MLT^3A^{-1})[L^2] [MLT^3A^{-1}] [MLT^3A^{-1}] $	58.	তড়িৎঘনত্ব	তড়িৎ ক্ষেত্ৰফল	[A] /[L ²]	$[M^0L^{-2}T^0A]$
60. (রাধ বিভব প্রডেদ তড়িৎ প্রবাহ [ML² T³ A⁻¹] [A] [ML² T³ A⁻²] 61. ধারকত্ব তড়িতাধান / বিভব প্রডেদ [AT] [ML² T³ A⁻¹] [M⁻¹ L⁻² T⁴ A²] 62. তড়িৎ রোধাঞ্চন বা (তড়িং পরিবাহিতাজ্চ)⁻¹ (রোধ × ক্ষেত্রফল টেমর্য্য [ML² T³ A⁻²] [L²]/[L] [ML³ T³ A⁻²] 63. তড়িৎকেত্র তড়িৎবল / তড়িতাধান [MLT²]/[AT] [MLT³ A⁻¹] 64. তড়িৎপ্রবাহ তড়িৎক্ষেত্র × ক্ষেত্রফল [MLT³ A⁻¹][L²] [ML³ T³ A⁻¹]	59.	ভোল্টেজ, তড়িৎবিভব, তড়িচ্চালক বল	কাৰ্য / তড়িতাধান	[ML ² T ²]/[AT]	$[ML^2 T^3 A^{-1}]$
61. **!রকত্ব তড়িতাধান / বিভব প্রভেদ [AT] [M ⁻¹ L ⁻² T ⁴ A ²] 62. তড়িৎ রোধাঞ্জন বা (তড়িৎ রোধ × ক্ষেত্রফল [ML ² T ⁻³ A ⁻¹] [ML ³ T ⁻³ A ⁻²] 63. তড়িৎক্ষেত্র তড়িৎবল / তড়িতাধান [MLT ⁻² T ⁴ A ²] [MLT ⁻³ A ⁻¹] 64. তড়িৎপ্রবাহ তড়িৎক্ষেত্র × ক্ষেত্রফল [MLT ⁻³ A ⁻¹][L ²] [ML ³ T ⁻³ A ⁻¹]	60.	রোধ	<u>বিভব প্রভেদ</u> তড়িৎ প্রবাহ	$\frac{[ML^2 T^3 A^{-1}]}{[A]}$	$[ML^2 T^3 A^2]$
62. 이 ড়ি ৎ রোধাজ্ঞ বা (৩ ড়ি ৎ রোধ × ক্ষেত্রফল ট্রেম্বর্য্য [ML² T⁻³ A⁻²] [L²]/[L] [ML³ T⁻³ A⁻²] 63. ০ ড়ি ৎক্ষেত্র ০ ড়ি ৎবল / ৩ ড়ি তাধান [MLT²]/[AT] [MLT⁻³ A⁻¹] 64. ০ ড়ি ৎপ্রবাহ ০ ড়ি ৎক্ষেত্র × ক্ষেত্রফল [MLT⁻³ A⁻¹][L²] [ML3 T⁻³ A⁻¹]	61.	ধারকত্ব	তড়িতাধান / বিভব প্রভেদ	$\frac{[AT]}{[ML^2 T^3 A^{-1}]}$	$[M^{-1}L^{-2}T^{4}A^{2}]$
63. তড়িৎক্ষেত্র তড়িৎবল / তড়িতাধান [MLT ⁻²]/[AT] [MLT ⁻³ A ⁻¹] 64. তড়িৎপ্রবাহ তড়িৎক্ষেত্র × ক্ষেত্রফল [MLT ⁻³ A ⁻¹][L ²] [ML ³ T ⁻³ A ⁻¹]	62.	তড়িৎ রোধাঙ্ক বা (তড়িৎ পরিবাহিতাঙ্ক) ⁻¹	<u>রোধ × ক্ষেত্রফল</u> দৈর্ঘ্য	[ML ² T ⁻³ A ⁻²] [L ²]/[L]	[ML ³ T ⁻³ A ⁻²]
64. তড়িৎপ্রবাহ তড়িৎক্ষেত্র × ক্ষেত্রফল [MLT ⁻³ A ⁻¹][L ²] [ML ³ T ⁻³ A ⁻¹]	63.	তড়িৎক্ষেত্র	তড়িৎবল / তড়িতাধান	[MLT ⁻²]/[AT]	[MLT ⁻³ A ⁻¹]
	64.	তড়িৎপ্রবাহ	তড়িৎক্ষেত্র × ক্ষেত্রফল	$[MLT^{-3}A^{-1}][L^2]$	[ML ³ T ⁻³ A ⁻¹]

পরিশিষ্ট

65.	তড়িৎ দ্বিমেরু ভ্রামক	টর্ক / তড়িৎক্ষেত্র	$\frac{[ML^2 T^2]}{[MLT^3 A^{-1}]}$	[Mº LTA]
66.	তড়িৎ ক্ষেত্র প্রাবল্য বা তড়িৎ প্রাবল্য	<u>বিভব প্রভেদ</u> দূরত্ব	$\frac{[ML^2 T^3 A^{-1}]}{[L]}$	[MLT ⁻³ A ⁻¹]
67.	চৌম্বক ক্ষেত্র, চৌম্বক প্রবাহ ঘনত্ব, চৌম্বক আবেশ	<u>বল</u> তড়িৎ প্ৰবাহ × দৈৰ্ঘ্য	[MLT ⁻²]/[A] [L]	$[ML^0 T^{-2} A^{-1}]$
68.	চৌম্বক প্রবাহ	চৌম্বক ক্ষেত্র × ক্ষেত্রফল	$[MT^{-2}A^{-2}][L^2]$	$[ML^2 T^{-2} A^{-1}]$
69.	আবেশাঙ্ক	<u>চৌম্বক প্রবাহ</u> তড়িৎ	$\frac{[ML^2 T^2 A^{-1}]}{[A]}$	$[ML^2 T^{-2} A^{-2}]$
70.	চৌম্বক দ্বিমেরু ভ্রামক	টর্ক / চৌম্বক ক্ষেত্র বা তড়িৎ প্রবাহ × ক্ষেত্রফল	[ML ² T ⁻²] / [MT ⁻² A ⁻¹] or [A] [L ²]	$[M^0L^2T^0A]$
71.	চৌম্বক ক্ষেত্র, চৌম্বক প্রাবল্য, চৌম্বক ভ্রামক ঘনত্ব	<u>চৌম্বক ভ্রামক</u> আয়তন	$\frac{[L^2A]}{[L^3]}$	$[M^0L^{-i}T^0A]$
72	(মুক্তস্থানের) তড়িৎ ভেদ্যতা ধ্রুবক	<u>তড়িতাধান × তড়িতাধান</u> 4π তড়িৎ বল × (দূরত্ব) ²	[AT][AT] [MLT ⁻²][L] ²	$[M^{-1}L^{-3}T^4 A^2]$
73.	চৌম্বক ভেদ্যতা ধ্রুবক (মুক্ত স্থানে)	2π <u>× বল × দূরত্ব</u> তড়িৎ প্রবাহ × তড়িৎ প্রবাহ × দৈর্ঘ্য	$\frac{[M^0 L^0 T^0][M L T^{-2}][L]}{[A][A][L]}$	[MLT ⁻² A ⁻²]
74.	প্রতিসারাঙ্ক	শ <u>্রন্যে আলোকের গতিবেগ</u> কোন মাধ্যমে আলোকের গতিবেগ	[LT ⁻¹]/LT ⁻¹]	$[M^0L^0T^0]$
75.	ফ্যারাডে ধ্রুবক	অ্যাভোগাড্রো ধ্রুবক × প্রাথমিক আধান	[AT]/[mol]	$[M^0L^0TA mol^{-1}]$
76.	তরজ্ঞা সংখ্যা	2π / তরঙ্গা দৈর্ঘ্য	$[M^{0}L^{0}T^{0}]/[L]$	$[M^0L^{-1}T^0]$
77.	বিকীৰ্ণ প্ৰবাহ, বিকীৰ্ণ ক্ষমতা	নিঃসৃত শক্তি / সময়	[ML ² T ⁻²]/[T]	[ML ² T ⁻³]
78.	বিকীর্ণ প্রবাহের দীপ্তি বা বিকীর্ণ প্রাবল্য	<u>বিকীর্ণ ক্ষমতা বা উৎসের বিকীর্ণ প্রবাহ</u> ঘনকোণ	$[ML^2T^{-3}] / [M^0L^0T^0]$	$[ML^2 T^3]$
79.	দীপন ক্ষমতা বা উৎসের আলোক প্রবাহ	<u>নিঃসৃত দীপন শক্তি</u> সময়	[ML ² T ⁻²]/[T]	[ML ² T ⁻³]

80.	উৎসের দীপনশক্তি বা দীপন প্রাবল্য	<u>দীপন প্রবাহ</u> ঘনকোণ	$\frac{[ML^2 \ T^{-3}]}{[M^0L^0T^0]}$	[ML ² T ⁻³]
81.	দীপন মাত্রা বা ঔজ্জ্বল্য	<u>দীপন প্রাবল্য</u> (দূরত্ব) ²	[ML ² T ³]/[L ²]	[ML ⁰ T ⁻³]
82.	আপেক্ষিক দীপ্তি	প্রদন্ত তরঙ্গাদৈর্ঘ্যের একটি উৎসের <u>আলোকপ্রবাহ</u> চূড়ান্তসংবেদনশীল তরঙ্গাদৈর্ঘ্যের(555nm) একই ক্ষমতার উৎসের আলোক প্রবাহ	$\frac{[ML^2T^{-1}]}{[ML^2T^{-3}]}$	$[M^0L^0T^0]$
83.	দীপন দক্ষতা	<u>মোট আলোক প্রবাহ</u> মোট বিকিরণ প্রবাহ	$[ML^2 T^3] / [ML^2 T^3]$	$[M^0L^0T^0]$
84.	দীপনমাত্রা	<u>আপতিত আলোক প্রবাহ</u> ক্ষেত্রফল	$[ML^2T^3]/[L^2]$	[ML ⁰ T ⁻³]
85.	ভর ত্রুটি	(কেন্দ্রীয় কণাগুলির ভর — কেন্দ্রকের ভর)	[M]	[ML ⁰ T ⁰]
86.	কেন্দ্রকের বন্ধন শক্তি	ভর ব্রুটি × (শুন্য মাধ্যমে আলোকের গতিবেগ) ²	[M] [L T ⁻¹] ²	$[ML^2 T^{-2}]$
87.	ক্ষয় ধ্রুবক	0.693 / অর্ধজীবন	[T-1]	$[M^0L^0T^{-1}]$
88.	অনুনাদী কম্পাঞ্চ	(আবেশাঞ্চ্ক × ধারকত্ব) ^{1/} 2	$[ML^{2}T^{-2}A^{-2}]^{-\frac{1}{2}}x$ $[M^{-1}L^{-2}T^{4}A^{2}]^{-\frac{1}{2}}$	$[M^0L^0A^0T^{-1}]$
89.	কুন্ডলীর উৎকর্ষ গুণক বা কিউ-গুণক	<u>অনুনাদী কম্পাঙ্ক × আবেশাঙ্ক</u> রোধ	$\frac{[1^{-1}][ML^2T^{-2}A^{-2}]}{[ML^2T^{-3}A^{-2}]}$	[M ^o L ^o T ^o]
90.	লেন্সের ক্ষমতা	(ফোকাস দ্রত্ব) ⁻¹	[L-1]	$[M^0L^{-1}T^0]$
91.	বিবর্ধন	<u>প্রতিবিম্ব দূরত্ব</u> বস্তু দূরত্ব	[L] /[L]	$[M^0L^0T^0]$
92.	প্রবাহী প্রবাহের হার	<u>(</u> π/8 <u>) (চাপ) × (ব্যাসার্ধ)</u> ⁴ (সান্দ্রতা গুণাঙ্ক) × (দৈর্ঘ্য)	$\frac{[ML^{^{-1}}T^{^{-2}}] \ [L^4]}{[ML^{^{-1}}T^{^{-1}}] \ [L]}$	$[M^0L^3T^{-1}]$
93	ধারকীয় প্রতিঘাত	(কৌণিক কম্পাঙ্ক × ধারকত্ব) ⁻¹	$[T^{-1}]^{-1}[M^{-1}L^{-2}T^{4}A^{2}]^{-1}$	$[ML^2 T^{-3} A^{-2}]$
94.	আবেশীয় প্রতিঘাত	(কৌণিক কম্পাঙ্ক × আবেশাঙ্ক)	$[T^{-1}][ML^2 T^{-2} A^{-2}]$	$[ML^2 T^3 A^2]$

উত্তর

দ্বিতীয় অধ্যায়

- **2.1** (a) 10^{-6} ; (b) 1.5×10^{4} ; (c) 5; (d) 11.3, 1.13×10^{4} .
- **2.2** (a) 10^7 ; (b) 10^{-16} ; (c) 3.9×10^4 ; (d) 6.67×10^{-8} .
- **2.5** 500
- **2.6** (c)
- **2.7** 0.035 mm
- **2.9** 94.1
- **2.10** (a) 1; (b) 3; (c) 4; (d) 4; (e) 4; (f) 4.
- **2.11** 8.72 m^2 ; 0.0855 m^3
- **2.12** (a) 2.3 kg; (b) 0.02 g
- **2.13** 13%; 3.8
- 2.14 মাত্রাগতভাবে (b) এবং (c) অশুন্দ্ব। ইঞ্চিাত : ত্রিকোণমিতিক অপেক্ষকের কোণাঙ্ক সব সময়ই মাত্রাহীন হয়।
- 2.15 সঠিক সূত্রটি হল $m = m_0 (1 \upsilon^2 / c^2)^{-1/2}$
- **2.16** $\simeq 3 \times 10^{-7} \, \text{m}^3$
- 2.17 ≅ 10^4 ; গ্যাসে আন্তঃআনবিক দূরত্ব একটি অনুর আকারের চেয়ে অনেক বেশি।
- 2.18 বহুদূরের বস্তু অপেক্ষা কাছের বস্তু দর্শকের চোখে বড় কোণ উৎপন্ন করে। যখন তুমি চলতে শুরু করো, তখন কাছের বস্তু অপেক্ষা দূরের বস্তুর জন্য কৌনিক পরিবর্তন কম হয়। তাই মনে হয় দূরের বস্তুগুলো তোমার সঙ্গে চলছে। কিন্তু কাছের বস্তুগুলোকে মনে হয় তোমার বিপরীত দিকে চলছে।
- $2.19 \simeq 3 \times 10^{16} \, {
 m m}$; যেহেতু দৈর্ঘ্যের একক পারসেক কে সংজ্ঞায়িত করা হয়, 1 পারসেক সমান $3.084 \times 10^{16} \, {
 m m}$.
- **2.20** 1.32 পারসেক; 2.64" (second of arc)
- 2.23 1.4 × 10³ kg m⁻³; সূর্যের ভর ঘনত্ব রয়েছে তরল / কঠিনের ঘনত্ব সীমার মধ্যে, কিন্তু গ্যাসের নয়। এই উচ্চ ঘনত্বের উৎপত্তির কারণ হল সূর্যের অন্তঃস্তরের জন্য বহিঃস্তরের অন্তর্মুখী মহাকর্ষীয় আকর্ষণ।
- **2.24** 1.429×10^5 km

- ইঞ্জিত an heta অবশ্যই মাত্রাহীন। সঠিক সূত্রটি হল $an heta=\upsilon/\upsilon'$ যেখানে υ' হল বৃষ্টিপাতের বেগ। 2.25
- সঠিকতার মান10¹¹ থেকে 10¹² এর 1 অংশ। 2.26

- $\simeq 0.7 imes 10^3 \, {
 m kg} \, {
 m m}^{-3}$ । কঠিন অবস্থায় পরমাণুগুলো শক্তভাবে আটকানো থাকে। তাই পরমাণুর ভর ঘনত্ব কঠিনের ভর 2.27
- ঘনত্বের কাছাকাছি হয়।
- $\simeq 0.3 imes 10^{18} \, {
 m kg} \, {
 m m}^{-3} -$ নিউক্লিয়ার ঘনত্ব পদার্থের পারমাণবিক ঘনত্বের সাধারণত 10^{15} গুণ। 2.28
- $3.84 \times 10^8 \,\mathrm{m}$ 2.29
- 2.30 55.8 km
- 2.8×10^{22} km 2.31
- 3.581 km 2.32
- সংকেত : $e^4/(16 \pi^2 \epsilon_0^2 m_{\rm p} m_{\rm e}^2 c^3 G)$ রাশিটির মাত্রা হল সময়ের মাত্রা। 2.33

তৃতীয় অধ্যায়

- (a), (b)3.1
- 3.2 (a) A....B, (b) A....B, (c) B....A, (d) একই, (e) B....A... একবার
- 3.4 37 s
- 3.5 1000 km/h
- $3.06 \,\mathrm{m \, s^{-2}}$; 11.4 s 3.6
- 1250 m (সংকেত : A-এর সাপেক্ষ B এর গতি বিবেচনা করো) 3.7
- 3.8 1ms⁻² (সংকেত : A-এর সাপেক্ষ B এবং C এর গতি বিবেচনা করো)
- $T = 9 \min$, বেগ = 40 km/h. সংকেত : $\upsilon T / (\upsilon 20) = 18$; $\upsilon T / (\upsilon + 20) = 6$ 3.9
- (a) উল্লম্বভাবে নিম্নাভিমুখী; (b) বেগ শন্য, 9.8 m s^{-2} ত্বরণ নিম্নাভিমুখী (c) x > 0 (উর্ধ্বাভিমুখী এবং নিম্নাভিমুখী গতি) $\upsilon < 0$ 3.10 (ঊর্ধ্বভিমুখী), u>0 (নিম্নাভিমুখী), a>0 সর্বত্র; (d) 44.1 m, 6 s.
- (a) সত্য; (b) মিথ্যা; (c) সত্য (যদি বস্তুকণা একই বেগে সঞ্চো সঙ্গে প্রতিক্ষিপ্ত হয়, এর অর্থ হল ত্বরণ অসীম যা অবাস্তব); 3.11 (d) মিথ্যা (শুধু তখনই সত্য হবে, যখন নির্বাচিত ধণাত্মক দিক বস্তুর গতির দিক বরাবর হবে।)
- (a) 5 km h⁻¹, 5 km h⁻¹; (b) 0, 6 km h⁻¹; (c) $\frac{15}{8}$ km h⁻¹, $\frac{45}{8}$ km h⁻¹ 3.14
- কারণ, যেকোন ক্ষুদ্র সময়ের ব্যবধানের জন্য সরণের মান অতিক্রান্ত পথের দৈর্ঘ্যের সমান হয়। 3.15
- 3.16 চারটি লেখের সবগলোই অসন্তব। (a) একই সময়ে একটি কণার দুটো আলাদা অবস্থান থাকতে পারে না: (b) একই সময়ে একই কণার বেগ দুটি বিপরীত দিকে থাকতে পারে না; (c) দ্রুতি কখনো ঋণাত্মক হবে না; (d) সময়ের সাথে সাথে কোনো বস্তুর মোট পথের দৈর্ঘ্য কখনো হ্রাস পেতে পারে না। (বিঃদ্রঃ লেখচিত্রে তীর চিহ্নগুলো অর্থহীন।)
- না, ভুল। x-t লেখ বস্তুর সঞ্চারপথ প্রদর্শন করে না। উল্লেখ্য তথ্য : একটি বস্তুকে একটি মিনার (tower) থেকে ফেলা হল (x = 3.17 0) যখন t = 0.
- **3.18** 105 m s^{-1}

উত্তর

- 3.19 (a) মসৃণ মেঝেতে থাকা একটি স্থির বলে পদাঘাত (kick) করা হল, এটি একটি দেওয়ালে প্রতিক্ষিপ্ত হলো এবং অপেক্ষাকৃত কম মানের বেগ নিয়ে বিপরীত দিকের একটি দেওয়ালের দিকে অগ্রসর হলো, যা একে থামিয়ে দিল; (b) কিছু প্রাথমিক বেগসম্পন্ন একটি বলকে উপর দিকে ছোড়া হলে বলটি মেঝে থেকে প্রতিক্ষিপ্ত হয়, এবং প্রত্যেকবার প্রতিক্ষেপে এর বেগ কিছুটা হ্রাস পায়।; (c) সুযমভাবে গতিশীল একটি ক্রিকেটবল ব্যাটের দ্বারা আঘাতপ্রাপ্ত হয়ে খুব ক্ষুদ্র সময় অবকাশে উলটো দিকে ফিরে আসে।
- **3.20** $x < 0, \upsilon < 0, a > 0; x > 0, \upsilon > 0, a < 0; x < 0, \upsilon > 0, a > 0.$
- 3.21 3 -এ সর্বাধিক, 2 -এ ন্যূনতম; 1 এবং 2 এর মধ্যে $\upsilon > 0, 3$ -এ $\upsilon < 0$
- 3.22 2 -এ ত্বরণের মান সর্বাধিক; 3 -এ দ্রুতির মান সর্বাধিক; 1, 2 এবং 3-এর মধ্যে $\upsilon > 0$; 1 এবং 3-এর মধ্যেa > 0; 2-এ a < 0, A, B, C, D তে a = 0.
- 3.23 সুষম ত্বরণসম্পন্ন গতির জন্য সময়-অক্ষের সঙ্গে আনত একটি সরলরেখা পাওয়া যায়; সুষম বেগের জন্য সময় অক্ষের সমান্তরাল একটি সরলরেখা পাওয়া যায়।
- **3.24** 10 s, 10 s
- 3.25 (a) 13 km h⁻¹; (b) 5 km h⁻¹; (c) যে কোনো অভিমুখে 20 s, বাবা বা মায়ের যে কোন একজনের পর্যবেক্ষণে যে কোনো অভিমুখে শিশুটির বেগ 9 km h⁻¹; (c) এর উত্তর অপরিবর্তিত থাকবে।
- **3.26** $x_2 x_1 = 15 t$ (রৈখিক অংশ); $x_2 x_1 = 200 + 30 t 5 t^2$ (বরু অংশ)
- **3.27** (a) 60 m, 6 m s⁻¹; (b) 36 m, 9 m s⁻¹
- **3.28** (c), (d), (f)

চতুর্থ অধ্যায়

- 4.1 আয়তন, ভর, দ্রুতি, ঘনত্ব, মৌল সংখ্যা, কৌণিক কম্পাঙ্ক হল স্কেলার রাশি; বাকিগুলো ভেক্টর রাশি।
- 4.2 কাৰ্য, প্ৰবাহ
- 4.3 ঘাত
- 4.4 শুধু (c) এং (d) অনুমোদনযোগ্য
- 4.5 (a) T, (b) F, (c) F, (d) T, (e) T
- 4.6 সংকেত : একটি ত্রিভুজের দুটো বাহুর সমষ্টি (পার্থক্য) কখনো তৃতীয় বাহু অপেক্ষা কম (বেশি) হয় না। সমরৈখিক ভেক্টরের ক্ষেত্রেই সমতা বজায় থাকে।
- 4.7 (a) ছাড়া সকল বিবৃতিই সঠিক।
- 4.8 প্রত্যেক ক্ষেত্রে 400 m; B
- **4.9** (a) O; (b) O; (c) 21.4 km h^{-1}
- 4.10 সরণের মান 1 km এবং প্রাথমিক অভিমুখের সঙ্গো অভিমুখ 60°; মোট পথের দৈর্ঘ্য = 1.5 km (তৃতীয় বাঁকে) শূন্য সরণ ভেক্টর; পথের দৈর্ঘ্য = 3 km (ষষ্ঠ বাঁকে) সরণের মান 866 m। প্রাথমিক অভিমুখের সঙ্গো অভিমুখ কোন 30°, মোট পথের দৈর্ঘ্য = 4 km (অন্টম বাঁকে)
- 4.11 (a) 49.3 km h⁻¹; (b) 21.4 km h⁻¹. না, শুধুমাত্র সরলরৈখিক পথের জন্য গড় দ্রুতি গড়বেগের মানের সমান হয়।
- 4.12 উল্লম্বের সঙ্গে প্রায়18° কোণে দক্ষিণ দিকে।
- 4.13 15 min, 750 m
- **4.14** পূর্ব (প্রায়)
- **4.15** 150.5 m
- 4.16 50m

4.17	9.9 ms ⁻² , কেন্দ্র অভিমুখে ব্যাসার্ধ বরাবর সকল বিন্দুতে
4.18	6.4 g
4.19	(a) মিথ্যা (শুধুমাত্র সুযম বৃত্তিয় গতির জন্য সত্য)
	(b) সত্য, (c) সত্য
4.20	(a) v (t) = $(3.0\hat{\mathbf{i}} - 4.0t\hat{\mathbf{j}}), \ \hat{\mathbf{a}}(t) = -4.0\hat{\mathbf{j}}$
	(b) 8.54 m s ⁻¹ , <i>x</i> অক্ষের সঙ্গে 70°
4.21	(a) 2 s, 24 m, 21.26 m s ^{-1}
4.22	$\sqrt{2}$, x-অক্ষের সঙ্গো 45° ; $\sqrt{2}$, x -অক্ষের সঙ্গো– 45° ; $(5/\sqrt{2}, -1/\sqrt{2})$.
4.23	(b) এবং (e)
4.24	শুধু (e) সত্য
4.25	$182 \mathrm{ms^{-1}}$
4.27	না, ঘূর্ণন সাধারণত ভেক্টরের সঙ্গে সংযুক্ত হতে পারে না।
4.28	সমতল ক্ষেত্রের সঙ্গো একটি ভেক্টর সংযুক্ত হতে পারে।
4.29	না ।
4.30	উল্লম্বের সঙ্গে sin ⁻¹ (1/3) = 19.5° কোণে; 16 km.
4.31	0.86 m s ⁻² , বেগের অভিমুখের সঙ্গে 54.5°

পঞ্জম অধ্যায়

5.1 প্রথম সূত্র অনুসারে (a) থেকে (d) পর্যন্ত কোনো নেট বা কার্যকর বল নেই।

(e) কোনো বল নেই, যেহেতু বস্তুজগৎ থেকে খুব দূরে হওয়ায় এটি শুধু তড়িৎ চুম্বকীয় এবং মহাকর্ষীয় বল সৃষ্টি করে।

- 5.2 প্রতি ক্ষেত্রে বল হল (বায়ুর প্রভাবকে উপেক্ষা করা হয়েছে) উল্লম্বভাবে নিম্নাভিমুখে ক্রিয়াশীল মাধ্যাকর্ষণ বল যার মান 0.5 N এমনকি নুড়িটির গতি উল্লম্বদিক বরাবর না হলেও উত্তরের পরিবর্তন হবে না। সর্বোচ্চ বিন্দুতেও নুড়িটি স্থির নয়। গতির সমস্ত অংশে এর একটি বেগের স্থির মানের একটি অনুভূমিক উপাংশ থাকে।
- 5.3 (a) উল্লম্বভাবে নিম্নাভিমুখে l N (b) একই রকম (a) এর মত
 - (c) (a) এর মত একই রকম : কোনো মুহুর্তের বল সে মুহূর্তের পরিস্থিতির উপর নির্ভর করে। পূর্বের ঘটনার উপর নয়।
 - (d) ট্রেনের গতির অভিমুখে 0.1 N বল।
- **5.4** (i) T

5.6
$$a = 1.5/25 = 0.06 \,\mathrm{m \, s^{-2}}$$

F= 3×0.06 = 0.18 N গতির অভিমুখে।

- 5.7 लग्नि तल = 10 N, $\tan^{-1}(3/4) = 37^{\circ}$ কোণে 8 N तलের অভিমুখের সাথে। লগ্দি বলের অভিমুখে ত্বরণ = 2 m s^{-2}
- **5.8** $a = -2.5 \text{ m s}^{-2}$, মন্দন বল $= 465 \times 2.5 = 1.2 \times 10^3 \text{ N}$
- **5.9** $F 20,000 \times 10 = 20000 \times 5.0$, অর্থাৎ, $F = 3.0 \times 10^5$ N
- **5.10** $a = -20 \text{ m s}^{-2}$ $0 \le t \le 30 \text{ s}$

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

(a)

(b) (c)

(d)

(a) (b)

t = -5 s : $x = u t = -10 \times 5 = -50$ m t = 25 s: $x = u t + (\frac{1}{2}) a t^2 = (10 \times 25 - 10 \times 625)\text{m} = -6 \text{ km}$ t = 100 s : প্রথমে 30 s পর্যন্ত গতি বিবেচনা করো। $x_1 = 10 \times 30 - 10 \times 900 = -8700 \text{ m}$ $t = 30 \text{ s}, v = 10 - 20 \times 30 = -590 \text{ m s}^{-1}$ 30 s থেকে 100 s গতির জন্য x₂=-590 × 70=-41300 m $x = x_1 + x_2 = -50 \text{ km}$ (a) গাঁড়ির বেগ (t = 10 s) = 0 + 2 × 10 = 20 m s⁻¹ প্রথম সূত্র অনুসারে, সর্বত্র বেগের অনুভূমিক উপাংশ হল 20 m s⁻¹ বেগের উল্লম্ব উপাংশ (t = 11s-এ) = $0 + 10 \times 1 = 10 \text{ m s}^{-1}$ t = 11 s , অনুভূমিকের সাথে $\tan^{-1}(\frac{1}{2})$ কোণে প্রস্তরখন্ডের বেগ = $\sqrt{20^2 + 10^2} = \sqrt{500} = 22.4 \ m \ s^{-1}$ (b) উল্লম্বভাবে নিম্নাভিমখি 10 m s⁻² (a) চরম অবস্থানে (extreme position) পিণ্ডের বেগ শূন্য। যদি তারটি (string) কাটা হয়, তাহলে পিঙটি উল্লম্বভাবে নীচের দিকে পডে। (b) মধ্যবর্তী স্থানে পিন্ডের বেগ অনুভূমিক। যাদি তারটি (string) কাটা হয়, তাহলে পিন্ডটি অধিবৃত্তাকার পথে পতিত হয়। স্কেলের পাঠ হলো ব্যক্তি কর্তৃক লিফটের মেঝেতে প্রযুক্ত বলের পরিমাপ। তৃতীয় সত্র অনুসারে এই বল হলো মেঝে কর্তৃক ব্যক্তির উপর প্রযুক্ত বিপরীতমুখী লম্ব বল N - এর সমান। $N = 70 \times 10 = 700 \text{ N}$; পাঠ হলো 70 kg $70 \times 10 - N = 70 \times 5$; পাঠ হলো 35 kg $N - 70 \times 10 = 70 \times 5$; পাঠ হলো 105 kg পাঠ শুন্য হবে; স্কেলের পাঠ শুন্য হবে। $70 \times 10 - N = 70 \times 10;$ পাঠ হল তিনটির প্রতিটি সময় অবকাশেই, ত্বরণ শূন্য এবং সে জন্যই বলও শূন্য। t = 0 ($\overline{\circ}$; 3 kg m s⁻¹ (c) $t = 4 \text{ s} \, \text{a}, -3 \text{ kg m s}^{-1}$ যদি 20 kg ভর টানা হয়, 600 - T = 20 a, T = 10 a $a = 20 \text{ m s}^{-2}$, $T = 200 \, \text{N}$ যদি 10 kg ভর টানা হয়, $a = 20 \text{ m s}^{-2}$, T = 400 N $T - 8 \times 10 = 8 a$, $12 \times 10 - T = 12a$ অর্থাৎ, *a* = 2 m s⁻², *T* = 96 N ভরবেগের সংরক্ষণ সূত্র অনুসারে, মোট চূড়ান্ত ভরবেগ হয় শূন্য। দুটি ভরবেগ ভেক্টর সমান এবং বিপরীতমুখী না হলে এদের সমষ্টি শূন্য ভরবেগ হতে পারে না। প্রতিটি বলের উপর ঘাতের মান = 0.05 ×12 = 0.6 kg m s⁻¹, দুটো ঘাতই পরস্পর বিপরীতমুখী। ভরবেগের সংরক্ষণ সূত্র প্রয়োগ করো: $100 \text{ }_{\mathrm{U}} = 0.02 \times 80$ $v = 0.016 \text{ m s}^{-1} = 1.6 \text{ cm s}^{-1}$ প্রাথমিক এবং অন্তিম অভিমুখের দ্বিখণ্ডক বরাবর ঘাত ক্রিয়াশীল। এর মান হল $0.15 \times 2 \times 15 \times \cos 22.5^{\circ} = 4.2 \text{ kg m s}^{-1}$ $v = 2\pi \times 1.5 \times \frac{40}{60} = 2\pi \,\mathrm{m \, s^{-1}}$

$$T = \frac{mv^2}{R} = \frac{0.25 \times 4\pi^2}{1.5} = 6.6 \,\mathrm{N}$$

$$200 = \frac{mv_{max}^2}{R}$$
, which gives $v_{max} = 35 \,\mathrm{m\,s^{-1}}$

- 5.22 প্রথম সূত্রে অনুসারে, বিকল্প স্বরূপ (b) সঠিক।
- 5.23 (a) শূন্যস্থানে ঘোড়ার গাড়ির উপর কোনো বাহ্যিক বল থাকে না। তৃতীয় সূত্র অনুসারে ঘোড়ার গাড়ি এবং ঘোড়ার মধ্যে পারস্পরিক বল বাতিল হয়ে যায়। মাটিতে থাকলে গাড়ি এবং মাটির মধ্যে সংস্পর্শ বল স্থির অবস্থা থেকে গাড়িটির গতির সৃষ্টি করে।

(b) শরীরের গতি জাড্যের জন্য সিটের সঙ্গে সরাসরি সংযোগ থাকে না।

(c) একটি কোনে বল প্রয়োগ করে ঘাস কাটার যনত্রকে (mower) টানা বা ঠেলা হয়। যখন তুমি যন্ত্রটিকে ধাক্কা দাও তখন উল্লম্ব অভিমুখে সাম্যের জন্য লম্ব বল (N) অবশ্যই যন্ত্রটির ওজনের চেয়ে বেশি হয়। এরফলে ঘর্ষণ বলের মান বেশি হয় (f α N)এবং ফলে যন্ত্রটি চালানোর জন্য বেশি মানের বল পাওয়া যায়। টানার ক্ষেত্রে ঠিক বিপরীতটি ঘটে।

(d) ভরবেগের পরিবর্তনের হার কমানোর জন্য এবং সে সঙ্গো বলটিকে থামাতে প্রয়োজনীয় বল কমানো হয়।

5.24 1 cm s⁻¹ স্থির বেগ সম্পন্ন একটি বস্তু দেওয়াল থেকে x = 0 এবং x = 2 cm তে প্রতি 2 সেকেন্ড পর $0.04 \text{ kg} \times 0.02 \text{ m s}^{-1} = 8 \times 10^{-4} \text{ kg m s}^{-1}$ মানের ঘাত প্রাপ্ত হয়।

5.25 মোট বল =
$$65 \text{ kg} \times 1 \text{ m s}^{-2} = 65 \text{ N}$$

$$a_{max} = m_s g = 2 \,\mathrm{m \, s^{-2}}$$

5.26 বিকল্প (a) সঠিক। বিঃদ্রঃ $mg + T_2 = m\upsilon_2^2/R$; $T_1 - mg = m\upsilon_1^2/R$ তাৎপর্য: পদার্থে ক্রিয়াশীল প্রকৃত বাস্তব বলগুলোর (টান, অভিকর্ষীয় বল ইত্যাদি) দ্বারা সৃষ্ট প্রভাব নিয়ে বিভ্রান্ত হবে না: এই উদাহরণে অভিকেন্দ্রিক বল υ_2^2/R অথবা υ_1^2/R ।

5.27 (a) 'মুক্ত বস্তু' : ক্রু এবং যাত্রী

মেঝে কর্তৃক সংস্থার উপর প্রযুক্ত বল = F ঊর্ধ্বমুখী; সংস্থার ওজন = mg নিম্নাভিমুখী।

∴ *F*-mg = ma *F*-300×10=300×15 *F* = 7.5×10³ N উধ্বস্থী

তৃতীয় সূত্র অনুসারে, ক্রু এবং যাত্রীদের দ্বারা মেঝেতে প্রযুক্ত বল = 7.5 × 10³ N নিম্নাভিমুখী।

(b) 'মুক্ত বস্থু': হেলিকপ্টার, ক্রু এবং যাত্রীগণ

সংস্থার উপর বায়ু কর্তৃক প্রযুক্ত বল = R ঊর্ধ্বমুখী; সংস্থার ওজন = mg নিম্নাভিমুখী।

 $\therefore R - mg = ma$

 $R - 1300 \times 10 = 1300 \times 15$

R = 3.25 × 10⁴ ঊর্ধ্বমুখী।

তৃতীয় সূত্র অনুসারে, বায়ুর উপর হেলিকপ্টার কর্তৃক প্রযুক্ত বল = $3.25 imes 10^4$ N নিম্নাভিমুখী।

(c) 3.25 × 10⁴ N ঊর্ধ্বাভিমুখী।

5.28 প্রতি সেকেন্ডে দেওয়ালে আঘাতকারী জলের ভর

 $= 10^{3} \text{ kg m}^{-3} \times 10^{-2} \text{ m}^{2} \times 15 \text{ m s}^{-1} = 150 \text{ kg s}^{-1}$

দেওয়াল কর্তৃক প্রযুক্ত বল = প্রতি সেকেন্ডে জল কর্তৃক ব্যয়িত ভরবেগ = $150~{
m kg~s^{-1}} imes ~15~{
m m~s^{-1}}$ = $2.25 imes 10^3~{
m N}$

 5.29
 (a) 3 m g (নিম্নগামী)
 (b) 3 m g (নিম্নগামী)
 (c) 4 m g (উধ্বর্গামী)

5.30 যদি ডানার উপর লম্ব বল N হয়

$$N\cos\theta = mg, \qquad N\sin\theta = \frac{mv^2}{R}$$

যা থেকে পাওয়া যায় $R = \frac{v^2}{g \tan \theta} = \frac{200 \times 200}{10 \times \tan 15^\circ} = 15 \text{ km}$

5.31 চাকার উঁচু পার্শ্বে রেল দ্বারা প্রযুক্ত পার্শ্বচাপ কেন্দ্রাভিমুখী বলের যোগান দেয়। তৃতীয় সূত্র অনুসারে ট্রেনটিও সমান এবং বিপরীত ঘাতবল প্রয়োগ করে, যার ফলস্বরূপ এটি ক্ষয়প্রাপ্ত হয়।

ব্যাংকিং কোণ =
$$\tan^{-1}\left(\frac{v^2}{R g}\right) = \tan^{-1}\left(\frac{15 \times 15}{30 \times 10}\right) = 37^{\circ}$$

5.32 সাম্য অবস্থায় লোকটির উপর ক্রিয়াশীল বলগুলো বিবেচনা করো : লোকটির ওজন, দড়ির জন্য বল এবং মেঝের জন্য ক্রিয়াশীল লম্ব বল।

(a) 750 N (b) 250 N; mode (b) টি গ্রহণযোগ্য।

- **5.33** (a) $T 400 = 240, \quad T = 640 \text{ N}$
 - (b) 400 T = 160, T = 240 N
 - (c) T = 400 N
 - (d) T = 0
 - (a) -তে দড়িটি ছিঁড়ে যাবে।
- 5.34 দুটি বস্তু A এবং B এর মধ্যে সংযোগ নিখুঁত এবং প্রাচীরটি দৃঢ় ধরে নিই। সেক্ষেত্রে B এর উপর প্রাচীর দ্বারা (প্রতিক্রিয়া) প্রযুক্ত স্ব-নিয়ন্ত্রক লম্ব বলের মান হয় 200 N। এক্ষেত্রে কোনো সম্ভাব্য গতি এবং ঘর্ষণ নেই। এক্ষেত্রে A এবং B এর মধ্যে ক্রিয়া প্রতিক্রিয়া বলও 200 N। যখন প্রাচীরটি সরিয়ে নেওয়া হয় তখন গতীয় ঘর্ষণ ক্রিয়াশীল হয়।

A + B এর ত্বরণ = [$200 - (150 \times 0.15)$] / $15 = 11.8 \text{ m s}^{-2}$

A তে ঘৰ্ষণ = 0.15 × 50 = 7.5 N

 $200 - 7.5 - F_{AB} = 5 \times 11.8$

 $F_{\rm AB} = 1.3 imes 10^2 \, {
m N}; \,$ গতির বিপরীতে।

- $F_{\rm BA} = 1.3 \times 10^2 \, {
 m N};$ গতির দিকে।
- 5.35 (a) ট্রলি এবং ব্লকের মধ্যে সম্ভাব্য (impending) আপেক্ষিক গতি প্রতিরোধক সর্বোচ্চ ঘর্ষণ বলের মান = 150 × 0.18 = 27 N যা বাক্সসহিত ট্রলিটিকে ত্বরান্বিত করতে প্রয়োজনীয় ঘর্ষণ বল 15 × 0.5 = 7.5 N এর চেয়ে বেশি। যখন ট্রলিটি সুষম বেগ নিয়ে চলতে শুরু করে, তখন ব্লকের উপর কোনো ঘর্ষণ বল ক্রিয়াশীল থাকে না।

(b) দর্শকের সাপেক্ষে বাক্সটি যখন স্থির থাকে, ত্বরিত (accelerated) (অজড়ত্বীয়) পর্যবেক্ষকের জন্য ঘর্ষণ বল একই মানের অলীক বল দ্বারা বাধাপ্রাপ্ত হয়। যখন ট্রলিটি সুষম বেগ নিয়ে চলতে থাকে সেক্ষেত্রে গতিশীল (জড়ত্বীয়) দর্শকের জন্য কোনো ঘর্ষণ এবং অলীক বল থাকে না।

5.36 ঘর্ষণের জন্য বাক্সের ত্বরণ =μg = 0.15 × 10 = 1.5 m s⁻² । কিন্তু ট্রাকের ত্বরণ অধিক ৷ ট্রাকের সাপেক্ষে পশ্চাৎপ্রান্ত অভিমুখী বাক্সটির ত্বরণ হল 0.5 m s⁻² । ট্রাক থেকে পড়ে যেতে বাক্সটির সময় লাগে = √(2×5)/(0.5) = √20 s · এ সময়ে ট্রাকটির দ্বারা অতিক্রান্ত দূরত্ব = ½ × 2 × 20 = 20 m.

- 5.38 সর্বোচ্চ বিন্দুতে, N + mg = mv²/R যেখানে N হলো কক্ষের (death well) ছাদ থেকে মোটর সাইকেল আরোহীর উপর লম্ব বল (নিম্নাভিমুখী)। সর্বোচ্চ বিন্দুতে সম্ভাব্য সর্বনিম্ন বেগের ক্ষেত্রে N = 0 হয়। অর্থাৎ v_{min} = √Rg = √25×10 = 16 m s⁻¹
- 5.39 দেওয়াল কর্তৃক প্রযুক্ত অনুভূমিক বল N লোকটিকে প্রয়োজনীয় কেন্দ্রাভিমুখী বলের যোগান দেয় : N = m R ω²। ঘর্ষণ বল f (উল্লম্বভাবে ঊধ্বর্মুখী) ওজন mg-কে প্রতিরোধ করে। মেঝে সরিয়ে নিলেও লোকটি দেওয়ালের সঙ্গো আটকে থাকবে যদি mg = f < μ N অর্থাৎ mg < μ m R ω² হয়। আবর্তনের জন্য চোঙের (cylinder) ন্যূনতম কৌণিক বেগ, ω_{min} = $\sqrt{g/\mu R}$ = 5 s⁻¹
- 5.40 যখন বৃত্তের কেন্দ্র এবং পুতির সংযোগকারী সরলরেখা উল্লম্ব নিম্নাভিমুখী রেখার সঙ্গে θ কোণ উৎপন্ন করে তখনকার পুতির একটি মুক্ত চিত্র লও। এক্ষেত্রে, $mg = N \cos \theta$ এবং $m R \sin \theta \ \omega^2 = N \sin \theta$ । এ সমীকরণগুলো থেকে পাওয়া যায়, $\cos \theta = g/R\omega^2$. যেহেতু $\cos \theta \le 1$, $\omega \le \sqrt{\frac{g}{R}}$ এর জন্য পুতিটি তার সর্বনিম্ন বিন্দুর অবস্থানে থাকে। $\omega = \sqrt{\frac{2g}{R}}$ এরজন্য $\cos \theta = \frac{1}{2}$ অর্থাৎ $\theta = 60^0$

ষষ্ঠ অধ্যায়

- 6.1 (a) ধনাত্মক (b) ঋণাত্মক (c) ঋণাত্মক (d) ধনাত্মক (e) ঋণাত্মক
- 6.2
 (a) 882 J ; (b) -247 J; (c) 635 J ; (d) 635 J;

 কোনো বস্তুর উপর ক্রিয়াশীল মোট বল দ্বারা কৃতকার্যের মান গতিশক্তির পরিবর্তনের সমান।
- 6.3 (a) x > a; 0 (c) $x < a, x > b; -V_1$ (b) $-\infty < x < \infty; V_1$ (d) $-b/2 < x < -a/2, a/2 < x < b/2; -V_1$
- 6.5 (a) রকেট; (b) সংরক্ষী বলের বেলায় একটি পথ বরাবর কৃতকার্যের মান হল স্থিতিশক্তির পরিবর্তনের ঋণাত্মক মান। সম্পূর্ণ কক্ষপথে স্থিতিশক্তির কোনো পরিবর্তন নেই; (c) গতিশক্তি বৃদ্ধি পায়, কিন্তু স্থিতিশক্তি হ্রাস পায় এবং মোট শক্তির মান ঘর্ষণের জন্য হ্রাস পায়; (d) দ্বিতীয় ক্ষেত্রে।
- 6.6 (a) হ্রাস পায়; (b) গতিশক্তি; (c) বাহ্যিক বল; (d) মোট রৈখিক ভরবেগ এবং মোট শক্তিও (যদি দুটি বস্তু দ্বারা গঠিত সংস্থাটি স্বতন্ত্র থাকে)।
- 6.7 (a) মিথ্যা; (b) মিথ্যা; (c) মিথ্যা; (d) মিথ্যা (সাধারণত সত্য কিন্তু সর্বদা নয়, কেন?)
- 6.8 (a) না
 - (b) হাঁ
 - (c) অস্থিতিস্থাপক সংঘর্ষে রৈখিক ভরবেগ সংরক্ষিত থাকে, সংঘাত শেষ হওয়ার পরও অবশ্যই গতিশস্তি সংরক্ষিত থাকে না।
 - (d) স্থিতিস্থাপক
- **6.9** (b) *t*

6.10	(c) $t^{3/2}$
6.11	12 J
6.12	ইলেকট্রনিক অধিক দ্রুতগতি সম্পন্ন, $\upsilon_{_{\!P}}^{}/\upsilon_{_{\!P}}^{}=13.5$
6.13	প্রতি অর্ধচক্রে 0.082 J; — 0.163 J
6.14	হ্যাঁ, অণুগুলোর ভরবেগ + দেয়াল সংস্থার ভরবেগ সংরক্ষিত থাকে। দেয়ালের প্রতিক্ষেপ ভরবেগ থাকে যেখানে শুরুতে দেয়ালকে স্থির ধরে নিয়ে দেয়ালের ভরবেগ + বাহির হয়ে যাওয়া অণুগুলোর ভরবেগের মান অভ্যন্তরে প্রবেশকারী অণুগুলোর ভরবেগের মানের সমান হয়। যদিও প্রতিক্ষেপ ভরবেগ খুব সামান্য পরিমাণ গতিবেগ সৃষ্টি করে কারণ দেয়ালের ভর অত্যন্ত বেশি। যেহেতু গতিশক্তিও সংরক্ষিত থাকে, তাই সংঘাত হল স্থিতিস্থাপক।
6.15	43.6 kW
6.16	(b)
6.17	এটা তার সম্পূর্ণ ভরবেগ টেবিলের উপর থাকা গোলকে দিয়ে দেয় এবং গোলকটি একদমই উপরে উঠে না।
6.18	$5.3 \mathrm{m s^{-1}}$
6.19	$27~{ m km}~{ m h}^{-1}$ (দুতির কোনো পরিবর্তন হবে না)
6.20	50 J
6.21	(a) $m = \rho A v t$ (b) $K = \rho A v^3 t / 2$ (c) $P = 4.5 \text{ kW}$
6.22	(a) 49,000 J (b) $6.45 \ 10^{-3} \text{kg}$
6.23	(a) 200 m² (b) 14m × 14m. মাত্রার একটি বড়ো বাড়ির ছাঁদের সঙ্গে তুলনীয়।
6.24	21.2 cm, 28.5 J
6.25	না, খাড়া নততলে থাকা পাথরটি আগে নীচে পৌঁছাবে; হাঁা, তারা একই দ্রুতি ৩তে পৌঁছে। [যেহেতু mgh =(1/2) m ৩ ²]
6.26	$\upsilon_B = \upsilon_C = 14.1 \text{ m s}^{-1}$, $t_B = 2\sqrt{2} \text{ s}$, $t_C = 2\sqrt{2} \text{ s}$ 0.125
6.27	দু-ক্ষেত্রেই 8.82 J
6.28	শুরুতে শিশুটি ট্রলিটিতে একটি ঘাত প্রয়োগ করবে, তারপর ট্রলির নতুন বেগের স্বাপেক্ষে 4 m s ⁻¹ স্থির মানের আপেক্ষিক বেগ নিয়ে দৌডায়। বাইরে থাকা একজন পর্যবেক্ষকের জন্য ভরবেগের সংরক্ষণ প্রয়োগ করো। 10-36 m s ⁻¹ -25-9 m
6.29	(V) নং বাদে বাকি সবগুলো অসন্তব।
	সপ্তম অধ্যায়
7.1	প্রত্যেকটির জ্যামিতিক কেন্দ্রে। না, ভরকেন্দ্র বস্তুটির উপাদানের বাইরে থাকতে পারে, যেমন, একটি রিং এর ক্ষেত্রে, একটি ফাঁপা গোলক, একটি ফাঁপা চোঙ, একটি ফাঁপা ঘনক প্রভৃতি।
7.2	H এবং C1 নিউক্লিয়াসের সংযোজক রেখার উপর H প্রান্ত থেকে 1.24 Å দূরত্বে অবস্থিত।
7.3	সংস্থাটির (ট্রলি + শিশু) ভরকেন্দ্রের দ্রুতি অপরিবর্তিত (৩ এর সমান) থাকবে, কারণ সংস্থার উপর কোনো বাহ্যিক বল ক্রিয়া করছে না।ট্রলিটি চলার সঙ্গে যুক্ত বলগুলো হল সংস্থাটির অভ্যন্তরীণ বল।
7.6	$l_{z} = xp_{y} - yp_{x}, \ l_{x} = yp_{z} - zp_{y}, \ l_{y} = zp_{x} - xp_{z}$
7.8	72 cm
7.9	প্রত্যেকটি সামনের চাকায় 3675 N প্রতিটি পেছনের চাকায় 5145 N.

7.10 (a) $7/5 \text{ MR}^2$ (b) $3/2 \text{ MR}^2$

7.11	গৌলক
7.12	গতিশক্তি = 3125 J; কৌণিক ভরবেগ = 62.5 J s
7.13	(a) 100 rev/min (কৌণিক ভরবেগের সংরক্ষণ ব্যবহার করো)
	(b) নতুন গতিশক্তিটি ঘূর্ণনের প্রাথমিক গতিশক্তির 2.5 গুণ। শিশুটি তার আবর্তন জনিত গতিশক্তি বৃদ্ধির জন্য অভ্যন্তরীণ শক্তির ব্যবহার করছে।
7.14	$25 \text{ s}^{-2}; 10 \text{ m s}^{-2}$
7.15	36 kW
7.16	কর্তিত অংশের কেন্দ্রের বিপরীতে মূল ডিস্কের কেন্দ্র থেকে R/6 দূরত্বে।
7.17	66.0 g
7.18	(a) হাঁা; (b) হাঁা, (c) ক্ষুদ্রতর নতির তলটি (যেহেতু a ∞ sin θ)
7.19	4J
7.20	$6.75 \times 10^{12} rad s^{-1}$
7.21	(a) 3.8 m (b) 3.0 s
7.22	টান = 98 N, $N_B = 245$ N, $N_C = 147$ N.
7.23	(a) 59 rev/min, (b) না, গতিশক্তির বৃদ্ধি হয় এবং এটি ব্যক্তি কর্তৃক কৃতকার্য থেকে আসে।
7.24	0.625 rad s ⁻¹
7.27	(a) কৌণিক ভরবেগের সংরক্ষণের সাহায্যে, সাধারণ কৌণিক দ্রুতি
	$\omega = (I_1 \omega_1 + I_2 \omega_2) / (I_1 + I_2)$
	(b) স্পর্শজনিত ঘর্ষণে শক্তির অপচয়ের জন্যই এই ক্ষয় (অপচয়) যা দুটি ডিস্ককে একটি সাধারণ কৌণিক বেগ យ তে নিয়ে আসে। যাহোক, যেহেতু ঘর্ষণজনিত টর্কগুলো সংস্থার অভ্যন্তরীণ বিষয়, কৌণিক ভরবেগ অপরিবর্তিত থাকবে।
7.28	A এর বেগ = $\omega_{_0}R$ এর অভিমুখ তীর চিহ্নের দিকেই; B এর বেগ = $\omega_{_0}R$ এর অভিমুখ তীর চিহ্নের বিপরীত দিকে; C এর বেগ = $\omega_{_0}R/2$ এর অভিমুখ তীর চিহ্নের দিকে। ডিস্কটি একটি ঘর্ষণহীন তলে গড়াবে না।
7.29	(a) B বিন্দুতে ঘর্ষণজনিত বল B এর বেগকে বাধা দেয়। অতএব, ঘর্ষণজনিত বলের অভিমুখ এবং তীরচিহ্নটি একই অভিমুখে। ঘর্ষণজনিত টর্কের ধারণা এমন যে কৌণিক গতিকে বাধা দেয়। 0 , এবং r উভেয়েই কাগজেরতলে লম্ব, প্রথমটি কাগজের তলের দিকে এবং দ্বিতীয়টি কাগজের তল থেকে বের হয়ে আসছে।
	(b) ঘর্ষণজনিত বল স্পর্শ বিন্দু B এর বেগকে কমিয়ে দেয়। যখন বেগটি শূন্য হয় তবে যথার্থ গড়িয়ে পড়াটি ঘটে। একবার যখন এমনটি হয়, ঘর্ষণজনিত বলটি শূন্য হয়।
7.30	ঘর্ষণ বল ভরকেন্দ্রটির প্রারম্ভিক শূন্য বেগ থেকে ত্বরণ সৃষ্টি করে। ঘর্ষণজনিত টর্ক প্রারম্ভিক কৌণিক দ্রুতি ωু তে মন্দন সৃষ্টি করে। গতীয় সমীকরণগুলো হল :- μ _k m g = m a এবং μ _k m g R = – Iα, যেটি উৎপন্ন করে υ = μ _k g t, ω = ω ₀ – μ _k m g R t/I. গড়ানো শুরু হয় যখন υ = R ω। একটি রিং এর জন্য I = m R ² এবং গড়ানো শুরু হয় যখন t = ω ₀ R/2 μ _k g. একটি ডিস্কের জন্য, I = ½ m R ² এবং গড়ানো শুরু হয় t = R ω ₀ /3 μ _k g । এভাবে একই R এবং ω ₀ এর জন্য ডিস্কটি, রিংটি অপেক্ষা আগে গড়াতে শুরু করবে। R = 10 cm, ω ₀ = 10 π rad s ⁻¹ , μ _k = 0.2 এর জন্য সঠিক সময় পাওয়া যাবে।

উত্তর

(b) শ্বন্য

- (c) 37° (প্রায়)

অস্টম অধ্যায়

- 8.1 (a) না
 - (b) হ্যাঁ, যদি তার পক্ষে g এর পরিবর্তন সনাস্তু করার জন্য মহাকাশ যানের আয়তন যথেষ্ট বড়ো হয়।
 - (c) জোয়ারের প্রভাব, অসদৃশ্য বলের দূরত্বের ত্রিঘাতের সঙ্গে ব্যস্তানুপাতিক, যা দূরত্বের বর্গের উপর ব্যস্তানুপাতিক।
- (a) হ্রাস পাচ্ছে; (b) হ্রাস পাচ্ছে; (c) বস্তুটির ভর; (d) অধিক 8.2
- 8.3 0.63 গুণক দ্বারা ছোটো
- 3.54 × 10⁸ বৎসর 8.5
- (a) গতিশক্তি (b) কম 8.6
- 8.7 (a) না (b) না (c) না (d) হাঁ

[মুক্তিবেগ বস্তুটির ভর এবং প্রক্ষেপ অভিমুখ নিরপেক্ষ। বস্তুটি যে বিন্দু থেকে উৎক্ষিপ্ত হয়েছে সেই বিন্দুর অভিকর্ষীয় স্থিতিশক্তির উপর নির্ভর করে। যেহেতু এই স্থিতিশক্তি সামান্যভাবে অক্ষাংশ এবং ঐ বিন্দুর উচ্চতার উপর নির্ভর করে, তাই মুক্তিবেগ ঐসব বিষয়ের উপর সামান্যভাবে নির্ভর করে।]

- কৌণিক ভরবেগ এবং মোট শস্তি ছাড়া একটি কক্ষপথে সব রাশিগুলো পরিবর্তিত হয়। 8.8
- 8.9 (b), (c) এবং (d)
- 8.10 এবং 8.11 এ দুটো সমস্যার জন্য অর্ধগোলকটিকে গোলকে পরিণত করো। P এবং C উভয় বিন্দুতে স্থিতিশক্তি ধ্রুবক এবং তীব্রতা = 0. অতএব, অর্ধ গোলকটির জন্য (c) এবং (e) ঠিক।

- $2.6 \times 10^8 \,\mathrm{m}$ 8.12
- $2.0 \times 10^{30} \, \text{kg}$ 8.13
- $1.43\times 10^{12}\,m$ 8.14
- 28 N 8.15
- 125 N 8.16
- পৃথিবীর কেন্দ্র থেকে $8.0 imes 10^6 \, \mathrm{m}$ 8.17
- 8.18 31.7 km/s
- $5.9 \times 10^9 \,\mathrm{J}$ 8.19

- **8.20** $2.6 \times 10^6 \,\mathrm{m/s}$
- 8.21 0, 2.7 × 10⁻⁸ J/kg; একটি অস্থির সাম্যের মধ্যবিন্দুতে একটি বস্তুকে রাখা হয়েছে।
- **8.22** $-9.4 \times 10^{6} \text{ J/kg}$
- 8.23 $GM/R^2 = 2.3 \times 10^{12} \text{ m s}^{-2}$, $\omega^2 R = 1.1 \times 10^6 \text{ m s}^{-2}$; এখানে ω হল আবর্তনের কৌণিক দ্রুতি। এভাবে তারাটির ঘূর্ণায়মান ফ্রেমে, অন্তর্মুখী বলটি, এর বিষুবরেখায় বহির্মুখী অপকেন্দ্র বল অপেক্ষা অনেক বেশি। বস্তুটি আটকে থাকবে (অপকেন্দ্র বলের জন্য ছিটকে যাবে না) লক্ষ্যকরো, যদি ঘূর্ণনের কৌণিক দ্রুতি বৃদ্ধি পায় ধর, 2000 এর একটি গুণকে, বস্তুটি ছিটকে যাবে।
- 8.24 $3 \times 10^{11} \, J$
- **8.25** 495 km