

ভারতের সংবিধান প্রস্তাবনা

"আমরা, ভারতের জনগণ, ভারতকে সার্বভৌম, সমাজতান্ত্রিক, ধর্মনিরপেক্ষ, গণতান্ত্রিক, সাধারণতন্ত্ররুপে গড়ে তুলতে এবং তার সকল নাগরিকই যাতে সামাজিক, অর্থনৈতিক ও রাজনৈতিক, ন্যায়বিচার, চিন্তা, মতপ্রকাশ, বিশ্বাস, ধর্ম এবং উপাসনার স্বাধীনতা, সামাজিক প্রতিষ্ঠা অর্জন ও সুযোগের সমতা প্রতিষ্ঠা এবং তাদের সকলের মধ্যে ব্যক্তির মর্যাদা এবং জাতীয় ঐক্য ও সংহতি সুনিশ্চিতকরণের মাধ্যমে তাদের মধ্যে যাতে লাতৃত্বের ভাব গড়ে ওঠে তার জন্য সত্যনিষ্ঠার সঙ্গে শপথ গ্রহণ করে, আমাদের গণপরিষদে আজ ১৯৪৯ সালের ২৬ নভেম্বর, এতদ্বারা এই সংবিধান গ্রহণ, বিধিবন্ধ এবং নিজেদের অর্পণ করছি।"

Constitution of India Part IV A (Article 51 A)

Fundamental Duties

It shall be the duty of every citizen of India —

- (a) to abide by the Constitution and respect its ideals and institutions, the National Flag and the National Anthem;
- (b) to cherish and follow the noble ideals which inspired our national struggle for freedom;
- (c) to uphold and protect the sovereignty, unity and integrity of India;
- (d) to defend the country and render national service when called upon to do so;
- (e) to promote harmony and the spirit of common brotherhood amongst all the people of India transcending religious, linguistic and regional or sectional diversities; to renounce practices derogatory to the dignity of women;
- (f) to value and preserve the rich heritage of our composite culture;
- (g) to protect and improve the natural environment including forests, lakes, rivers, wildlife and to have compassion for living creatures;
- (h) to develop the scientific temper, humanism and the spirit of inquiry and reform;
- (i) to safeguard public property and to abjure violence;
- (j) to strive towards excellence in all spheres of individual and collective activity so that the nation constantly rises to higher levels of endeavour and achievement;
- *(k) who is a parent or guardian, to provide opportunities for education to his child or, as the case may be, ward between the age of six and fourteen years.
- Note: The Article 51A containing Fundamental Duties was inserted by the Constitution (42nd Amendment) Act, 1976 (with effect from 3 January 1977).

*(k) was inserted by the Constitution (86th Amendment) Act, 2002 (with effect from 1 April 2010).

ভাগ - ১

প্রস্তুতব্দরণ

জাতীয় শিক্ষা গবেষণা ও প্রশিক্ষণ পর্যদ, নতুন দিল্লি।

থনুবাদ ও অভিযোজন

রাজ্য শিক্ষা গবেষণা ও প্রশিক্ষণ পর্যদ, ত্রিপুরা সরকার।

© এন সি ই আর টি কর্তৃক সবস্বত্ব সংরাক্ষত।	
একাদশ শ্রেণির রসায়ন (প্রথম ভাগ)পাঠ্যবই	
এন সি ই আর টি-র Chemistry Vol-I পাঠ্যপুস্তকের	
২০১৮ সালের পুনর্মুদ্রণের অনূদিত সংস্করণ।	
এন সি ই আর টি অনুমোদিত	
প্রথম বাংলা সংস্করণ-	
প্রথম প্রকাশ-মাচ, ২০১৯	
পুনমুদ্রণ-মাচ, ২০২০	
প্রচ্ছদ : রানা বনিক	
অক্ষর বিন্যাস : রানা বনিক	
সুদীপ দাস	
মূল্য: ১৮০ (একশত আশি টাকা) মাত্র	
মাদক : সতায়েগ এমপ্রয়িজ কো-অপ্রাবেটিত	
নুগ্রন: গতারুগ এব লায়তা বেশ বিশারে। তে	
২৩।পদ্রমাণ গোগাহাট গোনটেও ১৯ প্রফল মরকার মিটি কলকাতা ৫১।	
२० अपूर्ल राज्यपान्न । रपुष्ठ, यन्त्रायाण- २२ ।	
প্রবাদাবা	
অধিকর্তা	
রাজ্য।শক্ষা গবেষণা ও প্রাশকণ প্রধা, এপুরা।	

২০০৬ সাল থেকে রাজ্য শিক্ষা গবেষণা ও প্রশিক্ষণ পর্ষদ প্রথম থেকে অন্টম শ্রেণি পর্যন্ত প্রাথমিক ও উচ্চপ্রাথমিক স্তরের পাঠ্যপুস্তকের মুদ্রণ ও প্রকাশের দায়িত্ব পালন করে আসছে। রাজ্যের বিদ্যালয়স্তরে উন্নত ও সমৃন্ধতর পাঠ্যক্রম চালু করার লক্ষ্যে ত্রিপুরা রাজ্য শিক্ষা দপ্তরের প্রচেন্টায় প্রথম থেকে অন্টম, নবম ও একাদশ শ্রেণির জন্য ২০১৯ শিক্ষাবর্ষ থেকে জাতীয় শিক্ষা গবেষণা ও প্রশিক্ষণ পর্ষদের (এন সি ই আর টি) পাঠ্যপুস্তকসমূহ গ্রহণ করার সিন্দাস্ত নেওয়া হয়।

বাংলা বিষয় ছাড়া অন্যান্য বিষয়গুলোর জন্য জাতীয় শিক্ষা গবেষণা ও প্রশিক্ষণ পর্যদের প্রকাশিত পুস্তকগুলোর অনূদিত ও অভিযোজিত সংস্করণ ২০১৯ সালে প্রথম প্রকাশ করা হয় এবং এ বছর ওইসব পুস্তকগুলোর পুনর্মুদ্রণ করা হল। পাশাপাশি দশম ও দ্বাদশ শ্রেণির বাংলা বিষয় ছাড়া অন্যান্য বিষয়গুলোর জন্য জাতীয় শিক্ষা গবেষণা ও প্রশিক্ষণ পর্যদের প্রকাশিত পুস্তকগুলোর অনূদিত ও অভিযোজিত সংস্করণ ২০২০ শিক্ষাবর্ষে প্রথম প্রকাশ করা হয়। এখানে উল্লেখ্য যে, বাংলা বিষয়ে পাঠ্যপুস্তক রচনা ও প্রকাশনার দায়িত্বও রাজ্য শিক্ষা গবেষণা ও প্রশিক্ষণ পর্যদ পালন করে আসছে।

বিশাল এই কর্মকাণ্ডে যেসব শিক্ষক-শিক্ষিকা, অধ্যাপ<mark>ক-অধ্যাপিকা, শিক্ষাবিদ, অনুবাদক,</mark> অনুলেখক, মুদ্রণকর্মী ও শিল্পীরা আমাদের সঙ্গো থেকে নিরলস<mark>ভাবে অক্লান্ত পরিশ্রমে এই উদ্যোগ</mark> বাস্তবায়িত করেছেন তাদের সবাইকে সকৃতজ্ঞ ধন্যবাদ জানাচ্ছি।

প্রকাশিত এই পাঠ্যপুস্তকটির উৎকর্ষ ও সৌন্দর্য বৃদ্<mark>ধির জন্য শিক্ষানুরাগী ও গুণীজনের</mark> মতামত ও পরামর্শ বিবেচিত হবে।

উত্তম কুমার চাকমা

আগরতলা মার্চ, ২০২০ অধিকর্তা রাজ্য শিক্ষা গবেষণা ও প্রশিক্ষণ পর্যদ ত্রিপুরা।

উপদেষ্টা

- ১। ড. অর্ণব সেন, সহ অধ্যাপক, এন ই আর আই ই, শিলং, এন সি ই আর টি।
- ২। ড. অরূপ কুমার সাহা, সহ অধ্যাপক, আর আই ই, ভুবনেশ্বর, এন সি ই আর টি।

পুস্তকটি যাঁরা থানুবাদ করেছেন

- ১। সুভাষচন্দ্র দাস (শিক্ষক)
- ২। শৈবাল রায় (শিক্ষক)
- ৩। বিশ্বজিৎ চৌধুরী (শিক্ষক)
- ৪। শীলা গণ চৌধুরী, শিক্ষিকা
- ৪। গৌতম রায় বর্মন (শিক্ষক)
- ৫। নন্দদুলাল চৌধুরী (শিক্ষক)

ভাষা পরিমার্জনায় ৪

- ১। ইন্দুমাধব চক্রবর্তী, অবসরপ্রাপ্ত শিক্ষক
- ২। শুক্লা সিংহ, শিক্ষিকা

প্রাক্কথন

জাতীয় পাঠ্যক্রমের রূপরেখা (২০০৫)-এর নির্দেশ অনুযায়ী, শিশুদের স্কুলজীবন ও স্কুলের বাইরের জীবনের মধ্যে একটি বিশেষ সম্পর্ক থাকা খুব প্রয়োজন। তার কারণ, শিশুদের শিক্ষা যদি শুধুমাত্র স্কুল এবং পাঠ্যবইয়ের গন্ডির মধ্যে সীমিত থাকে, তাহলে সেইসব শিশুদের স্কুল, বাড়ি এবং সম্প্রদায়— এই তিন জায়গার শিক্ষায় একটি বড়ো ফাঁক থাকার সম্ভাবনা রয়ে যায়। মূলত এই শূন্যস্থানটাকে পূরণ করার লক্ষ্যেই জাতীয় পাঠ্যক্রমের রূপরেখার উপর ভিত্তি করে নতুন পাঠ্যক্রম ও নতুন ধরনের পাঠ্যবই তৈরি করার উদ্যোগ নেওয়া হয়েছে. এর ফলে শিশুদের মুখস্থ করা এবং শিক্ষার বিভিন্ন বিষয়গুলোকে প্রকোষ্ঠবন্দ্ব করার প্রবণতা বন্ধ হবে বলে মনে করা হচ্ছে। পাশাপাশি এটাও আশা করা হচ্ছে যে, এই পরিবর্তন জাতীয় শিক্ষানীতির (১৯৮৬) শিশুকেন্দ্রিক শিক্ষার লক্ষ্যকে উল্লেখযোগ্যভাবে এগিয়ে নিয়ে যাবে।

তবে এই ধরনের প্রচেম্টার সাফল্য অনেকটাই নির্ভর করছে স্কুলের প্রধান শিক্ষক এবং অন্যান্য শিক্ষক/শিক্ষিকাদের উপরে, যাঁরা শিশুদের শিখন সম্পর্কে প্রশ্ন করতে এবং বিভিন্ন কাজে শিশুদের কল্পনাশস্তির প্রয়োগ করতে উৎসাহিত করবেন। আমাদের এটা মনে রাখা খুব জরুরি, শিশুরা যদি সময়, স্থান এবং স্বাধীনভাবে কাজ করার সুযোগ পায়, তাহলে বড়োদের কাছ থেকে প্রাপ্ত জ্ঞান নিয়ে তারা নতুন অনেক কিছু সৃষ্টি করতে পারবে। একমাত্র পাঠ্যবই পড়েই পরীক্ষায় পাস করা যায় - মূলত এই ধারণার ফলেই শিক্ষার অন্যান্য দিকগুলো সর্বদা উপেক্ষিত হয়ে থাকে। আমাদের ভুলে গেলে চলবে না, শিশুদের মধ্যে সৃজনশীলতার বিকাশ তখনই সম্ভব, যখন আমরা ওদের এই গোটা শিখন প্রক্রিয়ার কেবলমাত্র গ্রহীতা না ভেবে একটা পূর্ণ অংশীদার মনে করব।

তবে এই লক্ষ্যপূরণ করতে গেলে স্কুলের দৈনন্দিন কার্যসূচি ও ব্যবস্থাপনায় অনেক ধরনের পরিবর্তন আশা অনিবার্য। স্কুলের দৈনন্দিন সময় সূচি যেমন নমনীয় হওয়া উচিত, ঠিক তেমনই বার্ষিক কার্যসূচি এমনভাবে তৈরি হওয়া প্রয়োজন যাতে শিক্ষাদানের দিনগুলোর সংখ্যায় কোনো পরিবর্তন না আসে। তবে বাস্তবে এই নতুন পাঠ্যবই শিশুদের কতটুকু কাজে লাগবে, ওদের স্কুলজীবন কতটা সমৃদ্ধ করবে কিংবা ওদের স্কুলজীবনকে দুর্বিষহ করে তুলবে কিনা, সবটাই নির্ভর করছে শিক্ষক/শিক্ষিকারা কী পদ্ধতি অবলম্বন করে এই বইটি স্কুলে পড়াবেন এবং কীভাবে সেই পড়ার মৃল্যায়ন করবেন। বিগত দিনগুলোর ন্যায় শিশুদের যাতে পাঠ্যবইয়ের বোঝা বইতে না হয়, এই নতুন পাঠ্যক্রম তৈরি করার সময় এই ব্যাপারে বিশেষ নজর দেওয়া হয়েছে। তার জন্য শিক্ষাদানের প্রদন্ত সময় এবং শিশুদের মানসিক বিকাশের কথা মাথায় রেখে প্রতিটি স্তরের পাঠ্যবইয়ে অন্তর্ভুক্ত শিক্ষার বিষয়বস্তুগুলো এক নতুন দৃষ্টিভঙ্গি নিয়ে পুনর্গঠন করা হয়েছে। এই প্রচেন্টাকে আরো এগিয়ে নিয়ে যাবার জন্য এই পাঠ্যবইয়ের মাধ্যমে শিশুদের নানারকম প্রশ্ন করা, নতুন বিষয় নিয়ে ভাবনা-চিন্তা, তর্ক-বিতর্ক, ছোটো ছোটো গ্রুপ বানিয়ে আলোচনা করা এবং হাতে-কলমে শিক্ষা এইসব কিছুর উপর গুবুত্ব আরোপ করা হয়েছে। পাঠ্যবই উন্নয়ন কমিটির দায়িত্বপ্রাপ্ত সকল ব্যক্তিবর্গ যাঁরা কঠোর পরিশ্রম করে এই বইটি রূপায়ন করেছেন তাঁদেরকে এন সি ই আর টি প্রশংসা জানাচ্ছে। এই কমিটির কার্যকলাপকে সঠিক পথে চালিত করার জন্য সমাজবিজ্ঞান বিষয়ের উপদেন্টা কমিটির চেয়ারপার্সন অধ্যাপক হরি বাসুদেবন এবং এই পাঠ্য বইয়ের মুখ্য উপদেন্টা অধ্যাপক আর কে গ্রোভার (অবসরপ্রাপ্ত), অধিকর্তা স্কুল ম্যানেজমেন্ট স্টাডিস্ (ইগনৌ), নতুনদিল্লি প্রতি আন্তরিক কৃতজ্ঞতা এবং ধন্যবাদ জ্ঞাপন করছি। এই পাঠ্যবই পুনর্গঠনের পিছনে বহু শিক্ষক/শিক্ষিকার অবদান অনস্বীকার্য।

আমরা সেইসব স্কুলের প্রধান শিক্ষকদেরও বিশেষভাবে ধন্যবাদ জানাচ্ছি। এই পাঠ্যবই তৈরির ক্ষেত্রে যেসব প্রতিষ্ঠান এবং সংগঠন তাঁদের বহুমূল্য সম্পদ, উপাদান এবং লোকবল নিয়ে কাজ করার অনুমতি দিয়ে উদার মনের পরিচয় দিয়েছেন, তাঁদের সবার প্রতি আমরা বিশেষভাবে কৃতজ্ঞতা স্বীকার করছি এবং ধন্যবাদ জানাচ্ছি। মানব সম্পদ উন্নয়ন মন্ত্রকের (এম এইচ আর ডি) চেয়ারপার্সন অধ্যাপক মৃণাল মিরি এবং অধ্যাপক জি পি দেশপান্ডের তত্ত্ববধানে মাধ্যমিক এবং উচ্চতর শিক্ষা বিভাগ দ্বারা নিযুক্ত জাতীয় পর্যবেক্ষণ সমিতির সদস্যদের বহুমূল্য সময় ও অবদানের জন্য পর্যদের পক্ষ থেকে তাঁদের বিশেষ ধন্যবাদ জ্ঞাপন করছি। নিজেদের প্রকাশনা এবং ব্যবস্থাপনার গুণগত মান সংস্কারের কাজে নিরন্তর নিয়োজিত থাকা এন সি ই আর টি কর্তৃপক্ষ সর্বদা পাঠকদের মতামত এবং পরামর্শকৈ স্বাগত জানায়, যাতে ভবিষ্যতে পাঠ্যবই সংশোধনী প্রক্রিয়াগুলো সফলভাবে সম্পন্ন হতে পারে।

নিউ দিল্লি ২০ ডিসেম্বর ২০০৫ **অধিকর্তা** রাষ্ট্রীয় শিক্ষা গবেষণা এবং প্রশিক্ষণ পরিষদ (এন সি ই আর টি)

TEXTBOOK DEVELOPMENT COMMITTEE

CHAIRPERSON, ADVISORY GROUP FOR TEXTBOOKS IN SCIENCE AND MATHEMATICS

J.V. Narlikar, *Emeritus Professor*, Chairman, Advisory Committee, Inter University Centre for Astronomy and Astrophysics (IUCCA), Ganeshbhind, Pune University, Pune

CHIEF ADVISOR

B.L. Khandelwal, *Professor (Retd.), Emeritus Scientist*, CSIR; *Emeritus Fellow*, AICTE and formerly *Chairman*, Department of Chemistry, Indian Institute of Technology, New Delhi

MEMBERS

A. S. Brar, Professor, Indian Institute of Technology, Delhi Anjni Koul, Lecturer, DESM, NCERT, New Delhi H.O. Gupta, Professor, DESM, NCERT, New Delhi I.P. Aggarwal, Professor, Regional Institute of Education, Bhopal Jaishree Sharma, Professor, DESM, NCERT, New Delhi M. Chandra, Professor, DESM, NCERT, New Delhi Poonam Sawhney, PGT (Chemistry), Kendriya Vidyalaya, Vikas Puri, New Delhi R.K. Parashar, Lecturer, DESM, NCERT, New Delhi S.K. Dogra, Professor, Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi S.K. Gupta, Reader, School of Studies in Chemistry, Jiwaji University, Gwalior Sadhna Bhargava, PGT (Chemistry), Sardar Patel Vidyalaya, Lodhi Estate, New Delhi Shubha Keshwan, Headmistress, Demonstration School, Regional Institute of Education, Mysuru Sukhvir Singh, Reader, DESM, NCERT, New Delhi Sunita Malhotra, Professor, School of Sciences, IGNOU, Maidan Garhi, New Delhi V.K. Verma, Professor (Retd.), Institute of Technology, Banaras Hindu University, Varanasi V.P. Gupta, *Reader*, Regional Institute of Education, Bhopal

MEMBER-COORDINATOR

Alka Mehrotra, Reader; DESM, NCERT, New Delhi

ACKNOWLEDGEMENTS

The National Council of Educational Research and Training acknowledges the valuable contributions of the individuals and organisations involved in the development of Chemistry textbook for Class XI. It also acknowledges that some useful material from the reprint editions (2005) of Chemistry textbooks has been utilised in the development of the present textbook.

The following academics contributed effectively in editing, reviewing, refining and finalisation of the manuscript of this book: G.T. Bhandage, *Professor*, RIE, Mysuru; N. Ram, *Professor*, IIT, New Delhi; Sanjeev Kumar, *Associate Professor*, School of Science, IGNOU, Maidan Garhi, New Delhi; Shampa Bhattacharya, *Associate Professor*, Hans Raj College, Delhi; Vijay Sarda, *Associate Professor* (Retd.), Zakir Husain College, New Delhi; K.K. Arora, *Associate Professor*, Zakir Husain College, New Delhi; Shashi Saxena, *Associate Professor*, Hans Raj College, Delhi; Anuradha Sen, Apeejay School, Sheikh Sarai, New Delhi; C. Shrinivas, *PGT*, Kendriya Vidyalaya, Pushp Vihar, New Delhi; D.L. Bharti, *PGT*, Ramjas School, Sector IV, R.K. Puram, New Delhi; Ila Sharma, *PGT*, Delhi Public School, Dwarka, Sector-B, New Delhi; Raj Lakshmi Karthikeyan, *Head* (Science), Mother's International School, Sri Aurobindo Marg, New Delhi; Nidhi Chaudray, *PGT*, CRPF Public School, Rohini, Delhi; and Veena Suri, *PGT*, Bluebells School, Kailash Colony, New Delhi. We are thankful to them.

We express our gratitude to R.S. Sindhu, *Professor* (Retd.), DESM, NCERT, New Delhi, for editing and refining the content of the textbook right from the initial stage.

We are also grateful to Ruchi Verma, *Associate Professor*, DESM, NCERT, New Delhi; Pramila Tanwar, *Assistant Professor*, DESM, NCERT, New Delhi; R.B. Pareek, *Associate Professor*, RIE, Ajmer; and A.K. Arya, *Associate Professor*, RIE, Ajmer, for refining the content of the textbook.

Special thanks are due to M. Chandra, *Professor and Head (Retd.)*, DESM, NCERT for her support.

The Council also gratefully acknowledges the contributions of Surendra Kumar, Narender Verma and Ramesh Kumar, *DTP Operators*; Subhash Saluja, Ramendra Kumar Sharma and Abhimanyu Mohanty, *Proofreaders*; Bhavna Saxena, *Copy Editor*; and Deepak Kapoor, *In-charge*, Computer Station, in shaping this book. The contributions of the Publication Department, NCERT, New Delhi, in bringing out this book are also duly acknowledged.

সূচিপত্র

প্রথম অধ্য	ায় : রস	ায়নের মৌলিক ধারণা	1
	1.1	রসায়নের গুরুত্ব	4
	1.2	পদার্থের প্রকৃতি	4
	1.3	পদার্থের ধর্ম এবং এদের পরিমাপ	6
	1.4	গণনার মধ্যে অনিশ্চয়তা	10
	1.5	রাসায়নিক সংযোগ	14
	1.6	ডালটনের পরমাণবিক তত্ত্ব	16
	1.7	পারমাণবিক এবং আণবিক ভর	16
	1.8	মোল ধারণা এবং আণব বা মোলার ভর	18
	1.9	শতকরা সংযুতি	18
	1.10	স্টয়সিওমিতি এবং স্টয়সিওমিতিক গণনা	20
দ্বিতীয় অধ	্যায় : প	ারমাণুর গঠন	29
	2.1	অব-পারমাণবিক কণাসমূহের আবিষ্কার	30
	2.2	পরমাণুর গঠন সম্বন্ধীয় মডেল	32
	2.3	বোরের পরমাণু মডেল গঠনে সাহায্যকারী উন্নত বৈজ্ঞানিক গবেষণা	37
	2.4	হাইড্রোজেন পরমাণুর জন্য বোরের মডেল	46
	2.5	পরমাণুর গঠন সম্পর্কিত কোয়ান্টাম বলবিজ্ঞান এর অবতারণা	49
	2.6	পরমাণুর কোয়ান্টাম বলবিজ্ঞান মডেল	53
তৃতীয় অধ্য	ায় : সেঁ	টলসমূহের শ্রেণিবিভাগ এবং ধর্মাবলির পর্যাবৃত্তি	74
	3.1	কেন মৌলের শ্রেণিবিন্যাস প্রয়োজন ?	74
	3.2	পর্যায়ভিত্তিক শ্রেণিবিভাগের উৎপত্তি	75
	3.3	আধুনিক পর্যায় সূত্র এবং পর্যায় সারণির বর্তমান রূপ	79
	3.4	100 -এর বেশি পরমাণু ক্রমাঙ্ক বিশিষ্ট মৌলের নামকরণ	79
	3.5	মৌল সমূহের ইলেকট্রন বিন্যাস এবং পর্যায় সারণি	82

	3.6	ইলেকট্রন বিন্যাস এবং মৌলের প্রকারভেদ : s p d f- ব্লক	83
	3.7	জ্বালানি কোশ	86
চতুৰ্থ অধ্যা	য় : রাস	ায়নিক বন্ধন এবং আণবিক গঠন	100
	4.1	রাসায়নিক বন্ধনের কোসেল-লুইস পম্থা	101
	4.2	আয়নীয় বা তড়িৎযোজী বন্ধন	106
	4.3	বন্ধন স্থিতিমাপসমূহ	107
	4.4	যোজ্যতা কক্ষের ইলেকট্রন জোড়ের বিকর্ষণ তত্ত্ব	112
	4.5	যোজ্যতা বন্ধন তত্ত্ব	117
	4.6	সংকরায়ণ	120
	4.7	আণবিক কক্ষক তত্ত্ব	125
	4.8	কিছু দ্বিপরমাণুর অণুর স্বজাতি নিউক্লিয়াসের মধ্যকার বন্ধন	129
	4.9	হাইড্রোজেন বন্ধন	131
পঞ্জম অধ্য	ায় : পদ	গর্থের অবস্থা	136
	5.1	আন্তরাণবিক বল সমূহ	137
	5.2	তাপীয় শক্তি	139
	5.3	আন্তরাণ বল এবং তাপীয় ক্রিয়া	139
	5.4	গ্যাসীয় অবস্থা	139
	5.5	গ্যাসীয় সূত্রাবলি	140
	5.6	আদর্শ গ্যাস সমীকরণ	145
	5.7	গতিশক্তি এবং অণুর বেগ	147
	5.8	গ্যাসের গতীয়তত্ত্ব	149
	5.9	বাস্তব গ্যাসের আচরণ : আদর্শ গ্যাসের আচরণ থেকে বিচ্যুতি	150
	5.10	গ্যাসের তরলীকরণ	152
	5.11	তরল অবস্থা	154
ষষ্ঠ অধ্যায়	: তাপ	গতিবিদ্যা	160
	6.1	তাপগতীয় পরিভাষা	161
	6.2	প্রয়োগ	164
	6.3	ক্যালোরিমিতির সাহায্যে ΛU এবং ΛH এর পরিমাণ নির্ণয়	169

	6.4	রাসায়নিক বিক্রিয়ার এনথ্যালপি পরিবর্তন-বিক্রিয়া নম্বর	170
	6.5	ভিন্ন ভিন্ন বিক্রিয়ান বিক্রিয়া-এনথ্যালপি	176
	6.6	স্বতঃস্ফূর্ততা	180
	6.7	গিবস্ মুক্ত শক্তির পরিবর্তন এবং রাসায়নিক সাম্যাবস্থা	185
সপ্তম অধ্য	ায় : সায	য্যবস্থা	192
	7.1	ভৌত প্রক্রিয়াতে সাম্যাবস্থা	193
	7.2	রাসায়নিক প্রক্রিয়াতে সাম্যবস্থা—গতীয় সাম্যাবস্থা	196
	7.3	রাসায়নিক সাম্যাবস্থার সূত্র (নিয়ম) এবং সাম্য ধ্রুবক	198
	7.4	সমসত্ত্ব সাম্যাবস্থা	201
	7.5	অসমসত্ত্ব সাম্যাবস্থা	203
	7.6	সাম্যধুবকের প্রয়োগসমূহ	205
	7.7	সাম্যধ্রবক, K বিক্রিয়ার কোশেন্ট Q এবং গিবস্ শক্তি G এর মধ্যে সম্পর্ক	209
	7.8	সাম্যবস্থাকে প্রভাবিত করে এমন শর্তসমূহ	208
	7.9	দ্রবণে আয়নিক সাম্যাবস্থা	212
	7.10	অ্যাসিড, ক্ষারক এবং লবণ	213
	7.11	অ্যাসিড এবং ক্ষারকের আয়নীভবন	216
	7.12	বাফার দ্রবণ	226
	7.13	স্বল্প দ্রাব্য লবণের দ্রাব্যতা সাম্য	228
উপাজ্গ			268
কিছু নির্দিষ	ট সমস্যা	গুলোর উত্তরসমূহ	281
Index			285

প্রথম অধ্যায় (UNIT 1)

রসায়নের মৌলিক ধারণা (SOME BASIC CONCEPTS OF CHEMISTRY)

উদ্দেশ্য (Objectives)

এই অধ্যায়টি অধ্যয়নের পরে, তুমি বুঝতে সক্ষম হবে—

- রসায়ন বিদ্যার বিকাশে ভারতের অবদান উপলব্ধি করতে এবং জীবনের বিভিন্ন ক্ষেত্রে রসায়নের ভূমিকা বুঝাতে।
- পদার্থের তিনটি অবস্থার বৈশিষ্ট্যগুলো বর্ণনা করতে।
- বিভিন্ন পদার্থকে মৌল, যৌগ এবং মিশ্রণে শ্রেণিবিন্যাস করতে।
- বৈজ্ঞানিক অঞ্চ্বপাতনের ব্যবহার করতে এবং উল্লেখযোগ্য পরিসংখ্যান নির্ধারণ করতে।
- স্পন্টতা এবং সঠিকতার মধ্যে পার্থক্য করতে।
- SI পম্বতিতে বিভিন্ন রাশিকে সংজ্ঞায়িত করতে এবং ভৌত রাশির মাত্রাকে এক পম্বতির একক থেকে অন্য পম্বতির এককে রূপান্তরিত করতে।
- বিভিন্ন রাসায়নিক সংযোগ সূত্রাবলী ব্যাখ্যা করতে।
- পারমানবিক ভর, গড় পারমানবিক ভর, আনবিক ভর এবং সংকেত ভরের প্রকৃত তাৎপর্য ব্যাখ্যা করতে।
- মৌল ও মোলার ভর শব্দগুলোর ব্যাখ্যা করতে।
- যৌগে বর্তমান বিভিন্ন মৌলের শতকরা ভর গণনা করতে।
- পরীক্ষালব্দ ফলাফল থেকে যৌগের স্থৃল সংকেত এবং আনবিক সংকেত নির্ণয় করতে এবং স্টয়সিওমেট্রিক গণনা সম্পাদন করতে।

Chemistry is the science of molecules and their transformations. It is the science not so much of the one hundred elements but of the infinite variety of molecules that may be built from them.

Roald Hoffmann

প্রকৃতিকে জানতে, বুঝতে এবং এ সম্পর্কিত জ্ঞানকে শৃঙ্খলাবদ্ধ করার জন্য মানুষের নিরন্তর প্রয়াসকে বিজ্ঞান বলে। তোমরা পূর্ববর্তী শ্রেণিতে জেনেছ যে, আমরা প্রতিদিন প্রকৃতিতে বিভিন্ন বস্তু এবং তাদের পরিবর্তন দেখতে পাই। দুধ থেকে দই তৈরি, আখের রসকে দীর্ঘসময় রেখে ভিনিগার প্রস্তুতি এবং লোহায় মরিচাপড়া এরৃপ পরিবর্তনের উদাহরণ। আমাদের সুবিধার জন্য আমরা বিজ্ঞানকে রসায়ন, পদার্থবিদ্যা জীববিদ্যা, ভূ-বিদ্যা ইত্যাদি বিভিন্ন শ্রেণিতে বিভক্তু করতে পারি। বিজ্ঞানের যে শাখায় পদার্থের প্রস্তুতি, ধর্মাবলী, গঠন এবং বিক্রিয়া সমূহ অধ্যয়ন করা হয় তাকে রসায়ন বলে।

রসায়ন বিদ্যার বিকাশ (DEVELOPMENT OF CHEMISTRY) রসায়ন বলতে আজ আমরা যা বুঝি, এটি খুব পুরনো ধারণা নয়। রসায়নের অধ্যয়ন শুধুমাত্র বিষয়টি জানার জন্য নয়, বরং দুটি কৌতৃহলোদ্দীপক ঘটনাকে অনুসম্বানের ফলশ্রুতি—

i) দার্শনিকের পাথর (পরশ পাথর) —যেটি অতি সাধারণ ধাতু যেমন লোহা এবং তামাকে ও সোনায় রূপান্তরিত করেত পারে।

ii) অমৃত— যেটি অমরত্ব প্রদান করে।

আধুনিক বিজ্ঞানের আবির্ভাবের অনেক পূর্বেই প্রাচীন ভারতীয়দের অনেক বৈজ্ঞানিক ঘটনাবলী সম্পর্কে ধারণা ছিল। তারা এই জ্ঞানকে জীবনের বিভিন্ন ক্ষেত্রে প্রয়োগ করতেন। রসায়ন বিজ্ঞানের বিকাশ মুখ্যতঃ ১৩০০ থেকে ১৬০০ খ্রীফ্টাব্দে অপরসায়ন (Alchemy) এবং ঔষধি রসায়ন (Iatrochemistry) রূপে ঘটেছিল। কয়েক শতক ধরে অপরসায়নের ঐতিহ্যের পর, আঠারশ শতকে ইউরোপে রসায়ন আধুনিক রূপ ধারণ করে, যেটি ইউরোপে আরবদের দ্বারা উপস্থাপিত হয়েছিল। অন্যান্য সংস্কৃতি বিশেষ করে চীনা এবং ভারতীয়দের নিজস্ব অপরসায়ন ঐতিহ্য ছিল। যার মধ্যে রাসায়নিক প্রক্রিয়া এবং কৌশল বিষয়ে প্রচুর জ্ঞান ছিল।

প্রাচীন ভারতে রসায়নকে রসায়ন শাস্ত্র, রসতন্ত্র, রসক্রিয়া অথবা রসবিদ্যারুপে আখ্যায়িত করা হতো। এর মধ্যে ধাতুবিদ্যা, ঔষধ, কাঁচ, রঙ ও প্রসাধন সামগ্রী প্রস্তুতি অন্তর্ভুক্ত ছিল। সিন্ধুপ্রদেশের মহেঞ্জোদারো এবং পাঞ্জাবের হরপ্লায় শুঙ্খলাবন্দ্র খননকার্য থেকে প্রমানিত হয় যে, ভারতে রসায়নের বিকাশ অনেক প্রাচীন ঘটনা। প্রত্নতাত্বিক নিদর্শন থেকে জানা যায় যে অট্টালিকা তৈরিতে পোড়া ইটের ব্যবহার হতো। এই ব্যাপক মুৎশিল্পের নিদর্শনকে প্রাচীনতম রাসায়নিক প্রক্রিয়া রূপে ধরা যেতে পারে, যেখানে কাঙ্ক্ষিত গুণমান প্রাপ্তির জন্য পদার্থগুলোকে মিশিয়ে, ঢালাই করে, অগ্নিসংযোগ করা হতো। মহেঞ্জোদারোতে চক্চকে মুৎপাত্রের অবশেষও পাওয়া গেছে। নির্মাণকার্যে জিপসাম সিমেন্টের ব্যবহার হতো যাতে চুনা, বালি এবং অল্পপরিমাণ ক্যালসিয়াম কার্বোনেট (CaCO₂) মেশানো হতো। হরপ্পার লোকেরা ফেইন্স তৈরি করতো যা এক ধরণের কাঁচ এবং অলঙ্কার প্রস্তুতিতে এর ব্যবহার হতো। তাঁরা সীসা, রুপা, সোনা এবং তামার মতো ধাতুগুলিকে গলিয়ে এবং ছাাঁচে ফেলে বিভিন্ন ধরনের দ্রব্য বানাতে পারতো। তাঁরা তামার সঙ্গো টিন এবং আর্সেনিক ধাতু মিশিয়ে কাঠিন্য বৃদ্ধি করে বিভিন্ন শিল্প দ্রব্য তৈরি করতো। দক্ষিণ ভারতের মাস্কিতে (1000 - 900 খ্রীষ্টপূর্বাব্দে) এবং উত্তর ভারতের হস্তিনাপুর ও তক্ষশীলাতে (1000-200 খ্রীষ্টপূর্বাব্দে) কাঁচের অসংখ্য বস্তু পাওয়া গেছে। বিভিন্ন ধাতব অক্সাইডকে রঞ্জক হিসাবে ব্যবহার করে কাঁচ ও নানা চক্চকে বস্তু (Glare) রঙ করা হতো।

ভারত উপমহাদেশে ধাতুযুগের সুচনালগ্নেই ভারতবর্ষে তামা সংক্রান্তধাতুবিদ্যার চর্চা শুরু হয়ে গিয়েছিল। বহুবিধ প্রত্নতাত্ত্বিক নিদর্শন থেকে প্রমাণিত হয় যে ভারতবর্ষে লোহা ও তামার নিষ্কাশনের কৌশল সম্পূর্ণ স্বতন্ত্ররূপে গড়ে ওঠেছিল।

ঋগ্বেদ থেকে প্রাপ্ত তথ্য অনুসারে, চর্মশিল্প এবং সৃতি বস্ত্রের রঞ্জন শিল্পের প্রচলণ 1000 – 400 খৃষ্টপূর্বাব্ধ থেকেই ছিল। উত্তর ভারতে উৎপন্ন মৃৎপাত্রের কালোবর্ণের পালিশের উপর সোনালী আতার চমক্আজও অনুকরণ করা যায়নি এবং এটি এখনো রসায়নের বিশাল রহস্য। এই মৃৎপাত্রগুলো নির্দেশ করে কতো দক্ষতার সঙ্গে সেই সময়ে পাত্র তৈরিতে ব্যবহৃত চুল্লির তাপমাত্রা নিয়ন্ত্রিত হতো। কৌটিল্যের অর্থশাস্ত্রে সমুদ্র জল থেকে লবণ প্রস্তুতির বর্ণনা রয়েছে। প্রাচীন বৈদিক সাহিত্যে উল্লিখিত বহুসংখ্যক বিবৃতি ও বিষয় বস্তুর আলোচনা আধুনিক বৈজ্ঞানিক ধারণার সঞ্চো সঙ্গাতিপূর্ণ। উত্তর ভারতের বহু প্রত্নতাত্ত্বিক নিদর্শনে তামার পাত্র, লোহা, রুপা, সোনার গয়না, পোড়ামাটির গয়না এবং রঞ্জক দ্বারা অঙ্কিত মৃৎপাত্র পাওয়া গেছে। 'শুন্খুত সংহিতা'-তে ক্ষারীয় পদার্থের উপযোগিতার উল্লেখ আছে। প্রাচীনযুগে যে সকল ভারতীয় সালফিউরিক অ্যাসিড, নাইট্রিক অ্যাসিড এবং তামা, টিন ও দস্তার অক্সাইড; তামা, দস্তা ও লোহার সালফেট এবং সিসা ও লোহার কার্বনেট তৈরির পদ্ধতি জানতেন তাদের কথা 'চরক সংহিতা'-তে উল্লেখ রয়েছে।

রসোপনিষদে বারুদ তৈরির উপায় বর্ণনা করা আছে। তামিল সাহিত্যে গম্বক, চারকোল, সল্পপিটার (পটাসিয়াম নাইট্রেট), পারদ, কর্পূর ইত্যাদি ব্যবহার করে কীভাবে আতশবাজি তৈরি করা যায় তার বর্ণনা রয়েছে।

নাগার্জুন একজন মহান ভারতীয় বিজ্ঞানী ছিলেন। তিনি ছিলেন একজন প্রখ্যাত রসায়নবিদ্ অপ্রসায়নবিদ (অ্যালকেমিন্ট) এবং ধাতুবিদ্যা বিশারদ। তাঁর রচনা 'রসরত্নাকর' পারদ ঘটিত যৌগ সম্পর্কিত। সোনা, রুপা, তামা ও টিন ধাতুর নিষ্কাশনের কৌশল সম্পর্কেও তিনি আলোচনা করেছেন। ৪00 খৃষ্টাব্দের কাছাকাছি সময়ে 'রসার্নভম' নামে একটি বই প্রকাশিত হয়। এতে বিভিন্ন উদ্দেশ্যে ব্যবহৃত নানা ধরণের অগ্নিকুন্ড, চুল্লী এবং গলন পাত্রের (Crheible) উল্লেখ আছে। এতে শিখা পরীক্ষার সাহায্যে কীভাবে নানা ধাতুকে সন্যক্ত করা যায় তার ব্যাখ্যা রয়েছে।

চক্রপাণি, মার্কারি সালফাইড আবিষ্কার করেছিলেন। সাবান আবিষ্কারের কৃতিত্বও তাঁর। তিনি সরিষার তেল এবং ক্ষারীয় পদার্থকে সাবান তৈরির উপাদান হিসাবে ব্যবহার করেছিলেন। খৃষ্টীয় অষ্টাদশ শতাব্দীতে ভারতীয়রা সাবান উৎপাদন শুরুকরে। মহুয়ার বীজ, এরান্ডার (Eranda) তেল এবং ক্যালসিয়াম কার্বনেট সাবান তৈরিতে ব্যবহৃত হতো।

অজন্তা ও ইলোরার গুহার দেওয়ালে প্রাপ্ত বহুযুগ পূর্বের ভাস্কর্য শিল্প যা এখনো প্রাণবন্তু সেগুলো প্রাচীন ভারতের উন্নত বৈজ্ঞানিক ধারণার দ্যোতক খৃষ্টীয় ৬ষ্ঠ শতকে বরাহমিহির রচিত বৃহৎসংহিতা হল এক ধরনের বিশ্বকোষ। এটি বাড়িঘর এবং মন্দিরের দেওয়ালে এবং ছাদে প্রলেপযোগ্য আঠাল বস্তুর প্রস্তুতির উপায় সম্পর্কে আমাদের অবগত করে। এটি সস্পূর্ণরূপে বিভিন্ন গাছের ফল, বীজ, বাঁকল—এর নির্যাস থেকে স্ফুটনের সাহায্যে গাট়ীকরণ করে এবং নানা ধরনের রজনের সঙ্গে মিশিয়ে প্রস্তুত করা হয়েছিল। এই সমস্ত পদার্থের ব্যবহার বৈজ্ঞানিক ভাবে মূল্যায়ণ করা যথেন্ট আকর্ষনীয়। 1000 খ্রীস্টপূর্বাব্দে অথর্ববেদে সনাতন ধারণায় রঙ তৈরিতে ব্যবহৃত একাধিক রঞ্জক পদার্থ যেমন হলুদ, টকটকে লাল রঞ্জক, ম্যাডার (Madder), সূর্যমুখী ফুল, পীতক হিসেবে ব্যবহৃত রঞ্জক (Orpinent), লতানো গাছ কোচিনেল (Cochineal), মেহেন্দি, গালা ইত্যাদির উল্লেখ আছে। সাধারণত রঞ্জক ব্যবহারের পর কিছু কিছু অংশকে বিশেষভাবে লক্ষনীয় করার জন্য ব্যবহৃত কিছু পদার্থ (ফলের খোসা, গাছের বাকল, কাঠের নির্যাস ইত্যাদি যেগুলি) ক্যাম্পিলিকা (Kampilica), পাটাঙ্গা (Pattanga), জাটুকা (Jatuka) ইত্যাদি।

বরাহমিহির রচিত 'বৃহৎ সংহিত'-তে সুগন্ধী ও প্রসাধনী সামগ্রীর উল্লেখ রয়েছে। চুনের রঞ্জক তৈরিতে ব্যবহৃত হত গাছ (যেমন নীল)-এর নির্যাস, লোহা, ইস্পাত, কালো লোহার মতো খনিজ গুঁড়ো, টকে যাওয়া ভাতের জাউ-র আল্লিক নির্যাস ইত্যাদি। 'গন্ধযুক্তি'তে সুগন্ধীদ্রব্য, ট্যালকম পাউডার, মুখের দুর্গন্ধনাশক, স্নানের জন্য ব্যবহৃত সুগন্ধি, ধূপ ইত্যাদি তৈরির কৌশল বর্ণনা করা আছে।

চীনা পরিব্রাজক I-tisng -এর বর্ণনা থেকে জানা যায়, ভারতে সপ্তদশ শতকেই কাগজের প্রচলন ছিল। তক্ষশীলাতে পুরাতাত্বিক খননকার্য থেকে জানা যায় চতুর্থ শতক থেকেই ভারতে কালির ব্যবহার ছিল। কালির রঙ তৈরিতে চক, রেড লেড, অ্যালুমিনিয়ামের ব্যবহার হত।

সম্ভবত ভারতীয়দের সম্থান প্রক্রিয়া বা উৎসেচন প্রক্রিয়া সুপরিচিত ছিল। বেদ এবং কৌটিল্যের অর্থশাস্ত্রে বিভিন্ন ধরনের সুরার উল্লেখ আছে।চরক সংহিতায় উল্লেখ আছে আসভ (Asava) নামক ঘুমের ঔষধ তৈরিতে নানা ধরনের গাছের বাকল, কান্ড, ফুল, ফল, পাতা, কাঠ, শস্যদানা, আখ ইত্যাদি ব্যবহৃত হত।

সকল পদার্থ কিছু অবিভাজ্য অন্তিম কণা দ্বারা গঠিত —এই ধারণাটি ভারতীয় দার্শনিকদের চিন্তাভাবনার সুফল হিসাবে খ্রীষ্টপূর্বান্দের কয়েক শতক আগেই বিদ্যমান ছিল। আচার্য কনাদ, যিনি কশ্যপ নামে সুপরিচিত ছিলেন এবং ছয়শ খৃষ্টপূর্বান্দে জন্নেছিলেন, তিনিই পরমানুবাদের প্রথম প্রবস্তুা ছিলেন। তিনিই অতি ক্ষুদ্র অবিভাজ্য কণার (যাকে তিনি পরমাণু নামকরণ করেছিলেন) তত্ব প্রণয়ন করেন। তিন 'বৈশেসিকা সুত্র' (Vaiseshika Sutras) নামে পুঁথি রচনা করেছিলেন। তাঁর মতবাদ অনুসারে, সকল পদার্থই পরমাণু নামক ক্ষুদ্রতর এককের সমষ্টি। পরমাণুগুলো অনাদি, শাশ্বত, গোলীয়, অতিগুণগ্রাহী, এদের ধ্বংস করা যায় না এবং মূল অবস্থাতে এরা কম্পনশীল। তিনি ব্যাখ্যা করেছিলেন যে, এই একক সত্ত্বাগুলোকে কোনো মানব অঞ্চা দিয়ে সরাসরি অনুভব করা যায় না। কর্ণাদ আরো বলেছিলেন যে, বিভিন্ন ধরনের পদার্থের মতোই পরমাণুর ধরনেও বিভিন্নতা রয়েছে। তিনি বলেছিলেন, পরমাণুগুলো যুগ্ম অবস্থায় বা ত্রয়ী (Triiplet) অবস্থায় বা অন্য কোনো সংযুক্তিতে থাকতে পারে এবং অদৃশ্য বল তাদের মধ্যে মিথস্ক্রিয়া করে। বিজ্ঞানী জন ডালটনের (1766 - 1844) প্রায় আড়াই হাজার বছর আগে তিনি এই তত্বের ধারণা প্রকাশ করেছিলেন।

চরক সংহিতা হল ভারতের প্রাচীনতম আযুর্বেদিক গ্রন্থ। নানা রোগের চিকিৎসা পদ্ধতি এতে বর্ণিত আছে। ধাতুকণার আয়তন হ্রাস সংক্রান্ত ধারণা চরক সংহিতাতে সবিস্তারে আলোচিত হয়েছে। কর্ণার আয়তন চরম মাত্রায় কমিয়ে আনার ধারণাকে ন্যানোপ্রযুক্তি (Nanothchnology) বলে। চরক সংহিতায় চিকিৎসাশাস্ত্রে ধাতুভস্ম ব্যবহারের উল্লেখ রয়েছে। বর্তমানে ন্যানোকণার উপস্থিতি প্রমাণিত হয়েছে।

অপরসায়ন (Alchemy) -এর পতনের পর ইয়াট্রোরসায়ন (Iattrochemistry) এক স্থিতিশীল অবস্থায় পৌঁছায়। কিন্ডু বিংশ শতকে পাশ্চত্য চিকিৎসা শাস্ত্রের প্রবর্তনের ফলে এই ব্যবস্থার পতন ঘটে। স্থবিরতার এই সময়ে আয়ুর্বেদকে ভিত্তিকরে ঔষধ প্রস্তুতির শিল্প গড়ে ওঠে, কিন্ডু ধীরে ধীরে এই ব্যবস্থারও পতন ঘটে। পরবর্তী ১০০-১৫০ বছরে ভারতীয়রা নতুন চিকিৎসা পদ্ধতি শেখে ও অবলম্বন করে। এই সময়ে প্রচুর বিদেশী পণ্যের অনুপ্রবেশ ঘটে। এর ফলে স্বদেশী ঐহিত্যগত কৌশল ধীরে ধীরে লোপ পায়। উনিশ শতকের শেষ অংশে ভারতে আধুনিক বিজ্ঞানের আবির্ভাব ঘটে। উনিশ শতকের শেষ অংশে ভারতে আধুনিক বিজ্ঞানের আবির্ভাব ঘটে। উনিশ শতকের মাঝামাঝি সময়ে ইউরোপীয় বিজ্ঞানীরা ভারতে আসতে শুরু করেন এবং আধুনিক রসায়ণের অগ্রগতি ঘটতে থাকে।

উপরের আলোচনা থেকে তোমরা শিখতে পারলে যে, রসায়নে পদার্থের উপাদান, গঠন এবং ধর্ম নিয়ে আলোচনা করা হয়। পদার্থের গঠনকারী মূল উপাদান পরমাণু এবং অণুর সাহায্যে এই বিষয়গুলো সবচেয়ে ভালো করে ব্যাখ্যা করা যায় এবং বোঝা যায়। একারণেই রসায়নকে বলা হয় পরমাণু এবং অণুর বিজ্ঞান। আমরা কী এই উপাদানগুলো দেখতে, ওজন করতে এবং পরিমাপ করতে পারি? নির্দিন্ট পরিমাণ পদার্থে উপস্থিত পরমাণু এবং অণুর সংখ্যা গণনা করা এবং ভর ও এই কনিকাগুলোর (পরমাণু এবং অণু) মধ্যে পরিমাণগত সম্পর্ক নির্ণয় করা কী সম্ভব ? আমরা এই অধ্যায়ে এধরনের কিছু প্রশ্নের উত্তর দিতে চেম্টা করবো। আমরা আরো আলোচনা করবো কিভাবে পদার্থের ভৌত ধর্মাবলিকে সংখ্যাসূচক মানের সঞ্জো উপযুক্ত একক ব্যবহার করে পরিমাণগত ভাবে ব্যাখ্যা করা যায়।

1.1 রসায়নের গুরুত্ব (IMPORTANCE OF CHEMISTRY)

বিজ্ঞানের ক্ষেত্রে রসায়ন একটি গুরুত্বপূর্ণ ভূমিকা পালন করছে এবং বিজ্ঞানের অন্যান্য শাখাতেও এর বিস্তার আছে।

আবহাওয়ার ধরন, মস্তিক্সের কার্যকলাপ এবং কম্পিউটার সক্রিয়করণ, রাসায়নিক কারখানার উৎপাদন, সার উৎপাদন, ক্ষার, অল্ল, লবণ, রং, পলিমার, ঔষধ, সাবান, ডিটারজেন্ট, ধাতু, সংকরধাতু ইত্যাদি এবং নতুন নতুন বস্তুর ক্ষেত্রে রসায়নের বিভিন্ন নীতির প্রয়োগ আছে।

জাতীয় অর্থনীতিতে রসায়নের তাৎপর্যপূর্ণ অবদান রয়েছে। মানুষের খাদ্যের চাহিদাপূরণে, স্বাস্থ্য পরিষেবা সম্পর্কজনিত পণ্যসামগ্রী এবং অন্যান্য বিভিন্ন সামগ্রীর চাহিদাপূরণের জন্য রসায়ন খুবই গুরুত্বপূর্ণ ভূমিকা পালন করে। বিভিন্ন ধরণের সার, উন্নতমানের কীটনাশক এবং পতজ্ঞানাশক ইত্যাদির বৃহৎপরিমাণে উৎপাদনই হল এর প্রকৃষ্ট উদাহরণ। রসায়নের সাহায্যেই প্রাকৃতিক উৎস এই সকল জীবনদায়ী ঔষধের কৃত্রিম উৎপাদন পম্ধতিও জানা গেছে। এধরনের ঔষধ হল সিসপ্ল্যাটিন (Cisplatin) এবং টেক্সল (Taxol), ক্যান্সার রোগের চিকিৎসায় যেগুলো খুবই উ পকারী। AZT (অ্যাজিডোথাইমিডিন) এইড্স (AIDS) রোগের চিকিৎসায় ব্যবহৃত হয়।

জাতীয় প্রগতি এবং সম্বৃদ্ধিতে রসায়নের বিশাল অবদান রয়েছে। রাসায়নিক নীতিগুলোর উন্নততর ধারণা থেকে নির্দিষ্ট চুম্বকীয় ধর্ম, তড়িৎধর্ম এবং আলোকবর্তী ধর্ম সম্পন্ন নতুন নতুন উপকরণ ডিজাইন এবং সংশ্লেষণ করা সম্ভব হয়েছে। এদের সাহায্যেই উচ্চপরিবাহী সিরামিক, পরিবাহী পলিমার, অপটিক্যাল ফাইবার ইত্যাদি উৎপাদন করা সম্ভব হয়েছে। প্রয়োজনীয় সামগ্রী যেমন- অল্ল, ক্ষার, রং, পলিমার ধাতু ইত্যাদি তৈরি করা হয় এমন শিল্পকারখানা প্রতিষ্ঠা করার জন্য রসায়নের সাহায্য নেওয়া হয়। জাতীয় অর্থনীতিতে এ ধরনের কারখানার বিশাল অবদান রয়েছে এবং বহু লোকের কর্মসংস্থান হয়। পরিবেশের অবনতির কারণগুলোর নিয়ে কাজের ক্ষেত্রে আজকাল রসায়ন ভীষণভাবে সাহায্য করছে এবং যথেস্ট পরিমাণ সাফল্যও পাওয়া গেছে। রেফ্রিজজারেটরে ব্যবহৃত পরিবেশের জন্য বিপজ্জনক CFCs (ক্লোরোফ্রুরো কার্বনস), যেটি স্টেটোস্ফিয়ারের অবক্ষয়ের জন্য দায়ী, কৃত্রিম উপায়ে সেটিরও নিরাপদ বিকল্প তৈরি করা সম্ভব হয়েছে। যদিও পরিবেশগত বহু বড় বড় সমস্যা রসায়নবিদদের গভীর উদ্বেগের মধ্যে রয়েছে। এমন একটি সমস্যা হল মিথেন, কার্বন ডাই অক্সাইড প্রভৃতি গ্রীনহাউজ গ্যাস সমূহের ব্যবস্থাপনা। জৈব রাসায়নিক পদ্বতি সম্পর্কে সম্যক ধারনা, রাসায়নিক দ্রব্য সমূহের বৃহদায়তন উৎপাদনে এনজাইমের ব্যবহার এবং নতুন বহিরাগত পদার্থের সংশ্লেষণ হল ভবিষ্যৎ প্রজন্মের রসায়নবিদদের নিজেদের বুদ্বিমন্তা প্রমাণ করার মতো সমস্যা। ভারতবর্যের মতো একটি উন্নয়নশীল দেশে এই চ্যালেঞ্জ গ্রহণের জন্য প্রতিভাবান এবং সুজনশীল রসায়নবিদদের প্রয়োজন।

একজন গুণী রসায়নবিদ যিনি এই চ্যালেঞ্জ গ্রহণ করবেন, অবশ্যই রসায়নের প্রাথমিক ধারণাগুলো সম্বন্ধে উনার সম্যক ধারণা থাকতে হবে, যার সৃষ্টি হয়েছিল পদার্থ সম্বন্ধীয় ধারণা থেকে। চল আমরাও পদার্থের প্রকৃতি থেকেই শুরু করি।

1.2 পদার্থের প্রকৃতি (NATURE OF MATTER)

তুমি ইতিমধ্যে তোমার পূর্ববর্তী শ্রেণিতে 'বস্তু' শব্দটি সম্বন্ধে পরিচিত হয়েছ। যার ভরত আছে এবং যা কিছুটা স্থান জুড়ে থাকে, তাকে পদার্থ বলে। উদাহরণ স্বরূপ, আমাদের চারপাশের সমস্ত কিছু যেমন- বই, কলম, পেন্সিল, জল, বায়ু, সকল সজীব বস্তু প্রভৃতি পদার্থ দিয়ে তৈরি। তুমি জান যে, এদের ভর আছে এবং এরা কিছুটা স্থান জুড়ে থাকে। চল আমরা পূর্ব শ্রেণিতে পদার্থের অবস্থা সমূহের ধর্মাবলিগুলো সমন্ধে যা পড়েছি সেগুলো মনে করি।

1.2.1 পদার্থের অবস্থা সমূহ (States of Matter)

এছাড়াও তুমি জান যে, পদার্থের তিনটি ভৌত অবস্থা বর্তমান। যেমন- কঠিন, তরল এবং গ্যাসীয়। পদার্থের তিন অবস্থার গঠনকারী কণাগুলো চিত্র 1.1 এ প্রদর্শিত হয়েছে। কঠিনের মধ্যে কণাগুলো ঘনসন্নিবিস্ট অবস্থায় সুশৃঙ্খলভাবে বিন্যস্ত থাকে এবং এদের চলাচলে বেশি স্বাধীনতা থাকে না।

তরলের মধ্যে কণাগুলো কাছাকাছি থাকলেও এরা চারদিকে চলাফেরা করতে পারে। কিন্তু গ্যাসের মধ্যে কণাগুলো কঠিন বা তরল অবস্থার কণাগুলোর চেয়ে অনেক দূরে দূরে অবস্থান করে রসায়নের মৌলিক ধারণা

এবং কণাগুলো সহজেই দ্রুত গতিতে স্বাধীনভাবে চলাফেরা করে। কণাগুলোর এই ধরনের বিন্যাসের কারণে, বিভিন্ন অবস্থার পদার্থ নিন্নলিখিত বৈশিষ্ট্যগুলো প্রদর্শন করে :

 i) কঠিন পদার্থের নির্দিন্ট আয়তন এবং নির্দিন্ট আকৃতি আছে।
 ii) তরল পদার্থের নির্দিন্ট আয়তন আছে। কিন্তু নির্দিন্ট আকার নেই। একে যে পাত্রে রাখা হয়, সেই পাত্রের আকার ধারণ করে।
 iii) গ্যাসীয় পদার্থের নির্দিন্ট কোনো আয়তন বা আকার নেই। এদের যে পাত্রে রাখা হয়, সেই পাত্রের সম্পূর্ণ আয়তন অধিকার করে। তাপমাত্রা এবং চাপের পরিবর্তনের ফলে এই তিন অবস্থার পদার্থগুলোর পারস্পরিক রূপান্তর করা যায়।

কঠিন 进 উত্তাপ 📜 উত্তাপ 🦄 গ্যাস

তাপ প্রয়োগে কঠিন পদার্থ সাধারণত তরলে পরিণত হয় আরো অধিক তাপ প্রয়োগে তরল পদার্থ গ্যাসীয় (বাষ্ণ) অবস্থায় পরিণত হয়। বিপরীত প্রক্রিয়ার দ্বারা একটি গ্যাসকে শীতল করলে ঘনীভূত হয়ে তরলে রূপান্তরিত হয়, আরো অধিক শীতল করলে ঘনীভূত হয়ে কঠিনে পরিণত হয়।

1.2.2 পদার্থের শ্রেণিবিভাগ (Classification of Matter)

তোমরা নবম শ্রেণিতে দ্বিতীয় অধ্যায়ে পড়েছ যে, ম্যাক্রাস্কোপিক বা বাল্কস্তরে, পদার্থকে মিশ্রণ বা বিশুম্ব বস্তুতে শ্রেণিবিন্যাস করা যেতে পারে। চিত্র 1.2 এর মতো এগুলোকে আরো উপশ্রেণিতে বিভক্ত করা যায়।

যখন পদার্থের সমস্ত গঠনমূলক উপাদানগুলোর রাসায়নিক ধর্ম একরকম হয়, তখন তাকে বিশুদ্ধ পদার্থ বলা হয়। মিশ্রদের মধ্যে বিভিন্ন ধরনের উপাদান কণা থাকে।

মিশ্রণের মধ্যে দুই বা ততোধিক বিশুদ্ধ পদার্থের কণা থাকে

চিত্র: 1.2 পদার্থের শ্রেণিবিভাগ

এবং এরা যে কোনো অনুপাতে উপস্থিত থাকতে পারে। তাই মিশ্রণের সংযুতি পরিবর্তনশীল হয়। যে সকল বিশুদ্ধ পদার্থ দ্বারা মিশ্রণ তৈরি হয়, সেগুলোকে মিশ্রণের উপাদান বলা হয়। তোমাদের চারপাশের বেশিরভাগ পদার্থাই হল মিশ্রণ। যেমন- চিনির জলীয় দ্রবণ, বায়ু, চা প্রভৃতি হল মিশ্রণ। মিশ্রণ সমসত্ত্ব বা অসমসত্ত্ব দুইই হতে পারে। সমসত্ত্ব মিশ্রণের উপাদানগুলো সম্পূর্ণরূপে একে অপরের সাথে মিশ্রিত থাকে। অর্থাৎ সমসত্ত্ব মিশ্রণে উপাদান কণিকাগুলো সমস্ত মিশ্রণের মধ্যে সমানভাবে ছড়িয়ে থাকে এবং সমস্ত মিশ্রণের সংযুতি একইরকম হয়। চিনির দ্রবণ এবং বায়ু হল সমসত্ত মিশ্রণের উদাহরণ। বিপরীতক্রমে অসমসত্ত মিশ্রণের সংযুতি মিশ্রণের সর্বত্র সমান হয় না এবং কখনো কখনো ভিন্ন ভিন্ন উপাদানও লক্ষ্য করা যায়। যেমন-লবণ এবং চিনির মিশ্রণ, কিছু নোংরা কণা (প্রায়শই পাথর) সহ শস্য ও ডালের মিশ্রণ হল অসমসত্ত্ব মিশ্রণের উদাহরণ। তোমাদের দৈনন্দিন জীবনের সাথে জড়িয়ে আছে এমন আরো অনেক মিশ্রণের উদাহরণ তোমরা ভাবতে পারো। এখানে অবশ্যই উল্লেখ করা প্রয়োজন যে মিশ্রণের উপাদানগুলোকে ভৌত পদ্ধতি ব্যবহার করে, যেমন-হাত-বাছাই, পরিস্রাবন, কঠিনীভবন (Crystalisation), পাতন ইত্যাদির সাহায্যে পৃথক করা যায়।

বিশুদ্ধ পদার্থের বৈশিষ্ট্য মিশ্রণ থেকে পৃথক হয়। বিশুদ্ধ পদার্থের উপাদান কণিকাগুলোর সংযুতি নির্দিষ্ট থাকে। কপার, সিলভার, গোল্ড, জল হল বিশুদ্ধ পদার্থের কিছু উদাহরণ। গ্লুকোজের মধ্যে একটি নির্দিষ্ট অনুপাতে কার্বন, হাইড্রোজেন এবং অক্সিজেন আছে এবং এর উপাদান কণিকাগুলোর সংযুতিও একই রকম। তাই অন্যান্য বিশুদ্ধ পদার্থের মত গ্লুকোজেরও একটি নির্দিষ্ট সংযুতি আছে। অবশ্যই এর উপাদান কণিকাগুলো অর্থাৎ কার্বন, হাইড্রোজেন, এবং অক্সিজেনকে সহজ ভৌত পদ্ধতির দ্বারা পৃথক করা যাবে না।

বিশুদ্ধ পদার্থকে মৌল এবং যৌগ-এই দুটিতে শ্রেণিতেও বিভক্ত করা যায়। মৌলের কণার মধ্যে কেবলমাত্র এক প্রকারের পরমাণ থাকে। এই কণাগুলো পরমাণু বা অণু দুইই হতে পারে। বিগত শ্রেণিগুলোতে (Previous Classes) পরমাণু এবং অণুর সাথে হয়তো তোমাদের পরিচিতি হয়েছে; যদিও এদের সম্পর্কে দ্বিতীয় অধ্যায়ে তুমি বিস্তারিত জানতে পারবে।

চিত্র: 1.3 পরমাণু এবং অণু একটি উপস্থাপন

সোডিয়াম, কপার, সিলভার, হাইড্রোজেন, অক্সিজেন প্রভৃতি হল মৌলের কিছু উদাহরণ। এরা সকলেই একই ধরনের পরমাণু দ্বারা গঠিত। যদিও বিভিন্ন মৌলের পরমাণুগুলোর প্রকৃতিও ভিন্ন ভিন্ন হয়। সোডিয়াম বা কপারের মতো মৌলগুলোর উপাদান কণাগুলো হল পরমাণু যদিও অন্যান্য কিছু ক্ষেত্রে উপাদান কণাগুলো হল দুই বা ততোধিক পরমাণু দ্বারা গঠিত অণু। যেমন- হাইড্রোজেন

 (CO_{γ})

চিত্র : 1.4 জল এবং কার্বন ড্রাইঅক্সাইড অণুর একটি চিত্র।

গ্যাস, নাইট্রোজেন গ্যাস এবং অক্সিজেন গ্যাসগুলোতে দুটি করে পরমাণু যুক্ত হয়ে এদের অণু গঠন করে। চিত্র : 1.3 তে এদের গঠন দেখানো হল।

যখন ভিন্ন ভিন্ন মৌলের দুই বা ততোধিক পরমাণু একটি নির্দিষ্ট

অনুপাতে যুক্ত হয়, তখন যৌগের একটি অণু পাওয়া যায়। যৌগের এই অণুগুলোকেও ভৌত পম্ধতির দ্বারা সরলতর বস্তুতে পৃথক করা যায় না। এদের রাসায়নিক পদ্ধতির দ্বারা পৃথক করা যায়। জল, অ্যামোনিয়া, কার্বন ডাই অক্সাইড, চিনি হল যৌগের কিছু উদাহরণ। জল এবং কার্বন ডাই অক্সাইড অণুর গঠন চিত্র : 1.4 দ্বারা উপস্থাপন করা হল।

লক্ষ করে দেখো, জলের একটি অণু দুটি হাইড্রোজেন পরমাণু এবং একটি অক্সিজেন পরমাণু দিয়ে গঠিত। অনুরূপে কার্বন ডাই অক্সাইডের একটি অণুতে দুটি অক্সিজেন পরমাণু একটি কার্বন পরমাণুর সাথে যুক্ত থাকে।

এভাবেই কোনো যৌগের মধ্যে উপস্থিত ভিন্ন ভিন্ন মৌলের পরমাণুগুলোর অনুপাত স্থির এবং নির্দিষ্ট থাকে এবং এই অনুপাতটি একটি নির্দিষ্ট যৌগের বৈশিষ্ট্যসূচক। যদিও কোনো যৌগের ধর্ম এর গঠনকারী উপাদান মৌলের ধর্ম থেকে পৃথক হয়। উদাহরণস্বরূপ হাইড্রোজেন এবং অক্সিজেন হল গ্যাস কিন্তু এদের সংযুক্তিকরণের ফলে উৎপন্ন যৌগ অর্থাৎ জল হল একটি তরল পদার্থ। এটা মনে রাখা মজাদার যে, হাইড্রোজেন পপ (Pop) শব্দ সহকারে প্রজ্জ্বলিত হয় এবং অক্সিজেন প্রজ্জ্বলনে সাহায্য করে, কিন্তু জল অগ্নি নির্বাপকরুপে ব্যবহৃত হয়।

1.3 পদার্থের ধর্ম এবং এদের পরিমাপ (Properties of matter & there measurment)

1.3.1 ভৌত এবং রাসায়নিক ধর্মসমূহ (Physical and chemical properties)

প্রত্যেক পদার্থের নিজস্ব বা বৈশিষ্ট্যগত ধর্ম আছে। এই ধর্মসমূহকে দুই ভাগে ভাগ করা হয়েছে ভৌত ধর্ম সমূহ, যেমন- বর্ণ, গম্ব, গলনাধ্ব্দ, স্ফুটনাধ্ব্ক, ঘনত্ব ইত্যাদি এবং রাসায়নিক ধর্মসমূহ, যেমন-সংযুতি, দাহ্যতা, অ্যাসিড এবং ক্ষারের সঙ্গে সক্রিয়তা ইত্যাদি।

পদার্থের ভৌতধর্ম সমূহকে তাদের পরিচয় (ধর্ম) বা সংযুতি পরিবর্তন কণা করে পরিমাপ বা পর্যবেক্ষণ করার জন্য রাসায়নিক পরিবর্তন সংঘটিত করতে হয়। বিভিন্ন পদার্থের বৈশিষ্ট্যগত বিক্রিয়াগুলো হলো রাসায়নিক ধর্মসমূহের উদাহরণ এর মধ্যে রয়েছে অম্লতা বা ক্ষারীয়তা, দাহ্যতা ইত্যাদি। বস্তুর ভৌত ও রাসায়নিক ধর্ম যত্নসহকারে পরীক্ষা এবং পরিমাপ করে রাসায়নবিদগণ বস্তুটির প্রকৃতির ব্যাখ্যা ও বর্ণনা করতে পারেন এবং বস্তুটির প্রকৃতি সম্পর্কে আগাম ধারণা করতে পারেন। নীচের অনুচ্ছেদে আমরা ভৌত ধর্মের পরিমাপন পদ্ধতি সম্পর্কে শিখব।

রসায়নের মৌলিক ধারণা

1.3.2 ভৌত ধর্ম সমূহের পরিমাপ (Measurement of physical properties)

বৈজ্ঞানিক অনুসন্ধানের জন্য ধর্ম সমূহের পরিমাণগত পরিমাপ প্রয়োজন। বস্তুর বেশ কিছু ধর্ম যেমন দৈর্ঘ্য, ক্ষেত্রফল, আয়তন প্রভৃতি হলো পরিমেয় বা পরিমাণগ সংক্রান্ত ধর্ম। যে কোনো পরিমাণগত পর্যবেক্ষণ বা পরিমাপ করা হয়। একটি সংখ্যার সাহায্যে যার পরে এখন একটি একক থাকে, যে এককে সেটি পরিমাপ করা হয়েছে। উদাহরণ স্বরূপ, একটি ঘরের দৈর্ঘ্য ৬ মি. হিসাবে প্রকাশ করা যেতে পারে। এখানে 6 হল সংখ্যা এবং 'm' প্রকাশ করা যেতে পারে। এখানে 6 হল সংখ্যা এবং 'm' প্রকাশ করে মিটার যার দ্বারা দৈর্ঘ্যের একক পরিমাপ করা হয়।

পূর্বে পরিমাপের দুটি পাম্বতি অর্থাৎ আন্তর্জাতিক পা্বতি (English System) এবং মেট্রিক পাম্বতি কে পৃথিবীর বিভিন্ন প্রান্তে ব্যবহার করা হয়েছে। মেট্রিক পা্বতি যা অন্টান্শ শতকের শেষের দিকে ফ্রান্সে চালু হয়েছিল। সেটি অধিকতর সুবিধাজনক ছিল কারণ এটি দশমিক পান্বতির উপর ভিত্তি করে রচিত হয়েছিল। পরে বৈজ্ঞানিক সম্প্রদায় একটি সাধারণ প্রামাণ্য পাম্বতির প্রয়োজন অনুভব করলেন। এই ধরনের একটি পাম্বতি 1960 খ্রীম্টাব্দে চালু হয়েছিল এবং এর বিস্তারিত আলোচনা নিচে করা হলো।

1.3.3 এককের আন্তর্জাতিক পদ্ধতি (The International System of Units) (SI)

এককের আন্তর্জাতিক পম্বতি (In French Le System International d'Unites- abbreviated as SI) ওজন এবং পরিমাপের 11 তম আন্তর্জাতিক সাধারণ সভা দ্বারা প্রতিষ্ঠিত হয় (CGPM from Conference Generale des Poids et Measures). CGPM হল একটি আন্ত: সরকার চুক্তি সংস্থা যা 1875 খ্রীফ্টাব্দে প্যারিসে স্বাক্ষরিত মিটার কনভেনশন নামে পরিচিত

পরিমাপের জাতীয়মান বজায় রাখা (Maintaining the National Standerds of Measurement)

এককের পদ্ধতি এবং এককের সংজ্ঞা সময়ের সাথে সাথে পরিবর্তিত হতে থাকে। যখনই কোনো নৃতন নীতি অনুসরণ করে কোনো একক পরিমাপের সঠিকতা (accuracy) -যথেম্টভাবে উন্নত করা গিয়েছে তখনই (1875 খ্রীম্টাব্দে স্থাপিত) মিটার ট্রিটি (metretreaty)-র সদস্য দেশগুলো সেই এককের প্রচলিত সংজ্ঞা পরিবর্তনে সন্মত হয়েছে। ভারত সহ প্রত্যেক শিল্পোন্নত দেশেই একটি জাতীয় পরিমাপন সংস্থা (National Metrology Institute) বা NMI রয়েছে যা পরিমাপের সঠিক মানকে বজায় রাখে। নতুন দিল্লিস্থিত জাতীয় ভৌত প্রয়োগশালা (Nattional Physical Laboratory, NPL)-র উপর এ দায়িত্ব অর্পণ করা হয়েছে। এই প্রয়োগশালায় পরিমাপের বিভিন্ন প্রাথমিক ও লব্ধ একক সমহের সঠিক মান নির্ধারণে গবেষণা হয় এবং পরিমাপের জাতীয়মান বজায় রাখে। এসব মানকগুলোকে পর্যায়ক্রমিকভাবে বিশ্বের অন্যান্য দেশের পরিমাপ দপ্তরের মানক এবং প্যারিসের আন্তর্জাতিক পরিমাপ দপ্তরে (International Bureau of Standards) রাখা মানকগুলোর সাথে তুলনা করা হয়।

একটি কূটনৈতিক চুন্তি।

এস.আই (SI) পম্বতিতে সাতটি মূল একক আছে এবং এদের সারণি। 1.1 এ তালিকাভুক্ত করা হয়েছে। এই এককগুলো সাতটি মৌলিক বৈজ্ঞানিক রাশির সাথে সম্পর্কিত। অন্যান্য ভৌত রাশির যেমন দ্রুতি আয়তন, ঘনত্ব প্রভৃতির একক এই রাশিগুলোর একক থেকে পাওয়া যায়। এস.আই (SI) পম্বতির ভিত্তিতে এককের সংজ্ঞাগুলো সারণি 1.2 তে দেওয়া হল।

সারণি 1.1 মূল বা প্রাথমিক ভৌত রাশি এবং এদের একক সমূহ (Base Physical Quantites & their units)

মূল ভৌত রাশি	রাশির চিহ্ন	SI এককের	SI এককের
		নাম	চিহ্ন
দৈর্ঘ্য	l	মিটার	m
ভর	m	কিলোগ্রাম	kg
সময়	t	সেকেন্ড	S
তড়িৎ প্রবাহ	Ι	অ্যাম্পিয়ার	А
তাপ গতীয় উন্নতা	Т	কেলভিন	K
পদার্থের পরিমাণ	n	মোল	mol
দীপন শক্তি	I _v	ক্যান্ডেলা	cd

এসো আমরা দ্রুত এমন কিছু রাশির কথা জেনে নেই, যেগুলোর ব্যবহার তোমরা প্রায়শই এই বইয়ে দেখতে পাবে।

দৈর্ঘ্যের একক	মিটার	শূণ্য মাধ্যমে আলো এক সেকেন্ডের 1/299 792 458 ভাগ সময়ে যে দূরত্ব অতিক্রম করে তাকে 1 মিটার বলে।
ভরের একক	কিলোগ্রাম	কিলোগ্রাম হলো ভরের একক। এটি কিলোগ্রামের আন্তর্জাতিক প্রোটোটাইটের ভরের সমান।
সময়ের একক	সেকেন্ড	1 সেকেন্ড হল ভূমি স্তরে সিজিয়াম -133 পরমাণুর দুটো সূক্ষ্ম শক্তিস্তরের মধ্যকার দূরত্ব অতিক্রম করার জন্য কোনো বিকিরণের প্রয়োজনীয় সময়ের 9 192 631 770 টি পর্যায়।
তড়িৎ প্রবাহের একক	অ্যাম্পিয়ার	1 অ্যাম্পিয়ার হল একটি স্থির বিদ্যুৎ প্রবাহ যা নগণ্য প্রস্থচ্ছেদ যুক্ত অসীম দৈর্ঘ্যের দুটো গোলাকার পরিবাহী তারকে শূণ্যে 1 মিটার দূরত্বে সমান্তরালভাবে রেখে তড়িৎ প্রবাহিত করলে পরিবাহী দুটির প্রতি মিটার দৈর্ঘ্যে 2 × 10 ⁻⁷ নিউটন বল সৃষ্টি করে।
তাপগতীয় উন্নতার একক	কেলভিন	কেলভিন হল উম্বতার একটি তাপ গতীয় একক, যা জলের [*] ব্রৈধবিন্দুর তাপ গতীয় উম্বতার 1/273.16 অংশ।
পদার্থের পরিমাণের একক	মোল	 1. 1 মোল (mole) হল কোনো সিস্টেমের সেই পরিমাণ পদার্থ যার মধ্যে কার্বন-12 পরমাণুর 0.012 কিলোগ্রাম পরিমাণে উপস্থিত পরমাণু সংখ্যার সমান সংখ্যক মূল কনিকা উপস্থিত থাকে। এর চিহ্ন হল মোল (mole). 2. মোল (mole) শব্দের ব্যবহার করতে হলে মূল কণিকাগুলোকে নির্দিন্ট করে বলতে হয় এবং এগুলো পরমাণু, অণু, আয়ন, ইলেকট্রন, অন্যান্য কণিকা বা অন্যান্য কণিকার নির্দিন্ট সমবায় হতে পারে।
দীপন প্রাবল্যের একক	ক্যান্ডেলা	ক্যান্ডেলা হল উৎসের একটি নির্দিন্ট অভিমুখে সেই পরিমাণ দীপন প্রাবল্য যা 540 × 10 ¹² হার্ৎজ কম্পাঙ্কের এক বর্ণী বিকিরণ নিসৃত করে এবং যার ঐ অভিমূখে বিকিরিত প্রাবল্য হল 1/683 ওয়াট প্রতি স্টেরেডিয়ান।

সারণি 1.2 এস.আই (SI) পম্ধতিতে প্রাথমিক একক সমূহের সংজ্ঞা (Defination of SI Base Units)

* জলের ত্রৈধবিন্দু (Triple point) হল 0.01 °C or 279.16K (32.01°F)

সারণি 1.3 এস.আই (SI) পম্বতিতে ব্যবহৃত উপসর্গ (Prefixes used in the SI System)

গুণিতক	উপসর্গ	চিহ্ন	
10-24	ইওকটো (yocto)	у	
10 ⁻²¹	জেপটো (zepto)	Z	
10^{-18}	অ্যাটো (atto)	а	
10^{-15}	ফেমটো (femto)	f	
10-12	পিকো (pico)	р	
10-9	ন্যানো (nano)	n	
10-6	মাইক্রো (micro)	m	
10-3	মিলি (milli)	m	
10-2	সেন্টি (centi)	с	
10-1	ডেসি (deci)	d	
10	ডেকা (deca)	da	
10 ²	হেক্টো (hecto)	h	
10 ³	কিলো (kilo)	k	
106	মেগা (mega)	М	
109	গিগা (giga)	G	
1012	টেরা (tera)	Т	
1015	পেটা (peta)	Р	
1018	এক্সা (exa)	Е	
1021	জেটা (zeta)	Ζ	
1024	ইওটা (yotta)	Y	

1.3.2 ভর এবং ওজন (Mass & Weight)

কোনো বস্তুর ভর বলতে ঐ বস্তুতে যে পরিমাণ পদার্থ থাকে তা বোঝায় কিন্তু বস্তুটির উপর যে অভিকর্ষ বল প্রযুক্ত হয় সেটাই হল ওজন। বস্তুর ভর ধ্রুবক কিন্তু স্থান থেকে স্থানান্তরে অভিকর্ষ বল (g) পরিবর্তিত হয়, ফলে ওজন পরিবর্তিত হয়। এই পদগুলো ব্যবহার করার সময় তোমাকে সতর্ক থাকতে হবে।

তুলাযন্ত্র (Analytical Balance) ব্যবহার করে রসায়নের কোনো বস্তুর ভর সঠিকভাবে পরিমাপ করা যায়। (চিত্র: 1.5)

সারণি 1.1 এ প্রদেয় ভরের এস.আই (SI) একক হল কিলোগ্রাম। যেহেতু রসায়নাগারে রাসায়নিক বিক্রিয়া সংঘটিত করার জন্য রাসায়নিক দ্রব্যের ক্ষুদ্রতর পরিমাণকে পরিমাপ করতে হয় তাই রসায়নাগারে এর ভগ্নাংশ গ্রাম (1 কিলোগ্রাম = 1000 গ্রাম) এককে ব্যবহার করা হয়।

আয়তন (Volume)

আয়তন হল বস্তুর দ্বারা অধিকৃত স্থানের পরিমাণ। এর একক হল (দৈর্ঘ্য)³। তাই এস.আই (SI) পাম্বতিতে আয়তনের একক হল

চিত্র: 1.5 বিশ্লেষণাত্মক তুলাযন্ত্র।

(মিটার)³। কিন্তু পরীক্ষাগারে ক্ষুদ্রতর আয়তন ব্যবহার করা হয়। সেইজন্য আয়তনকে প্রায়ই (সেমি)³বা (ডেসিমি)³এককে প্রকাশ করা হয়।

তরলের আয়তন পরিমাপ করার জন্য একটি সাধারণ একক লিটার ব্যবহার করা হয়, যা SI একক নয়।

1 লিটার = 1000 মিলিমিটার

1000 সেমি³=1 (ডেসিমিটার)³

চিত্র : 1.6-এ এই সম্পর্কগুলো স্পষ্ট দেখা যাচ্ছে।

চিত্র: 1.6 আয়তন প্রকাশে ব্যবহৃত বিভিন্ন একক।

(ডিগ্রি সেলসিয়াম), °F (ডিগ্রি ফারেনহাইট) এবং K (কেলভিন)। এখানে K হল SI একক। চিত্র : 1.8-এ প্রদর্শিত থার্মোমিটার গুলো এই স্কেলগুলোর উপর ভিত্তি করে গঠিত। সাধারণত সেলসিয়াস স্কেলে থার্মোমিটার টি 0° থেকে 100° পর্যন্ত স্কেল করা হয়, যেখানে এই দুটো তাপমাত্রা হল যথাক্রমে জলের হিমাঙ্ক এবং স্ফুটনাঙ্ক। ফারেনহাইট স্কেল 32° থেকে 212° মধ্যে প্রকাশ করা যায়। এই দুটো স্কেলের তাপমাত্রার মধ্যে নিম্নলিখিত সম্পর্ক বর্তমান—

$$^{\circ}F = 9/5 \,^{\circ}C + 32$$

কেলভিন এবং সেলসিয়াস স্কেল নিম্নলিখিতভাবে সম্পর্কিত-

$$K = {}^{\circ}C + 273.15$$

এটা খুবই মজাদার যে সেলসিয়াস স্কেলে 0°C (যেমন ঋণাত্মক মান) এর নীচের তাপমাত্রা ও পরিমাপ করা সম্ভব কিন্তু কেলভিন স্কেলে ঋণাত্মক তাপমাত্রা পরিমাপ করা সম্ভব নয়।

1.4 গণনার মধ্যে অনিশ্চয়তা (UNCERTAINTY IN MEASUREMENT)

1.4 রসায়ন নিয়ে অধ্যয়ন করার সময় প্রায়শই কোনো একজনকে যেমন পরীক্ষালব্ধ তথ্য নিয়ে কাজ কারতে হয় তেমনি তাত্ত্বিক গণনা নিয়েও কাজ করতে হয়। সংখ্যাগুলোকে অর্থপূর্ণ করার জন্য প্রচলিত পদ্ধতি রয়েছে এবং তথ্যগুলোকে যথাসম্ভব বাস্তবসন্মতভাবে উপস্থাপন করার পদ্ধতি রয়েছে। এদের সম্পর্কে নীচে বিস্তারিত ভাবে আলোচনা করা হল।

পরীক্ষাগারে তরলের বা দ্রবণের আয়তন অংশাঙ্কিত চোঙ, বুরেট, পিপেট প্রভৃতির দ্বারা পরিমাপ করা যায়। জ্ঞাত আয়তনের কোনো দ্রবণ তৈরি করতে আয়তনমাত্রিক ফ্লাস্ক ব্যবহার করা হয়। চিত্র : 1.7 -এ পরিমাপের যন্ত্রগুলো দেখানো হয়েছে।

ঘনত্ব (Densitty)

উপরে আলোচ্য ভর এবং আয়তন এই দুটি ধর্ম নিম্নলিখিতভাবে সম্পর্ক যুক্ত।

কোনো পদার্থের ঘনত্ব হল প্রতি একক আয়তনে এর ভরের পরিমাণ। তাই, ঘনত্বের এস.আই (SI) একক নিম্নরূপে পাওয়া যেতে পারে:

$$=\frac{\mathrm{kg}}{\mathrm{m}^3}$$
 অথবা kg m⁻³

এই এককটি যথেস্ট বড় হওয়ার কারণে রসায়নবিদগণ ঘনত্বকে gcm⁻³ এককে প্রকাশ করেন, যেখানে ভরকে g এবং আয়তনকে cm³ এককে প্রকাশ করা হয়। পদার্থের ঘনত্ব আমাদেরকে বলে দেয় ইহার কণাগুলো কত বেশি একে অপরের সহিত সংঘবন্ধ। যদি ঘনত্ব বেশি হয় তবে এর অর্থ হল কণাগুলো একে অপরের সাথে খুবই কাছাকাছি সংঘবন্ধ অবস্থায় আছে।

তাপমাত্রা (Temperature)

তাপমাত্রা পরিমাপের জন্য তিনটি সাধারণ স্কেল আছে। যেমন $^\circ\!C$

প্রমাণ তথ্য (Reference Standard)

পরিমাপের একটি একক যেমন কিলোগ্রাম বা মিটার হিসাবে সংজ্ঞায়িত করার পরে, বিজ্ঞানীরা প্রমাণ্য তথ্যের ভিত্তিতে সম্মত হন, যে গুলো সমস্ত পরিমাপের যন্ত্রগুলোকে পরিমাপ করে। নির্ভরযোগ্য পরিমাপ পাওয়ার জন্য, সমস্ত যন্ত্র যেমন মিটার দন্ড এবং বিশ্লেষণ মূলক তূলাযন্ত্রগুলো তৈরি করা হয়েছে। যা হোক, কিছু তথ্যের ভিত্তিতে যন্ত্রগুলো প্রমাণিত হয়। 1889 খ্রীষ্টাব্দ থেকে ভরের প্রমাণ মান হল কিলোগ্রাম। এটি হিসাবে সংজ্ঞায়িত করা হয়েছে, ফ্রান্সের আন্তর্জাতিক ব্যুরো অফ ওয়েটস অ্যান্ড মেজারস'-এ রাখা একটি প্লাটিনাম-ইরিডিয়ামের সংকর ধাতুর একটি নিরেট চোঙের ভর। Pt-Ir কে প্রমাণের জন্য নির্বাচিত করা হয়েছিল কারণ এটি রাসায়নিক আক্রমনের জন্য প্রতিরোধী এবং দীর্ঘ দিন পরেও এর ভরের কোনো পরিবর্তন হয় না।

বিজ্ঞানীরা ভরের জন্য একটি নতুন মানের সম্থ্যান করেন। সঠিক তথ্যের ভিত্তিতে অ্যাভোগাড্রো ধ্রুবকের সাহায্যে চেস্টা করা হচ্ছে। এই নতুন প্রমাণের উপর কাজ করে উপায়গুলোর পরিমাপের পম্বতিগুলোর উপর দৃষ্টি নিবন্ধ করে কোনো নির্দিন্ট ভরের নমুনার পরমাণুগুলোর সঠিক পরিমাপ করা যায়। এক ধরনের পম্বতি, যা অতি বিশুম্ব সিলিকনের একটি কেলাসের পারমাণবিক ঘনত্ব নির্ধারণে X-রশ্মি ব্যবহৃত হয়, যা 10° এর। এক ভাগের একটি সঠিকতা আছে কিন্ডু এমন একটি প্রমাণ হিসাবে লিপিবন্ধ এখনও গৃহীত হয়নি। অন্যান্য পদ্বতি আছে কিন্ডু এদের কোনো পম্বতি বর্তমানে Pt-Ir সিলিন্ডার প্রতিস্থাপনে পর্যাপ্ত নয়। কোনো সন্দেহ নেই, পরিবর্তন এই দশকের (decade) মধ্যে প্রত্যাশা করা যায়।

0°C (273.15k) তাপমাত্রায় রাখা প্লাটিনাম-ইরিডিয়াম (Pt-Ir) ধাতুর তৈরি একটি দন্ডের দুটি দাগের মধ্যবর্তী দৈর্ঘ্যকে মূলত মিটার হিসাবে সংজ্ঞায়িত করা হয়েছিল। 1960 খ্রীষ্টাব্দে মিটার দৈর্ঘ্য হিসাবে সংজ্ঞায়িত করা হয়েছিল, একটি ক্রিপটন লেজার থেকে নির্গত আলোক তরঙ্গা দৈর্ঘ্যের 1.65076373 ×10⁶ গুণ। যদিও এটি একটি অবাস্তব সংখ্যা ছিল, এটি মিটারের প্রকৃত মানের সংরক্ষিত দৈর্ঘ্য। 1983 খ্রীষ্টাব্দে CGPM দ্বারা মিটারকে পুনরায় সংজ্ঞায়িত করা হয়, শূন্য মাধ্যমে আলোক 1/299792458 সেকেন্ডে যে দূরত্ব অতিক্রম করে তার দৈর্ঘ্যকে বোঝায়। দৈর্ঘ্য এবং ভরের অনুরূপ, অন্যান্য ভৌত রাশিগুলোর প্রমাণ মান আছে।

1.4.1 বৈজ্ঞানিক প্রতীক (Scientific Notation)

রসায়ন হল অণু এবং পরমাণু সম্পর্কিত একটি গবেষণা যাদের ভর অত্যন্ত ক্ষুদ্র এবং বৃহৎ সংখ্যায় উপস্থিত থাকে। তাই রসায়নবিদদের 602, 200, 000, 000, 000, 000, 000, 000-এর মতো বড় সংখ্যার হাইড্রোজেন অণু যা 2 গ্রাম হাইড্রোজেন গ্যাসে উপস্থিত থাকেবা একটি H-পরমাণুর 0.00000000000000000000000166 গ্রাম ভরের মতো ক্ষুদ্র সংখ্যা নিয়ে গবেষণা করতে হয়। একই ভাবে অন্যান্য ধ্রুবকরাশিগুলো যেমন প্ল্যাজ্ঞ ধ্রুবক, আলোকের বেগ, কনার আধান ইত্যাদিও উপরের মানসম্পন্ন সংখ্যার সাথে জড়িত।

এত সংখ্যক শূণ্য সমন্বিত সংখ্যা লেখা বা শূণ্যগুলোকে গণনা করা মুহূর্তের জন্য মজাদার মনে হলেও এদের যোগ, বিয়োগ, গুণ বা ভাগ করার মতো গাণিতিক প্রক্রিয়াগুলো সম্পন্ন করা ছিল ভীষণ চ্যালেঞ্জের। ওপরের সংখ্যাগুলোর মতো যে কোনো দুটি সংখ্যা লিখে, উপরের যে কোনো একটি প্রক্রিয়া সম্পন্ন করার চেষ্টা করলেই তুমি বুঝতে পারবে যে এমন সংখ্যা নিয়ে কাজ করা বাস্তবে কী ভীষণ রকম একটি চ্যালেঞ্জ।

এই জাতীয় সংখ্যার জন্য বৈজ্ঞানিক প্রতীক ব্যবহার করে এই সমস্যার সমাধান করা যায়, যেমন এই মানগুলোকে (exponential notation) ব্যাখ্যা মূলক পরিসংখ্যান এর সাহায্যে N ×10ⁿ রুপে প্রকাশ করা যায়, যেখানে n হল সূচক যা ধনাত্মক বা ঋণাত্মক হতে পারে এবং N হল একটি সংখ্যা (ডিজিট শব্দটি বলা) যা 1.000..... এবং 9.999... -এর মধ্যে পরিবর্তিত হয়।

এভাবে, আমরা বৈজ্ঞানিক প্রতীকে 232.508 কে 2.32508 × 10² রুপে লিখতে পারে। উল্লেখ্য যে, এটি লেখার সময় দশমিক বিন্দু বাম দিকে দু ঘর সরে যায় এবং সরে যাওয়া স্থানের সংখ্যা (2) যা বৈজ্ঞানিক প্রতীকে 10 এর সূচক।

একই ভাবে 0.00016 কে 1.6×10^{-4} রুপে লেখা যায়। এখানে দশমিক বিন্দু ডান দিকে চার ঘর সরে যায় এবং (-4) হল বৈজ্ঞানিক প্রতীকে 10 -এর সূচক।

এখন, বৈজ্ঞানিক প্রতীকে প্রকাশিত সংখ্যা গণনা করতে নিম্নলিখিত বিষয় (Point) গুলো মনে রাখতে হবে।

গুণ এবং ভাগ (Multiplication & Division) এই দু'টি পম্বতি সূচক সংখ্যাগুলোর মতো একই নিয়ম অনুসরণ করে। যেমন-

রসায়ন

$$(5.6 \times 10^{5}) \times (6.9 \times 10^{8}) = (5.6 \times 6.9)(10^{5+8})$$
$$= (5.6 \times 6.9) \times 10^{13}$$
$$= 38.64 \times 10^{13}$$
$$= 3.864 \times 10^{14}$$
$$(9.8 \times 10^{-2}) \times (2.5 \times 10^{-6}) = (9.8 \times 2.5)(10^{-2+(-6)})$$
$$= (9.8 \times 2.5)(10^{-2-6})$$
$$= 24.50 \times 10^{-8}$$
$$= 2.450 \times 10^{-7}$$
$$\frac{2.7 \times 10^{-3}}{5.5 \times 10^{4}} = (2.7 \div 5.5)(10^{-3-4}) = 0.4909 \times 10^{-7}$$
$$= 4.909 \times 10^{-8}$$

যোগ এবং বিয়োগ (Addition & Subtraction)

এই দুটি পম্বতির জন্য প্রথমে সংখ্যাগুলোকে এমনভাবে লেখা হয় যাতে তাদের সূচক একই হয়। এরপর সহগগুলোকে যোগ বা বিয়োগ যে রকম প্রয়োজন সে রকম করা হয়।

এইভাবে 6.65 ×10⁴ এবং 8.95 × 10³ কে যোগ করার জন্য, প্রথমে উভয় সংখ্যার সূচক সমান করতে হয়।

এইভাবে, $6.65 \times 10^4 + 0.895 \times 10^4$

তারপর আমরা পাই, নিম্নরুপে এই সংখ্যাগুলোকে যোগ করা হয়।

 $(6.65 + 0.895) \times 10^4 = 7.545 \times 10^4$

একইভাবে, দুটি সংখ্যার বিয়োগ নিম্নোক্ত ভাবে করা হয়-

 $(2.5 \times 10^{-2}) - (4.8 \times 10^{-3})$ $= (2.5 \times 10^{-2}) - (0.48 \times 10^{-2})$ $= (2.5 - 0.48) \times 10^{-2} = 2.02 \times 10^{-2}$

1.4.2 তাৎপর্যপূর্ণ সংখ্যা (Significant Figures)

প্রত্যেক পরীক্ষামূলক পরিমাপের ক্ষেত্রে কিছু অনিশ্চিয়তা দেখা যায়। কারণ পরিমাপক যন্ত্রাদির সীমাবন্ধতা এবং গণনাকারী ব্যক্তির দক্ষতার জন্য। উদাহরণস্বরূপ, সাধারণ তূলাযন্ত্রের সাহায্যে একটি বস্তুর ভর গণনা করলে 9.4 গ্রাম পাওয়া যায়। কিন্তু বিশ্লেষণমূলক তূলাযন্ত্রে গণনা করলে এর ভর 9.4213 গ্রাম পাওয়া যায়। বিশ্লেষণমূলক তূলাযন্ত্রে নির্ণীত বস্তুর ভর সাধারণ তূলাযন্ত্রে নির্ণীয় বস্তুর ভর অপেক্ষা কিছুটা বেশি। সুতরাং, দশমিক বিন্দুর পর চার (4) সংখ্যাটি সাধারণ তূলাযন্ত্রে এই গণনায় অনিশ্চয়। পরীক্ষামূলক বা গণনাকৃত মানগুলোর মধ্যে অনিশ্চিয়তা নির্দেশ করা হয় যথার্থ সমস্যা উল্লেখ করে। তাৎপর্যপূর্ণ সংখ্যা অর্থপূর্ণ সংখ্যা যা নিশ্চিত ভাবে জানা যায়। অনিশ্চিয়তা কিছু সংখ্যা এবং শেষে অনিশ্চিত কিছু সংখ্যা লিখে নির্দেশ করা হয়। এভাবে, আমরা যদি একটি ফলাফলকে 11.2 mL লিখি, তখন বলি 11 হল নিশ্চিত এবং 2 হল অনিশ্চিত এবং অনিশ্চিয়তা হবে শেষ সংখ্যার ± 1. যদি অন্য কিছু উল্লিখিত না থাকে তবে শেষে সংখ্যার অনিশ্চিয়তা সর্বদা ± 1.

তাৎপর্যপূর্ণ সংখ্যাটি উপস্থিত সংখ্যা নির্ণয়ের কিছু নির্দিষ্ট নিয়ম আছে। এই গুলো নীচে দেওয়া হল :

- সমন্ত শূন্যবিহীন সংখ্যা হল তাৎপর্যপূর্ণ সংখ্যা। উদাহরণস্বরূপ 285cm -এর মধ্যে, তিনটি তাৎপর্যপূর্ণ সংখ্যা আছে এবং 0.25ml এর মধ্যে দুটি তাৎপর্যপূর্ণ সংখ্যা আছে।
- কোনো সংখ্যার প্রথম শূন্যবিহীন সংখ্যার বামদিকের শূন্য সংখ্যা তাৎপর্যপূর্ণ নয়। এরা কেবলমাত্র দশমিক বিন্দুর স্থান নির্দেশ করে।

এভাবে, 0.03 -তে একটি তাৎপর্যপূর্ণ সংখ্যা রয়েছে এবং 0.0052 এর দুটি তাৎপর্যপূর্ণ সংখ্যা রয়েছে।

- দুটি শূন্যবিহীন সংখ্যার মধ্যবর্তী শূন্য তাৎপর্যপূর্ণ সংখ্যা হয়। এভাবে 2.005 তে 4টি তাৎপর্যপূর্ণ সংখ্যা রয়েছে।
- 4. যদি কোনো সংখ্যা শূন্য দিয়ে শেষ হয় বা অন্য কোনো সংখ্যার ডানদিকে শূন্য থাকে, তবে এই শূন্যগুলো তাৎপর্যপূর্ণ সংখ্যা হয়, তবে লক্ষ রাখতে হবে যে শূন্যগুলো যেন দশমিক বিন্দুর ডান দিকে থাকে। উদাহরণস্বরূপ 0.200 গ্রাম-এ তিনটি যথার্থ রয়েছে। যদি কোনো দশমিক বিন্দু না থাকে তবে টার্মিনাল শূন্যগুলো তাৎপর্যপূর্ণ হয় না। উদাহরণস্বরূপ, 100 সংখ্যাটিতে একটি তাৎপর্যপূর্ণ সংখ্যা রয়েছে। কিন্ডু 100 এর তিনটি তাৎপর্যপূর্ণ সংখ্যা রয়েছে এবং 100.0 এর 4টি তাৎপর্যপূর্ণ সংখ্যা রয়েছে এবং 100.0 এর 4টি তাৎপর্যপূর্ণ সংখ্যা রয়েছে এবং 100.0 এর দটি তাৎপর্যপূর্ণ সংখ্যা রয়েছে। এ জাতীয় সংখ্যাগুলো বৈজ্ঞানিক প্রতীকের সাহায্যে আরও ভাল করে লেখা যায়। আমরা 100 সংখ্যাটিকে 1 × 10² এই বৈজ্ঞানিক প্রতীকের প্রকাশ করতে পারি যাতে একটি মাত্র তাৎপর্যপূর্ণ সংখ্যা আছে, দুটি তাৎপর্যপূর্ণ সংখ্যা সমন্বিত 1.0 × 10² বা তিনটি তাৎপর্যপূর্ণ সংখ্যা সমন্বিত 1.0 × 10² দারা প্রকাশ করা যায়।

রসায়নের মৌলিক ধারণা

5. বস্তু সংখ্যার গণনায়,

উদাহরণস্বরূপ 2টি বল বা 20টি ডিম এর অসীম সংখ্যক তাৎপর্যপূর্ণ সংখ্যা রয়েছে কারণ এগুলো হল সঠিক সংখ্যা এবং সংখ্যাগুলোর দশমিক বিন্দুর ডানপাশে অসীম সংখ্যক শূন্য লিখে প্রকাশ করা যায়।

যেমন-2=2.000000 বা 20=20.000000

সংখ্যার বৈজ্ঞানিক প্রতীকে লেখা আছে এমন সমস্ত সংখ্যাই হল তাৎপর্যপূর্ণ। উদাহরণ স্বরূপ 4.01 × 10² এর তিনটি তাৎপর্যপূর্ণ সংখ্যা রয়েছে এবং 8.256 × 10³ এর 4টি তাৎপর্যপূর্ণ সংখ্যা রয়েছে।

যদিও সকলেই চাইবে ফলাফল যেন যথার্থ এবং সঠিক হয়। যখন আমরা পরিমাপ সম্পর্কে কথা বলি, তখন প্রায়ই স্পফ্টতা এবং সঠিকতা উল্লেখ করা হয়।

স্পন্টতা বা সূক্ষ্মতা বলতে বোঝায় একই পরিমাণের জন্য বিভিন্ন পরিমাপগুলো পরস্পরের কত কাছাকাছি হয়। যদিও সঠিকতা হলো এমন একটি নির্দিন্টমান যা ফলাফলের প্রকৃত মানের খুব কাছাকাছি হয়। উদাহরণস্বরূপ, একটি ফলাফলের প্রকৃত মান যদি 2.00 g হয় এবং একজন ছাত্র A দুটি পরিমাপ নেয় এবং 1.95 g এবং 1.93 g এই ফল দুটো লিপিবদ্ধ করল। এই মানগুলো হল যথার্থ কারণ এরা প্রকৃত মানের কাছাকাছি কিন্তু এরা সঠিক নয়। অন্য একজন ছাত্র 'B' পুনরায় এই পরীক্ষাটি করল এবং দুটি পরিমাপের ফলাফল পেল 1.94 g এবং 2.05 g । এই পর্যবেক্ষণগুলো যথার্থ বা সঠিক কোনোটাই নয়। যখন তৃতীয় একজন ছাত্র 'C' এই পরিমাপগুলোর পুনরাবৃত্তি করল, সে 2.01 g এবং 1.99 g এই সংখ্যা গুলো পেল। এই দুটি মানই যথার্থ এবং সঠিক। সারণি 1.4 এ দেওয়া তথ্য থেকে এই বিষয়টি আরও স্পন্ট ভাবে বোঝা যাবে।

পরিমাপ /g				
1 2 গড় (g)				
ছাত্র A	1.95	1.93	1.940	
ছাত্র B	1.94	2.05	1.995	
ছাত্র C	2.01	1.99	2.000	

সারণি 1.4 স্পস্টতা এবং সঠিকতা প্রকাশ করার জন্য তথ্য

তাৎপর্যপূর্ণ সংখ্যার যোগ এবং বিয়োগ (Addition and Subtraction of Significant Figures)

ফলাফলটির দশমিক বিন্দুর ডান দিকে বেশি সংখ্যক অঙ্কের সংখ্যা থাকতে পারবে না মূল সংখ্যাগুলোর চেয়ে।

12.11
18.0
1.012
31.122

এখানে 18.0 এর দশমিক বিন্দুর পরে একটি সংখ্যা রয়েছে এবং লিপিবদ্ধ ফলাফল 31.1 হওয়া উচিত যার দশমিক বিন্দুর পরে একটি সংখ্যা আছে।

তাৎপর্যপূর্ণ সংখ্যার গুণ এবং ভাগ (Multiplication & Division of Significant, Figures)

কয়েকটি তাৎপর্য সংখ্যা নিয়ে গুণ বা ভাগ প্রক্রিয়াগুলো সম্পন্ন করার সময় যে ফলাফল পাওয়া যাবে তাতে সংখ্যাগুলোতে উপস্থিত ন্যূনতম তাৎপর্যপূর্ণ সংখ্যার বেশি সংখ্যক তাৎপর্যপূর্ণ সংখ্যা থাকতে পারবে না।

$2.5 \times 1.25 = 3.125$

যেহেতু 2.5 সংখ্যাটিতে দুটো তাৎপর্যপূর্ণ সংখ্যা আছে, তাই ফলাফলে 3.1 -এ দুটোর বেশি তাৎপর্যপূর্ণ সংখ্যা থাকতে পারে না। ফলাফলটিকে প্রয়োজনীয় সংখ্যক তাৎপর্যপূর্ণ সংখ্যার মধ্যে সীমাবন্ধ রাখার জন্য যখন ওপারের গাণিতিক প্রক্রিয়াটি সম্পন্ন করা হবে তখন এটা মনে রাখা দরকার যে ফলাফলটির আসন্ন পূর্ণসংখ্যায় মান পেতে গেলে নিন্নলিখিত শর্তগুলো মেনে চলতে হবে।

- সবচেয়ে ডানদিকের যে সংখ্যাটিকে অপসারিত করতে হবে সেটি যদি 5 -এর বেশি হয় তবে এর পূর্ববর্তী সংখ্যাটির সাথে 1 যোগ করতে হয়। উদাহরণ স্বরূপ 1.386 সংখ্যাটি থেকে যদি 6 অপসারিত করতে হয় তবে সংখ্যাটির আসন্ন মান হবে 1.39।
- সবচেয়ে ডানদিকের যে সংখ্যাটি অপসারিত করতে হবে সেটি যদি 5-এর কম হয় তবে এর পূর্ববর্তী সংখ্যাটির পরিবর্তন করা যাবে না। উদাহরণ স্বরূপ 4.334 সংখ্যাটি থেকে যদি 4 কে অপসারিত করা হয় তবে সংখ্যাটির আসন্ন মান হবে 4.33।
- সবচেয়ে ডানদিকের যে সংখ্যাটি অপসারিত করতে হবে সেটি যদি 5-হয় তবে এর পূর্ববর্তী সংখ্যাটি যদি জোড় সংখ্যা হলে পূর্ববর্তী সংখ্যাটির কোনো পরিবর্তন করা যায় না, কিন্ডু পূর্ববর্তী সংখ্যাটি বিজোড় সংখ্যা হলে সংখ্যাটির সাথে 1 যোগ করতে হয়। উদাহরণস্বরূপ 6.35 সংখ্যাটির থেকে 5 অপসারিত করতে হলে 5-এর পূর্ববর্তী সংখ্যা 3 এর সাথে 1 যোগ করে সংখ্যাটি 4 করতে হবে এবং সংখ্যাটির আসন্ন মান হবে 6.4, যদিও 6.25 -এর আসন্ন মান হবে 6.2।

1.4.3 ঘাতমাত্রা সংক্রান্ত বিশ্লেষণ (Dimensional Analyasis)

প্রায়ই গণনা করবে সময়, এক পদ্ধতি থেকে অন্য পদ্ধতিতে একক রূপান্তর করার প্রয়োজন হয়। এটি যে পদ্ধতিতে সম্পন্ন করা হয় তাকে গুণক লেবেল প্রণালী বা একক গুণক প্রণালী বা ঘাতমাত্রা সংক্রান্ত বিশ্লেষণ বলে। এটি নিচে ব্যাখ্যা করা হল।

উদাহরণঃ

একটি ধাতব দন্ডের দৈর্ঘ্য 3 in (ইঞ্জিতে প্রকাশিত)। সেন্টিমিটার এককে এর দৈর্ঘ্য কত হবে ?

সমাধান ঃ আমরা জানি,

$$l in = 2.54 cm$$

এই তুল্যতা থেকে, আমরা লিখতে পারি,

$$\frac{1 \text{ in}}{2.54 \text{ cm}} = 1 = \frac{2.54 \text{ cm}}{1 \text{ in}}$$

এইভাবে, $\frac{1 \text{ in}}{2.54 \text{ cm}}$, $1 \text{ এর সমান এবং} \frac{2.54 \text{ cm}}{1 \text{ in}}$ ও 1 এর

সমান। এই দুটোকেই একক গুণক বা গুণনীয়ক বলে। কিছু সংখ্যাকে যদি এই একক গুণক (অর্থাৎ 1) দিয়ে গুণ করা হয়, তবে সংখ্যাটি প্রভাবিত হয় না।

ধর, উপরে প্রদত্ত 3 ইঞ্জিকে একক গুণক দ্বারা গুণ করা হল।

সুতরাং, 3 in = 3 in × $\frac{2.54 \text{ cm}}{1 \text{ in}}$ = 3 × 2.54 cm = 7.62 cm

এখন যে একক গুণক দ্বারা প্রক্রিয়াটি সম্পন্ন করতে হবে, সেটি হবে

সেই একক গুণক (উপরের ক্ষেত্রে $\frac{2.54\,\mathrm{cm}}{1\,\mathrm{in}}$) যার সাহায্যে

কাঙ্ক্ষিত ফলাফল পাওয়া যাবে। অর্থাৎ একক গুণকের লবটির একক এবং কাঞ্চিম্নত ফলাফলের একক একরকম হতে হবে।

এটি উল্লেখ করা উচিত যে, উপরের উদাহরণে যে একক ব্যবহার করা হয়েছে তা অন্যান্য সংখ্যা সূচক অংশের মত পরিচালিত হতে পারে। এটি বাতিল, বিভক্ত, গুণিত, বর্গ প্রভৃতি হতে পারে। এসো আমরা আরো একটি উদাহরণ নিয়ে আলোচনা করি।

উদাহরণঃ

সমাধান ঃ একটি জগে 2 লিটার দুধ রয়েছে। দুধের আয়তন m³ এককে গণনা করো।

যেহেতু 1 L = 1000 cm³

এবং 1 m = 100 cm,

উপরের একক গুণনীয়কগুলো থেকে m³ এককটি পেতে গেলে

 $\left(\frac{1\,\mathrm{m}}{100\,\mathrm{cm}}\right)^3 \Rightarrow \frac{1\,\mathrm{m}^3}{10^6\,\mathrm{cm}^3} = (1)^3 = 1$

রসায়ন

$$2 \times 1000 \text{ cm}^3 \times \frac{1 \text{ m}^3}{10^6 \text{ cm}^3} = \frac{2 \text{ m}^3}{10^3} = 2 \times 10^{-3} \text{ m}^3$$

উদাহরণঃ

সমাধান ঃ 2 দিনের মধ্যে কত সেকেন্ড আছে?

প্রথম একক গুণনীয়কটির ঘনমান নিতে হবে।

 $2 L = 2 \times 1000 \text{ cm}^3$

ওপরের সংখ্যাটিকে একক গুণক দিয়ে গুণ করা হল।

1 দিন (day) = 24 ঘন্টা (h)

 $\frac{1\,\mathrm{h}}{60\,\mathrm{min}} = 1 = \frac{60\,\mathrm{min}}{1\,\mathrm{h}}$

সুতরাং 2 দিনকে সেকেন্ডে পরিবর্তিত করার জন্য,

একক গুণকগুলো দিয়ে নিচের মতো গুণ করা যায়।

 $= 2 \times 24 \times 60 \times 60$ s

5টি মৌলিক সূত্র দ্বারা নিয়ন্ত্রিত হয়।

এই সুত্র প্রণয়ন করেন। তিনি দহন বিক্রিয়া

নিয়ে সাবধানে পরীক্ষামূলক গবেষণা করেন

এবং সিদ্ধান্তে উপনীত হন যে, সকল ভৌত

এবং রাসায়নিক পরিবর্তন প্রক্রিয়া চলার সময়

মোট ভরের কোনো পরিবর্তন হয় না। সেইজন্য

তিনি সিদ্ধান্তে উপনীত হন যে, পদার্থকে সৃষ্টি

বা ধ্বংস করা যায় না। একে ভরের নিত্যতা

= 172800 s

অর্থাৎ 2 দিন = সেকেন্ড। এক ধাপেই

 $2 \operatorname{day} \times \frac{24 \operatorname{h}}{1 \operatorname{day}} \times \frac{60 \operatorname{min}}{1 \operatorname{h}} \times \frac{60 \operatorname{s}}{1 \operatorname{min}}$

1.5 রাসায়নিকসংযোগ (Laws of Chemical Combinations)

মৌল সমূহের সংযোগে যৌগ উৎপন্ন হওয়ার প্রক্রিয়া নিম্নলিখিত

1.5.1 ভরের নিত্যতা সূত্র (Laws of Conservation of Mass)

1789 খ্রীফ্টাব্দে অ্যান্টনি ল্যাভয়সিয়ার (Antoine Lavoisier),

Antoine Lavoisier

(1743 - 1794))

 $\frac{1\,\mathrm{day}}{24\,\mathrm{h}} = 1 = \frac{24\,\mathrm{h}}{1\,\mathrm{day}}$

তারপর, 1 ঘন্টা (h) = 60 মিনিট (min)

এখন.

অৰ্থাৎ

বা,

বা,

এখানে, আমরা জানি,

রসায়নের মৌলিক ধারণা

সূত্র বলে। পরবর্তীকালে রাসায়নের বহুমুখী উন্নতির ভিত্তি এই সূত্র থেকে তৈরি হয়েছিল। প্রকৃতপক্ষে, বিক্রিয়ক এবং বিক্রিয়াজাত পদার্থের ভরের সঠিক পরিমাপ এবং ল্যাভয়সিয়র দ্বারা পরিচালিত সংঘটিত পরীক্ষাগুলোর সযত্নে পরিকল্পনার পরিণতিই ছিল এই ফলাফল (Gsut)।

1.5.2 স্থিরানুপাত সূত্র (Law of Difinite Proportions) ফরাসি রসায়নবিদ যোসেফ প্রাউস্ট (Joseph Proust) এই সূত্র

প্রণয়ন করে। তিনি বলেন যে, একটি নির্দিষ্ট যৌগে সর্বদাই উপাদান মৌলগুলোর ওজনের অনুপাত নির্দিষ্ট বা স্থির থাকে। প্রাউস্ট (Proust) কিউগ্রিক কার্বনেটর দুটো নমুনা নিয়ে কাজ করেছিলেন। যাদের একটি ছিল প্রাকৃতিক উৎস থেকে প্রাপ্ত এবং অন্যটি ছিল কৃত্রিম। তিনি দেখতে পান যে, দুটো নমুনাতেই উপাদান মৌলগুলোর সংযুক্তি একই রকম যা নিচে প্রদর্শিত হলো।

Joseph Proust (1754–1826)

	Cu এর	O এর	C এর
	শতকরা পরিমাণ	শতকরা পরিমাণ	শতকরা পরিমাণ
প্রাকৃতিক নমুন	51.35	9.74	38.91
কৃত্রিম নমুনা	51.35	9.74	38.91

এই ভাবে, তিনি এই সিম্ধান্তে আসেন যে, উৎস যাই হোক না কেন, একটি নির্দিষ্ট যৌগে সর্বদা একই ধরনের মৌল নির্দিষ্ট অনুপাতে বর্তমান থাকে। এই সূত্রের যথার্থতা বিভিন্ন পরীক্ষার সাহায্যে প্রমাণিত হয়েছে। একে কখনও কখনও নির্দিষ্ট সংযুক্তি সূত্রও (Law of Difinite Composition) বলা হয়।

1.5.3 গুণানুপাত সূত্র (Law of Multiple Proportions)

1803 খ্রিষ্টাব্দে ডালটন এই সূত্র উপস্থাপিত করেন। এই সূত্র অনুযায়ী, 'যখন দুটি মৌল রাসায়নিক বিক্রিয়া করে দুই বা ততোধিক যৌগ গঠন করে তখন একটি মৌলের নির্দিষ্ট ওজনের সঙ্গো অপর মৌল যে ভিন্ন ভিন্ন ওজনে যুক্ত হয়, সেই ওজনগুলো সর্বদাই ক্ষুদ্রপূর্ণসংখ্যার সরল অনুপাতে থাকে।

উদাহরণস্বরূপ, হাইড্রোজেন, অক্সিজেনের সঙ্গো যুক্ত হয়ে দুটি যৌগ গঠন করে, যেগুলো হল জল (H₂O) এবং হাইড্রোজেন পার অক্সাইড (H₂O₂)

হাইড্রোজেন + অক্সিজেন → জল 2 g 16 g 18 g হাইড্রোজেন + অক্সিজেন → হাইড্রোজেন পার অক্সাইড 2 g 32 g 34 g এখানে, হাইড্রোজেনের নির্দিন্ট ভর (2 g) এর সঙ্গে যুক্ত অক্সিজেনের ভরগুলো (অর্থাৎ 16 g এবং 32 g) একটি সরল অনুপাতে থাকে। অর্থাৎ 16 : 32 = 1:2

1.5.4 গে-লুসাকের গ্যাস আয়তন সূত্র (Gay-Lussac's Law of Gaseous Volumes)

1808 খ্রীফ্টাব্দে গে-লুসাক এই সূত্র দেন। তিনি পর্যবেক্ষণ করেন

যে, একই চাপ ও উস্নতায় দুই বা ততোধিক গ্যাসীয় পদার্থের রাসায়নিক বিক্রিয়ার সময় গ্যাসগুলোর আয়তন সরল অনুপাতে থাকে এবং বিক্রিয়ার ফলে উৎপন্ন পদার্থগুলো যদি গ্যাসীয় হয় তবে উৎপন্ন গ্যাসগুলোর আয়তন ও বিক্রিয়ক গ্যাসগুলোর আয়তনের সঞ্চো সরল অনুপাতে থাকে।

Joseph Louis Gay Lussac

এভাবে, 100 mL হাইড্রোজেন 50 mL

অক্সিজেনের সঙ্গে যুক্ত হয়ে 100 mL স্টীম উৎপন্ন করে।

হাইড্রোজেন + অক্সিজেন → জল (স্টীম)

100 mL 50 mL 100 mL

এভাবে, হাইড্রোজেন এবং অক্সিজেনের আয়তন গুলো 2:1 একটি সরল অনুপাতে একত্রে (অর্থাৎ 100 মিলিলিটার এবং 50 মিলিলিটার) যুক্ত হয়। গে-লুসাকের আয়তনের পূর্ণসংখ্যার সম্পর্কের আবিষ্কার হল প্রকৃতপক্ষে নির্দিষ্ট আয়তনের অনুপাত। নির্দিষ্ট অনুপাত সূত্রটিকে পূর্বে ভরের সঙ্গো সম্পর্কযুক্ত বলা হত। 1811 খ্রিষ্টাব্দে অ্যাভোগাড্রো তার কাজের মাধ্যমে গে-লুসাকের সূত্র সঠিকভাবে ব্যাখ্যা করেছিলেন।

1.5.5 অ্যাভোগাড্রো সূত্র (Avogadro Law)

1811 সালে অ্যাভোগাড্রো প্রস্তাব করেন যে, একই চাপ ও তাপমাত্রায় সম আয়তন সকল গ্যাসে সমান সংখ্যক অনু থাকে। অ্যাভোগাড্রো

পরমাণু এবং অণুর মধ্যে পার্থক্য নিরুপন করেন যা বর্তমান সময়ে স্পফ্টভাবে বোঝা যায়। আমরা যদি পুনরায় হাইড্রোজেন এবং অক্সিজেনের বিক্রিয়ায় জল উৎপন্ন হওয়ার বিক্রিয়াটির কথা ভাবি, আমরা দেখতে পাই, কোন আবিষ্কৃত অক্সিজেন নির্গত ছাড়া, দুই আয়তন হাইড্রোজেন এক আয়তন অক্সিজেনের সঙ্গে যুক্ত হয়ে দুই আয়তন জল (ফ্টীম) উৎপন্ন করে।

Lorenzo Romano Amedeo Carlo Avogadro di Quareqa edi Carreto

চিত্র : 1.9 দুই আয়তন হাইড্রোজেন এক আয়তন অক্সিজেনের সঙ্গো যুক্ত হয়ে দুই আয়তন স্টীম উৎপন্ন করে।

চিত্র : 1.9 এ লক্ষ করো প্রত্যেক বাক্স সমান সংখ্যক অনুধাবন করে। বস্তুতপক্ষে, অ্যাডোগাড্রো, অণুগুলোকে বহুপরমাণুক ধরে উপরের ফলাফল ব্যাখ্যা করেছিলেন।

যদি হাইড্রোজেন এবং অক্সিজেনকে দ্বিপারমাণবিক রূপে ধরা হয়, যা এমন স্বীকৃত, তখন উপরের ফলাফল সহজভাবে বোঝা যায়। তাসত্ত্বেও, ডালটন এবং অন্যরা ঐ সময়ে বিশ্বাস করতেন যে, একই ধরনের পরমাণু সমূহ যুক্ত হতে পারে না এবং হাইড্রোজেন বা অক্সিজেনের মতো দ্বিপরমাণুক অণুগুলো অস্তিত্বহীন। অ্যাভোগাড্রোর প্রস্তাব ফরাসী Journal De Physiduc তে প্রকাশিত হয়েছিল। সঠিক হওয়া সত্ত্বেও, এটি কোনো সমর্থন লাভ করেনি।

প্রায় 50 বৎসর পর, 1860 সালে, বিভিন্ন ধারণা সমাধান করতে জার্মানীর Karlsruche রসায়নের প্রথম আন্তর্জাতিক সম্মেলন অনুষ্ঠিতহয়।এই সভায়, Stanislao Canniraro রাসায়নিক দর্শনের একটি অংশের (Course) স্কেচ় উপস্থাপন

করেন যাতে অ্যাভোগাড্রোর কাজের গুরুত্বের উপর জোড় দেওয়া হয়।

1.6 ডালটনের পরমাণবিক তত্ত্ব (Dalton's Atomic Theory) :

পদার্থ ক্ষুদ্র ক্ষুদ্র অবিভাজ্য কণা নিয়ে গঠিত যারা অ্যাটমিও (অর্থ অবিভাজ্য) নামে পরিচিত-এই ধারণাটি বহুকাল আগে

John Dalton (1776–1884)

ডেমোক্রেটিসের সমকালীন একজন গ্রীক দার্শনিকের (460-370 খ্রীষ্টপূর্ব) সময় থেকে উৎপত্তি হয়েছিল, সেটি বিভিন্ন পরীক্ষামূলক গবেষণার ফলে আবার পুনরুত্থাপিত হতে শুরু করল যার ফলস্বরূপ ওপরের উল্লিখিত সূত্রাবলি পাওয়া গেছে।

1808 সালে, ডালটনের প্রকাশিত 'A New System of Chemical Philosophy তে তিনি নিম্নলিখিত প্রস্তাবগুলো করেছিলেন:

- 1. পদার্থ অবিভাজ্য পরমাণুর দ্বারা গঠিত।
- 2. একটি নির্দিষ্ট মৌলের সকল পরমাণুর ধর্ম এবং ভর একই।
- বিভিন্ন মৌলের পরমাণুগুলো পুর্নসংখ্যার অনুপাতে যুক্ত হয়ে যৌগের সৃষ্টি করে।
- রাসায়নিক বিক্রিয়ায় পরমাণুর পুনবিন্যাস ঘটে। রাসায়নিক বিক্রিয়ার দ্বারা পরমাণুর সৃষ্টি বা ধ্বংস করা যায় না।

ডালটনের পারমাণবিক তত্ত্বের দ্বারা রাসায়নিক সংযোগ সূত্রাবলিগুলোকে ব্যাখ্যা করা যায়। যদিও গ্যাসের আয়তন সংক্রান্ত সূত্রাবলিগুলো এই তত্ত্বে ব্যাখা করতে পারে না। এই তত্ত্বে পরমাণুসমূহের সংযুক্তির কারণ ব্যাখ্যা করতে পারেনি যা পরবর্তীকালে অন্যান্য বিজ্ঞানীগণ ব্যাখ্যা করেছিলেন।

1.7 পরমাণবিক এবং আণবিক ভর (Atomic & Molecular Masses)

পরমাণু এবং অণু সম্পর্কে কিছু ধারণা অর্জন করার পর, পারমাণবিক এবং আণবিক ভর দ্বারা আমরা কি বুঝিতা এখন আমরা সঠিকভাবে বোঝার চেস্টা করব।

1.7.1 পারমাণবিক এবং আনবিক ভর (Atomic Mass)

পারমাণবিক ভর বা একটি পরমাণুর ভর খুবই ক্ষুদ্র, কারণ পরমাণু খুবই ছোট। আজ, আমাদের অত্যাধুনিক প্রযুক্তি আছে। উদাহরণ স্বরূপ- ভর বর্ণালি বীক্ষণ যন্ত্রের সাহায্যে পারমাণবিক ভর যথেষ্ট সঠিকভাবে নির্ণয় করা যায়। কিন্তু উনবিংশ শতাব্দীতে, বিজ্ঞানীরা একটি পরমাণু ভরের সাপেক্ষে অপর পরমাণুর ভর পরীক্ষার সাহায্যে নির্ণয় করতে হত যা পূর্বের উল্লেখ করা হয়েছে। হাইড্রোজেন হচ্ছে সবচেয়ে হালকা পারমাণু এবং এর ভরকে। 1 (কোনো এককছাড়া) নির্ধারণ করা হয়েছে এবং অন্য মৌলের ভর গুলো এই ভরের সপেক্ষে নির্ধারিত হয়েছে। পারমাণবিক ভর নির্ণয়ের বর্তমান পম্বতিতে কার্বন -12 কে প্রমাণ হিসাবে ধরে এর উপর ভিত্তি করে পারমাণবিক ভর নির্ণয় করা হয়। যা 1961 খ্রিস্টাব্দে স্বীকৃতি লাভ করেন। রসায়নের মৌলিক ধারণা

এখানে, কার্বন-12 হচ্ছে কার্বনের আইসোটোপ গুলোর মধ্যে একটি আইসোটোপ এবং একে C¹² দ্বারা প্রকাশ করা হয়। এই পদ্ধতিতে C¹² এর ভর সঠিক ভাবে 12 পারমাণবিক ভর একক ধরা হয় এবং অন্যসকল পরমাণুর ভর এই প্রমাণ্য মানের সাপেক্ষে নির্ণয় করা হয়। এক পারমাণবিক ভর একককে একটি C¹² পরমাণুর ভরের সঠিক 1/12 অংশ দ্বারা সংজ্ঞায়িত করা হয়েছে.

এবং 1 amu = 1.6605 × 10⁻²⁴ g

একটি হাইড্রোজেন পরমাণুর ভর = $1.6736 \times 10^{-24} \, {
m g}$

এভাবে, পারমাণবিক ভর এককের ভিত্তিতে, হাইড্রোজেন পরমাণুর

ভর

 $=\frac{1.6736\times10^{-24}\,\mathrm{g}}{1.66056\times10^{-24}\,\mathrm{g}}$

= 1.0078 amu = 1.0080 amu

একই ভাবে অক্সিজেনের-16 (016)

পরমাণুর ভর হবে, = 15.995 amu.

আজকাল, 'amu' u দ্বারা প্রতিস্থাপিত করা হয়েছে, যা সমন্বয় সাধন করা ভর (Unified Mass)

যখন গণনায় আমরা মৌলের পারমাণবিক ভর ব্যবহার করি, আমরা প্রকৃতপক্ষে (সাধারণ) মৌলের গড় পারমাণবিক ভর ব্যবহার করি যা নিচে ব্যাখ্যা করা হয়েছে।

1.7.2 গড় পারমাণবিক ভর (Average Atomic Mass)

অনেক প্রাকৃতিক মৌলেরই একের বেশি সমস্থানিক আছে। যখন আমরা এই সমস্থানিক গুলোর অস্তিত্ব এবং তাদের আপেক্ষিক প্রাচুর্য (শতকরা পরিমাণ) বিবেচনা করি তখন মৌলটির ভর গণনা করা যেতে পারে। উদাহরণ স্বরূপ, কার্বনের নিম্নলিখিত তিনটি সমস্থানিক

সমস্থানিক	আপেক্ষিক	পারমাণবিক
	প্রাচুর্য (%)	ভর (amu)
¹² C	98.892	12
¹³ C	1.108	13.00335
¹⁴ C	2×10^{-10}	14.00317

আছে এদের আপেক্ষিক প্রাচুর্য্য এবং ভর প্রতিটির সাপেক্ষে দেখানো হয়েছে।

উপরের ফলাফল থেকে কার্বনের যে গড় পারমাণবিক ভর পাওয়া যায়, তা হল—

 $(0.98892) (12 u) + (0.01108) (13.00335 u) + (2 \times 10^{-12})$ (14.00317 u) = 12.011 u

একই ভাবে অন্য মৌলসমূহের গড় পারমাণবিক ভর গণনা করা

যেতে পারে। মৌলের পর্যায় সরণিতে বিভিন্ন মৌলের যে পারমাণবিক ভরের উল্লেখ আছে, তা প্রকৃতপক্ষে এদের গড় পারমাণবিক ভর নির্দেশ করে।

1.7.3 আণবিক ভর (Molecular Mass)

আণবিক ভর হল একটি অণুতে বর্তমান মৌলগুলোর পারমাণবিক ভরসমূহের যোগফল। প্রতিটি মৌলের পারমাণবিক ভরকে পরমাণু সংখ্যা দিয়ে গুণ করে এবং গুণফলকে একত্রে যোগ করে এটি নির্ণয় করা হয়। উদাহরণস্বরূপ, মিথেনের আণবিক ভর যার মধ্যে একটি কার্বন পরমাণু এবং 4টি হাইড্রোজেন পরমাণু রয়েছে, তা নিম্নরূপে নির্ণয় করা যাবে।

মিথেনের আণবিক ভর -

$$(CH_4) = (12.011 \text{ u}) + 4 (1.008 \text{ u})$$

= 16.043 u

একই ভাবে, জলের আণবিক ভর—

=2 imesহাইড্রোজেনের পারমাণবিক ভর +1 imesঅক্সিজেনের পারমাণবিক ভর

= 2 (1.008 u) + 16.00 u = 18.02 u

1.7.4 সংকেত ভর (Formula Mass)

কিছু পদার্থ যেমন সোডিয়াম ক্লোরাইডের ক্ষেত্রে সংগঠক একক দ্বারা গঠিত পৃথক অণুর অস্তিত্ব থাকে না। যৌগের ক্ষেত্রে, ধনাত্মক (সোডিয়াম) এবং ঋণাত্মক (ক্লোরাইড) কণাগুলো ত্রি-মাত্রিক গঠনে সঞ্চিত থাকে, যা চিত্র 1.10 এ প্রদর্শিত হয়েছে।

চিত্র : 1.10 সোডিয়াম ক্লোরাইড Na⁺ এবং Cl⁻ এর পেকিং

এটি লক্ষনীয় যে, সোডিয়াম ক্লোরাইড এর গঠনে একটি Na⁺ এর চারপাশে 6টি Cl⁻ থাকে এবং বিপরীত বন্তুব্যটিও সত্য। সোডিয়াম ক্লোরাইডের (NaCl) যৌগের সংকেত ভর গণনা করতে আণবিক ভরের পরিবর্তে সংকেত ভর ব্যবহৃত হয় কারণ কঠিন অবস্থায় সোডিয়াম ক্লোরাইড একক অনুরূপে কোনো অস্তিত্ব থাকেনা। এই ভাবে, সোডিয়াম ক্লোরাইডের সংকেত ভর

= সোডিয়ামের পারমাণবিক ভর + ক্লোরিনের পারমাণবিক ভর

= 23.0u + 35.5u = 58.5u

সমস্যা 1.1 ধ্রুকোজে (C₆H₁₂O₆) অণুর আণবিক ভর গণনা কর। সমাধান ঃ ধ্রুকোজে (C₆H₁₂O₆) অণুর আণবিক ভর = 6(12.011 u) + 12(1.008 u) + 6(16.00 u) = (72.066 u) + (12.096 u) + (96.00 u) = 180.162 u

1.8 মোল ধারণা এবং আনব বা মোলার ভর (Mole Concept & Molar Masses)

পরমাণু এবং অণু আকারে অত্যন্ত ক্ষুদ্র এবং কোণ পদার্থের একটি ক্ষুদ্র পরিমাণের উপস্থিত এদের সংখ্যা সত্যিই খুব বড়। এত বড় সংখ্যার ব্যবহার করতে হলে অনুরূপ মাত্রার একটি এককের প্রয়োজন।

ঠিক যেমন আমরা 12টির (item) জন্য এক ডজন, 20 টির জন্য স্কোর (Score) 144 টির জন্য এক গ্রোস (Gross), একক গুলো লিখি তেমনি আনুবীক্ষণিক স্তরে কণার সংখ্যা গণনার জন্য আমরা মোল ধারণার ব্যবহার করি (উদাহরণ স্বরূ প—পরমাণু/অণু/ কণা/ইলেকট্রন/আয়ন প্রভৃতি)।

SI পম্বতিতে বস্তুর বা পদার্থের পরিমাণ নির্ণয়ের জন্য সপ্তম ভিত্তি রাশি রূপে মোল [চিহ্ন- mol (মোল)] ধারণার প্রবর্তন করা হয়েছে।

কোনো পদার্থের যে পরিমাণে উপাদান কণিকার সংখ্যা C¹² সমস্থানিকের 12 g (বা 0.012 kg) পরিমাণে থাকা কার্বন পরমাণুর সংখ্যার সমান হয়, সেই পরিমাণকে ওই পদার্থের এক মোল বলে। এটি জোড় দিয়ে বলা যেতে পারে যে, কোনো পদার্থের মোলে পরিমাণে সর্বদা একই সংখ্যক কণিকা থাকে, তা যে কোন পদার্থ হোক না কেন। এই সংখ্যাটিকে নিখুঁত ভাবে নির্ধারণ করার জন্য, একটি ভর স্পেকটোমিটার দ্বারা কার্বন-12 পরমাণুর ভর নির্ধারণ করা হয় এবং যেমনটি পাওয়া যায় তা হল 1.992648 ×10⁻²³ g। আমরা জানি যে, 1 মোল কার্বনের ওজন 12 g, এর মধ্যে পরমাণু সংখ্যা হবে,

 $= \frac{12 \text{ g/mol}^{-12} \text{C}}{1.992648 \times 10^{-23} \text{ g/}^{12} \text{ C atom}}$ $= 6.0221367 \times 10^{23} \text{ atoms/mol}$

1 মোলের মধ্যে এই কণিকার সংখ্যা এতই গুরুত্বপূর্ণ যে, এর

একটি পৃথক নাম ও চিহ্ন রয়েছে। এটি অ্যাভোগাড্রো ধ্রুবক নামে পরিচিত এবং অ্যামোদো অ্যাভোগাড্রো সম্মানে N_A দ্বারা প্রকাশ করা হয়। এই সংখ্যাটির বৃহৎ চেহারা প্রতি সম্মান জানাতে চল আমরা দশের কোনো ঘাতের ব্যবহার ছাড়া শুধু শূণ্য ব্যবহার করে সংখ্যাটি লিখি।

6222136700000000000000000

অর্থাৎ বহু সংখ্যক কণিকা (পরমাণু, অণু বা অন্য যে কোনো কণিকা) একত্রিত হয়ে একটি নির্দিন্ট বস্তুর 1 মোল গঠন করে।

আমরা, তাই বলতে পারি যে,

1 মোল হাইড্রোজেন পরমাণু = $6.022 imes 10^{23}$ টি পরমাণু

1 মোল জলের অণু = 6.022 ×10²³ টি জলের অণু।

1 মোল সোডিয়াম ক্লোরাইড = 6.022 × 10²³ টি সোডিয়াম ক্লোরাইডের সংকেত একক।

মোলকে সংজ্ঞায়িত করার চেয়ে, 1 মোল কোনো পদার্থের বা উপাদান কণিকার ভর জানা অধিক সহজতর হবে। গ্রাম এককে প্রকাশিত এক মোল কোনো পদার্থের ভরকে আনব ভর বলে।গ্রাম এককে আনব ভরের সাংখ্যমান u এককে পারমাণবিক/আণবিক সংকেত ভরের সমান হয়।

জলের আণব বা মোলার ভর = 18.02 g mol

মোলার সোডিয়াম ক্লোরাইডের আণব বা মোলার ভর = 58.5 g mol⁻¹

1.9 শতকরা সংযুক্তি (Percentage Composition) :

এতক্ষণ আমরা একটি নির্দিন্ট নমুনায় উপস্থিত কণিকা সংখ্যা নিয়ে আলোচনা করছিলাম। কিন্তু অনেক সময়, একটি যৌগে বর্তমান একটি নির্দিন্ট মৌলের শতকরা পরিমাণ জানার প্রয়োজন হয়। ধর, তোমাকে একটি অজানা বা নতুন যৌগ দেওয়া হল, প্রথমে তুমি

চিত্র: 1.11 এক মোল বিভিন্ন পদার্থ

প্রশ্ন করবে এর সংকেত কি বা এর সংগঠক উপাদান গুলো কি কি এবং প্রদন্ত যৌগের মধ্যে এরা কি অনুপাতে বর্তমান ? এছাড়াও কোনো জ্ঞাত যৌগের ক্ষেত্রেও এই তথ্য থেকে এটা মিলিয়ে নেওয়া যাবে যে, প্রদন্ত নমুনাতে উপস্থিত উপাদানের শতকরা সংযুক্তি বিশুদ্ধ নমুনার শতকরা সংযুক্তির সাথে এক রকম হচ্ছে কিনা। অন্য ভাবে বললে যে কেউ এই তথ্যগুলো বিশ্লেষণ করে কোনো প্রদন্ত নমুনার বিশুদ্ধতা যাচাই করতে পারবে।

উদাহরণ হিসাবে জল (${
m H_2O}$) কে নিয়ে চল আমরা ব্যাপারটা বোঝার চেস্টা করি।

জলের মধ্যে হাইড্রোজেন এবং অক্সিজেন আছে এই দুটি মৌলের শতকরা সংযুক্তি নিম্নরূপে গণনা করা যায়।

একটি মৌলের ভরের শতকরা পরিমাণ

= যৌগে বর্তমান ঐ মৌলের ভর যৌগের মোলার বা আনব ভর

জলের আণব ভর = 18.02g

হাইড্রোজেনের ভরের শতকরা পরিমাণ = $\frac{2 \times 1.008}{18.02} \times 100$ = 11.18

অক্সিজেনের ভরের শতকরা পরিমাণ = $rac{16.00}{18.02} imes100$ = 88.79

চল, আমরা আরো একটি উদাহরণ নিয়ে আলোচনা করি। ইথানলে কার্বন, হাইড্রোজেন এবং অক্সিজেনের শতকরা পরিমাণ কত ? ইথানলের আণবিক সংকেত হল = C_2H_5OH

ইথানলের আণব ভর হল

 $= (2 \times 12.01 + 6 \times 1.008 + 16.00) \text{ g} = 46.068 \text{ g}$

কার্বনের শতকরা ভর = •
$$rac{24.02\,\mathrm{g}}{46.068\,\mathrm{g}} imes 100$$

হাইড্রোজেনের শতকরা ভর =
$$rac{6.048\,\mathrm{g}}{46.068\,\mathrm{g}} imes 100\,\mathrm{g}$$

অক্সিজেনের শতকরা ভর
$$=rac{16.00\,\mathrm{g}}{46.068\,\mathrm{g}} imes 100$$

= 34.73%

ভরের শতকরা হিসাব নির্ণয়ের পর, চল আমরা এখন দেখি, সংযুতির শতকরা ফলাফল থেকে কী তথ্য পাওয়া যায়।

1.9.1 আণবিক সংকেতের জন্য স্থূল সংকেত (Empirical Formula for Molecular Furmula)

একটি যৌগে বর্তমান বিভিন্ন পরমাণুগুলোর পূর্ণ সংখ্যার সরলতম অনুপাত স্থৃল সংকেত দ্বারা প্রকাশ করা হয়। অপর পক্ষে, আণবিক সংকেত একটি যৌগে বর্তমান একটি অণুর মধ্যে বিভিন্ন পরমাণুর সঠিক সংখ্যা প্রকাশ করে।

একটি যৌগের মধ্যে বর্তমান বিভিন্ন মৌলের শতকরা ভর জানা থাকলে তবে এর স্থৃল সংকেত নির্ণয় করা যায়। এছাড়াও আণবিক সংকেত নির্ণয় করা যায় যদি আণব ভর জানা থাকে। নিম্নলিখিত উদাহরণ দ্বারা এগুলো ব্যাখ্যা করা যায়।

সমস্যা — 1.2

একটি যৌগে 4.07% হাইড্রোজেন, 24.27% কার্বন, 71.65% ক্লোরিন আছে। এর আণব ভর বা আণবিক ভর হল 98.96 g। এর স্থৃল এবং আণবিক সংকেত কি হবে?

সমাধান :

প্রথম ধাপ : ভরের শতকরা পরিমাণকে গ্রামে রূপান্তর :

যেহেতু আমরা শতকরা ভর পেয়েছি।

তাই কাজের সুবিধার জন্য যৌগের 100 g পরিমাণকে শুরুতে ব্যবহার করতে হবে।

এইভাবে, উপরের নমুনা যৌগে 100 g এর মধ্যে, 4.07 g হাইড্রোজেন, 24.27 g এবং কার্বন 71.65 g ক্লোরিন বর্তমান।

দ্বিতীয় ধাপ : প্রতি মৌলের মোল সংখ্যার পরিবর্তন : বিভিন্ন মৌলের উপরে প্রাপ্ত ভরকে প্রতি মৌলের পারমাণবিক ভর দিয়ে ভাগ করা হয়। ইহা যৌগে, সংগঠক মৌলের মৌলসংখ্যা প্রকাশ করে।

হাইড্রোজেন মোল সংখ্যা	$=\frac{4.07\mathrm{g}}{1.008\mathrm{g}}$
	= 4.04
কার্বনের মোল সংখ্যা	$=\frac{24.27\mathrm{g}}{12.01\mathrm{g}}$
	= 2.021
ক্লোরিনের মোল সংখ্যা	$=\frac{71.65 \mathrm{g}}{35.453 \mathrm{g}}$
	= 2.021

তৃতীয় ধাপ : তাদের মধ্যে উপরে প্রাপ্ত প্রত্যেক মোল সংখ্যাকে ক্ষুদ্রতম সংখ্যা দিয়ে ভাগ।

যেহেতু 2.021 সবচেয়ে ক্ষুদ্রতম মান, এর দ্বারা ভাগ করে H, C এবং Cl এর অনুপাত পাওয়া যায় = 2:1:1

যদি অনুপাতগুলো পূর্ণসংখ্যা না হয়, তখন তাদের সুবিধাজনক গুণাঙ্ক দিয়ে গুণ করে পূর্ণ সংখ্যায় পরিবর্তন করা হয়।

চতুর্থ ধাপ : নিজ নিজ মৌলের চিহ্ন লিখে তার পাশে সংখ্যা বসিয়ে স্থূল সংকেত লেখা হয়।

এইভাবে, উপরের যৌগটির স্থূলসংকেত হল $\mathrm{CH_2Cl}.$

পঞ্জম ধাপ : আণবিক সংকেত লেখা :

a) স্থূল সংকেতে বর্তমান বিভিন্ন পরমাণুর পারমাণবিক
 ভর যোগ করে স্থূল সংকেত ভর নির্ণয় করা হয়।

CH2Cl এর জন্য স্থৃল সংকেত ভর হল

$$= 12.01 + (2 \times 1.008) + 35.453$$

= 49.48 g

b) আণব ভরকে স্থূল সংকেত ভর দিয়ে ভাগ করে

আনব ভর	_ 98.96 g
স্থৃল সংকেত ভর	⁻ 49.48 g
	= 2 = (n).

c) উপরে প্রাপ্ত স্থূল সংকেত কে n দ্বারা গুণ করে উপরের আণবিক সংকেত পাই - স্থূল সংকেত = $CH_2Cl, n = 2$ সুতরাং আণবিক সংকেত হল $C_2H_4Cl_2$

1.10 স্টয়সিওমিতি এবং স্টয়সিওমিতিক গণনা (Stoichiometry & Stoichiometric Calculations)

স্টয়সিওমেট্রি শব্দটি এসেছে দুটো গ্রীক শব্দ Stoicheion (অর্থ -মৌল) এবং Metron (অর্থ-পরিমাপ)। এভাবে স্টয়সিওমেট্রি দ্বারা কোনো রাসায়নিক বিক্রিয়ার সঙ্গে যুক্ত বিক্রিয়ক এবং বিক্রিয়াজাত পদার্থের ভরের (কখনও কখনও আয়তনও) গণনা করা হয়। কোনো রাসায়নিক বিক্রিয়ায় কিভাবে প্রয়োজনীয় বিকারকের পরিমাণ এবং বিক্রিয়াজাত পদার্থের পরিমাণ গণনা করা হয় তা বোঝার পূর্বে চল আমরা কোনো রাসায়নিক বিক্রিয়ার সমতাযুক্ত সমীকরণ থেকে কি তথ্য জানা যায় তা অধ্যয়ন করি। আমরা মিথেনের দহন বিক্রিয়াটি বিবেচনা করি।

এই বিক্রিয়ার সমতাযুক্ত সমীকরণ নিচে দেওয়া হল—

 $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2 H_2O(g)$ এখানে, মিথেন ও ডাই অক্সিজেনকে বিক্রিয়ক এবং কার্বন ডাই অক্সাইড ও জলকে বিক্রিয়াজাত পদার্থ বলে। লক্ষ কর উপরের বিক্রিয়ার মধ্যে সকল বিক্রিয়ক এবং বিক্রিয়াজাত পদার্থগুলো হল গ্যাসীয় এবং তাই এদের সংকেতের পাশে বন্ধনীর মধ্যে - 'g" অক্ষর লেখা হয়েছে। একই কারণে কঠিন এবং তরলের ক্ষেত্রে যথাক্রমে 's' এবং 'l' লেখাতে হয়।

O₂ এবং H₂O এর সহগ বা গুণক 2 কে স্টয়সিও মেট্রিক গুণক বলে। একই ভাবে CH₄ এবং CO₂ এর সহগ হল 1. এগুলো কোনো বিক্রিয়ায় অংশগ্রহণকারী বা উৎপন্ন পদার্থের মোল সংখ্যা নির্দেশ করে।

এভাবে, উপরের রাসায়নিক বিক্রিয়া অনুযায়ী,

- * এক মোল CH₄(g) দুই মোল O₂(g) এর সঙ্গো বিক্রিয়া করে এক মোল CO₂(g) এবং দুই মোল H₂O (g) উৎপন্ন করে।
- * এক অণু মিথেন $\operatorname{CH}_4(g)$ দুই অণু $\operatorname{O}_2(g)$ এর সঙ্গো বিক্রিয়া করে এক অণু $\operatorname{CO}_2(g)$ এবং দুই অণু $\operatorname{H}_2\operatorname{O}(g)$ উৎপন্ন করে।
- * 22.7 লিটার মিথেন, 45.4 লিটার O₂(g) এর সঙ্গে বিক্রিয়া করে 22.7 লিটার CO₂(g) এবং 45.4 লিটার H₂O(g) উৎপন্ন করে।
- * 16 গ্রাম CH₄(g), 2×32 গ্রাম O₂(g) এর সঙ্গো বিক্রিয়া করে 44 গ্রাম CO₂(g) এবং 2×18 গ্রাম H₂O (g) উৎপন্ন করে।

এই সকল সম্পর্ক হতে, নিম্নরূপে প্রদত্ত তথ্য গুলোকে পারস্পারিক রুপান্তর করা যায়।

1.10.1 সীমা নির্দেশক বিকারক (Limiting Reagent)

রাসায়নিক বিক্রিয়া সংঘটিত করতে গিয়ে অনেক সময় দেখা যায় যে সমতাযুক্ত রাসায়নিক বিক্রিয়াটি সম্পন্ন হওয়ার জন্য যে পরিমাণ বিকারকের প্রয়োজন, সেই পরিমাণ বিকারক উপস্থিত থাকে না। এক্ষেত্রে একটি বিকারকের পরিমাণ অন্যটির চেয়ে বেশি থাকে। যে বিকারকটি কম পরিমাণে থাকে সেটি কিছুক্ষণ পর নিঃশেষ হয়ে যায় রসায়নের মৌলিক ধারণা

এবং অন্য বিকারকটি যত পরিমাণেই উপস্থিত থাকুক না কেন, বিক্রিয়াটি এরপর আর সংঘটিত হয় না। অর্থাৎ যে বিক্রিয়ক পদার্থটি নিঃশোষিত হয়ে যায়, সেটি উৎপন্ন বিক্রিয়াজাত পদার্থের পরিমাণের সীমা (Limit) নির্দেশ করে, এজন্যই একে সীমা নির্দেশক বিক্রিয়ক (Limiting Suagent) বলা হয়।

স্টয়সিওমেট্রিক গণনা সম্পাদন করার সময় এই বিষয়টিও মনে রাখা দরকার।

1.10.2 দ্রবণে সংঘটিত বিক্রিয়া (Reaction in Salution) পরীক্ষাগারের বেশির ভাগ বিক্রিয়াই দ্রবণের মধ্যে সংঘটিত হয়। তাই কোনো পদার্থ যখন দ্রবণে উপস্থিত থাকে তখন তার পরিমাণ কীভাবে নির্ণয় করা হবে, সেটি জানা খুবই গুরুত্বপূর্ণ। কোন পদার্থের গাঢ়ত্ব বা নির্দিষ্ট আয়তনের উপস্থিতি পদার্থটির পরিমাণ নীচের যে-কোনো পদ্ধতিতে প্রকাশ করা যায়।

- 1. ভর শতাংশ বা ওজন শতাংশ (w/w%)
- 2. মোল ভগাংশ
- 3. মোলারিটি
- 4. মোলালিটি

চলো এবার আমরা প্রত্যেকটির সম্বন্ধে বিশদভাবে অধ্যয়ন করি।

একটি রাসায়নিক সমীকরণের সমতা বিধান (Balancing a chemical equation)

ভরের নিত্যতা সূত্রানুযায়ী, একটি সমতাযুক্ত সমীকরণের উভয় পার্শ্বে প্রতি মৌলের সমান সংখ্যক পরমাণু থাকে। অনেক রাসায়নিক বিক্রিয়াকে ট্রায়াল এবং ত্রুটি (Error) পম্বতি দ্বারা সমতা বিধান করা হয়। কিছু ধাতু এবং অধাতুর সঞ্চো অক্সিজেনের বিক্রিয়ায় অক্সাইড উৎপন্ন হয় এমন কিছু বিক্রিয়াকে চল আমরা উদাহরণ হিসেবে নিই।

$4 \operatorname{Fe}(s) + 3O_2(g) \longrightarrow 2\operatorname{Fe}_2O_3(s)$	(a) সমতাযুক্ত সমীকরণ।
$2 \text{ Mg(s)} + \text{O}_2(g) \rightarrow 2 \text{MgO(s)}$	(b) সমতাযুক্ত সমীকরণ।
$P_4(s) + O_2(g) \longrightarrow P_4O_{10}(s)$	(c) সমতাযুক্ত সমীকরণ নয়

(a) এবং (b) সমীকরণগুলো সমতাযুক্ত কারণ সমীকরণের উভয় পার্শ্বে ধাতু এবং অক্সিজেন পরমাণুর সংখ্যা একই। অধিকন্থু (c) সমীকরণটি সমতাযুক্ত নয়। এই সমীকরণে ফসফরাস পরমাণুর সংখ্যা সমতাযুক্ত কিন্তু অক্সিজেনের পরমাণু সংখ্যা নয়। এটি সমতাযুক্ত করতে, সমীকরণের ডান পার্শ্বে অক্সিজেন পরমাণুর দিকে লক্ষ্য রেখে, সমীকরণের বামপার্শ্বের অক্সিজেনের বাদিকে 5 গুণক স্থাপন করতে হয়।

P₄(s) + 5O₂(g) → P₄O₁₀(s) সমতাযুক্ত সমীকরণ এখন, আমরা প্রোপেনের দহন বিক্রিয়াটি উদাহরণ হিসাবে নিই। এই সমীকরণটি বিভিন্ন ধাপে সমতাযুক্ত হতে পারে। **প্রথম ধাপ :** বিক্রিয়ক ও বিক্রিয়াজাত পদার্থের সঠিক সংকেত লেখো। এখানে প্রোপেন ও অক্সিজেন হল বিক্রিয়ক এবং কার্বন ডাই অক্সাইড ও জল হল বিক্রিয়াজাত পদার্থ।

 $C_3H_8(g) + O_2(g) \rightarrow CO_2(g) + H_2O(l)$ সমতাযুক্ত নয়। দ্বিতীয় ধাপ : C -পরমাণুর সংখ্যার সমতা বিধান করো: যেহেতু বিব্রিয়ককে 3 পরমাণু কার্বন বর্তমান। তাই ডান পার্শ্বে 3 অণু CO_2 প্রয়োজন।

C₃H₈(g) + O₂(g) → 3CO₂(g) + H₂O (l) তৃতীয় ধাপ : হাইড্রোজেন পরমাণু সংখ্যার সমতা বিধান করো : সমীকরণের বাম পাশে বিক্রিয়করূপে 8 টি হাইড্রোজেন পরমাণু আছে, অধিকন্তু প্রতি জলের অণুতে 2টি হাইড্রোজেন পরমাণু আছে। সুতরাং সমীকরণের ডান পাশে 8টি হাইড্রোজেন পরমাণুর জন্য 4 অণু জলের প্রয়োজন হবে।

C₃H₈ (g) + O₂(g) → 3CO₂(g) + 4H₂O (l) চতুর্থ ধাপ : অক্সিজেন পরমাণু সংখ্যার সমতা বিধান করো : সমীকরণের ডান পাশে 10টি অক্সিজেন পরমাণু আছে (CO₂ এর মধ্যে 3×2=6 টি এবং H₂O এর মধ্যে 4×1=4টি)। সুতরাং প্রয়োজনীয় 10টি অক্সিজেন পরমাণুর জন্য 5 অণু অক্সিজেন প্রয়োজন।

C₃H₈(g) +5O₂(g) → 3CO₂(g) +4H₂O(l) পঞ্জম ধাপ : চূড়ান্ত সমতাযুক্ত সমীকরণে প্রতি মৌলের পরমাণু সংখ্যার যাচাই করো : সমীকরণটির প্রতি পাশে 3 পরমাণু কার্বন, 8 পরমাণু হাইড্রোজেন এবং 10 পরমাণু অক্সিজেন।

সব সমীকরণই সমতা বিধান করা যাবে যদি সমীকরণের সকল বিক্রিয়ক এবং বিক্রিয়াজাত পদার্থগুলো সংকেত সঠিক হয়। সর্বদা মনে রাখবে যে একটি সমতাযুক্ত সমীকরণে বিক্রিয়ক এবং বিক্রিয়াজাত পদার্থের সংকেতের সাবস্ক্রিপ্ট এর কোনো পরিবর্তন করা যাবে না।

সমস্যা- 1.3

16 গ্রাম মিথেনের দহনের ফলে উৎপন্ন জলের (g) পরিমাণ গণনা করো।

সমাধান :

মিথেনের দহনের সমতাযুক্ত সমীকরণটি হল—

 $\mathrm{CH}_{\!_{\, 4}}(\mathrm{g}) + 2\mathrm{O}_{_{\, 2}}(\mathrm{g}) \rightarrow \mathrm{CO}_{_{\, 2}}(\mathrm{g}) + 2\mathrm{H}_{_{\, 2}}\mathrm{O}\left(\mathrm{g}\right)$

i) 16 g CH₄, 1 মোল মিথেনের সমান।

ii) উপরের সমীকরণ হতে 1 মোল CH_4 উৎপন্ন করে 2 মোল $H_2O~(g)$ 2 মোল $H_2O=2 \times (2+16)$

 $= 2 \times 18 = 36 \text{ g}$ 1 মোল $H_2O = 18 \text{ g} H_2O = \frac{18 \text{ g} H_2O}{1 \text{ মোল } H_2O} = 1$ সুতরাং 2 মোল $H_2O \times \frac{18 \text{ g} H_2O}{1 \text{ মোল } H_2O}$

 $= 2 \times 18 \text{ g H}_2\text{O} = 36 \text{ g H}_2\text{O}$

সমস্যা - 1.4 কত মোল মিথেনের দহনের ফলে 22 g CO₂(g) উৎপন্ন

হবে?

সমাধান :

রাসায়নিক সমীকরণ অনুযায়ী,

 $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$

44 g $CO_2(g)$ পাওয়া যাবে 16 g $CH_4(g)$ হতে, [: 1 মোল $CO_2(g)$ পাওয়া যাবে 1 মোল $CH_4(g)$ হতে] $CO_2(g)$ এর মোল সংখ্যা= 22 g $CO_2(g) \times \frac{1 \text{ মোল } CO_2(g)}{44 \text{ g } CO_2(g)}$

= 0.5 মোল CO₂ (g)

সুতরাং, 0.5 মোল ${\rm CO}_2(g)$ উৎপন্ন হবে 0.5 মোল ${\rm CH}_4(g)$ থেকে অথবা, $22~g~{\rm CO}_2(g)$ উৎপন্ন করতে 0.5 মোল ${\rm CH}_4(g)$ প্রয়োজন হবে ।

সমস্যা 1.5

 $50 \text{ kg } N_2(g)$ এবং $10 \text{ kg } H_2(g)$ মিশ্রিত করে $NH_3(g)$ উৎপন্ন করা হল । উৎপন্ন $NH_3(g)$ র পরিমাণ গণনা করো । এই অবস্থায় $NH_3(g)$ উৎপাদনে লিমিটিং বিকারক চিহ্নিত কর ।

সমাধান :

উপরের বিক্রিয়ার সমতাযুক্ত সমীকরণটি নিম্নরূপে লেখা যায়— $N_2(g) + 3H_2(g) \rightleftharpoons 2 NH_3(g)$ মোলের গণনা ঃ N₂-এর মোল সংখ্যা $= 50.0 \text{ kg } \text{N}_2 \times \frac{1000 \text{ g } \text{N}_2}{1 \text{ kg } \text{N}_2} \times \frac{1 \text{ (M)r N}_2}{28.0 \text{ g } \text{N}_2}$ $= 17.86 \times 10^{2}$ (ম)न H₂-এর মোল সংখ্যা $= 10.00 \text{ kg H}_2 \times \frac{1000 \text{ g H}_2}{1 \text{ kg H}_2} \times \frac{1 \text{ cm} \text{ H}_2}{2.016 \text{ g H}_2}$ $= 4.96 \times 10^{3}$ মোল উপরের সমীকরণ অনুযায়ী, এই বিক্রিয়ার জন্য, 1 মোল $N_2(g)$ -র জন্য প্রয়োজন হয় 3 মোল $H_2(g)$ সুতরাং $17.86 imes 10^2$ মোল $N^{}_2(g)$ -র জন্য প্রয়োজন হবে। 17.86×10^3 মোল $N_2 \times \frac{3}{1}$ মোল $H_2(g)$ $= 5.36 \times 10^3$ (माल H₂) কিন্তু আমাদের কাছে শুধুমাত্র 4.96×10³ মোল H₂(g) আছে। সুতরাং এই ক্ষেত্রে ডাই হাইড্রোজেন হল লিমিটিং বিকারক। তাই NH₃(g) শুধুমাত্র ডাই হাইড্রোজেনের এই প্রদত্ত পরিমাণ থেকেই তৈরি হবে অর্থাৎ 4.96×10³ মোল থেকে। যেহেতু 3 মোল $H_2(g)$ থেকে 2 মোল $NH_3(g)$ উৎপন্ন হয়, 4.96×10³ মোল H₂(g) উৎপন্ন করে $= 4.96 \times 10^3$ (ম)ল $H_2(g) \times \frac{2 (X) = NH_3(g)}{3 (X) = H_2(g)}$ = 3.30×10³ মোল NH₃(g) সুতরাং 3.30×10³ মোল NH₃(g) উৎপন্ন হবে। যদি একে গ্রাম এককে প্রকাশ করতে হয়, তবে সেটি নিম্নরূপে সম্পন্ন করা হয় : 1 মোল NH₃(g) = 17.0 g NH₃(g) 3.30×10^3 মোল $NH_3(g) \times \frac{17 \text{ g NH}_3(g)}{1 \text{ মোল NH}_3(g)}$

 $= 3.30 \times 10^3 \times 17g \text{ NH}_3(g)$
$= 56.1 \times 10^3 \text{g NH}_3(\text{g})$

$$= 56.1 \text{ kg NH}_3(\text{g})$$

1. ভর শতাংশ (Mass Percent)

নিম্নলিখিত সম্পর্কটি ব্যবহার করে এটি পাওয়া যাবে :

ভর শতাংশ =
$$\frac{\text{দ্রাবের ভর}}{\text{দ্রবণের ভর}} \times 100$$

সমস্যা 1.6

18 g জলের মধ্যে 2 g পরিমাণ A পদার্থ যোগ করে একটি দ্রবণ প্রস্তুত করা হল। দ্রাবের ভর শতাংশ গণনা কর। সমাধান ঃ

A এর ভর শতাংশ =
$$\frac{A}{\underline{a} 4 \underline{a} \underline{a} \underline{a}} \times 100$$

= $\frac{2 g}{A \underline{a} \underline{a} 2 g + 18 g \underline{a} \underline{a}} \times 100$
= $\frac{2 g}{20 g} \times 100$
= 10%

2. মোল ভগ্নাংশ (Mole Fraction)

এটি হল দ্রবণে বর্তমান কোনো একটি উপাদানের মোল সংখ্যা এবং দ্রবনের মোট মোল সংখ্যার অনুপাত। যদি একটি পদার্থ A কে B পদার্থে দ্রবীভূত করা হয় এবং তাদের মোল সংখ্যাা যথাক্রমে n_A এবং n_B হয়, তাহলে A এবং B এর মোল ভগ্নাংশ গুলো হবে

A এর মোল ভগ্গাংশ =
$$\frac{A \text{ এর মোল সংখ্যা}}{\text{দ্রবণের মোল সংখ্যা}}$$

= $\frac{n_A}{n_A + n_B}$
B এর মোল ভগ্গাংশ = $\frac{B \text{ এর মোল সংখ্যা}}{\text{দ্রবণের মোল সংখ্যা}}$
= $\frac{n_B}{n_A + n_B}$

3. মোলরিটি (Molority)

দ্রবণের ক্ষেত্রে এই এককটির প্রয়োগ সর্বাধিক এবং একে 'M' চিহ্ন দ্বারা প্রকাশ করা হয়। 1 লিটার দ্রবণে উপস্থিত দ্রাবের মোল সংখ্যা দ্বারা একে সংজ্ঞায়িত করা হয়। অর্থাৎ মোলারিটি (M) = দাবের মোল সংখ্যা লিটার এককে দ্রবণের আয়তন

মনে করো, আমাদের কাছে 1 মোলার (M) NaOH এর একটি দ্রবণ আছে এবং আমরা এর থেকে 0.2 M মাত্রার একটি দ্রবণ প্রস্তুত করব।

1 M NaOH দ্রবণ বলতে বোঝায়, এক লিটার দ্রবণে 1 মোল NaOH বর্তমান।

0.2 M দ্রবণের জন্য আমাদের 1 লিটার দ্রবণের জন্য 0.2 মোল NaOH -এর প্রয়োজন হবে।

তাই 1 M দ্রবণ থেকে 0.2 M দ্রবণ প্রস্তুত করতে, আমাদের নিতে হবে 0.2 মোল NaOH যুক্ত 1 M NaOH এবং জল যোগ করে লঘু করার পর আয়তন হবে 1 লিটার।

এখন, 1 M NaOH এর গাঢ় দ্রবণের কত আয়তনে 0.2 মোল NaOH রয়েছে, যা নিম্নরূপে গণনা করা যেতে পারে।

1 মোল যদি 1 লিটার বা 1000 mL-এ উপস্থিত থাকে,

তবে 0.2 মোল উপস্থিত থাকবে,

=
$$rac{1000\,\mathrm{m\,L}}{\mathrm{মোল}} imes 0.2 মোল = 200\,\mathrm{m\,L}$$

এভাবে, 200 m L 1 M NaOH এর দ্রবণ নিয়ে এর মধ্যে অতিরিক্ত পরিমাণ জল যোগ করে লঘু করে একে 1 লিটার পরিণত করতে হবে। আসলে এই ধরণের গণনার ক্ষেত্রে, একটি সাধারণ নিয়ম M₁×V₁ = M₂ × V₂ যেখানে M এবং V যথাক্রমে মোলরিটি এবং আয়তন ব্যবহার করা যেতে পারে। এই ক্ষেত্রে, M₁ হল 0.2 এর সমান, V₁ = 1000 mL, এবং M₂ = 1.0 ; V₂ গণনা করতে হবে।

সমীকরণে মানগুলো বসিয়ে পাই,

0.2 M × 1000 mL = 1.0 M ×
$$V_2$$

∴ $V_2 = \frac{0.2 \text{ M} \times 1000 \text{ mL}}{1.0 \text{ M}} = 200 \text{ mL}$

লক্ষ্য করো 200 mL দ্রবণে দ্রাবের (NaOH) -এর মোল সংখ্যা ছিল 0.2 এবং এটি কিন্তু লঘু করণের পরও একই রয়ে গেছে অর্থাৎ 0.2 কারণ আমরা শুধুমাত্র দ্রাবের জল পরিমাণের পরিবর্তন করেছি। কিন্তু NaOH-এর কোনো পরিবর্তন করিনি। কিন্তু গাঢ়ত্বের কথাটা কিন্তু মাথায় রাখবে।

সমস্যা 1.7

4 g NaOH পর্যাপ্ত পরিমাণ জলে দ্রবীভূত করে দ্রবণের আয়তন 250 mL এ পরিণত করে এর মোলরিটি গণনা করো।

সমাধান :

যেহেতু মোলরিটি (M)

দ্রাবের মোল সংখ্যা দ্রবণের লিটারে আয়তন NaOH-এর ভর/ NaOH-এর আনব ভর 0.250 L $= \frac{4 \text{ g}/40 \text{ g}}{0.250 \text{ L}} = \frac{0.1 \text{ (N)m}}{0.250 \text{ L}}$ = 4.0 (মাল L⁻¹ = 0.4 M (মোলার)

মনে রাখবে, দ্রবণের মোলরিটি তাপমাত্রার উপর নির্ভর করে কারণ দ্রবণের আয়তন তাপমাত্রার উপর নির্ভরশীল।

4. মোলালিটি (Molality) : 1 kg দ্রাবকের মধ্যে যত মোল দ্রাব বর্তমান থাকে তা দিয়ে একে সংজ্ঞায়িত করা হয়। m দ্বারা নির্দেশ করা হয়।

দ্রাবের মোল সংখ্যা এভাবে, মোলালিটি $(m) = \overline{kg}$ একক দ্রাবকের ভর

সমস্যা 1.8

3M NaCl দ্রবণের ঘনত্ব 1.25 g mL⁻¹ দ্রবণের মোলালিটি গণনা করো। সমাধান :

 $M = 3 \text{ mol. } L^{-1}$ NaCl এর ভর, 1 L দ্রবণের মধ্যে = $3 \times 58.5 = 175.5 \text{ g}$ 1 L দ্রবণের ভর = 1000 × 1.25 = 1250 g [∵ঘনত্ব = 1.25 g mL⁻¹] দ্রবণে জলের ভর = (1250 - 175.5) g = 1074.5 g দ্রাবের মোল সংখ্যা মোলালিটি কিলোগ্রাম দ্রাবকের ভর 3 mol = 1.0745 kg

= 2.79 m. (মোলাল)

রসায়নের পরীক্ষাগারের মধ্যে প্রায়ই, জ্ঞাতমাত্রার উচ্চ ঘনত্বের দ্রবণকে লঘু কাঙ্ক্ষিত মাত্রার (ঘনত্বের) দ্রবণ প্রস্তুত করা হয়। উচ্চ ঘনত্বের এই দ্রবণকে মজুত (Stock) দ্রবণও বলা হয়। মনে রাখবে, দ্রবণের মোলারিটি তাপমাত্রার সঙ্গে পরিবর্তিত হয় না কারণ ভর অবশ্যই তাপমাত্রার সঙ্গে অপরিবর্তিত থাকে।

সারাংশ বা সংক্ষিপ্ত সার (Summary)

রসায়ন অধ্যয়ন খুবই গুরুত্বপূর্ণ কারণ এটি জীবনের প্রতিটি ক্ষেত্রকে প্রভাবিত করে। রসায়নবিদগণ পদার্থের ধর্ম, গঠন এবং এদের দ্বারা সংঘটিত পরিবর্তন নিয়ে অধ্যয়ন করেন। প্রত্যেক পদার্থের মধ্যেই কোনো না কোনো বস্তু থাকে এবং এরা কঠিন, তরল বা গ্যাসীয় এই তিন অবস্থায় থাকে। এই তিন অবস্থায় পদার্থের উপাদান কণাগুলো ভিন্ন ভিন্ন উপায়ে একত্রিত থাকে এবং এরা তাদের বৈশিষ্ট্য সূচক ধর্মগুলো প্রদর্শন করে। পদার্থকে আবার মৌলিক, যৌগিক বা মিশ্র এই তিনটি শ্রেণিতে ভাগ করা যায়। মৌলে কেবলমাত্র এক প্রকারের কণা থাকে যা পরমাণু বা অণু দুইই হতে পারে। দুই বা ততোধিক মৌলের পরমাণু একটি নির্দিষ্ট অনুপাতে যুক্ত হয়ে যৌগ গঠন করে। মিশ্রণের প্রাচুর্য তুলনামূলক ভাবে বেশি এবং আমাদের চারপাশে বর্তমান বেশিরভাগ পদার্থগুলো হল মিশ্র পদার্থ।

কোনো পদার্থের ধর্ম অধ্যয়ন করতে হলে পরিমাপ সম্বন্ধীয় জ্ঞান থাকা প্রয়োজন। ধর্মের পরিমাপ করণের জন্য একটি পরিমাপ পদ্ধতি এবং এককের প্রয়োজন, যার দ্বারা রাশিগুলোকে প্রকাশ করা যায়। পরিমাপের বিভিন্ন পদ্ধতি বর্তমান এর মধ্যে বৃটিশ এবং মেট্রিক পদ্ধতি ব্যাপক ভাবে ব্যবহৃত হয়। যদিও সমগ্র বিশ্বের বিজ্ঞানীরা একটি অভিন্ন এবং সাধারণ এককের প্রয়োজনীয়তা উপলদ্ধি করেছেন এবং একে সংক্ষেপে SI একক (আন্তর্জাতিক পদ্ধতির একক) বলা হয়।

যেহেতু পরিমাপ লিপিবন্ধকারী তথ্য, যা সবসময় অনিশ্চয়তার একটি নির্দিন্ট পরিমাণের সঙ্গে যুক্ত করা হয়, এবং পরিমাপ দ্বারা প্রাপ্ত তথ্য সঠিকভাবে পরিচালনা করা খুবই গুরুত্বপূর্ণ। রসায়নে রাশিগুলোর পরিমাপের বিস্তৃতি 10⁻³¹ থেকে 10⁺²³. তাই বৈজ্ঞানিক প্রতীকে সংখ্যা প্রকাশের জন্য একটি সুবিধাজনক পন্ধতি ব্যবহার করা হয়। উল্লেখযোগ্য যথার্থ সংখ্যা নিয়ে অনিশ্চিয়তার যত্ন নেওয়া হয় যা পর্যবেক্ষণে প্রদর্শন করা হয়। বিভিন্ন পন্ধতিতে রাশির এককের মাত্রাগুলোর বিশ্লেষণ পরিমাপ প্রকাশে সাহায্য করে। সুতরাং এটি একটি পন্ধতির একক থেকে অন্য একটি পন্ধতির এককের পারস্পরিক রুপান্তর সম্ভব।

বিভিন্ন পরমাণুর সংযুক্তিকরণ মূল (basic) রাসায়নিক সংযোগ সূত্রগুলো দ্বারা নিয়ন্ত্রিত হয় এবং এগুলো হচ্ছে ভরের নিত্যতা সূত্র, স্থিরানুপাত সূত্র, গুণানুপাত সূত্র, গে-লুসাকের গ্যাস-আয়তন সূত্র এবং অ্যাভোগাড্রো সূত্র। এই সকল সূত্রাবলী থেকেই ডালটনের পারমাণবিক তত্ত্বটি পাওয়া গেছে এবং যা বিবৃত করে যে পরমাণু হল পদার্থের নির্মাণকারী কণা (block)। কার্বনের c¹² আইসোটোপের সাথে তুলনা করে কোনো মৌলের পারমানবিক ভরকে প্রকাশ করা হয়, যার প্রকৃত মান হল 12u. কোন মৌলের পারমানবিক ভর বলতে সাধারণত গড় পারমানবিক ভরকে বোঝায় এবং যা মৌলটির বিভিন্ন সমস্থানিকের প্রাকৃতিক প্রাচুর্য্যের উপর ভিত্তি করে নির্ণয় করা হয়।

একটি অণুর মধ্যে বর্তমান বিভিন্ন মৌলের পরমানুগুলোর পারমাণবিক ভরের যোগফলই হল অণুটির আণবিক ভর। কোনো যৌগে বর্তমান বিভিন্ন মৌলের ভরের শতকরা পরিমাপ এবং আণবিক ভর নির্ণয় করে আণবিক সংকেত নির্ণয় করা হয়। একটি প্রদন্ত সিস্টেমে বর্তমান পরমাণু, অণু বা অন্য যে কোনো কণার সংখ্যা অ্যাভোগাড্রো ধ্রুবকের (6.022 × 10²³) সাহায্যে প্রকাশ কররা হয়। এর দ্বারা সংশ্লিষ্ট কণা বা কণা সমষ্ঠি 1 মোল পরিমাণকে প্রকাশ করা হয়।

বিভিন্ন মৌল এবং যৌগের রাসায়নিক পরিবর্তন ঘটানোর মাধ্যমে রাসায়নিক বিক্রিয়া সংঘটিত হয়। একটি সমতাযুক্ত রাসায়নিক সমীকরণ অনেক তথ্য প্রদান করে। গুণাঙ্কগুলো একটি নির্দিষ্ট বিক্রিয়ায় অংশগ্রহণকারী কণাগুলোর মোলার অনুপাত এবং অংশগ্রহণকারী কণাগুলোর প্রত্যেকটির সংখ্যা নির্দেশ করে। প্রয়োজনীয় বিক্রিয়ক এবং উৎপন্ন বিক্রিয়াজাত পদার্থের পরিমাণ গত অধ্যয়নকে স্টয়সিওমেট্রি বলে। স্টয়সিওমেট্রিক গণনার সাহায্যে নির্দিষ্ট পরিমাণ বিক্রিয়াজাত পদার্থ উৎপন্ন করার জন্য কী পরিমাণ এক বা একাধিক বিক্রিয়ক পদার্থের প্রয়োজন, তা নির্ণয় করা যায় এবং এটি বিপরীতভাবেও গণনা করা যায়। নির্দিষ্ট আয়তনের একটি দ্রবণে বর্তমান পদার্থের পরিমাণ বিভিন্ন উপায়ে প্রকাশ করা যায়। উদাহরণ স্বরূপ শতকরা ভর, মোল ভগ্নাংশ, মোলরিটি এবং নর্মালিটি।

অনুশীলনী (Exercises)

1.1 নিম্নলিখিতগুলোর আণব ভর গণনা করো:

i) H_2O ii) CO_2 (ii) CH_4

- 1.2 সোডিয়াম সালফেট (Na2SO4) যৌগে বর্তমান বিভিন্ন মৌলগুলোর শতকরা সংযুক্তি গণনা কর।
- 1.3 আয়রণের একটি অক্সাইডের স্থৃল সংকেত নির্ণয় কর যাতে ওজন হিসাবে 69.9% আয়রণ এবং 30.1% ডাই অক্সিজেন আছে।
- 1.4 কী পরিমাণ কার্বন-ডাই-অক্সাইড উৎপন্ন হবে, যখন
 - (i) 1 মোল কার্বন বায়ুতে পোড়ানো হল।
 - (ii) 1 মোল কার্বনকে 16 গ্রাম ডাই অক্সিজেনের মধ্যে পোড়ানো হল।
 - (iii) 2 মোল কার্বনকে 16 গ্রাম ডাই অক্সিজেনের মধ্যে পোড়ানো হল।
- 1.5 500 mL 0.375 মোলার সোডিয়াম অ্যাসিটেটের জলীয় দ্রবণ প্রস্তুত করতে কী পরিমাণ সোডিয়াম অ্যাসিটেটের প্রয়োজন হবে তা গণনা কর। সোডিয়াম অ্যাসিটেটের আণব ভর 82.024 g mol⁻¹.

- 26
 - 1.6 নাইট্রিক অ্যাসিডের একটি নমুনার ঘনত্ব 1.41 g mol⁻¹ এবং ভরের শতকরা পরিমাণ 69% হয়। তবে mol/L এককে এর গাঢত্ব নির্ণয় কর।
 - $100~{
 m g}$ কপার সালফেট $({
 m CuSO}_4)$ থেকে কি পরিমাণ কপার পাওয়া যাবে ? 1.7
 - আয়রণের একটি অক্সাইডের আণবিক সংকেত নির্ণয় কর যার মধ্যে আয়রণ এবং অক্সিজেনের ভরের শতকরা পরিমাণ 1.8 যথাক্রমে 69.9 এবং 30.1.
 - 1.9 নিম্নলিখিত রাশিমালা ব্যবহার করে ক্লোরিণের পারমাণবিক ভর (গড়) গণনা কর:

	% প্রাকৃতিক প্রাচুর্য	আণব ভর
³⁵ Cl	75.77	34.9689
2701	24.22	26.0650

- ³⁷Cl 24.23 36.9659
- 3 মোল ইথেনের মধ্যে নিম্নলিখিতগুলো কী পরিমাণে উপস্থিত তা গণনা কর : 1.10
 - কার্বন পরমাণুর মোল সংখ্যা। (i)
 - হাইড্রোজেন পরমাণুর মোল সংখ্যা। (ii)
 - ইথেনের অণুর সংখ্যা। (iii)
- 200 g চিনি পর্যাপ্ত পরিমাণ জলে দ্রবীভূত করে 2 L দ্রবণ প্রস্তুত করা হল। চিনির গাঢ়ত্ব মোল/লিটার এককে কত হবে ? 1.11
- যদি মিথানলের ঘনত্ব 0.793 kg L⁻¹ হয়, তবে 2.5 L 0.25M দ্রবণ প্রস্তুত করতে কত আয়তনের প্রয়োজন হবে ? 1.12
- পৃষ্টতলের একক ক্ষেত্রফলের উপর প্রযুক্ত বল দ্বারা চাপকে গণনা করা হয়। চাপের SI একক হল পাস্কাল যা নিচে প্রদর্শন 1.13 করা হল :
 - $1 Pa = 1 Nm^{-2}$
 - যদি সমুদ্র পৃষ্ঠে বায়ুর ভর 1034gm⁻²হয়, তবে পাস্কাল এককে চাপ গণনা কর।
- ভরের SI একক কী? কিভাবে একে সংজ্ঞায়িত করা হয়? 1.14
- নিম্নলিখিত উপসর্গ গুলোকে তাদের গুণিতকের সঙ্গো সাজাও: 1.15

উপসর্গ	গুণিতক
মাইক্রো (micro)	106

i) মাহক্রো (micro) ii) ডেকা (deca) 10^{9}

iii) মেগা (mega) 10-6 10-15

- জিগা (giga) iv)
- ফেমটো (femto) 10 v)
- তাৎপর্যপূর্ণ সংখ্যা (Significant Figures) বলতে কি বোঝ? 1.16
- একটি পানীয় জলের নমুনা ক্লোরোফর্ম দিয়ে বিশেষভাবে দূষিত হতে দেখা যায়, ধর ইহা কাসিনোজেনিক প্রকৃতি। দূষণের 1.17 মাত্রা হল 15ppm (ভরের ভিত্তিতে)

i) ভরের সাপেক্ষে এর শতকরা সংযুতি প্রকাশ করো।

ii) জলের নমুনায় ক্লোরোফর্মের মোলারিটি নির্ণয় করো।

- 1.18 নিম্নলিখিত সংখ্যাগুলোকে বৈজ্ঞানিক চিহ্ন (notation) দ্বারা প্রকাশ করো :
 - 0.0048 i)
 - ii) 234.000
 - iii) 8008
 - iv) 500.0
 - v) 6.0012
- নিম্নলিখিত সংখ্যাগুলোর মধ্যে কতগুলো তাৎপর্যপূর্ণ সংখ্যা বর্তমান রয়েছে ? 1.19
 - 0.0025 i)
 - 208 ii)

রসায়নের মৌলিক ধারণা

- iii) 5005
- iv) 126.000
- v) 500.00
- vi) 2.0034
- 1.20 নিম্নলিখিত সংখ্যাগুলোর আসম মান তৃতীয় তাৎপর্যপূর্ণ সংখ্যা পর্যন্ত লেখো:
 - i) 34.216
 - ii) 10.4107
 - iii) 0.04597
 - iv) 2808
- 1.21 নিম্নলিখিত তথ্য পাওয়া যায়, যখন ডাই নাইট্রোজেন এবং ডাই অক্সিজেন পরস্পর বিক্রিয়া করে নিম্নলিখিত বিভিন্ন যৌগগুলো উৎপন্ন করে :

ডাই নাই	ইট্রোজেনের ভর	ডাই অক্সি	জেনের ভর

i)	14g	16g
ii)	14g	32g
iii)	28g	32g
iv)	28g	80g

- a) উপরের পরীক্ষাধীন ফলাফল কোন রাসায়নিক সংযোগ সূত্রকে সমর্থণ করে ? সূত্রটি বিবৃত কর।
- b) নিম্নলিখিত রূপান্তরগুলোর শূণ্যস্থান পূর্ণ করো:
 - i) 1 km = mm = pm
 - ii) 1 mg = kg = ng
 - iii) 1 ml = $L = dm^3$.
- 1.22 যদি আলোর গতিবেগ $3.0 \times 10^8 {
 m ms}^{-1}$ হয়, তবে আলোক রশ্মি $2.0~{
 m ns}$ সময়ে কত দূরত্ব অতিক্রম করবে তা গণনা করো।
- 1.23 এই বিক্রিয়ার মধ্যে

 $A + B_2 \rightarrow AB_2$

যদি নিম্নলিখিত বিক্রিয়ার মিশ্রণগুলোতে লিমিটিং বিকারক থাকে তা নির্দেশ করো।

- i) 300 টি A পরমাণু + 200 টি B অণু
- ii) 2 মোল A + 3 মোল B
- iii) 100 টি A পরমাণু + 100 টি B অণু
- iv) 5 মোল A + 2.5 মোল B
- v) 2.5 মোল A + 5 মোল B
- 1.24 নিন্নের রাসায়নিক বিক্রিয়া অনুযায়ী ডাই নাইট্রোজেন এবং ডাই হাইড্রোজেন নিজেদের মধ্যে বিক্রিয়া করে অ্যামোনিয়া উৎপন্ন করে :

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

i) যদি 2.00 × 10³ g ডাই নাইট্রোজেন, 1.00 × 10³ g ডাই হাইড্রোজেনের সঙ্গে বিক্রিয়ায় যে পরিমাণ অ্যামোনিয়া উৎপন্ন করে তার ভর গণনা করো।

- ii) এ দুটো বিকারকের মধ্যে কোন একটি অবিকৃতি থাকবে কি ?
- iii) যদি হাঁা হয়, তবে কোনটি এবং এর ভর কত হবে ?

রসায়ন

- 1.25 কীভাবে 0.50 মোল Na₂CO₃ এবং 0.50M (মোলার) Na₂CO₃ একে অপরের থেকে ভিন্ন ?
- 1.26 10 আয়তন ডাই হাইড্রোজেন গ্যাস 5 আয়তন ডাই অক্সিজেন গ্যাসের সঙ্গো বিক্রিয়া করলে, কত আয়তন জলীয় বাষ্প উৎপন্ন হবে ?
- 1.27 নিম্নলিখিতগুলোকে মৌলিক এককে পরিবর্তন করো:
 - i) 28.7 pm.
 - ii) 15.15 pm.
 - iii) 25365 mg.
- 1.28 নিম্নলিখিত কোনটির মধ্যে পরমাণুর সংখ্যা সর্বাধিক ?
 - i) 1g Au (s)
 - ii) 1g Na (s)
 - iii) 1g Li (s)
 - iv) $\lg \operatorname{Cl}_2(g)$
- 1.29 ইথানলের জলীয় দ্রবণের মোলরিটি গণনা করো যাতে ইথানলের মোল ভগ্নাংশ 0.040 (ধরে নাও, জলের ঘনত্ব 1)।
- 1.30 গ্রাম এককে ¹²C পরমাণুর ভর কত হবে ?
- 1.31 নিম্নলিখিত গণনাগুলোর মধ্যে কতগুলো তাৎপর্যপূর্ণ সংখ্যা উপস্থিত ?
 - i) $\frac{0.02856 \times 298.15 \times 0.112}{0.5785}$ ii) 5×5.364
 - iii) 0.0125 + 0.7864 + 0.0215
- 1.32 নিম্নের সারণিতে প্রদন্ত তথ্য ব্যবহার করে আর্গনের স্বাভাবিক (প্রকৃতি প্রদন্ত) আসোটোপ বা সমস্থানিক গুলোর মোলার ভর গণনা করো:

আসোটোপ	আইসোটোপের আণব ভর	প্রাচুর্য
³⁶ Ar	$35.96755 \text{ g mol}^{-1}$	0.337%
³⁸ Ar	$37.96272 \text{ g mol}^{-1}$	0.063%
⁴⁰ Ar	$39.9624 \text{ g mol}^{-1}$	99.600%

- 1.33 নিচের প্রতিটির পরমাণু সংখ্যা গণনা করো :
 - i) 52 মোল Ar ii) 52 u He iii) 52 g He
- 1.34 একটি ঢালাই জ্বালানী গ্যাস কার্বন এবং হাইড্রোজেন দ্বারা গঠিত। এর একটি সামান্য নমুনা অক্সিজেনে প্রজ্বলিত করলে 3.38 g কার্বন ডাই অক্সাইড, 0.690 g জল উৎপন্ন হয় এবং অন্য কোনো পদার্থ উৎপন্ন হয় না। 10.0 L আয়তনের (STPco) এই ঢালাই জ্বালানী গ্যাসের ওজন 11.69 g। গ্যাসটির i) স্থূল সংকেত, ii) আণব ভর এবং iii) আণবিক সংকেত গণনা করো।
- 1.35 বিক্রিয়া অনুযায়ী ক্যালসিয়াম কার্বনেট, HCl এর জলীয় দ্রবণের সঞ্চো বিক্রিয়া করে CaCl₂ এবং CO₂ উৎপন্ন করে। CaCO₃ (s) + 2 HCl (aq) → CaCl₂ (aq) + CO₂(g) + H₂O(l)
 - 0.75 M HCl এর 25 mL সম্পূর্ণরূপে বিক্রিয়া করতে কী পরিমাণ ক্যালসিয়াম কার্বনেটের প্রয়োজন হবে ?
- 1.36 নিম্নলিখিত বিক্রিয়া অনুযায়ী, পরীক্ষাগারে ম্যাঙ্গানিজ ডাই অক্সাইডের (MnO₂) সঙ্গে হাইড্রোক্লোরিক অ্যাসিডের বিক্রিয়ায় ক্লোরিন গ্যাস উৎপন্ন হয়।

 $4 \operatorname{HCl} (\operatorname{aq}) + \operatorname{MnO}_2(s) \longrightarrow 2\operatorname{H}_2\operatorname{O} (l) + \operatorname{MnCl}_2(\operatorname{aq}) + \operatorname{Cl}_2(g)$

5.0 g ম্যাজ্ঞানিজ ডাই অক্সাইডের সঙ্গে কত গ্রাম HCl বিক্রিয়া করে ?

দ্বিতীয় অধ্যায় (UNIT 2)

পরমাণুর গঠন (STRUCTURE OF ATOM)

উদ্দেশ্য

এই অধ্যায়টি অধ্যয়নের পর তুমি সক্ষম হবে—

- ইলেকট্রন, প্রোটন এবং নিউট্রনের আবিষ্কার এবং এদের বৈশিষ্ট্য সম্পর্কে জানতে।
- থমসন, রাদারফোর্ড এবং বোর এর পারমাণবিক মডেল বর্ণনা করতে।
- পরমাণুর কোয়ান্টাম বলবিদ্যা মডেল এর গুরুত্বপূর্ণ বৈশিষ্ট্য সম্পর্কে জানতে।
- তড়িৎ চুম্বকীয় বিকিরণের প্রকৃতি এবং কোয়ান্টাম তত্ত্ব বুঝতে।
- আলোক তড়িৎ ক্রিয়ার বর্ণনা এবং পারমাণবিক বর্ণালীর বৈশিস্ট্য ব্যাখ্যা করতে।
- ডি-ব্রগলির সম্পর্কটি ও হাইজেনবার্গের অনিশ্চয়তা নীতিটি বিবৃত করতে।
- কোয়ান্টাম সংখ্যা অনুসারে পরমাণুর কক্ষককে
 সংজ্ঞায়িত করতে।
- আফ্বাও নীতি, পাউলির অপবর্জন নীতি এবং
 হুন্ডের মাল্টিপ্লিসিটি/সর্বাধিক বহুমুখীকরণের নিয়ম বিবৃত করতে।
- পরমাণুর ইলেকট্রন বিন্যাস লিখতে।

বিভিন্ন মৌলের রাসায়নিক ধর্মের বৈচিত্র্যের প্রাচুর্য্য থেকে মৌলের পরমাণুর অন্তঃস্থ গঠন যে বিভিন্ন, তা শনাক্ত করা যায়

বহুকাল পূর্বে ভারতীয় ও গ্রিক দার্শনিকগণ (400 খ্রিস্টপূর্বাব্দে) পরমাণুর অস্তিত্বের প্রস্তাবনা করেছিলেন, যাদের ধারণা ছিল পরমাণু নামক মৌলিক কণা দ্বারাই পদার্থ গঠিত হয়। তাদের মতে, পদার্থের ক্রম বিভাজনের ফলে প্রাপ্ত অন্তিম কণা হল পরমাণু এবং পরমাণু অবিভাজ্য। পরমাণু শব্দটি এসেছে গ্রিক শব্দ 'অ্যাটমিও' থেকে, যার অর্থ খণ্ডন অযোগ্য বা অবিভাজ্য। এই সমস্ত প্রাথমিক ধারণাগুলো ছিল নিতান্তই অনুমান ভিত্তিক এবং যেগুলো পরীক্ষালব্ধ নয় বা পরীক্ষা করে সত্যতা নির্ণয়ের কোনো পম্বতি জানা ছিল না। এই সমস্ত ধারণাগুলো বহুকাল সুপ্ত অবস্থায় ছিল এবং ঊনবিংশ শতকের বিজ্ঞানীগণ ধারণাটিকে পুনঃজাগরিত করেছিলেন। পদার্থের এই পারমাণবিক তত্ত্বটি দৃঢ় বৈজ্ঞানিক ধারণার ভিত্তিতে প্রস্তাবনা করেছিলেন এক ইংরেজ বিদ্যালয় শিক্ষক, জন ডালটন, 1808 খ্রিস্টাব্দে। তাঁর এই তত্ত্বটিকেই ডালটনের পারমাণবিক তত্ত্ব বলা হয় এবং যেখানে পরমাণুকে পদার্থের আদি কণা হিসাবে ধরা হয়েছে প্রথম অধ্যায়। ডালটনের পরমাণুবাদের সাহায্যে আমরা ভরের নিত্যতা সূত্র, স্থিরানুপাত সূত্র এবং গুণানুপাত সূত্র সফলভাবে ব্যাখ্যা করতে পেরেছি। যদিও, এই তত্ত্ব অনেক পরীক্ষালব্ধ ফলাফল ব্যাখ্যা করতে ব্যর্থ হয়েছে। উদাহরণস্বরূপ এটা আমাদের অজানা নয় যে রেশম বা পশম দিয়ে কাচ বা ইবোনাইটকে ঘষলে তডিৎ উৎপন্ন হয়।

এই অধ্যায়টি আমরা ঊনবিংশ শতাব্দীর শেষভাগে এবং বিংশ শতাব্দীর প্রথমদিকের বিজ্ঞানীদের পরীক্ষামূলক পর্যবেক্ষণ সম্পর্কিত আলোচনা দিয়ে শুরু করব। এই সমস্ত পর্যবেক্ষণ থেকে প্রমাণিত হয় যে, পরমাণুকে বিভাজিত করে বিভিন্ন অব-পারমাণবিক কণা যেমন ইলেকট্রন, প্রোটন এবং নিউট্রন ইত্যাদি পাওয়া যায়। ধারণাটি ডালটনের তত্ত্বের সাথে সঞ্চাতিপূর্ণ নয়।

2.1 অব-পারমাণবিক কণা সমূহের আবিষ্কার (DISCOVERY OF SUB-ATOMIC PARTICLES)

তড়িৎমোক্ষণ নলে গ্যাসের মধ্যে তড়িৎক্ষরণ ঘটিয়ে পরমাণুর অভ্যন্তরীণ গঠন সম্পর্কে ধারণা পাওয়া যায়। এই বিষয়ে আলোচনার পূর্বে আমাদের মনে রাখা প্রয়োজন যে এই আধানগ্রস্থ কণাগুলো কতগুলো নির্দিন্ট নিয়ম মেনে চলে। যেমন "সমধর্মী আধান পরস্পরকে বিকর্ষণ করে এবং বিপরীতধর্মী আধান পরস্পরকে আকর্ষণ করে।" বিংশ শতাব্দীতে অনেক প্রকার অব-পারমাণবিক কণা আবিষ্কৃত হয়েছে। যদিও এই অধ্যায়ে আমরা কেবলমাত্র দুটো কণা ইলেকট্রন ও প্রোটন নিয়ে আলোচনা করব।

2.1.1 ইলেকট্রন আবিষ্কার (Discovery of Electron)

1830 খ্রিস্টাব্দে মাইকেল ফ্যারাডে দেখিয়েছিলেন যে যদি কোনো তড়িৎ বিশ্লেষ্যযুক্ত দ্রবণের মধ্যে তড়িৎ প্রবাহিত করা হয় তবে তড়িৎদ্বারে রাসায়নিক বিক্রিয়া সংঘটিত হয়। ফলস্বরূপ তড়িৎদ্বারে কিছু পদার্থ উৎপন্ন বা জমা হয়। তিনি নির্দিষ্ট কিছু সূত্রের গাণিতিক রূপ প্রতিষ্ঠা করেছিলেন যেগুলো তোমরা দ্বাদশ শ্রেণিতে পড়বে। এই পরীক্ষালব্দ্ব ফলাফল তড়িতের কণাধর্মীতার প্রস্তাবনা করে।

1850 খ্রিস্টাব্দের মধ্যভাগে বিশেষ করে মাইকেল ফ্যারাডে ও অন্যান্য বিজ্ঞানীরা আংশিকভাবে বায়ুশূন্য তড়িৎমোক্ষণ নলে তড়িৎমোক্ষণ ঘটিয়ে গবেষণা করেন। এই নলটিকে ক্যাথোড রশ্মি মোক্ষণ নল বলা হয়। (চিত্র 2.1)। ক্যাথোড রশ্মি নলটি কাচ দিয়ে তৈরি এবং এর মধ্যে দুটি পাতলা ধাতব পাত থাকে। যাদের **তড়িৎদ্বার বলে**। কেবলমাত্র উচ্চবিভব এবং অতিনিন্মচাপেই গ্যাসের মধ্য দিয়ে তড়িৎমোক্ষণ ঘটে। গ্যাস নিদ্ধাশনের সাহায্যে বিভিন্ন গ্যাসের জন্য প্রয়োজনীয় চাপ বজায় রাখা যায়। তড়িৎমোক্ষণ নলে তড়িৎদ্বার দুটির মধ্যে যথেষ্ট উচ্চমাত্রার বিভব প্রয়োগ করা হলে ঋণাত্মক তড়িৎদ্বার (ক্যাথোড) থেকে ধনাত্মক তড়িৎদ্বার (অ্যানোড) এর দিকে কণার প্রবাহ রূপে তড়িৎ প্রবাহ শুরু হয়। এদের ক্যাথোড রশ্মি বা ক্যাথোড রশ্মি কণা বলা হয়। অ্যানোডের মধ্যে ছোটো একটি ছিদ্র করে এবং অ্যানোডের পশ্চাতে কাচের দেওয়ালে প্রতিপ্রভ ধর্ম বিশিষ্ট রাসায়নিক পদার্থ জিঞ্চক সালফাইড প্রলেপ দিয়ে এই রশ্মির উপস্থিতিকে পুনরায় পরীক্ষা করা হয়েছিল। অ্যানোডের ছিদ্রটির মধ্য দিয়ে এসে এই রশ্মিগুলো জিঙ্কসালফাইডের আস্তরণে পড়লে আস্তরণটির

চিত্র 2.1(a) একটি ক্যাথোড রশ্মি মোক্ষণনল

উ পর একটি উজ্জ্বলবিন্দুর সৃষ্টি হয় (টেলিভিশন যন্ত্রে এরকমটাই সংঘটিত হয়) চিত্র 2.1(b)।এই পরীক্ষা থেকে প্রাপ্ত ফলাফলগুলো সংক্ষেপে নীচে দেওয়া হল।

পরীক্ষালব্ধ ফলাফল থেকে গৃহীত সিদ্ধান্তগুলো নিম্নরূপ—

 ক্যাথোড রশ্মি ক্যাথোড থেকে উৎপন্ন হয়ে অ্যানোডের দিকে যায়।

চিত্র 2.1(b) স্বছিদ্র অ্যানোড যুক্ত ক্যাথোড রশ্মির মোক্ষণ নল

- (ii) এই রশ্মিগুলো নিজেরা অদৃশ্য হলেও বিশেষ প্রকারের কিছু পদার্থের (প্রতিপ্রভ বা অনুপ্রভ) সাহায্যে এদের আচরণ পর্যবেক্ষণ করা যায়। যখন এই রশ্মিগুলো এদের আঘাত করে টেলিভিশনের পিক্চার টিউবও একটি ক্যাথোড রশ্মি নল এবং টেলিভিশনের পর্দায় একটি বিশেষ প্রতিপ্রভ (fluorescent) বা অনুপ্রভ (phosphorescent) পদার্থের আস্তরণ থাকে বলেই টেলিভিশনের প্রতিপ্রভার (fluorescence) মাধ্যমে ছবি তৈরি হয়।
- (iii) তড়িৎক্ষেত্র বা চুম্বকীয় ক্ষেত্রের অনুপস্থিতিতে এই রশ্মি সমূহ সরল রেখায় চলে। (চিত্র 2.2)
- (iv) তড়িৎক্ষেত্র বা চুম্বকীয় ক্ষেত্রের উপস্থিতিতে ঋণাত্মক কণা সমূহ যে রূপ আচরণ করে ক্যাথোড রশ্মিও সেইরূপ আচরণ করে যা থেকে বলা যায় ক্যাথোড রশ্মি ঋণাত্মক আধানগ্রস্ত

কণার সমষ্টি— যাদের **ইলেকট্রন** বলে।

 (v) ক্যাথোড রশ্মির (ইলেকট্রন) প্রকৃতি তড়িৎ মোক্ষণ নলের মধ্যস্থ গ্যাস ও ক্যাথোড রূপে ব্যবহৃত ধাতুর প্রকৃতির উপর নির্ভরশীল নয়।

সুতরাং আমরা এই সিম্বান্তে উপনিত হতে পারি যে সমস্ত পরমাণুর ক্ষেত্রেই ইলেকট্রন হচ্ছে একটি মৌলিক উপাদান।

2.1.2 ইলেকট্রনের আধান ও ভরের অনুপাত (Charge to Mass Ratio of Electron)

1897 খ্রিস্টাব্দে ইংরেজ পদার্থবিদ জে জে থমসন ক্যাথোড রশ্মিনল ব্যবহার করে ইলেকট্রনের আধান (*e*) ও ইলেকট্রনের ভরের (*m*) অনুপাত নির্ধারণ করেন। এক্ষেত্রে তড়িৎক্ষেত্র এবং চুম্বকক্ষেত্র পরস্পরের সাথে এবং ইলেকট্রনের গতিপথের সাথেও লম্বভাবে প্রযুক্ত হয় (চিত্র 2.2)। থমসনের মতে তড়িৎ ও চুম্বক ক্ষেত্রের উপস্থিতিতে এই কণাগুলো তাদের নিজস্ব পথ থেকে মোট কতটুকু বিচ্যুত হবে তা নিম্নলিখিত বিষয়গুলোর উপর নির্ভরশীল—

- কণার মোট ঋণাত্মক আধানের মান যত বাড়বে, তড়িৎ ও চুম্বক ক্ষেত্রের সাথে কণার মিথস্ক্রিয়াও তত বাড়বে এবং বিচ্যুতির পরিমাণও তত বাড়বে।
- কণার ভরের উপর-কণার ভর যত কম হবে বিচ্যুতির পরিমাণ তত বেশি হবে।
- (iii) তড়িৎ বা চুম্বক ক্ষেত্রের শক্তির উপর— তড়িৎদ্বারের বিভব

পার্থক্য বা চুম্বক ক্ষেত্রের শক্তি যত বৃদ্ধি পাবে, নিজস্ব গতি পথ থেকে ইলেক্ট্রনের বিচ্যুতির পরিমাণও তত বেশি হবে।

শুধুমাত্র তড়িৎক্ষেত্রের উপস্থিতিতে ইলেকট্রন নিজস্ব গতিপথ থেকে বিচ্যুত হয় এবং ক্যাথোড রশ্মি নলের A বিন্দুতে আঘাত করে। অনুরূপে শুধুমাত্র চুম্বক ক্ষেত্রের উপস্থিতিতে ইলেকট্রন নিজস্ব গতিপথ থেকে বিচ্যুত হয় এবং ক্যাথোড রশ্মি নলের C বিন্দুতে আঘাত করে। সাবধানে তড়িৎ ও চৌম্বক ক্ষেত্রের শস্তি মাত্রার মধ্যে সমতা রক্ষা করলে ইলেকট্রনের গতিপথ তার নিজস্ব পথে অর্থাৎ তড়িৎ ক্ষেত্র ও চৌম্বক ক্ষেত্রের অনুপস্থিতিতে ইলেকট্রনের যে গতিপথ থাকে সেই পথে ফিরে আসে এবং প্রতিপ্রভ পর্দার B বিন্দুতে আঘাত করে। নির্দিন্ট তড়িৎক্ষেত্রে ও চৌম্বকক্ষেত্রে ইলেকট্রনের পথবিচ্যুতির সঠিক পরিমাণের সাহায্যে

থমসন
$$rac{e}{m_e}$$
 এর যে মান নির্ধারণে সমর্থ হয়েছিলেন সেটি হল,

 $\frac{e}{m_e} = 1.758820 \times 10^{11} \text{ C kg}^{-1}$ (2.1) যেখানে m_e হচ্ছে

কিলোগ্রাম (kg) এককে ইলেকট্রনের ভর এবং *e* হচ্ছে কুলস্ব (C) এককে ইলেকট্রনের আধানের মান। ইলেকট্রনের আধান নগণ্য হওয়ায় ইলেকট্রনের আধানকে –*e* দ্বারা প্রকাশ করা হয়।

2.1.3 ইলেকট্রনের আধান (Charge on the Electron)

ইলেকট্রনের আধান নির্ণয় করার জন্য R.A. Millikan (1868-1953) (আর.এ. মুলিকান) **তৈল বিন্দু পরীক্ষা** (1906-14) নামক একটি পরীক্ষা পম্ধতির ব্যবস্থাপনা করেন। পরীক্ষালব্ধ ফলাফল

চিত্র 2.2 ইলেকট্রনের আধান ও ভরের অনুপাত নির্ণয়ের যন্ত্র/উপকরণ

থেকে একটি ইলেকট্রনের আধানের মান – $1.6 imes 10^{-19}$ কুলস্ব (C) নির্ণিত হয়েছিল, বর্তমানে ইলেকট্রনের আধানের স্বীকৃত মানটি হল – $1.602176 imes 10^{-19}$ কুলস্ব (C)। এই ফলাফলগুলো থেকে এবং

থমসনের $\frac{e}{m_e}$ অনুপাতের মানের সংযুক্তিকরণ দ্বারা ইলেকট্রনের

ভর নির্ণয় করা হয়েছিল।

$$m_e = \frac{e}{e / m_e} = \frac{1.602176 \times 10^{19} C}{1.758820 \times 10^{11} C \ kg^{-1}}$$
$$= 9.1094 \times 10^{-31} \ kg$$
(2.2)

2.1.4 প্রোটন ও নিউট্রন আবিষ্কার (Discovery of Protons and Neutrons)

পরিবর্তিত ক্যাথোড রশ্মিনলে তড়িৎক্ষরণ ঘটিয়ে ধনাত্মক আধান বিশিষ্টকণা আবিষ্ণৃত হয়, যা **কেনাল** (Canal) **রশ্মি** নামে পরিচিত। এই কণাগুলোর বৈশিষ্ট্যগুলো নীচে দেওয়া হল।

- এই ধনাত্মক কণাগুলো ক্যাথোড রশ্মির মত নয়। এরা ক্যাথোড রশ্মি নলে উপস্থিত গ্যাসের ধর্মের উপর নির্ভরশীল। এগুলো বস্তুত ধনাত্মক আধানযুক্ত গ্যাসীয় আয়ন।
- (ii) এই কণাগুলোর ক্ষেত্রে তড়িতাধান এবং ভরের অনুপাত যে গ্যাস থেকে কণাগুলো উৎপন্ন হয়েছে তার উপর নির্ভরশীল।
- (iii) কিছু সংখ্যক ধনাত্মক আধানগ্রস্থ কণা মৌলিক তড়িৎ আধানের গুণিতক পরিমাণেও আধান বহন করে।
- (iv) তড়িৎ ও চৌম্বক ক্ষেত্রের উপস্থিতিতে এইসব কণার প্রকৃতি,
 ইলেকট্রন বা ক্যাথোড রশ্মির বিপরীত ধর্মী হয়।

হাইড্রোজেন গ্যাস থেকে এই ক্ষুদ্রতম এবং সর্বাপেক্ষা হালকা পরা তড়িৎবাহী আয়নের সৃষ্টি হয় এবং **এদের প্রোটন বলা হয়**। 1919 খ্রিস্টাব্দে সর্বপ্রথম এই ধনাত্মক আধানযুক্ত কণাটির প্রকৃতি নির্ধারণ করা হয়েছিল। পরবর্তী সময়ে বিজ্ঞানীরা পরমাণুর মৌলিক কণা হিসেবে একটি তড়িৎ নিরপেক্ষ কণার প্রয়োজন অনুভব করেন। বিজ্ঞানী স্যাডউইক (1932) বেরিলিয়ামের একটি পাতলা পাতকে আলফা (α) কণা দ্বারা আঘাত করে এই কণা আবিষ্কার করেন। এর ফলে প্রোটন থেকে সামান্য বেশি ভরের এক ধরনের আধানহীন কণার নিঃসরণ হয়। তিনি এই কণাগুলোর নামকরণ করেন **নিউট্রন**। এই গুরুত্বপূর্ণ মৌলিক কণাগুলোর ধর্মসমূহ সারণি 2.1-এ দেওয়া হল।

2.2 পরমাণুর গঠন সম্বন্ধীয় মডেল (ATOMIC MODELS)

পূর্বোক্ত অংশে যে পরীক্ষাগুলোর কথা বলা হয়েছে, তা থেকে আমরা

মিলিকনের তৈলবিন্দু পম্থতি (Millikan's Oil Drop Method)

এই পদ্ধতিতে কণাবর্ষী (atomiser) দ্বারা সৃষ্ট কুয়াশার মত কিছু তৈল বিন্দুকে তড়িৎশীতকের ওপরে রক্ষিত একটি পাতের সুক্ষ ছিদ্রের মধ্য দিয়ে প্রবেশ করানো হয়। মাইক্রোমিটার অভিনেত্র লাগানো এমন একটি অণুবীক্ষণ যন্ত্রের সাহায্যে এই তৈলবিন্দগুলোর নিম্নাভিমুখী গতি লক্ষ করা হয়। তৈলবিন্দুগুলোর পতনের হার পরিমাপ করে মিলিকেন তৈলবিবন্দুগুলোর ভর নির্ণয় করতে সমর্থ হয়েছিলেন। কক্ষটির ভেতরের বায়ুর মধ্য দিয়ে একগুচ্ছ (beam) X- রশ্মি পাঠিয়ে গ্যাসটিকে আয়নিত করা হল। গ্যাসীয় আয়নের সাথে সংঘর্ষের ফলে তৈলবিন্দুগুলো তড়িৎআহিত হয়। তৈলবিন্দুর আধান এবং প্লেটটির মেরুশস্তি ও প্লেটটিতে প্রযুক্ত বিভবের মাত্রার উপর ভিত্তি করে আধানযুক্ত তৈলবিন্দুগুলোর এই পতনকে বিলম্বিত, ত্বরাম্বিত বা স্থিরিকৃত (stationary) করা যায়। তৈলবিন্দুর গতির উপর তড়িৎ ক্ষেত্রের মাত্রার প্রভাব যত্নসহকারে পরিমাপ করে মিলিকন এই সিম্ধান্তে উপনিত হন যে তৈলবিন্দুর তডিৎ আধানের মান, q, সর্বদা তড়িৎ আধান e এর গুণিতক হয়, অর্থাৎ q = n e যেখানে n = 1, 2, 3... ।

চিত্র 2.3 ইলেকট্রনের আধান (e) নির্ণয়ের জন্য মিলিকেনের তৈলবিন্দু যন্ত্র (উপকরণ)। যন্ত্রের কক্ষে তৈলবিন্দুর উপর ক্রিয়াশীল বলগুলো হল : অভিকর্ষজ বল, তড়িৎ ক্ষেত্রের উপস্থিতির কারণে স্থির তড়িৎ বল, তৈলবিন্দুর গতির বিরুম্বে সাম্রতা জনিত বল।

এই সিম্ধান্তে উপনীত হতে পারি যে ডালটন বর্ণিত অবিভাজ্য পরমাণু প্রকৃতপক্ষে কতগুলো ধনাত্মক ও ঋণাত্মক আধানযুক্ত অবকণিকা দ্বারা গঠিত।

ওই সময় বিজ্ঞানীদের সামনে যে প্রধান সমস্যাগুলো ছিল সেগুলো হল—

নাম	ঙ্গ্বী	পরম আধান/ C (কুলম্ব)	আপেক্ষিক আধান	ভর/কেজি (kg)	ভর/u	আনুমানিক ভর/u
ইলেকট্রন	e	-1.602176×10 ⁻¹⁹	-1	9.109382×10 ⁻³¹	0.00054	0
প্রোটন	р	+1.602176×10 ⁻¹⁹	+1	1.6726216×10 ⁻²⁷	1.00727	1
নিউট্টন	n	0	0	1.674927×10 ⁻²⁷	1.00867	1

সারণি 2.1 মৌলিক কণাসমুহের বৈশিফ্য

 অব-পারমানবিক কণাগুলো আবিষ্কারের পরে পরমাণুর স্থায়িত্ব কীভাবে ব্যাখ্যা করা যায়।

 ভৌত ও রাসায়নিক বৈশিষ্ট্যের সাপেক্ষে একটি মৌলের আচরণের সাথে অন্য মৌলের আচরণের তুলনা করা।

বিভিন্ন পরমাণুগুলো যুক্ত হয়ে কীভাবে বিভিন্ন ধরনের অণু
 তৈরি করে, তার ব্যাখ্যা দেওয়া এবং

 পরমাণু দ্বারা শোষিত বা নিঃসারিত তড়িৎ চুম্বকীয় বিকিরণের উৎপত্তি ও প্রকৃতি সম্পর্কে জানা ইত্যাদি।

এই আধানযুক্ত কণিকাগুলো পরমাণুর মধ্যে কিভাবে বিন্যস্ত থাকে তা বর্ণনা করার জন্য পরমাণুর গঠন সম্বন্ধীয় বিভিন্ন ধরনের মডেলের উপস্থাপন করা হয়েছিল। যদিও উপস্থাপিত এই মডেলগুলোর কয়েকটি, পরমাণুর স্থায়িত্ব ব্যাখ্যা করতে পারেনি। জে জে থমসন এবং আরনেস্ট রাদারফোর্ড দ্বারা প্রদর্শিত এমন দুটি মডেলের সম্বন্ধে নীচে আলোচনা করা হল।

2.2.1 প্রমাণু গঠনের থমসন মডেল (Thomson Model of Atom)

1898 খ্রিস্টাব্দে জে জে থমসন পরমাণু গঠন সম্বন্ধীয় যে মডেলটির

চিত্র 2.4 : পরমাণু গঠনের থমসন মডেল

প্রস্তাবনা করেছিলেন সেটি ছিল গোলাকার আকৃতি বিশিষ্ট (ব্যাসার্ধ প্রায় 10⁻¹⁰ মিটার) যেখানে ধনাত্মক আধান সমূহ সমভাবে বিন্যস্ত থাকে। ইলেকট্রনগুলো এর মধ্যে এভাবে গ্রথিত থাকে যাতে করে

ঊনবিংশ শতাব্দীর শেষার্ধে পূর্বে বর্ণিত রশ্মিসমূহ ছাড়াও আরও বিভিন্ন প্রকার রশ্মি আবিষ্ণৃত হয়েছিল। উইলিয়াম রন্টজেন (1845-1923) পরীক্ষা করে দেখিয়েছিলেন ক্যাথেড রশ্মি নলের ভেতর কোনবস্তুকে ইলেকট্রন দ্বারা আঘাত করলে যে রশ্মি সৃষ্টি হয় তারা ক্যাথেড রশ্মি নলের বাইরে রাখা প্রতিপ্রভধর্মী বস্তুর মধ্যে প্রতিপ্রভ সৃষ্টি করতে পারে। যদিও রন্টজেন এই রশ্মির প্রকৃতি সম্বন্ধে জানতেন না বলে এই রশ্মির নাম দেন X-রশ্মি এবং এই নামটি বর্তমানেও প্রচলিত। দেখা গেছে X-রশ্মি ক্যাথোড নলে তখনই উৎপন্ন হয় যখন ইলেকট্রন সমূহ নলের ভেতর রাখা ভারী ধাতব ক্যাথোডকে আঘাত করে, যাকে টার্গেট বলে। এই রশ্মি সমূহ তড়িৎক্ষেত্র বা চৌম্বক ক্ষেত্র দ্বারা বিক্ষেপিত হয় না এবং এদের বস্তুকে ভেদন করার ক্ষমতা অত্যস্ত বেশি, তাই বস্তুর অন্তস্থ গঠন জানার জন্য এই রশ্মি ব্যবহৃত হতো। এই রশ্মি সমূহের তরঙ্গা দৈর্ঘ্য খুব ছোট (~0.1 nm) এবং এরা তড়িৎ চুম্বকীয় ধর্ম প্রদর্শন করে (2.3.1 অনুচ্ছেদ)

হেনরী বেকের্যাল (1852-1908) লক্ষ করেন কিছু নির্দিন্ট মৌল থেকে স্বতঃস্ফূর্তভাবে একধরনের বিকিরণ নির্গত হয় এবং তিনি এই ঘটনাটির নাম দেন তেজস্ক্রিয়তা এবং এই সমস্ত মৌলগুলোর নাম দেন তেজস্ক্রীয় মৌল। মেরী কুরী, পিয়েরী কুরী, রাদার ফোর্ড ও ফ্রেডরিক সোডী তেজস্ক্রীয়তার এই ক্ষেত্রটির আরও উন্নয়ন করেন। দেখা গেছে যে, তেজস্ক্রীয়তার ফলে α , β এবং γ -রশ্মি নামক তিনধরনের রশ্মি নির্গত হয়। রাদারফোর্ড প্রমাণ করেন, এই α -রশ্মি উচ্চ শক্তি সম্পন্ন দুই একক ধনাত্মক আধানযুক্ত এবং চার পারমাণবিক ভর একক বিশিষ্ট কণা। তিনি এর থেকে সিদ্ধান্তে উপনীত হন যে এরা যেহেতু দু'টি ইলেকট্রনের সাথে যুক্ত হয়ে হিলিয়াম গ্যাস উৎপন্ন করে তাই α -কণাসমূহ

রসায়ন

বস্তুত হিলিয়াম নিউক্লিয়াস, β-রশ্মি আসলে ঋণাত্মক আধান যুক্ত কণিকা যা ইলেকট্রন সদৃশ। γ-রশ্মি সমূহ X-রশ্মির মতো উচ্চশক্তি সম্পন্ন বিকরণ, এরা তড়িৎ নিরপেক্ষ প্রকৃতির এবং কণা দ্বারা গঠিত নয়। ভেদন ক্ষমতানুসারে, α-রশ্মির ভেদন ক্ষমতা সবচেয়ে কম। তারপর β-রশ্মির ক্ষমতা (α-কনার 100 গুণ) এবং γ-রশ্মি ভেদন ক্ষমতা সবচেয়ে বেশি (α-কনার 1000 গুণ)।

পরমাণুটি সর্বোচ্চ পরিমাণ স্থির তড়িৎ বিন্যাস দ্বারা স্থায়িত্ব প্রাপ্ত হয় (চিত্র 2.4)। এই মডেলটির বিভিন্ন নামকরণ করা হয়েছিল যেমন প্লাম ফলের কেক (plum pudding), বড়দিনের কেক (raisin pudding) বা তরমুজ (watermelon)। এই মডেলটিতে কেক (pudding) বা তরমুজকে (watermelon) একটি ধনাত্মক আধান হিসেবে ধরা হয়েছে যার মধ্যে প্লাম (plum) বা বীজ (seed) ইলেকটন গ্রথিত আছে। এই মডেলটির একটি গুরুত্বপূর্ণ বৈশিষ্ট্য হচ্ছে যে এখানে ধরে নেওয়া হয়েছে পরমাণুর ভর সমগ্র পরমাণুর মধ্যে সমভাবে বিন্যস্ত থাকে। যদিও এই মডেলটি পরমাণুর সামগ্রিক আধান শূন্যতার ব্যাখ্যা দিতে সমর্থ হয়েছিল। কিন্তু পরবর্তী পরীক্ষালব্ধ ফলাফলের সাথে সঞ্চাতিপূর্ণ ছিল না। গ্যাসের মধ্য দিয়ে তড়িৎ পরিবহণ সংক্রান্ত ব্যাপারে তাত্ত্বিক এবং পরীক্ষামূলক অনুসন্ধানের জন্য থমসনকে 1906 খ্রিস্টাব্দে পদার্থবিদ্যায় নোবেল পুরস্কারে সম্মানিত করা হয়।

2.2.2 রাদারফোর্ডের পারমাণবিক মডেল (Rutherford's Nuclear Model of Atom)

রাদারফোর্ড ও তাঁর দুজন ছাত্র (হ্যানস গিগার এবং আর্নস্ট মারসডেন) খুব পাতলা সোনার পাতের উপর α-কণিকা বর্ষণ করেন। চিত্র 2.5তে রাদার ফোর্ডের বিখ্যাত α-কণিকা বিক্ষেপণ পরীক্ষাটি দেখানো হয়েছে। একটিতে তেজস্ক্রীয় উৎস থেকে উৎপন্ন অতি উচ্চ শক্তি সম্পন্ন α-কণার একটি প্রবাহকে একটি পাতলা (বেধ ~ 100 nm) সোনার পাতের উপর নিক্ষেপ করা হয়েছিল। এই পাতলা সোনার পাতের চারপাশে চক্রাকার প্রতিপ্রভা উৎপন্নকারী সালফাইড রাখা হয়েছিল। α-কণা যখন এই পদার্থকে আঘাত করতো সাথে সাথে সেই বিন্দু থেকে আলোর ঝলকানি দেখা যেত।

এই বিক্ষেপণ পরীক্ষার ফলাফল বেশ অপ্রত্যাশিত ছিল। পরমাণু গঠনের থমসনের মডেল অনুসারে সোনার পাতের প্রত্যেকটি পরমাণুর ভর সমগ্র পরমাণুর মধ্যে সমানভাবে ছড়িয়ে থাকে এবং α-কণার মধ্যে যে শক্তি আছে তাতে এরা সরাসরি

B. পরিকল্পিত সোনার পাত মধ্যস্থ অণুর দৃশ্য

চিত্র 2.5 রাদারফোর্ডের পরিকল্পিত বিক্ষেপ পরীক্ষার দৃশ্য। যখন একটি আলফা (a) কণার প্রবাহ পাতলা সোনার পাতকে আঘাত করে। তাদের মধ্যে অধিকাংশ রশ্মিই কোন প্রভাবছাড়া অতিক্রম করে। কিছু সংখ্যক কণিকা বিক্ষেপ দেখায়।

সমভাবে বিন্যস্ত এই ভরকে অতিক্রম করতে পারে। পাতটিকে অতিক্রম করার সময় কণাগুলোর গতি মন্দিভূত হবে এবং ক্ষুদ্র কৌণিক বিচ্ছুরিত মাধ্যমে দিক্ পরিবর্তন করবে। এটাই প্রত্যাশিত ছিল। কিন্তু দেখা গেল যে—

- (i) বেশির ভাগ α-কণা কোনও বিক্ষেপ ছাড়াই সোনার পাতটিকে অতিক্রম করেছিল।
- (ii) α-কণার একটি ক্ষুদ্র অংশ ক্ষুদ্র কোণে বিক্ষিপ্ত হল।
- (iii) খুব ক্ষুদ্র সংখ্যক α-কণা (20,000 এর মধ্যে 1টি) পাতে ধাক্বা খেয়ে একই পথে ফিরে এসেছিল অর্থাৎ প্রায় 180° কোণে বিক্ষেপিত হয়েছিল।

এই সমস্ত ঘটনা পর্যবেক্ষণ করে রাদারফোর্ড পরমাণুর গঠন সম্পর্কে নিম্নলিখিত সিম্বান্তে উপনীত হন—

পরমাণুতে এই সংখ্যা 11। তাই এদের পারমাণবিক সংখ্যা যথাক্রমে 1 এবং 11। পরমাণুর তড়িৎ নিরপেক্ষতা বজায় রাখার জন্য, পরমাণুতে যত সংখ্যক প্রোটন (পারমাণবিক সংখ্যা Z) থাকে ঠিক তত-সংখ্যক ইলেকট্রন থাকে। উদাহরণস্বরূপ, হাইড্রোজেন পরমাণু ও সোডিয়াম পরমাণুর মোট ইলেকট্রন সংখ্যা যথাক্রমে 1 এবং 11।

পারমাণবিক সংখ্যা (Z) = একটি পরমাণুর নিউক্লিয়াসের প্রোটন সংখ্যা

> = আধান নিরপেক্ষ পরমাণুর ইলেকট্রন সংখ্যা (2.3)

প্রোটনের উপস্থিতির কারণে নিউক্লিয়াস ধনাত্মক প্রকৃতির হলেও প্রোটন ও নিউট্রন কণা নিউক্লিয়াসের ভরের জন্য দায়ী।

পূর্বেই আলোচিত হয়েছে যে পরমাণুর নিউক্লিয়াসে উপস্থিত প্রোটন ও নিউট্রন একত্রে **নিউক্লিয়ন্স্** নামে পরিচিত। নিউক্লিয়নস্ এর মোট সংখ্যা পরমাণুর ভর সংখ্যা (A) হিসেবে পরিচিত।

ভরসংখ্যা(A) = ৫	প্রাট্রন সংখ্যা (Z) +
-----------------	-----------------------

নিউট্রন সংখ্যা (n) (2.4)

2.2.4 আইসোবার এবং আইসোটোপ (সমস্থানিক) (Isobars and Isotopes)

একটি সাধারণ মৌলের পরমাণুকে প্রতীক (X) দ্বারা প্রকাশ করা হয় এবং এর বাদিকে শীর্ষদেশে ভরসংখ্যা (A) এবং নিম্নদেশে পারমাণবিক ক্রমাঞ্চ (Z) লেখা হয়। (অর্থাৎ $\frac{4}{7}$ X)

যে সকল পরমাণুর ভরসংখ্যা সমান কিন্তু পারমাণবিক সংখ্যা বিভিন্ন তাদের আইসোবার বলা হয়— যেমন ${}_{6}^{14}C \otimes {}_{7}^{14}N$, অন্যদিকে পরমাণুদের পারমাণবিক সংখ্যা সমান কিন্তু ভরসংখ্যা বিভিন্ন তাদের আইসোটোপ বা সমস্থানিক বলে। অন্যভাবে বলতে গেলে (সমীকরণ 2.4 অনুসারে) আইসোটোপ সৃষ্টি হয় পরমাণুর নিউক্লিয়াসে নিউট্রন সংখ্যার পার্থক্যের কার্বনে। উদাহরণ হিসেবে— হাইড্রোজেন পরমাণুর মধ্যে 99.985% হাইড্রোজেন পরমাণুর নিউক্লিয়াসে আছে শুধুমাত্র 1টি প্রোটন। এই আইসোটোপটির নাম **প্রোটিয়াম** (${}_{1}^{1}H$)। অবশিষ্টাংশে আছে হাইড্রোজেন পরমাণুর অন্য দুটি আইসোটোপ, যার মধ্যে 1টিতে আছে 1টি প্রোটন ও 1টি নিউট্রন যা **ডিউটেরিয়াম** (${}_{1}^{2}D, 0.015\%$) হিসাবে পরিচিত এবং অন্য আইসোটোপটিতে 1টি প্রোটন ও 2টি নিউট্রন থাকে যা **ট্রিটিয়াম** (${}_{1}^{3}T$) হিসেবে পরিচিত। শেষোক্ত আইসোটোপটি পৃথিবীতে খুবই কম পরিমাণে পাওয়া যায়। সাধারণভাবে পরিচিত অন্যান্য কয়েকটি আইসোটোপের উদাহরণ

- পরমাণুর বেশির ভাগ অংশই ফাঁকা কারণ বেশির ভাগ
 α-কণাই কোন বিক্ষেপ ছাড়া সোনার পাতটিকে বিনা বাধায়
 অতিক্রম করেছিল।
- (ii) নিউক্লিয়াসের মধ্যে প্রোটন কণা থাকে বলেই নিউক্লিয়াস ধনাত্মক প্রকৃতির হয়। আগেই প্রতিষ্ঠিত হয়েছে যে প্রোটনের আধানের মান ইলেকট্রনের আধানের সমান হলেও আধানের প্রকৃতি কিন্তু বিপরীত। নিউক্লিয়াসে উপস্থিত প্রোটনের মোট সংখ্যাই হলো পরমাণু ক্রমাঙ্ক বা পারমাণবিক সংখ্যা (Z)।
- (iii) রাদারফোর্ড গণনা করে দেখালেন পরমাণুর মোট আয়তনের তুলনায় এই নিউক্লিয়াস এর আয়তন অত্যন্ত নগণ্য। পরমাণুর ব্যাসার্ধ প্রায় 10⁻¹⁰ মিটার যদিও নিউক্লিয়াসের ব্যাসার্ধ প্রায় 10⁻¹⁵ মিটার। নিউক্লিয়াসের আকার একটি ক্রিকেট বলের সমান হলে পরমাণুর ব্যাসার্ধ হবে প্রায় 5 কিলোমিটার—

এই তুলনার সাহায্যে আকারের এই পার্থক্যের ধারণা পাওয়া যেতে পারে। উপরিউক্ত পর্যবেক্ষণ ও সিদ্ধান্ত থেকে রাদারফোর্ড তাঁর পরমাণুর গঠনের মডেলটির প্রোটন আবিষ্কারের পর প্রস্তাবনা করলেন। তাঁর এই মডেল অনুসারে—

- পরমাণুর এই ধনাত্মক আধান ও বেশিরভাগ ভর একটি ক্ষুদ্র অংশের মধ্যে ঘনীভূত থাকে। রাদারফোর্ড এই ক্ষুদ্র অংশটির নাম দেন নিউক্লিয়াস।
- (ii) এই নিউক্লিয়াসকে কেন্দ্র করে ইলেকট্রনসমূহ অতি উচ্চ গতিবেগে যে বৃত্তাকার পথে পরিশ্রমণ করে তা কক্ষক হিসেবে পরিচিত। রাদারফোর্ডের এই পরমাণুর গঠনের মডেলটি সৌরজগতের সাথে সদৃশ্যপূর্ণ যেখানে নিউক্লিয়াস সূর্যের মত কেন্দ্রীয় অবস্থানে আছে এবং ইলেকট্রনসমূহ গ্রহদের মত ঘুরে চলেছে।
- (iii) এই ইলেকট্রন ও নিউক্লিয়াস একে অপরের সাথে স্থির তড়িৎ বল দ্বারা আবন্ধ থাকে।

2.2.3 পারমাণবিকসংখ্যা এবং ভর সংখ্যা (Atomic Number and Mass Number)

নিউক্লিয়াসের মধ্যে প্রোটন কণা থাকে বলেই নিউক্লিয়াস ধনাত্মক প্রকৃতির হয়। আগেই প্রতিষ্ঠিত হয়েছে যে প্রোটনের আধানের মান ইলেক্ট্রনের আধানের সমান হলেও আধানের প্রকৃতি কিন্তু বিপরীত। নিউক্লিয়াসে উপস্থিত প্রোটনের মোট সংখ্যাটি হল পরমাণু ক্রমাঞ্চ বা পারমাণবিক সংখ্যা (*Z*)। উদাহরণস্বরূপ হাইড্রোজেন পরমাণুর নিউক্লিয়াসে উপস্থিত প্রোটন সংখ্যা 1, অন্যদিকে সোডিয়াম

সমস্যা 2.1

⁸⁰ Br পরমাণুতে উপস্থিত প্রোটন, নিউট্রন এবং ইলেকট্রন সংখ্যা নির্ণয় করো।

সমাধান

এখানে $^{80}_{35}$ Br, Z = 35, A = 80 এবং এটি একটি নিঃস্তড়িৎ পরমাণু। প্রোটন সংখ্যা = ইলেকট্রন সংখ্যা = Z = 35

নিউট্রন সংখ্যা = 80 – 35 = 45 (সমীকরণ 2.4)

সমস্যা 2.2

একটি পরমাণুতে উপস্থিত ইলেকট্রন, প্রোটন এবং নিউট্রনের সংখ্যা যথাব্রমে 18, 16 এবং 16টি। পরমাণুটির সঠিক চিহ্ন নির্ণয় করো।

সমাধান

পরমাণুটির পারমাণবিক সংখ্যা বা প্রোটন সংখ্যা = 16 । অর্থাৎ মৌলটি সালফার (S)

ভর সংখ্যা = প্রোটন সংখ্যা + নিউট্রন সংখ্যা

= 16 + 16

= 32

পরমাণুটি নিঃস্তড়িৎ নয় কারণ ইলেকট্রন সংখ্যা ও প্রোটন সংখ্যা সমান নয়। এটি একটি অ্যানায়ন (ঋণাত্মক আধানযুক্ত) এবং এর আধানের পরিমান = 18 – 16 = 2। সুতরাং পরমাণুটির চিহ্ন $\frac{32}{16}S^2$ ।

টীকা (Note)

^AZ প্রতীকটি ব্যবহার করার পূর্বে এটি কি একটি নিস্তড়িৎ পরমাণু নাকি ধনাত্মক আয়ন বা ঋণাত্মক আয়ন তা দেখে নাও। যদি এটি একটি নিঃস্তড়িৎ পরমাণু হয়, তবে এর জন্য সমীকরণ (2.3) প্রযোজ্য অর্থাৎ প্রোটন সংখ্যা = ইলেকট্রন সংখ্যা = পারমাণবিক সংখ্যা। যদি বস্তুটি আয়ন হয় তবে দেখতে হবে এতে প্রোটন সংখ্যা কি ইলেকট্রন সংখ্যা থেকে বেশি (ক্যাটায়ন, ধনাত্মক আয়ন) অথবা কম (অন্যানায়ন, ঋণাত্মক আয়ন)। নিউট্রন সংখ্যা সর্বদাই প্রকাশ করা হয় A– Z দ্বারা তা সেটি আয়ন বা নিঃস্তড়িৎ যাই হোক না কেন।

হচ্ছে 6টি প্রোটন যুক্ত কার্বন পরমাণু যাদের মধ্যে যথাক্রমে 6টি, 7টি এবং 8টি নিউট্রন থাকে ($_{6}^{12}$ C, $_{6}^{13}$ C, $_{6}^{14}$ C); 17টি প্রোটন যুক্ত ক্লোরিন পরমাণু, যাদের মধ্যে যথাক্রমে 18টি এবং 20টি নিউট্রন থাকে ($_{17}^{35}$ Cl, $_{17}^{37}$ Cl)। সর্বশেষ আইসোটোপ সম্বন্ধীয় যে গুরুত্বপূর্ণ বিষয়টি উল্লেখ করতে হয় সেটি হল — পরমাণুর রাসায়নিক ধর্ম ইলেকট্রন সংখ্যা দ্বারা নিয়ন্ত্রিত হয় এবং এই সংখ্যা নির্ধারণ করা হয় পরমাণুতে উপস্থিত প্রোটন সংখ্যা দ্বারা। কোনো মৌলের পরমাণুর রাসায়নিক ধর্মের উপর নিউক্লিয়াসে উপস্থিত নিউট্রনের প্রভাব অতি নগণ্য। এই কারণেই কোনো মৌলের সমস্ত আইসোটোপ একই রাসায়নিক ধর্ম প্রদর্শন করে।

2.2.5 রাদারফোর্ডের পরমাণু মডেলের ত্রুটি সমূহ (Drawbacks of Rutherford Model)

রাদারফোর্ডের নিউক্লিয়াসযুক্ত পরমাণু মডেলটি সৌর মণ্ডলের একটি ক্ষুদ্রসংস্করণের অনুরূপ, যেখানে নিউক্লিয়াসটি হল বিশাল ভরের সূর্যের মতো এবং ইলেকট্রনগুলো অপেক্ষাকৃত কমভরযুক্ত গ্রহগুলোর মত। উপরন্তু ইলেকট্রন এবং নিউক্লিয়াসের মধ্যেকার কুলম্বীয় বল (kq_1q_2/r^2) , যেখানে q_1 এবং q_2 আধান, r হচ্ছে দুটি আধানের মধ্যেকার দূরত্ব এবং k একটি সমানুপাতিক ধ্রুবক) গাণিতীকভাবে অভিকর্ষজ বলের মত $\left(G. rac{m_1 m_2}{r^2}
ight)$ যেখানে m_1 এবং m_2 হল দুটি ভর, r হচ্ছে দুটি ভরের মধ্যেকার দূরত্ব এবং G হল মহাকর্ষীয় ধ্রবক। সৌরমণ্ডলের ক্ষেত্রে সনাতন বলবিদ্যার* প্রয়োগ করে দেখা গেছে যে সূর্য্যের চারপাশে কতগুলো নির্দিষ্ট কক্ষপথে গ্রহগুলো অবস্থান করে। এই তত্ত্বের সাহায্যে গ্রহগুলোর কক্ষপথের সমতলীয় প্রকৃতি যথাযথভাবে বর্ণনা করা যায় এবং পরীক্ষামূলক পরিমাপের সঙ্গে তা সম্পূর্ণভাবে সহমত পোষণ করে। সৌরমণ্ডল ও পরমাণুর নিউক্লিয় মডেলের সাদৃশ্য থেকে এই সিদ্ধান্তে উপনীত হওয়া যায় যে ইলেকট্রনসমূহ কতগুলো নির্দিষ্ট কক্ষপতে নিউক্লিয়াসকে কেন্দ্র করে ঘুরছে। যা হোক, যখন কোনো বস্তু একটি কক্ষপথে ঘোরে, তখন বস্তুটিতে ত্বরণের সৃষ্টি হয়, যদি বস্তুটি একটি নির্দিষ্ট গতিবেগ নিয়েও কক্ষপথে ঘোরে, তবুও দিক পরিবর্তনের জন্য এর মধ্যে ত্বরণ সৃষ্টি হয়। তাই পরমাণুর নিউক্লিয় মডেলটিতে একটি ইলেকট্রন যখন কক্ষপথে ঘূর্ণন করে এর মধ্যে ত্বরণের সৃষ্টি হয়, কারণ এর গঠন গ্রহের কক্ষপথের মতো। ম্যাক্সওয়েলের তড়িৎচুম্বকীয় তথ্যানুসারে যখন কোনো আধানযুক্ত কণায় ত্বরণের সৃষ্টি হয়, তখন তা তড়িৎ চুম্বকীয় রশ্মি বিকরণ করে (গ্রহের ক্ষেত্রে এই ঘটনাটি দেখা যায় না কারণ এরা নিস্তড়িৎ) তাই কক্ষপথে আবর্তনশীল ইলেকট্রন থেকে বিকিরণ নির্গত হয় এবং এই বিকিরণ যে শক্তি বহন করে তা ইলেকট্রনীয় গতির জন্যই এতে উদ্ভূত হয়। কক্ষপথ তাই

* সনাতন বলবিদ্যা একটি তাত্ত্বিক বিজ্ঞান যেটি নিউটনের গতিসূত্রের উপর ভিত্তি করে প্রতিষ্ঠিত। এটি বৃহদাকার বস্তুর গতি সম্পর্কিত নিয়মগুলোকে ব্যাখ্যা করে।

অবিরত সঙ্কুচিত হবে। গণনার সাহায্যে দেখা গেছে যে একটি ইলেক্ট্রন নিউক্লিয়াসকে কেন্দ্র করে খর্পিল পথে ঘুরতে ঘুরতে 10⁻⁸ সেকেণ্ড সময়ে নিউক্লিয়াসে আছড়ে পড়বে। কিন্তু বাস্তবে তা সংগঠিত হয় না। সেই জন্যই রাদার ফোর্ডের মডেল পরমাণুর স্থায়িত্ব ব্যাখ্যা করতে পারে না। যদি একটি ইলেকট্রনের ঘূর্ণন সনাতন বলবিদ্যা এবং তড়িৎচুম্বকীয় তত্ত্বের সাহায্যে ব্যাখ্যা করা হয়। তবে তোমরা এই প্রশ্নটি জিজ্ঞেস করতেই পার যে কক্ষপথে আবর্তনশীল ইলেকট্রনের গতির জন্যই যেহেতু পরমাণুর স্থায়িত্ব ব্যাখ্যা করা যাচ্ছে না তাই ইলেকট্রনগুলোকে নিউক্লিয়াসের চারপাশে নিশ্চল বলে ধরা হবে না কেন ? যদি এই ইলেকট্রনগুলো নিশ্চল হয়, তবে অতিভারী নিউক্লিয়াস এবং ইলেকট্রনগুলোর মধ্যেকার স্থির তড়িৎ আকর্ষণের ফলে, ইলেকট্রন সমূহ নিউক্লিয়াস অভিমুখে টান অনুভব করবে এবং থমসনের পরমাণু মডেলের একটি ক্ষুদ্রতর সংস্করণ পাওয়া যাবে।

এছাড়া রাদারফোর্ডের পরমাণু মডেলের আরেকটি মারাত্মক ত্রুটি হল এর মধ্যে পরমাণুর ইলেকট্রনের বিন্যাস সম্পর্কে কিছু বলা হয়নি অর্থাৎ কীভাবে নিউক্লিয়াসকে কেন্দ্র করে ইলেকট্রনগুলো বিন্যস্ত এবং এই ইলেকট্রনগুলোর শক্তিই বা কী ?

2.3 বোরের পরমাণু মডেল গঠনে সাহায্যকারী উন্নত বৈজ্ঞানিক গবেষণা (DEVELOPMENTS LEADING TO THE BOHR'S MODEL OF ATOM)

বস্তু এবং বিকিরণের মধ্যে সংঘর্ষ সম্পর্কিত গবেষণার ফলে প্রাপ্ত ঐতিহাসিক ফলাফল থেকে পরমাণু এবং অণুর গঠন সম্পর্কে অসংখ্য তথ্য পাওয়া গেছে। নীলস্বোর এই সমস্ত ফলাফল ব্যবহার করে রাদারফোর্ডের প্রস্তাবিত পরমাণুর মডেলটির সংস্কার করেন। দুটি উন্নত গবেষণা বোরের পরমাণু মডেল তৈরিতে মুখ্য ভূমিকা নিয়েছিল। সেগুলো হল—

- তড়িৎ চুম্বকীয় বিকিরণের দ্বৈত চরিত্র যার অর্থ এই বিকিরণ তরজ্ঞা ধর্ম এবং কণাধর্ম দুইই প্রদর্শন করে এবং
- পারমাণবিক বর্ণালী ঘটিত পরীক্ষালব্ধ ফলাফল ব্যাখ্যা করা যায় যদি ধরে নেওয়া যায় পরমাণুর শক্তিস্তরগুলো কোয়াণ্টাইজড (2.4 অনুচ্ছেদ)

2.3.1 তড়িৎ চুম্বকীয় বিকিরণের তরজা ধর্মীতা (Wave Nature of Electromagnetic Radiation)

উনবিংশ শতাব্দীর মাঝামাঝি সময়ে, পদার্থ বিজ্ঞানীগণ উত্তপ্ত বস্তু দ্বারা শোষণ এবং নিঃসরণ বিকিরণ সক্রিয়ভাবে অধ্যয়ন করেছিলেন। এটিকে বলা হয় তাপীয় বিকিরণ। তাঁরা তাপীয় বিকিরণ কী তা খুঁজে বের করার চেম্টা করেন। এখন এটি সুপরিচিত সত্য যে তাপীয় বিকিরণগুলো হল বিভিন্ন কম্পাঞ্চ বা তরঙ্গ দৈর্ঘ্য নিয়ে গঠিত। এটি বেশ কয়েকটি আধুনিক ধারণার উপর ভিত্তি করে তৈরি হয়েছিল, যা উনবিংশ শতাব্দীর মধ্যভাগে অনেকটা অজানা ছিল। 1850 খ্রিস্টাব্দে সর্বপ্রথম তাপীয় বিকিরণের সূত্রগুলো সক্রিয়ভাবে অধ্যয়ন করা হয়েছিল এবং 1870 খ্রিস্টাব্দে জেমস ক্লার্ক ম্যাক্সওয়েল তড়িৎচুম্বকীয় তত্ত্ব এবং আধানযুক্ত কণা সমূহকে ত্বরান্বিত করে এই ধরনের তরঙ্গের নিঃসরণকে উন্নত করেন। এটিকে হেনরিচ হার্টিজ (Heinrich Hertz) পরীক্ষার সাহায্যে সুনিশ্চিত করেন। এই অনুচ্ছেদে তড়িৎ চুম্বকীয় বিকিরণের কিছু তথ্য আমরা পড়ব।

জেমস ম্যাক্সওয়েল (1870) সর্বপ্রথম আধানযুক্ত কণাদের মিথষ্ক্রিয়া এবং আণুবীক্ষণিক স্তরে তড়িৎক্ষেত্র ও চুম্বকক্ষেত্রের আচরণ সুনির্দিস্টভাবে ব্যাখ্যা করেছিলেন। তাঁর মতানুসারে কোন তড়িৎগ্রস্ত কণা যখন ত্বরণ সহ গতিশীল থাকে তখন পর্যায়ক্রমে তড়িৎক্ষেত্র ও চুম্বকক্ষেত্র সৃষ্টি হয় এবং প্রেরিত হয়। এই ক্ষেত্রগুলো তরঙ্গারূপে প্রেরিত হয় যা কিনা তড়িৎ চুম্বকীয় তরঙ্গা বা তড়িৎ চুম্বকীয় বিকিরণ নামে পরিচিত।

প্রাচীনকাল থেকেই ধারণা ছিল যে আলোক এক প্রকার বিকিরণ এবং প্রাগৈতিহাসিক সময় থেকে এর প্রকৃতি নিয়ে দ্বন্দু ছিল। প্রথমদিকে (নিউটন) মনে করা হয়েছিল আলোক সম্ভবত কতগুলো কণা দিয়ে তৈরি (করপাসেল্স্)। উনবিংশ শতাব্দিতে আলোকের তরঙ্গা ধর্ম প্রতিষ্ঠিত হয়েছিল।

চিত্র 2.6 একটি তড়িৎ চুম্বকীয় তরজোর তড়িৎ এবং চুম্বক ক্ষেত্রের উপাদান অংশ। উপাদান অংশগুলোর তরজাদৈর্ঘ্য, কম্পাঞ্চক, দ্রুতি এবং বিস্তার সমান হলেও এরা কিন্ডু পরস্পরের সাথে লম্বভাবে অবস্থিত দুটি পৃথক তলে কম্পিত হয়।

- (i) দোদুল্যমান আধানগ্রস্থ কণা থেকে যে দোদুল্যমান তড়িৎক্ষেত্র এবং চুম্বকক্ষেত্র সৃষ্টি হয়, তারা নিজেদের মধ্যে লম্বভাবে অবস্থান করে এবং তরঙ্গা প্রবাহের দিকের সাথেও লম্বভাবে অবস্থান করে। তড়িৎ চুম্বকীয় তরঙ্গোর সরলীকৃত চিত্র 2.6-এ প্রদর্শিত হল।
- শব্দ তরজা অথবা জল তরজোর মতো, তড়িৎ চুম্বকীয়
 তরজোরও কোনো মাধ্যমের প্রয়োজন হয় না এবং এরা শূন্য মাধ্যমে বিস্তার লাভ করে।
- (iii) এটা এমন প্রতিষ্ঠিত সত্য যে, অনেক প্রকার তড়িৎ চুম্বকীয় বিকিরণ আছে, যাদের একটির তরঙ্গা দৈর্ঘ্য (অথবা কম্পাঙ্ক) অন্যটির সাথে আলাদা হয়। বিভিন্ন তরঙ্গা দৈর্ঘ্যযুক্ত এই গঠন চিত্রটি তড়িৎ চুম্বকীয় বর্ণালী নামে পরিচিত (চিত্র 2.7)। এই বর্ণালীর বিভিন্ন অংশ বিভিন্ন নামে পরিচিত। কয়েকটি উদাহরণ হল : 10° হাৎর্জ (Hz) এর কাছাকাছি অঞ্চলটিকে রেডিও বা বেতার তরঙ্গা অঞ্চল বলা হয়, যা রেডিও সম্প্রচারের কাজে ব্যবহৃত হয়। 10¹⁰ হাৎর্জ (Hz) এর কাছাকাছি অঞ্চলটিকে মাইক্রোওয়েভ অঞ্চল বলে, যা রাডারে ব্যবহার করা হয়।

10¹³ হাৎর্জ (Hz) এর কাছাকাছি অঞ্চলটিকে অবহেলিত অঞ্চল বলে, যা উত্তপ্তকরণের জন্য ব্যবহৃত হয়। 10¹⁶ হাৎর্জ (Hz) এর কাছাকাছি অঞ্চলটিকে অতিবেগুণী অঞ্চল বলা হয়, যা হল সৌরবিকিরণের একটি উপাদান। 10¹⁵ হাৎর্জ (Hz) এর কাছাকাছি একটি ক্ষুদ্র অঞ্চলকে সাধারণভাবে দৃশ্যমান আলোক বলা হয়। শুধুমাত্র এই অঞ্চলের আলোকেই আমাদের চোখ দেখতে পারে (সনাস্তু করতে পারে)। অদৃশ্য বিকরণ সনাস্তু করণের জন্য বিশেষ যন্ত্রের প্রয়োজন হয়।

 (iv) তড়িৎ চুম্বকীয় বিকিরণ প্রকাশ করতে বিভিন্ন ধরনের একক ব্যবহৃত হয়।

এই সকল বিকিরণের বৈশিষ্ট্য মূলত কম্পাঙ্ক (v) এবং তরঙ্গদৈর্ঘ্য (λ) এই দুটি ধর্মের উপর নির্ভরশীল।

কম্পাঙ্কের (v) SI এককটি হল হার্ৎজ (Hz, s⁻¹)। হেনরিচ হার্ৎজের নামানুসারে একটি বিন্দু দিয়ে প্রতি সেকেন্ডে যত সংখ্যক তরঙ্গা প্রবাহিত হয়, তার দ্বারা একে সংজ্ঞায়িত করা হয়েছে।

তরঙ্গা দৈর্ঘ্যের একক হল দৈর্ঘ্যের একক এবং তোমরা জান SI পম্বতিতে দৈর্ঘ্যের একক মিটার (m)। যেহেতু তড়িৎ চুম্বকীয় বিকিরণ তৈরি হয় বিভিন্ন প্রকার ছোটো ছোটো তরঙ্গাদৈর্ঘ্য বিশিষ্ট তরঙ্গা দ্বারা, তাই এর জন্য ছোটো একক ব্যবহৃত হয়। তরঙ্গাদৈর্ঘ্য এবং কম্পাঙ্কের পার্থক্যযুক্ত বিভিন্ন প্রকার তড়িৎ চুম্বকীয় বিকিরণ চিত্র 2.7-এ দেখানো হল।

চিত্র 2.7 (a) তড়িৎ চুম্বকীয় বিকিরণ বর্ণালী। (b) দৃশ্যমান বর্ণালী। দৃশ্যমান বর্ণালী হল সম্পূর্ণ বর্ণালীর একটি ক্ষুদ্র অংশ।

রসায়ন

সমাধান

 $\lambda = \frac{c}{v}$

 $=\frac{3.00\times10^8\,{\rm ms}^{-1}}{1368\,{\rm kHz}}$

 $3.00 \times 10^8 \,\mathrm{ms}^{-1}$ $1368 \times 10^{3} \, \mathrm{s}^{-1}$

= 219.3 m

সমস্যা 2.4

m)

তরঙ্গা দৈর্ঘ্য যাই হউক না কেন, বায়ু শূন্য মাধ্যমে সমস্ত ধরনের তড়িৎ চুম্বকীয় বিকিরণ একই গতিবেগে ভ্রমণ করে অর্থাৎ 3.0 × $10^8~{
m m~s^{-1}}$ এর সঠিক মানটি হল (2.997925 imes $10^8~{
m m~s^{-1}}$)। একেই আলোর গতিবেগ বলে এবং এর প্রতীক হল 'c'। এই কম্পাঙ্ক (v), তরঙ্গা দৈর্ঘ্য (λ) এবং আলোর গতিবেগের

যে রেডিও তরজা সম্প্রচার করা হয় তার কম্পাধ্ব্ব হল 1,368 কিলো হার্ৎজ (kHz)। প্রেরকযন্ত্র থেকে নিঃসরিত তড়িৎচুম্বকীয় বিকিরণের তরজ্ঞা দৈর্ঘ্য গণনা করো। তড়িৎচুম্বকীয় বর্ণালীর কোন্ অংশটিতে এই তরজ্ঞা দৈর্ঘ্যটি থাকবে ?

তরঙ্গদৈর্ঘ্য (λ), c/ν এর সমান, যেখানে c হচ্ছে বায়ু শূন্য স্থানে তড়িৎ চুম্বকীয় বিকিরণের গতিবেগ এবং v হচ্ছে

কম্পাধ্ব। প্রদত্ত মানগুলোকে প্রতিস্থাপিত করে আমরা পাই

এটি হল বেতার তরঙ্গের বৈশিষ্টসূচক একটি তরঙ্গদৈর্ঘ্য।

বর্ণালীর বেগুনি (400 ন্যানোমিটার) থেকে লাল (750

ন্যানোমিটার) পর্যন্ত বিস্তৃত অঞ্চলটি দৃশ্যমান। এই তরজা

দৈর্ঘ্যগুলোকে কম্পাঙ্কে (Hz) প্রকাশ কর। (1nm = 10⁻⁹

সমস্যা 2.3 দিল্লিস্থিত অল ইন্ডিয়া রেডিওর বিবিধভারতী স্টেশন থেকে

সমাধান (a) তরজ্ঞা সংখ্যার গণনা (\overline{v}) $\lambda = 5800$ Å $= 5800 \times 10^{-8}$ cm $= 5800 \times 10^{-10} \text{ m}$

সংখ্যা এবং (b) কম্পাঙ্ক গণনা কর।

হলুদ বিকিরণ যার তরজা দৈর্ঘ্য 5800 Å. তার (a) তরজা

39

(2.5)

দৃশ্যমান আলোক বর্ণালীর 4.0×10^{14} থেকে 7.5×10^{14}

 $v = \frac{c}{\lambda} = \frac{3.00 \times 10^8 \text{ ms}^{-1}}{400 \times 10^{-9} \text{ m}} = 4.00 \times 10^{14} \text{ Hz}$

লাল আলোর কম্পাজ্জ

Hz কম্পাঙ্কের পরিসরে অবস্থান করে।

সমস্যা 2.5

 $\overline{v} = \frac{1}{\lambda} = \frac{1}{5800 \times 10^{-10} m}$

(b) কম্পাঙ্কের গণনা (v)

 $v = \frac{c}{\lambda} = \frac{3 \times 10^8 \,\mathrm{ms}^{-1}}{5800 \times 10^{-10} \,\mathrm{m}}$

 $c = v \lambda$

 $= 1.724 \times 10^{6} \text{ m}^{-1}$

 $= 1.724 \times 10^4 \text{ cm}^{-1}$

 $= 5.172 \times 10^{14} \text{ s}^{-1}$

(c) মধ্যে সম্পর্কটিকে সমীকরণ (2.5) দ্বারা প্রকাশ করা যায়।

বর্ণালীর ক্ষেত্রে প্রায়শই ব্যবহার করা হয় এমন আরেকটি

রাশি হল তরজ্ঞা সংখ্যা (wavenumber)। প্রতি একক দৈর্ঘ্যে

উপস্থিত তরঞ্চা দৈর্ঘ্যের সংখ্যা দ্বারা একে সংজ্ঞায়িত করা

হয়। এর একক হচ্ছে তরঙ্গা দৈর্ঘ্যের এককের অন্যোন্যক অর্থাৎ

মিটার⁻¹ (m⁻¹)। কিন্তু যে এককটি সচরাচর ব্যবহার করা হয়

2.3.2 তড়িৎ চুম্বকীয় বিকিরণের কণা ধর্মিতা : প্ল্যাঙ্কের কোয়ান্টাম

Radiation: Planck's Quantum Theory)

কতগুলো পরীক্ষালব্ধ ঘটনা যেমন বিচ্ছুরণ* এবং ব্যতিচার* যা

তত্ব (Particle Nature of Electromagnetic

সেটি হল সেন্টিমিটার⁻¹ (cm⁻¹) (যা SI একক নয়)।

সমাধান সমীকরণ 2.5 ব্যবহার করে, বেগুনি আলোর কম্পাঙ্ক হচ্ছে

 $v = \frac{c}{\lambda} = \frac{3.00 \times 10^8 \,\mathrm{ms}^{-1}}{400 \times 10^{-9} \,\mathrm{m}}$ $= 7.50 \times 10^{14} \text{Hz}$

কিনা তড়িৎ চুম্বকীয় বিকিরণের তরঙ্গা ধর্মের সাহায্যে ব্যাখ্যা করা যায়। যদিও নিম্নোক্ত পর্যবেক্ষণগুলো কিছু সংখ্যক

^{*} বিচ্ছুরণ হল কোন বাধার সম্মুখে তরঙ্গের বিক্ষেপ।

^{*} ব্যতিচার হল দুটি সম বা ভিন্ন কম্পাঞ্চের তরজোর উপরিপাত এবং যা প্রত্যেকটি বিন্দুতে লব্ধ তরজোর আলোড়ন হল ঐ দু'টি তরজোর বীজ গণিতীয় অথবা ভেক্টর যোগফলের সমান।

রসায়ন

পর্যবেক্ষণকে এমনকি ঊনবিংশ শতকের পদার্থবিদ্যায় তড়িৎ চুম্বকীয় তত্ত্বের সাহায্যেও ব্যাখ্যা করা যায় না (যা সনাতন বলবিদ্যা হিসেবে পরিচিত)।

- একটি উত্তপ্ত বস্তু থেকে যে বিকিরণ নির্গত হয় তার প্রকৃতি
 (কৃষ্ণিকা বিকিরণ)।
- (ii) যখন কোনো ধাতব পৃষ্ঠকে বিকিরণ দ্বারা আঘাত করা হয়,
 তখন যে ইলেকট্রন নিঃসরণ হয়, (আলোক-তড়িৎ ক্রিয়া)।
- (iii) একটি কঠিন বস্তুর তাপগ্রাহিতার পার্থক্য যখন তাপমাত্রা একটি অপেক্ষক।
- পরমাণুর রেখা বর্ণালী বিশেষ করে হাইড্রোজেনের রেখাবর্ণালী।

এই ঘটনাগুলো ইঞ্চিত দেয় যে তন্ত্র (system) কেবল মাত্র বিচ্ছিন্ন পরিমাণে শক্তি গ্রহণ করতে পারে। সম্ভাব্য সকল প্রকারের শক্তি গ্রহণ বা বিকিরণ করতে পারে না।এটা বলা বিশেষ প্রয়োজন যে 1900 খ্রিস্টাব্দে কৃষ্ণ বস্তুর বিকিরণের ঘটনা সর্বপ্রথম সঠিকভাবে ব্যাখ্যা করেছিলেন ম্যাক্স প্যাঞ্চন। নিম্নে ঘটনাটি দেওয়া হল:

যখন কোনো কঠিন বস্তুকে উত্তপ্ত করা হয় তখন তারা বিভিন্ন তরঙ্গা দৈর্ঘ্য বিশিষ্ট বিকিরণ ঘটায়। উচ্চ তাপমাত্রায় বিকিরণের একটি লক্ষ্যণীয় অনুপাত বর্ণালীর দৃশ্যমান অঞ্চলে হয়। তাপমাত্রা বৃদ্ধি করলে বেশি অনুপাতে নিম্নতর তরঙ্গা দৈর্ঘের (নীল আলোক) বিকিরণ উৎপন্ন হয়। উদাহরণস্বরূপ যখন কোনো লৌহ দগুকে একটি চিমনীতে উত্তপ্ত করা হয় তা প্রথমে হালকা

চিত্র 2.8 তরঙ্গা দৈর্ঘ্য-প্রাবল্য সম্পর্ক।

চিত্র 2.8 (a) কৃষ্ণ বস্থু।

লাল বর্ণ ধারণ করে এবং পরবর্তী ক্ষেত্রে তাপমাত্রা বাড়ার সাথে সাথে তা অধিক থেকে অধিকতর লাল বর্ণ ধারণ করে। তাপমাত্রা বাড়ার সাথে সাথে আরও উত্তপ্ত করলে সাদা বিকিরণ নির্গত হয় এবং তাপমাত্রা খুব বেশি হলে, পরে তা থেকে নীল বর্দের বিকিরণ নির্গত হয়।

অন্যভাবে বললে তাপমাত্রা বৃদ্ধি করলে— কম্পাঞ্চের সাপেক্ষে, এই বিকিরণ নিম্ন কম্পাঙ্ক থেকে উচ্চ কম্পাঙ্কে পরিণত হয়। তড়িৎ চুম্বকীয় বর্ণালীতে লাল বর্ণের আলো নিম্ন কম্পাঙ্ক বিশিষ্ট এবং নীল বর্ণের আলো উচ্চ কম্পাঙ্ক বিশিষ্ট। একটি আদর্শ বস্তু যেটি সকল কম্পাঙ্ককে বিকিরণ ও শোষণ করতে পারে- তাকে কৃষ্ণ বস্তু বলে এবং এটি যে বিকিরণ ঘটায় তাকে কৃত্তিকা বিকিরণ বলে। এই বিকিরণের সঠিক কম্পাঙ্ক বন্টন (অর্থাৎ বিকিরণের প্রাবল্য বনাম কম্পাঙ্কের রেখা চিত্র) কোনো কৃষ্ণ বস্তুর ক্ষেত্রে শুধু মাত্র তাপমাত্রার উপর নির্ভর করে। একটি নির্দিষ্ট তাপমাত্রার বিকিরণের প্রাবল্য তরঙ্গা দৈর্ঘ্য হ্রাসের সাথে বৃদ্ধি পায় এবং একটি নির্দিষ্ট তরঙ্গা দৈর্ঘ্য একটি সর্বোচ্চ নির্দিষ্ট বিন্দুতে পৌছায় এবং তরঙ্গা দৈর্ঘ্য কমার সাথে সাথে তা আবার কমতে থাকে। যা চিত্র 2.8-এ দেখানো হয়েছে।

উপরে বর্ণিত পরীক্ষায় লব্ধ ফলাফলগুলো আলোকের তরঙ্গা তত্ত্বের সাহায্যে সঠিকভাবে ব্যাখ্যা করা যায় না। প্ল্যাঙ্কের সুপারিশ অনুসারে পরমাণু বা অণু শুধুমাত্র নির্দিন্ট পরিমাণের শক্তির বিকিরণ (বা শোষণ) করতে পারে কিন্তু অবিচ্ছিন্ন ভাবে নয় — যা তখনকার দিনে একটি জনপ্রিয় ধারণা ছিল। প্ল্যাঙ্ক শক্তির এই ক্ষুদ্রতম পরিমাণটির নাম দেন কোয়ান্টাম যা তড়িৎ চুম্বকীয় বিকিরণ হিসেবে নির্গত বা শোষিত হতে পারে। বিকিরিত

কোয়ান্টামের শক্তি (E), এর কম্পাঙ্কের সাথে সমানুপাতিক এবং সমীকরণ (2.6) দ্বারা প্রকাশ করা হয়েছে।

$$E = h\upsilon \tag{2.6}$$

এই সমানুপাতিক ধ্রুবক 'h' প্ল্যাঙ্কের ধ্রুবক নামে পরিচিত এবং এর মান 6.626×10⁻³⁴ J s ।

এই তত্ত্বের সাহায্যে প্ল্যাঙ্ক বিভিন্ন তাপমাত্রায় কম্পাঙ্ক বা তরঙ্গা দৈর্ঘ্য অপেক্ষকের দ্বারা বিকিরণের প্রাবল্যের বন্টনকে ব্যাখ্যা করতে সমর্থ হয়েছিলেন।

কোয়ান্টায়ন (Quantisation) কে একটি সিঁড়ির উপর দাঁড়িয়ে থাকার সহিত তুলনা করা যেতে পারে। একজন ব্যক্তি একটি সিঁড়ির যে কোন একটি ধাপে দাঁড়িয়ে থাকতে পারে কিন্ডু তার পক্ষে দুটি ধাপের মধ্যবর্তী স্থানে দাঁড়িয়ে থাকা সম্ভব নয়। তেমনি শক্তি নিম্নলিখিত মানের সেটগুলো থেকে যে কোনো একটি মান নিতে পারে কিন্ডু এদের মধ্যবর্তী কোনো মান নিতে পারে না।

E = 0, hu, 2hu, 3hu....nhu....

আলেক তড়িৎ ক্রিয়া (Photoelectric Effect)

1887 খ্রিস্টাব্দে, এইচ হাড্জ একটি চিত্তাকর্ষক পরীক্ষা করেন যেখানে ইলেকট্রন (অথবা তড়িৎ) নিঃসরণ লক্ষ করা যায় যখন কোনো নির্দিষ্ট ধাতুকে (উদাহরণস্বরূপ পটাশিয়াম, রুবিডিয়্যম, সিজিয়াম ইত্যাদি) একটি আলোক রশ্মির সম্মুখে রাখা হয়- যা চিত্র 2.9 এ দেখানো হয়েছে। এই ঘটনাটিকে আলোক তড়িৎ ক্রিয়া বলে।

চিত্র 2.9 আলোক তড়িৎ ক্রিয়া গবেষণা করার যন্ত্র। একটি নির্দিষ্ট কম্পাজ্জের আলোক বায়ুশূন্য কক্ষে রক্ষিত একটি পরিষ্কার ধাতব পৃষ্ঠকে আঘাত করল। ধাতব পৃষ্ঠ থেকে ইলেকট্রন নিঃসরণ শুরু হল এবং গণনা যন্ত্রের সাহায্যে সংখ্যা গণনা করে এদের গতিশক্তির পরিমাপ করা হল।

ম্যাক্স প্ল্যাঙ্ক (1858 – 1947)

ম্যাক্স প্ল্যাৰ্জ্ব, একজন জার্মানির পদার্থবিদ যিনি তাত্ত্বিক পদার্থ বিদ্যায় মিউনিখ্ বিশ্ববিদ্যালয় থেকে 1879 খ্রিস্টাব্দে Ph.D সম্মান লাভ করেন। 1888 খ্রিস্টাব্দে তিনি বার্লিন

বিশ্ববিদ্যালয়ে Institute of Physics এর অধিকর্তা হিসেবে যোগদান করেন। প্ল্যাঙ্ক তাঁর কোয়ান্টাম তত্ত্বের জন্য 1918 খ্রিস্টাব্দে নোবেল পুরস্কার পান। তাপগতিবিদ্যা এবং পদার্থবিদ্যার অন্যান্য শাখায়ও প্ল্যাঙ্কের উল্লেখযোগ্য অবদান আছে।

এর পরীক্ষালব্ধ ফলাফলগুলো হল—

- ধাতব পৃষ্ঠ থেকে ইলেকট্রন নিঃসরণ তখনই সংগঠিত হয় যখন আলোক রশ্মি সেই পষ্ঠকে আঘাত করে এবং আলোক রশ্মি ধাতব পৃষ্ঠে আঘাত করে এবং ইলেকট্রন নিঃসরণের মধ্যে কোনো সময়ের অবকাশ থাকে না।
- (ii) নিঃসৃত ইলেকট্রন সংখ্যা আলোর প্রাবল্য বা ঔজ্জ্বল্যের সাথে সমানুপাতিক হয়।
- (iii) প্রত্যেকটি ধাতুর জন্য একটি নির্দিষ্ট ন্যূনতম কম্পাঞ্চ্ব (v₀) আছে (যা কিনা threshold frequency নামে পরিচিত) যার নীচে আলোক তড়িৎক্রিয়া দেখা যায় না যখন কম্পাঞ্চ v>v⁰, তখন একটি নির্দিষ্ট গতিশক্তি সম্পন্ন ইলেকট্রন নিঃসরণ শুরু হয়। ইলেকট্রনের এই গতিশক্তি আপতিত আলোর কম্পাঞ্চ বৃদ্ধির সাথে বৃদ্ধি পায়।

উপরে বর্ণিত ফলাফলগুলো সনাতন বলবিদ্যা দ্বারা ব্যাখ্যা করা যায় না। পরবর্তী সময়ে দেখা গেল যে আলোক রশ্মিতে নিহিত শক্তির পরিমাণ আলোর উজ্জ্বল্যের উপর নির্ভর করে। অন্যভাবে বলতে গেলে নিঃসরিত ইলেকট্রনের সংখ্যা এবং এদের গতিশক্তির পরিমাণ আলোক রশ্মির উজ্জ্বলতার উপর নির্ভরশীল। লক্ষ করা গেছে যে, নিঃসরিত ইলেকট্রনের সংখ্যা আলোর উজ্জ্বলতার উপর নির্ভর করলেও নিঃসরিত ইলেকট্রনের গতিশক্তি কিন্তু ইলেকট্রন সংখ্যার উপর নির্ভর করে না। উদাহরণস্বর্প, যে কোনো তীব্রতার লাল আলো [v = (4.3 থেকে $4.6) \times 10^{14}$ Hz] একটুকরো পটাসিয়ামকে কয়েক ঘন্টা উজ্জ্বল রাখে, কিন্তু কোন ফটো ইলেকটন নিঃসরণ হয় না। কিন্তু যদি দুর্বল হলুদ আলোক ($v = 5.1 - 5.2 \times 10^{14}$ Hz) পটাশিয়াম ধাতুতে পড়ে

Table 2.2 কয়েকটি ধাতুর Work Function মান

ধাতু	Li	Na	K	Mg	Cu	Ag
W ₀ /eV	2.42	2.3	2.25	3.7	4.8	4.3

তবে পটাশিয়াম ধাতু উজ্জ্বল দেখায় এবং সাথে ফটো ইলেকট্রন নিঃসরণও ঘটে। পটাসিয়াম ধাতুর প্রারম্ভ কম্পাঙ্ক সীমা (v_0) হল 5.0×10¹⁴Hz.

আইনস্টাইন (1905) আলোক তড়িৎ ক্রিয়ার সূচনাকে (starting point) তড়িৎ চুম্বকীয় বিকিরণের প্ল্যাঙ্গ্বের তত্ত্বের সাহায্যে ব্যাখ্যা করতে সমর্থ হয়েছিলেন।

কণিকা গুচ্ছ বা ফোটন নিক্ষেপের ফলেই ধাতব পৃষ্ঠে আপতিত রশ্মিগুচ্ছ উজ্জ্বলতার সৃষ্টি করে এমনটাই ভাবা হল।

জার্মান দেশে জন্মগ্রহণকর্মী আমেরিকান পদার্থবিদ অ্যালবার্ট আইনস্টাইন বিশ্বের দুইজন মহান বিজ্ঞানীদের মধ্যে একজন হিসাবে সুপরিচিত ছিলেন (অপর একজন ছিলেন আইজাক নিউটন)। 1905 খ্রিস্টাব্দে যখন তিনি বার্নের সুইস পেটেন্ট

ারপাদেশ বর্ষণ। ভাশ বাংশের পুথশ পোডেন্ড অ্যালবার্ট আইনস্টাইন অফিসে কারিগরি সহকারী হিসেবে নিযুক্ত (1879 – 1955) ছিলেন, তখন তাঁর তিনটি গবেষণাপত্র (বিশেষ আপেক্ষিকতা, ব্রাউনীয় গতি এবং আলোক তড়িৎ প্রভাব) পদার্থ বিজ্ঞানের বিকাশে, বিশেষভাবে প্রভাবিত করেছিলেন। 1921খ্রিস্টাব্দে আলোকতড়িৎ প্রভাব ব্যাখ্যার জন্য তিনি নোবেল সম্মানে ভূষিত হন।

যখন যথেষ্ট শক্তি সম্পন্ন ফোটন একটি ধাতব পরমাণুর ইলেকট্রনকে আঘাত করে, এটি ইলেকট্রনের সাথে সংঘর্ষের ফলে তাৎক্ষণিকভাবে ইলেকট্রনকে শক্তি হস্তান্তর করে এবং কোন সময় নফ্ট না করেই ইলেকট্রন নিঃসরিত হয়। ফোটন যত বেশি শক্তি সম্পন্ন হবে, তত বেশি পরিমাণ শক্তি ইলেকট্রনে হস্তান্তরিত হবে এবং নিঃসরিত ইলেকট্রনগুলোর গতি শক্তিও তত বেশি হবে। অন্যভাবে বললে, নিঃসরিত ইলেকট্রনগুলোর গতিশক্তি, বিকিরিত তড়িৎ চুম্বকীয় তরঞ্চোর কম্পাঞ্চের সাথে সমানুপাতিক। যদিও আঘাতকারী ফোটনের শক্তির পরিমাপ h_V এবং ইলেকট্রন নিঃসরণের জন্য সর্বনিম্ন যে শক্তির প্রয়োজন তা হল h_V (যাকে কার্য অপেক্ষক বলে, ឈ₀ এবং সারণি 2.2), তবে এদের শস্তির পার্থক্য হবে ($hv - hv_0$) যা ফটোইলেকট্রনের গতিশস্তি রূপে হস্তান্তরিত হয়। শস্তির নিত্যতা সূত্র অনুসারে, নিঃসরিত ইলেকট্রনের গতিশস্তিকে সমীকরণ 2.7 দ্বার প্রকাশ করা হয়।

$$hv = hv_0 + \frac{1}{2}m_c v^2$$
 (2.7)

যেখানে *m*ূ হল ইলেকট্রনের ভর এবং V হল নিঃসরিত ইলেকট্রনের বেগ। সর্বশেষে আরো তীব্র আলোক রশ্মি গঠিত হয় বিরাট সংখ্যক ফোটন দ্বারা, কাজেই যে সংখ্যক ইলেকট্রন নিঃসরিত হয় তার সংখ্যাও তুলনামূলকভাবে পরীক্ষার ব্যবহৃত কম তীব্র আলোক রশ্মি থেকে অনেক বেশি হয়।

তড়িৎ চুম্বকীয় বিকিরণের দ্বৈত আচরণ (Dual Behaviour of Electromagnetic Radiation)

আলোর কণা ধর্মিতা বিজ্ঞানীদের উভয় সংকটে ফেলেছিল। একদিকে এর সাহায্যে যেমন কৃষ্ণবস্তুর বিকিরণ এবং আলোকতড়িৎ প্রভাবকে সন্তোষজনকভাবে ব্যাখ্যা করা যায়, কিন্তু অন্যদিকে আলোকের তরঞ্চা সাধারণ ধর্ম বিচ্ছুরণ ও ব্যতিচারের সাথে সামঞ্জস্যপূর্ণ নয়। এই সংকট থেকে উত্তরণের একমাত্র উপায় হচ্ছে, আলোক যে তরঙ্গা ও কণা ধর্মিতার অধিকারী এই ধারণা গ্রহণ করা অর্থাৎ আলোক দ্বৈত ধর্মী। বিভিন্ন পরীক্ষার ফলাফলের উপর ভিত্তি করে আমরা বলতে পারি, আলোক হয় তরঙ্গের মতো বা কণার প্রবাহের মতো আচরণ করে। যখন বিকিরণ বস্তুর সংস্পর্শে আসে, তখন এটি তরঙ্গা ধর্মের বিচ্ছুরণ এবং ব্যতিচারের পরিবর্তে কণা ধর্ম প্রদর্শন করে। এটি প্রদর্শন করে যখন সে বিস্তার লাভ করে। বিজ্ঞানীগণ বস্তু এবং বিকিরণ সম্পর্কে যেরুপ ধারণা করেছিল এই তত্ত্ব ছিল তার সাথে সম্পূর্ণ বেমানান এবং এই ধারণাটি যে সত্যি তা মেনে নিতে তাঁরা অনেকটা সময় নিয়েছিলেন। এর ফলস্বরূপ, তুমি পরবর্তী সময়ে দেখবে যে, কিছু আণুবীক্ষণিক কণা যেমন ইলেকট্ৰনও তরজা কণা দ্বৈত ধর্ম প্রদর্শন করে।

সমস্যা 2.8 যখন 300 nm তরঙ্গা দৈর্ঘ্য যুক্ত তড়িৎ চুম্বকীয় বিকিরণ সোডিয়াম ধাতব তলে আপতিত হয়, তখন 1.68 ×10⁵ J mol⁻ গতিশস্তি সম্পন্ন ইলেকট্রন নির্গত হয়। সোডিয়াম থেকে ইলেকটন নির্গত করতে সবচেয়ে কম কতটক শস্তির প্রয়োজন ? ফটো ইলেকট্রন নির্গত করতে প্রয়োজনীয় তরজা দৈর্ঘ্যের সর্বোচ্চ মানটি কত ?

$$=\frac{100 \text{ J s}^{-1}}{4.969\times10^{-19} \text{ J}}=2.012\times10^{20} \text{ s}^{-1}$$

 $=\frac{6.626\times10^{-34}}{\text{ J s}\times3\times10^8} \text{ m s}^{-1}$ $400 \times 10^{-9} \,\mathrm{m}$ $= 4.969 \times 10^{-19} \,\mathrm{J}$ নির্গত ফোটনের সংখ্যা

সমাধান

বাতিটির ক্ষমতা = 100 ওয়াট $= 100 \text{ J s}^{-1}$ একটি ফোটনের শক্তি $E = hv = hc/\lambda$

সমস্যা 2.7 একটি 100 ওয়াট বাল্ব থেকে নির্গত একবর্ণী আলোকের তরঙ্গা দৈর্ঘ্য হল 400 ন্যানোমিটার। বালবটি থেকে প্রতি সেকেন্ডে কতগুলো ফোটন নির্গত হয় তা নির্ণয় করো।

সমাধান একটি ফোটনের শক্তি (E) প্রকাশ করা হয় E = hv $h = 6.626 \times 10^{-34} \text{ J s}$ $v = 5 \times 10^{14} \text{ s}^{-1}$ (প্রদত্ত) $E = (6.626 \times 10^{-34} \text{ J s}) \times (5 \times 10^{14} \text{ s}^{-1})$ $= 3.313 \times 10^{-19} \text{ J}$ একমোল ফোটনের শস্তি = $(3.313 \times 10^{-19} \text{ J}) \times (6.022 \times 10^{23} \text{ mol}^{-1})$ $= 199.51 \text{ kJ mol}^{-1}$

একমোল বিকিরিত ফোটনের শক্তি নির্ণয় কর যার কম্পাঞ্চ

পরমাণুর গঠন

সমস্যা 2.6

5×10¹⁴ হার্ৎজ (Hz).

করতে হলে নির্গত ইলেকট্রনের গতিশক্তি নির্ণয় করো। সমাধান আইনস্টাইনের সমীকরণ অনুসারে গতিশস্তি = $\frac{1}{2} m_0 v^2 = h (v - v_0)$ = $(6.626 \times 10^{-34} \text{ J s}) (1.0 \times 10^{15} \text{ s}^{-1} - 7.0 \times 10^{14} \text{ s}^{-1})$ = $(6.626 \times 10^{-34} \text{ J s}) (10.0 \times 10^{14} \text{ s}^{-1} - 7.0 \times 10^{14} \text{ s}^{-1})$ $= (6.626 \times 10^{-34} \text{ J s}) \times (3.0 \times 10^{14} \text{ s}^{-1})$ $=1.988 \times 10^{-19} \text{ J}$

একটি ধাতুর সূচনা কম্পার্জ্ঞ (V_0) 7.0 $\times 10^{14}$ s⁻¹ । ধাতুটিকে $v=1.0 \times 10^{15}$ সেকেন্ড⁻¹ কম্পাঞ্চের বিকিরণ দিয়ে আঘাত

সমস্যা 2.9

এটি হল সবুজ আলোক।

একটি ইলেকট্রনের জন্য সর্বনিম্ন শক্তি $2.31 \times 10^5 \text{ J mol}^{-1}$ $\overline{6.022 \times 10^{23}}$ electrons mol⁻¹ $= 3.84 \times 10^{-19} \text{ J}$ এর সাপেক্ষ তরঙ্গা দৈর্ঘ্য, $\lambda = \frac{hc}{E}$ $= \frac{6.626 \times 10^{-34} \,\mathrm{J} \,\mathrm{s} \times 3.0 \times 10^8 \,\mathrm{m} \,\mathrm{s}^{-1}}{10^8 \,\mathrm{m} \,\mathrm{s}^{-1}}$ $3.84 \times 10^{-19} \text{ J}$ = 517 nm

সমাধান 300 nm তরঙ্গা দৈর্ঘ্য বিশিষ্ট ফোটনের শস্ত্রি (E)র পরিমাণ, $hv = \frac{hc}{\lambda}$ $=\frac{6.626\times10^{-34}}{\mathrm{Js}\times3.0\times10^{8}}\,\mathrm{ms}^{-1}$ $300 \times 10^{-9} \,\mathrm{m}$ $= 6.626 \times 10^{-19} \,\mathrm{J}$ একমোল ফোটনের শক্তি $= 6.626 \times 10^{-19} \text{ J} \times 6.022 \times 10^{23} \text{ mol}^{-1}$ $= 3.99 \times 10^5 \text{ J mol}^{-1}$ সোডিয়াম ধাতু থেকে একমোল ইলেকট্রন নির্গত করতে সর্বনিম্ন যে পরিমাণ শক্তির প্রয়োজন $= (3.99 - 1.68) 10^5 \text{ J mol}^{-1}$ $= 2.31 \times 10^5 \text{ J mol}^{-1}$

2.3.3 ঘূর্ণনরত ইলেকট্রনের শক্তিস্তরগুলোর নির্দিষ্ট শক্তির (কায়ান্টাইজড*) প্রামাণ্য তথ্য : পারমাণবিক বর্ণালী (Evidence for the quantized* Electronic Energy Levels: Atomic spectra)

যে মাধ্যমের মধ্যে আলো প্রবাহিত হয় তার প্রকৃতির উপর আলোর গতিবেগ নির্ভর করে। ফলস্বরুপ একমাধ্যম থেকে অন্য মাধ্যমে প্রবাহিত হওয়ার সময় আলোকরশ্মির নিজস্ব গতিপথের বিচ্যুতি বা প্রতিসরণ ঘটে। সাদা আলোকে প্রিজমের মধ্য দিয়ে পাঠালে দেখা যায় ক্ষুদ্রতরঙ্গা দৈর্ঘ্যের আলো বড় তরঙ্গা দৈর্ঘ্যের আলো থেকে বেশি পরিমাণে বিচ্যুত হয়। যেহেতু সাদা আলো দৃশ্যমান অঞ্জলের সমস্ত তরঙ্গা দৈর্ঘ্য দ্বারা গঠিত, তাই সাদা আলোর একটি রশ্মি রঙিণ পটির (bands) একটি সারিতে ছডিয়ে পডে— একেই বর্ণালী বলা হয়। লালবর্ণের আলোর তরঙ্গা দৈর্ঘ্য বেশি হওয়ায় বিচ্যুতির পরিমাণ সবচেয়ে কম হয়। কিন্তু বেগুনি বর্ণের আলোর তরঞ্চা দৈর্ঘ্য কম হওয়ায় বিচ্যুতির পরিমাণ সবচেয়ে বেশি হয়। সাদা আলোর যে বর্ণালী আমরা দেখতে পাই সেই অঞ্জলটির সীমা 7.50 × 1014 হার্ৎজ তরঞ্চা দৈর্ঘ্যের বেগুনি আলো থেকে 4×1014 হার্ৎজ তরঞ্চা দৈর্ঘ্যের লাল বর্দের আলো পর্যন্ত। এরপ বর্ণালীকে নিরবচ্ছিন্ন বর্ণালী বলা হয়। নিরবচ্ছিন্ন হওয়ার কারণ হল বর্ণালীটি বেগনি আলো নীল আলোর সাথে মিশে গেছে, নীল আলো সবুজ আলোর সাথে মিশে গেছে এবং এভাবে সব আলোই পাশের আলোর সাথে মিশে গেছে। আকাশে যখন রামধনু তৈরি হয়, তখন এই ধরনেরই একটি বর্ণালী তৈরি হয়। মনে রাখবে তড়িৎ চুম্বকীয় বিকিরণের একটি ক্ষুদ্র অংশ হচ্ছে দৃশ্যমান আলো (চিত্র 2.7)। যখন কোনো বস্তু, পরমাণু এবং অণু তডিৎ চুম্বকীয় তরজোর সংস্পর্শে আসে, তখন এরা শক্তি শোষণ করে এবং একটি উচ্চ শক্তিস্তরে পৌঁছায়। এই উচ্চশক্তি সম্পন্ন এই কণাগুলো অস্থায়ী প্রকৃতির হয়। তাই সাধারণ শক্তিস্তরে ফিরে আসার জন্য (যা কিনা স্থায়ী, নিম্নশক্তিস্তর), এই পরমাণু বা অণুগুলো তডিৎ চম্বকীয় বর্ণালীর বিভিন্ন অংশে বিকিরণ নির্গত করে।

নিঃসরণ ও শোষণ বর্ণালী (Emission and Absorption Spectra)

কোনো বস্তু শস্তি শোষণ করলে পরবর্তী ক্ষেত্রে তার থেকে যে বিকিরণ ঘটে, তা থেকে যে বর্ণালী সৃষ্টি হয় তাকে **নিঃসরণ বর্ণালী** বলে। শস্তি শোষণের পর পরমাণু, অণু বা আয়ন যে অবস্থা অর্জন করে তাকে **উত্তেজিত'** অবস্থা বলা হয়। নিঃসরণ বর্ণালী সৃষ্টি করার জন্য বস্তুর একটি নমুনাকে উত্তপ্তকরণ বা কিরণীত (irradiating) করণের মাধ্যমে শক্তি সরবরাহ করতে হয় এবং নমুনা বস্তুটি শোষিত শক্তি ছেড়ে দেয় বলে বিভিন্ন তরঞ্চা দৈর্ঘ্যের (বা কম্পাঙ্কের) বিকিরণ নির্গত হয় এবং লিপিবন্ধ করা হয়।

একটি শোষণ বর্ণালী হচ্ছে অনেকটা বিকিরণ বর্ণালীর আলোকচিত্রের নিগেটিভের মতো। একটি বস্তুর উপর নিরবিচ্ছিন্নভাবে বিকিরণ ঘটালে তা একটি নির্দিষ্ট তরঙ্গা দৈর্ঘ্যের বিকিরণ শোষণ করে। ওই বস্তুটি বিকিরিত আলোর যে তরঙ্গা দৈর্ঘ্য শোষণ করতে পারে না, তা উজ্জ্বল নিরবিচ্ছিন্ন বর্ণালীতে একটি অম্বকার স্থানের সৃষ্টি করে। নিঃসরণ ও শোষণ বর্ণালীরে অধ্যয়নকে বর্ণালীবীক্ষণ বলা হয়। উপরের আলোচনা অনুসারে দৃশ্যমান আলোর বর্ণালী নিরবিচ্ছিন্ন প্রকৃতির হয়, কারণ বর্ণালীটিতে দৃশ্যমান আলোর সমস্ত তরঙ্গা দৈর্ঘ্যগুলো (লাল থেকে বেগুনি) উপস্থিত থাকে।

অন্যদিকে, গ্যাসীয় অবস্থায় কোনো পরমাণুর নিঃসরণ বর্ণালীতে লাল থেকে বেগুনি তরঙ্গা দৈর্ঘ্যের আলো নিরবচ্ছিন্নভাবে গঠিত হয় না, বরং তারা একটি নির্দিষ্ট তরঙ্গা দৈর্ঘ্যের আলো নিঃসরণ করে এবং এদের মধ্যে অন্ধকার স্থান পাওয়া যায়। এরকম বিচ্ছিন্ন বর্ণালীকে রেখা বর্ণালী বা পারমাণবিক বর্ণালী বলা হয়, কারণ বর্ণালীতে উদ্ভূত উজ্জ্বল রেখা দ্বারা এই নিঃসৃত বিকিরণসমূহ সনাস্ত করা যায় (চিত্র 2.10)।

ইলেকট্রনীয় গঠন অধ্যয়নের ক্ষেত্রে রেখা নিঃসরণ বর্ণালীর গুরুত্ববপূর্ণ ভূমিকা আছে। প্রত্যেকটি মৌলের একটি স্বতন্ত্র রেখা নিঃসরণ বর্ণালী থাকে। পারমাণবিক বর্ণালিতে এইরূপ বৈশিষ্ট্যমূলক রেখা ব্যবহার করে অজ্ঞাত পরমাণুদের রাসায়নিক পম্বতিতে সনাক্ত করা সম্ভব, যেমন করে আঙ্গুলের ছাপ দ্বারা মানুষ সনাক্ত করা যায়। একটি জ্ঞাত মৌলের পরমাণু রেখা নিঃসরণ বর্ণালী রেখার সাথে একটি অজ্ঞাত মৌলের রেখার সঠিক মিল থেকে পরবর্তী মৌলটিকে দ্রুত সনাক্ত করা সম্ভব, জার্মান রসায়নবিদ রবাট বুনসেন (1811-1899) ছিলেন অন্যতম প্রথম উদ্ভাবক যিনি রেখা বর্ণালী ব্যবহার করে মৌল সনাক্তকরণ করে ছিলেন।

মৌলসমূহ যেমন, রুবিডিয়াম (Rb), সিজিয়াম (Cs), থ্যালিয়াম (Tl), ইনডিয়াম (In), গ্যালিয়াম (Ga) এবং স্ক্যানডিয়াম (Sc)-এর মতো মৌলগুলো তাদের খনিজের বর্ণালী বীক্ষণ দ্বারা আবিষ্কার করা হয়েছিল।

চিত্র 2.10 (a) পারমাণবিক নিঃসরন উত্তেজিত হাইড্রোজেনের পরমাণুসমূহ বা অন্য কোনো মৌল যে আলো নিঃসরণ করে তা প্রিজমের মধ্যে দিয়ে পাঠালে তা বিভক্ত হয়ে কতগুলো নির্দিন্ট তরঙ্গা দৈর্ঘ্যের আলোকে পরিণত হয়। তাই একটি বিকিরণ বর্ণালীর আলোকচিত্রে লিপিবম্ব যে বিভক্ত তরঙ্গা দৈর্ঘ্য পাওয়া যায় তাদের রেখা বর্ণালী বলে। যুক্তিযুক্ত আকারের যে কোনো নমুনার প্রচুর সংখ্যক পরমাণু রয়েছে। যদিও একটি পরমাণুর একই সময়ে শুধু মাত্র একটি উত্তেজিত অবস্থায় থাকে, অধিকসংখ্যক পরমাণু একসাথে থাকলে সব সম্ভাব্য উত্তেজিত অবস্থায় দেখা যায়। আলোর বিকিরণের ফলে এই পরমাণুগুলো নিম্ন শক্তিস্তরে আসে, যা বর্ণালী সৃষ্টির জন্য দায়ী। (b) পারমাণবিক শোষণ-সাদা আলোকরশ্বিকে অনুত্তেজিত হাইড্রোজেন পরমাণুর মধ্য দিয়ে পাঠানোর পর সুক্ষ্ম ছিদ্র এবং প্রিজমের মধ্য দিয়ে পাঠালে, যে আলোক পাওয়া যায় তার তরঙ্গা দৈর্ঘ্য নিঃসৃত আলোক রশ্মির তরঙ্গা দৈর্ঘ্যের সমান কিন্তু তীব্রতা কিছু কম (a)। এই লিপিবম্বকারী শোষণ বর্ণালী ও একটি রেখা বর্ণালী এবং তা নিঃসরণ বর্ণালীর একটি নেগেটিভ আলোকচিত্র।

হাইড্রোজেনের রেখা বর্ণালী

যখন হাইড্রোজেন গ্যাসের মধ্যে বিদ্যুৎ ক্ষরণ প্রবাহিত হয়, হাইড্রোজেন অনুসমূহ বিভাজিত হয় এবং উত্তেজিত হাইড্রোজেন পরমাণু সৃষ্টি হয় যা কিনা একটি নির্দিষ্ট কম্পাঙ্কের তড়িৎ চুম্বকীয় বিকিরণ ঘটায়। এই হাইড্রোজেন বর্ণালী গঠিত হয় বিভিন্ন সারির রেখা দ্বারা যাদের নামকরণ হয়েছে তাদের উদ্ভাবকের নামানুসারে। 1885 খ্রিস্টাব্দে বামার পরীক্ষালব্ধ পর্যবেক্ষণের সাহায্যে দেখিয়েছিলেন যে, যদি বর্ণালীর রেখাগুলোকে তরঙ্গা সংখ্যা (\overline{v}) দ্বারা প্রকাশ করা হয়, তবে হাইড্রোজেন বর্ণালীর দৃশ্যমান রেখাগুলো নিম্নোক্ত সমীকরণ মেনে চলে—

$$\overline{\mathbf{v}} = 109,677 \left(\frac{1}{2^2} - \frac{1}{n^2}\right) \mathrm{cm}^{-1}$$
 (2.8)

যেখানে *n* একটি পূর্ণ সংখ্যা, যার মান 3 এর সমান বা তার থেকে বড় (অর্থাৎ *n* = 3,4,5,....) এই গাণিতিক সমীকরণের সাহায্যে যে রেখার সারিকে বর্ণনা করা হয়েছে তাকে **বামার সারি** বলে। হাইড্রোজেন বর্ণালীতে অবস্থিত বামার সারির রেখাগুলোই শুধুমাত্র তড়িৎ চুম্বকীয় বর্ণালীর দৃশ্যমান অংশে পাওয়া যায়। সুইডেনের বর্ণালী বীক্ষণবিদ, জোহানেস রিডবার্গ একটি সমীকরণ উপস্থাপন করেন যার সাহায্যে হাইড্রোজেন বর্ণালীর সমস্ত রেখা সারিকে প্রকাশ করা যায়।

$$\overline{\mathbf{v}} = 109,677 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \text{cm}^{-1}$$
 (2.9)

যেখানে n₁=1,2.....

$$n_2 = n_1 + 1, n_1 + 2.....$$

হাইড্রোজেনের জন্য এই মান 109,677 cm⁻¹, যাকে রিডবার্গ

সারি	n ₁	n ₂	বর্ণালী অঞ্চল
লিম্যান	1	2,3	অতিবেগুনি
বামার	2	3,4	দৃশ্যমান
প্যাসেন	3	4,5	অবলোহিত
ব্রাকেট	4	5,6	অবলোহিত
ফুল্ড	5	6,7	অবলোহিত

সারণি 2.3 পারমাণবিক হাইড্রোজেন বর্ণালীর রেখা সমূহ

চিত্র 2.11 হাইড্রোজেন পরমাণুর ইলেকট্রনটির স্থানান্তর (রেখাচিত্রটিকে লিম্যান, বামার এবং প্যাসেন স্থানান্তরের সারিগুলো দেখানো হয়েছে) এই কক্ষগুলো সমকেন্দ্রীয়ভাবে নিউক্লিয়াসের চারদিকে সজ্জিত।

ধ্রুবক বলা হয়। প্রথম পাঁচটি সারি অর্থাৎ $n_1 = 1, 2, 3, 4, 5$ হল যথাক্রমে লিম্যান, বামার, প্যাসেন, ব্রাকেট এবং ফুন্ড সারি। সারণি 2.3 তে হাইড্রোজেন বর্ণালীর এই সারিগুলোকে দেখানো হয়েছে। চিত্র 2.11 তে হাইড্রোজেন পরমাণুর লিম্যান, বামার এবং প্যাসেন সারি দেখানো হয়েছে।

সমস্ত মৌলের মধ্যে হাইড্রোজেন পরমাণুর রেখা বর্ণালী সবচেয়ে সরল। ভারি পরমাণুদের জন্য এই রেখা বর্ণালী অধিক থেকে অধিকতর জটিল। যদিও এইসব রেখা বর্ণালীসমূহের সাধারণ কতগুলো বৈশিষ্ট্য আছে অর্থাৎ,

(i) মৌলের রেখা বর্ণালীগুলো স্বতন্ত্র প্রকৃতির এবং

(ii) প্রত্যেকটি মৌলের রেখা বর্ণালীর মধ্যে সুষমতা আছে। এখন প্রশ্ন হচ্ছে, তাদের সাদৃশ্যতার কারণ কী? এর সাহায্যে কি পরমাণু ইলেকট্রনীয় গঠন সম্পর্কে কিছু বলা যায়? এই সমস্ত প্রকল্পের উত্তর দেওয়া প্রয়োজন। আমরা পরবর্তীতে খুঁজে বের করব যে এই সমস্ত প্রশ্নের উত্তর আমাদের মৌলের ইলেকট্রনীয় গঠন বুঝতে সূত্র প্রদান করেছে।

2.4হাইড্রোজেন পরমাণুর জন্য বোরের মডেল (BOHR'S
MODEL FOR HYDROGEN ATOM)

নীলস বোর (1913) প্রথম হাইড্রোজেন পরমাণুর গঠন এবং এর বর্ণালীর সাধারণ বৈশিষ্ট সমূহ পরিমাণগতভাবে ব্যাখ্যা করেন। যদিও এই মতবাদ সম্পূর্ণরূপে **আধুনিক কোয়ান্টাম বল বিজ্ঞান** ভিত্তিক ছিল না, তবুও এই তত্ত্বকে ব্যবহার করে পরমাণুর গঠন এবং তার বর্ণালীর অনেক বৈশিষ্টকে যুক্তিসম্মতভাবে ব্যাখ্যা করা যায়। হাইড্রোজেন পরমাণুর বোর মডেল-এর স্বীকার্যগুলো নিম্নরূপ:

- হাইড্রোজেন পরমাণুর ইলেকট্রনটি নিউক্লিয়াসকে কেন্দ্র করে একটি বৃত্তাকার পথে আবর্তনরত। যার ব্যাসার্ধ এবং শক্তি নির্দিন্ট। এই পথগুলোকে কক্ষ বা সুস্থিত অবস্থা বা অনুমোদিত শক্তি স্তর বলা যায়।
- কক্ষে ঘূর্ণনরত ইলেকট্রনের শক্তি সময়ের সাপেক্ষে পরিবর্তন
 হয় না। যদিও ইলেকট্রনটি প্রয়োজনীয় শক্তি শোষণ করলে

কৌনিক ভরবেগ (Angular Momentum)

রৈখিক ভরবেগ হচ্ছে বস্তুর ভর ও রৈখিক গতিবেগের গুণফল, সেইরূপ জাড্য ভ্রামক (I) ও কৌণিক বেগ (৩) এর গুণফল হল কৌণিক ভরবেগ। একটি ইলেকট্রন যার ভর m_e, r ব্যাসার্ধ যুক্ত বৃত্তাকার নিউক্লিয়াসকে কেন্দ্র করে ঘুরে চলছে, তার কৌণিক ভরবেগ = I × ৩

যেহেতু $I = m_{
m e} r^2$, এবং $_{
m O} = v/r$ যেখানে v হচ্ছে রৈখিক গতিবেগ।

কৌণিক ভরবেগ = $m_{\rm e}r^2 imes {
m v}/r = m_{\rm e}{
m v}r$

নিম্নস্থিত স্তর থেকে উচ্চস্থিত স্তরে যেতে পারে বা উচ্চস্থিত স্তর থেকে নিম্নস্থিত স্তরে গেলে শক্তির নিঃসরণ হয় (সমীকরণ 2.16)। এই শক্তির পরিবর্তন অবিরামভাবে হয় না।

(iii) △E শক্তিমাত্রার পার্থক্যযুক্ত দুটি স্থায়ী কক্ষের মধ্যে ইলেকট্রনের স্থানান্তর ঘটে যে কম্পাজ্কের বিকিরণের শোষণ বা নিঃসরণ হয় তা এভাবে প্রকাশ করা হয়—

$$\mathbf{v} = \frac{\Delta E}{h} = \frac{E_2 - E_1}{h} \tag{2.10}$$

যেখানে E_1 এবং E_2 যথাক্রমে নিম্নন্তর ও উচ্চতর অনুমোদিত শক্তিস্তর। এই সমীকরণটি সাধারণভাবে বোরের কম্পাঙ্ক সূত্র হিসেবে পরিচিত।

 (iv) একটি নির্দিষ্ট সুস্থিত কক্ষপথে ঘূর্ণনরত ইলেকট্রন এর কৌণিক ভরবেগের সমীকরণ (2.11) দ্বারা প্রকাশ করা যায়।

$$m_e \nabla r = n \cdot \frac{h}{2\pi}, \ n = 1, 2, 3 \dots$$
 (2.11)

তাই ইলেকট্রন শুধুমাত্র সেই কক্ষপথেই ঘুরতে পারে, যেখানে তার কৌণিক ভরবেগ, $h/2\pi$ রাশিটির পূর্ণ সংখ্যার গুণিতক হয় যা কিনা শুধুমাত্র কতগুলো কক্ষের জন্যই অনুমোদিত। সুস্থিত কক্ষপথের শক্তি সম্পর্কীত যে বিশদ গণনা বোর ব্যবহার করেছিলেন তা ছিল অত্যস্ত জটিল এবং তা উপরের শ্রেণিতে আলোচিত হবে। যদিও, বোরের তত্ত্বানুসারে হাইড্রোজেন পরমাণুর জন্য :

- a) ইলেকট্রনের জন্য সুস্থিত কক্ষপথগুলোকে সংখ্যায়িত করা
 হয়েছে, n = 1,2,3....। এগুলো পূর্ণ সংখ্যা (অনুচ্ছেদ
 2.6.2) যা কিনা মুখ্য কোয়ান্টাম সংখ্যা হিসাবে পরিচিত।
- b) এই সুম্থিত কক্ষপথের ব্যাসার্ধগুলোকে প্রকাশ করা
 হয়েছে :

 $r_n = n^2 a_0$ (2.12)

 যেখানে $a_0 = 52.9 \text{ pm}$ । তাই প্রথম সুস্থিত কক্ষপথের

 ব্যাসার্ধ হল 52.9 pm, যাকে বোর কক্ষ বলা হয়। সাধারণত

 হাইড্রোজেন পরমাণুতে অবস্থিত ইলেকট্রনটি এই কক্ষে

 (n=1) পাওয়া যায়। যখন n এর মান বৃদ্বি পায় সাথে সাথে

 r এর মানও বৃদ্বি পায়। অন্যভাবে বলতে গেলে ইলেকট্রন

 এর অবস্থান নিউক্লিয়াস থেকে দূরে সরে যায়।

c) ইলেকট্রনের সাথে সম্পর্কযুক্ত সবচেয়ে গুরুত্বপূর্ণ বৈশিষ্ট্য হচ্ছে সুস্থিত অবস্থায় এর শক্তি পরিমাপ। যা কিনা প্রকাশ করা হয়,

$$E_n = -R_H\left(\frac{1}{n^2}\right)$$
 $n = 1, 2, 3....$ (2.13)

যেখানে R_H কে বলা হয় রিডবার্গ বার্গ ধ্রুবক এবং এর মান 2.18×10⁻¹⁸ J।সর্বনিম্ন অবসথার শক্তির পরিমাণ, যা কিনা স্বাভাবিক অবস্থা নামেও পরিচিত, এর মান $E_1 = -2.18 \times 10^{-18} \left(\frac{1}{1^2}\right) =$ -2.18×10^{-18} J \mid n = 2 এর জন্য সুস্থিত কক্ষপথের শক্তির পরিমাণ হবে, $E_2 = -2.18 \times 10^{-18}$ J $\left(\frac{1}{2^2}\right) = -0.545 \times 10^{-18}$ J \mid চিত্র 2.11 এ বর্ণিত হয়েছে বিভিন্ন সুস্থিত কক্ষপথের শক্তির পরিমাণ বা

(1885 – 1962) নীলস্ বোর, একজন ড্যানিশ পদার্থবিদ, 1913 খ্রিস্টাব্দে কোপেনহেগেন বিশ্ববিদ্যালয় থেকে Ph.D. সম্মানে ভূষিত হন। তারপর তিনি জে. জে. থমসন এবং আরনেস্ট রাদারফর্ডের সাথে ইংল্যান্ডে

নীলস বোর

1 বৎসর সময় অতিবাহিত করেন। 1913 খ্রিস্টাব্দে তিনি কোপেন হেগেনে ফিরে আসেন এবং জীবনের পরবর্তী দিনগুলো এখানেই কাটিয়েছিলেন। 1920 খ্রিস্টাব্দে তিনি Institute of theoretical Physics এর অধিকর্তা নিযুক্ত হন। প্রথম বিশ্বযুদ্বের পর, তিনি পারমাণবিক শক্তির শান্তিপূর্ণ ব্যবহারের জন্য উদ্যোগী হন। 1957 খ্রিস্টাব্দে তিনিই সর্বপ্রথম অ্যাটমস্ ফর পিস (Atoms for Peace) সম্মান লাভ করেন। বোর 1922 খ্রিস্টাব্দে পদার্থ বিদ্যায় নোবেল পুরস্কারে ভূযিত হয়েছিলেন।

হাইড্রোজেন পরমাণুর বিভিন্ন শক্তিস্তর। এই উপস্থাপনাকেই বলা হয় **শক্তিস্তরের রেখাচিত্র**।

যখন একটি ইলেকট্রন নিউক্লিয়াসের নিয়ন্ত্রণ মুক্ত তাকে তখন তার শক্তির পরিমাণ শূন্য ধরা হয়। এই অবস্থায় ইলেকট্রনটি যে যে সুস্থিত কক্ষপথে থাকে তার মুখ্য কোয়ান্টাম সংখ্যা = $n = \infty$ এবং তাকে আয়নীত হাইড্রোজেন পরমাণু বলে। যখন কোনো ইলেকট্রন নিউক্লিয়াস দ্বারা আকর্ষিত হয় এবং যা n কক্ষে বর্তমান, এটি শক্তি নিঃসরণ করে এবং নিম্ন শক্তিস্তরে উপনীত হয়। এই কারণেই সমীকরণ

হাইড্রোজেন পরমাণুর ঋণাত্মক ইলেক্ট্রনীয় শক্তি ($E_{_n}$) বলতে কি বোঝায় ?

হাইড্রোজেন পরমাণুর সম্ভাব্য সব কক্ষ সমূহে ইলেকট্রনীয় শক্তির পরিমাণ ঋণাত্মক চিহ্ন যুক্ত হয়। (সমীকরণ 2.13)। এই ঋণাত্মক চিহ্ন দ্বারা কী প্রকাশ পায়? এই ঋণাত্মক চিহ্ন বোঝায় যে পরমাণুতে অবস্থিত ইলেকট্রনের শক্তির পরিমাণ স্থির অবস্থায় থাকা একটি ইলেকট্রন অপেক্ষা কম। স্থির অবস্থায় থাকা একটি মুক্ত ইলেকট্রন হল এমন একটি ইলেকট্রন যা নিউক্লিয়াস থেকে অসীমদূরত্বে আছে এবং এর শক্তির পরিমাণ শূন্য ধরা হয়েছে। গাণিতীকভাবে সমীকরণ (2.13)র n এর মান ত ধরলে এর মান পাওয়া যায় এবং তখন $E_{\infty} = 0$ হয়। যখন ইলেকট্রন নিউক্লিয়াসের কাছাকাছি চলে আসে (অর্থাৎ n এর মান হ্রাস পায়), E_n এর মান অনেক বড় হয় এবং তা অধিক থেকে অধিকতের ঋণাত্মক হয়। সবচেয়ে বেশি ঋণাত্মক শক্তির পরিমাণ পাওয়া যায় যখন n=1 হয় যা কিনা কক্ষের সবচেয়ে সুস্থিত অবস্থা, আমরা একে ভূমিস্তর বলি। (2.13) একটি ঋণাত্মক চিহ্ন বহন করে এবং এদের আপেক্ষিক স্থায়ীত্ব বর্ণিত হয়েছে নির্দেশক শূন্য শক্তিস্তর এবং $n = \infty$ এর সাক্ষেপে।

d) বোরের তত্ত্ব একটি ইলেকট্রন বিশিষ্ট আয়নের জন্য ও ব্যবহার করা যায় যা কিনা হাইড্রোজেন পরমাণুর সাথে সাদৃশ্যপূর্ণ। উদাহরণস্বরূপ He⁺ Li²⁺, Be³⁺ ইত্যাদি। আয়নদের সুস্থিত শক্তিস্তরের (যা কিনা হাইড্রোজেন সদৃশ বর্গ (species)) শক্তির পরিমাণ প্রকাশ করা যায়।

$$E_n = -2.18 \times 10^{-18} \left(\frac{Z^2}{n^2}\right) J \tag{2.14}$$

এবং ব্যাসার্ধ প্রকাশ করা যায়

$$r_n = \frac{52.9(n^2)}{Z} pm$$
(2.15)

যেখানে Z হচ্ছে পারমাণবিক সংখ্যা এবং হিলিয়াম ও লিথিয়াম পরমাণুর জন্য এদের মান যথাক্রমে 2,3 । উপরের সমীকরণ থেকে প্রমাণ করা যায় যে Z এর মান বৃদ্ধি পেলে শক্তির ধনাত্মক মান আরও বৃদ্ধি পায় এবং ব্যাসার্ধের মান হ্রাস পায়। এর অর্থ হলো ইলেকট্রনগুলো নিউক্লিয়াসের সাথে আরও দৃঢ়ভাবে আবন্ধ থাকবে।

e) এই তত্ত্বের সাহায্যে কক্ষপথে ঘূর্ণনরত ইলেকট্রন সমূহের গতিবেগও নির্ণয় করা সম্ভব। যদিও এই তত্ত্বে সঠিক সমীকরণ দেওয়া হয়নি, তুলনামূলকভাবে বলা যায় নিউক্লিয়াসে ধণাত্মক আধান বৃদ্ধি পেলে ইলেকট্রনের গতিবেগের মাত্রা বৃদ্ধি পায় এবং মুখ্য কোয়ান্টাম সংখ্যা বৃদ্ধি পেলে এর মান হ্রাস পায়।

2.4.1হাইড্রোজেনের রেখা বর্ণালীর ব্যাখ্যা (Explanation
of Line Spectrum of Hydrogen)

বোর মডেল ব্যবহার করে অংশ 2.3.3 তে উল্লেখিত হাইড্রোজেনের জন্য যে রেখা বর্ণালী পাওয়া যায় তা পরিমাণগতভাবে ব্যাখ্যা করা যায়। 2নং স্বীকার্য অনুসারে ইলেকট্রন যখন নিম্ন কোয়ান্টাম সংখ্যার কক্ষ থেকে উচ্চ কোয়ান্টাম সংখ্যার কক্ষে যায় তখন বিকিরণ (শক্তি) শোষিত হয়, কিন্তু উচ্চ কোয়ান্টাম সংখ্যার কক্ষ থেকে নিম্ন কোয়ান্টাম সংখ্যার কক্ষে গেলে বিকিরণের (শক্তির) নিঃসরণ হয়। দু'টি কক্ষপথের শক্তির পার্থক্য সমীকরণ (2.16) দ্বারা নিম্নরূপ করা যায়।

$$\Delta E = E_{\rm f} - E_{\rm i}$$
(2.16)
সমীকরণ (2.13) এবং (2.16) এর সমন্বিত রুপ

$$\Delta E = \left(-\frac{R_H}{n_f^2}\right) - \left(-\frac{R_H}{n_i^2}\right)$$

 $n_{
m i}$ এবং $n_{
m f}$ যথাক্রমে প্রাথমিক ও অন্তিম কক্ষ।

$$\Delta E = R_H \left(\frac{1}{n_i^2} - \frac{1}{n_f^2} \right) = 2.18 \times 10^{-18} J \left(\frac{1}{n_i^2} - \frac{1}{n_f^2} \right)$$
(2.17)

সমীকরণ 2.18 ব্যবহার করে শোষিত বা নিঃসরিত ফোটনের সাথে সম্পর্ক যুক্ত কম্পাঙ্ক গণনা করা যায়

$$v = \frac{\Delta E}{h} = \frac{R_H}{h} \left(\frac{1}{n_i^2} - \frac{1}{n_f^2} \right)$$
$$= \frac{2.18 \times 10^{-18} J}{6.626 \times 10^{-34} J s} \left(\frac{1}{n_i^2} - \frac{1}{n_f^2} \right)$$
(2.18)

$$=3.29\times10^{15}\left(\frac{1}{n_i^2}-\frac{1}{n_f^2}\right)Hz$$
(2.19)

এবং তরজ্ঞা সংখ্যা ($\overline{\mathbf{v}}$) দ্বারা

$$\overline{v} = \frac{v}{c} = \frac{R_H}{hc} \left(\frac{1}{n_i^2} - \frac{1}{n_f^2} \right)$$
(2.20)

$$= \frac{3.29 \times 10^{15} \, s^{-1}}{3 \times 10^8 \, m \, s^{-s}} \left(\frac{1}{n_i^2} - \frac{1}{n_f^2} \right)$$
$$= 1.09677 \times 10^7 \left(\frac{1}{n_i^2} - \frac{1}{n_f^2} \right) m^{-1}$$
(2.21)

শোষণ বর্ণালীর ক্ষেত্রে, $n_{
m f} > n_{
m i}$ এবং প্রথম বন্ধনীতে আবন্ধ রাশির মান ধনাত্মক এবং শক্তির শোষণ ঘটে। অন্যদিকে নিঃসরণ বর্ণালীর ক্ষেত্রে $n_{
m i} > n_{
m f}$, ΔE ঋণাত্মক এবং শক্তির নিঃসরণ ঘটে।

এই সমীকরণ (2.17)টি অনেকটা রিডবার্গ এর ব্যবহৃত (2.9) সমীকরণের মত যা কিনা তখনকার সময়ে পরীক্ষালব্দ্ব রাশিমালা দ্বারা উদ্ভুত। অধিকন্তু, প্রত্যেকটি রেখা বর্ণালীর, তা শোষণ বা নিঃসরণ বর্ণালী যাই হোক না কেন, হাইড্রোজেন পরমাণুর একটি নির্দিষ্ট স্থানান্তরের সঞ্চো সম্পর্ক যুক্ত। অনেক সংখ্যক হাইড্রোজেন পরমাণুর জন্য, সম্ভাব্য বিভিন্ন প্রকার স্থানান্তর দেখা যায়, যার ফলে বর্ণালীতে বিশাল সংখ্যক রেখার সৃষ্টি হয়। এই সমস্ত বর্ণালীর উজ্জ্বল্য বা তীব্রতা নির্ভর করে শোষিত বা নিঃসৃত সমতরঙ্গা দৈর্ঘ্যের বা কম্পাঞ্চ্বের ফোটনের সংখ্যার উপর।

সমস্যা 2.10

একটি হাইড্রোজেন পরমাণুর *n* = 5 কক্ষ থেকে *n* = 2 কক্ষে স্থানন্তরের ক্ষেত্রে যে ফোটন নিঃসৃত হবে তার কম্পাঙ্ক ও তরঙ্গা দৈর্ঘ্য কত ?

সমাধান

এখানে $n_{\rm i}$ = 5 এবং $n_{\rm f}$ = 2, এই স্থানান্তরে জন্য যে বর্ণালীর সৃষ্টি হবে তা দৃশ্যমান বামার সারি ভুক্ত। সমীকরণ (2.17) থেকে।

$$\Delta E = 2.18 \times 10^{18} J \left[\frac{1}{5^2} - \frac{1}{2^2} \right]$$
$$= -4.58 \times 10^{-19} J$$

এটি একটি নিঃসৃত শক্তি। ফোটনের কম্পাঙ্ক (এখানে শক্তির মাত্রার কথা ধরা হয়েছে) প্রকাশ করা যায়

$$v = \frac{\Delta E}{h}$$

= $\frac{4.58 \times 10^{-19} J}{6.626 \times 10^{-34} Js}$
= $6.91 \times 10^{14} \text{ Hz}$
 $\lambda = \frac{c}{v} = \frac{3.0 \times 10^8 \text{ ms}^{-1}}{6.91 \times 10^{14} \text{ Hz}} = 434 \text{ nm}$

সমস্যা 2.11

He+এর প্রথম কক্ষের শক্তি নির্ণয় কর, কক্ষটির ব্যাসার্ধ কত ?

সমাধান

$$E_n = -\frac{(2.18 \times 10^{-18} J)Z^2}{n^2}$$
 atom

He⁺ জন্য, *n* = 1, Z = 2

$$E_1 = -\frac{(2.18 \times 10^{-18} J)(2^2)}{1^2} = -8.72 \times 10^{-18} J$$

সমীকরণ (2.15) অনুসারে, কক্ষটির ব্যাসার্ধ হবে

$$r_n = -\frac{(0.0529\,nm)n^2}{Z}$$

এখানে $n = 1$ এবং $Z = 2$
 $r_n = -\frac{(0.0529\,nm)1^2}{2} = 0.02645\,nm$

2.4.2 বোর মডেলের সীমাবম্থতা (Limitations of Bohr's Model)

হাইড্রোজেন পরমাণুর জন্য বোরের মডেলটি নিঃসন্দেহে রাদারফোর্ডের পারমাণবিক গঠন চিত্র অপেক্ষা উন্নতর, কারণ এটি হাইড্রোজেন এবং হাইড্রোজেন সদৃশ আয়ন (উদাহরণস্বরূপ He⁺, Li²⁺, Be³⁺ ইত্যাদি) সমূহের স্থায়ীত্ব ও বর্ণালী বিশ্লেষণে সক্ষম। যদিও বোরের মডেলটি এতই সরল ছিল যে নিম্নলিখিত বিষয়ণুলো ব্যাখ্যা করতে পারেনি।

- (i) আধুনিক বর্ণালী বিশ্লেষক প্রযুক্তির সাহায্যে হাইড্রোজেন পরমাণুর বর্ণালীতে প্রাপ্ত সূক্ষ্ম সুক্ষ্ম রেখার গঠন (doublet জোড়, অর্থাৎ খুব কাছাকাছি থাকা দুটি রেখা) ব্যাখ্যা করতে এটি ব্যর্থ। এই মডেলটি হাইড্রোজেন ব্যতীত অন্য পরমাণুর বর্ণালীর, উদাহরণস্বরূপ হিলিয়াম পরমাণু যাতে কি না দুটি ইলেকট্রন আছে, ব্যাখ্যা দিতে অসমর্থ। এছাড়া বোরের মডেল চৌম্বক ক্ষেত্রের উপস্থিতিতে (জিম্যান প্রভাব) অথবা তড়িৎ ক্ষেত্রের উপস্থিতিতে (স্টার্ক প্রভাব) বর্ণালীর কোন কোন রেখার একাধিক সূক্ষ্মতর রেখার বিভাজন ব্যাখ্যা করতেও অসমর্থ।
- (ii) পরমাণুরা যে রাসায়নিক বন্ধনের সাহায্যে অনুগঠনে সমর্থ, এই তত্ত্ব তা ব্যাখ্যা করতে পারে না।

অন্যভাবে বলতে গেলে, উপরে বর্ণিত কারণগুলো ব্যাখ্যা করার জন্য একটি উন্নততর তত্ত্বের প্রয়োজন যা কি না জটিল পরমাণুর গঠন বিন্যাসের বিশেষ বৈশিষ্ট্যগুলো ব্যাখ্যা করতে পারবে।

2.5 পরমাণুর গঠন সম্পর্কিত কোয়ান্টাম বলবিজ্ঞান এর অবতারণা (TOWARDS QUANTUM MECHANICALMODELOFTHEATOM)

বোর মডেলের সীমাবম্বতাগুলোর কারণে পরমাণুর গঠন সম্পর্কিত আরো মানানসই এবং সাধারণ একটি মডেল উদ্ভাবন করার চেষ্টা হয়েছিল। দুটি গুরুত্বপূর্ণ উদ্ভাবন যা কি না নতুন মডেলের জন্য অত্যন্ত তাৎপর্যপূর্ণ ছিল, সেগুলো হল—

- 1. বস্থুর দ্বৈত প্রকৃতি,
- 2. হাইসেনবার্গের অনিশ্চয়তা নীতি।

2.5.1 বস্তুর দ্বৈত প্রকৃতি (Dual Behaviour of Matter)

1924 খ্রিস্টাব্দে ফরাসি পদার্থবিদ, ডি-ব্রগলি প্রস্তাব করেন যে, বিকিরণের মত বস্তুও দ্বৈত ধর্ম প্রদর্শন করে অর্থাৎ কণা এবং তরঞ্চা ধর্ম উভয়ই। এর থেকে বোঝা যায় যে ফোটনের যেমন

লুইস ডি-ব্রগলি (1892 – 1987) (Louis de Broglie)

লুইস ডি-ব্রগলি, একজন ফরাসি পদার্থবিদ 1910 খ্রিস্টাব্দের প্রথমার্ধে অস্নাতক স্তরে ইতিহাস নিয়ে পড়াশুনা শুরু করেন। প্রথম বিশ্বযুদ্ধে রেডিও যোগাযোগের দায়িত্ব পাওয়ার পর তিনি বিজ্ঞানের প্রতি উৎসাহী

হয়ে উঠেন। 1924 খ্রিস্টাব্দে তিনি প্যারিস বিশ্ববিদ্যালয় থেকে Dr. Sc. সম্মান লাভ করেন। 1932 খ্রিস্টাব্দ থেকে 1962 খ্রিস্টাব্দে চাকরি থেকে অবসর নেওয়ার আগে পর্যন্ত তিনি প্যারিস বিশ্ববিদ্যালয়ের তাত্ত্বিক পদার্থ বিভাগের অধ্যাপক ছিলেন। তিনি 1929 খ্রিস্টাব্দে নোবেল পুরস্কারে ভূষিত হন।

ভরবেগ এবং তরঙ্গা দৈর্ঘ্য আছে, ইলেকট্রনেরও তেমনি ভরবেগ এবং তরঙ্গা দৈর্ঘ্য আছে। ডি-ব্রগলি, এই তুল্যরূপতা থেকে একটি বস্তু কণার তরঙ্গা দৈর্ঘ (λ) এবং ভরবেগের (p) মধ্যে নিম্নলিখিত সম্পর্ক উপস্থাপন করেন।

$$\lambda = \frac{h}{mv} = \frac{h}{p} \tag{2.22}$$

যেখানে *m* হচ্ছে কণার ভর। এটির গতিবেগ v এবং *p* হচ্ছে এর ভরবেগ। ডি-ব্রগলির ভবিষ্যদ্বাণী যে সঠিক তা পরীক্ষালব্যভাবে বোঝা গেল ইলেকট্রনচ্ছটার বিচ্ছুরণ থেকে, যা কিনা তরঙ্গা ধর্মের চারিত্রিক বৈশিস্ট। এই ঘটনা ব্যবহার করে ইলেকট্রন অণুবীক্ষণ যন্ত্র তৈরি করা হয়েছে। যার ভিত্তি ছিল ইলেকট্রনের তরঙ্গা সম বৈশিষ্ট্য যেমনভাবে সাধারণ অণুবীক্ষণ যন্ত্র তৈরি হয়েছে আলোর তরঙ্গা প্রকৃতিকে ভিত্তিকরে। আধুনিক বৈজ্ঞানিক গবেষণায় ইলেকট্রন অণুবীক্ষণ যন্ত্র একটি শক্তিশালী যন্ত্র, কারণ এর সাহায্যে যে কোন বস্থুকে প্রায় 150 লক্ষ গুণ বিবর্ধন করা যায়।

এটা বিশেষভাবে বলা প্রয়োজন যে ডি-ব্রগলির তত্ত্বানুসারে প্রত্যেকটি গতিশীল বস্তুর মধ্যে তরঙ্গা ধর্ম বর্তমান। সাধারণ বস্তু থেকে নির্গত তরঙ্গের তরঙ্গা দৈর্ঘ্য খুব ছোট (কারণ তাদের উচ্চ ভর), তাই তাদের তরঙ্গা বৈশিষ্ট্য বোঝা যায় না। ইলেকট্রন বা অন্য উপকণার ক্ষেত্রে (যাদের ভর নগন্য) তরঙ্গা দৈর্ঘ্য পরীক্ষা দ্বারা নির্ণয় করা যায়। নিম্নলিখিত সমস্যাবলির ফলাফল থেকে এই বিষয়গুলো পরিমাণগতভাবে প্রমাণ করা যায়।

সমস্যা 2.12 গতিশীল একটি বলের, যার ভর 0.1 kg এবং গতিবেগ 10 m s⁻¹, তরজ্ঞা দৈর্ঘ্য কত ?

সমাধান

ডি-ব্রগলির সমীকরণ অনুসারে (2.22)

$$\lambda = \frac{h}{mv} = \frac{(6.626 \times 10^{-34} \, Js)}{(0.1 \, kg) (10 \, m \, s^{-1})}$$
$$= 6.626 \times 10^{-34} \, \text{m} \, (\text{J} = \text{kg m}^2 \, \text{s}^{-2})$$

সমস্যা 2.13

একটি ইলেকট্রনের ভর 9.1×10⁻³¹ kg। যদি এর গতিশক্তি 3.0×10⁻²⁵ J হয়, তবে এর তরঙ্গা দৈর্ঘ্য কত হবে ?

সমাধান

গতিশন্তি
$$\frac{1}{2}$$
 mv²
 $v = \left(\frac{2 \times \tilde{\eta} \sqrt{3}}{m}\right)^{1/2} = \left(\frac{2 \times 3.0 \times 10^{-25} kg \ m^2 s^{-2}}{9.1 \times 10^{-31} kg}\right)^{1/2}$
 $= 812 \ m \ s^{-1}$
 $\lambda = \frac{h}{m \ v} = \frac{6.626 \times 10^{-34} \ Js}{(9.1 \times 10^{-31} \ kg)(812 \ m \ s^{-1})}$
 $= 8967 \times 10^{-10} \ m = 896.7 \ nm$

সমস্যা 2.14

সমাধান

$$\begin{split} \lambda &= 3.6 \text{ Å} = 3.6 \times 10^{-10} \text{ m} \\ ফোটনের গতিবেগ = আলোর গতিবেগ \\ m &= \frac{h}{m v} = \frac{6.626 \times 10^{-34} \text{ Js}}{(3.6 \times 10^{-10} \text{ m}) (3 \times 10^8 \text{ m s}^{-1})} \\ &= 6.135 \times 10^{-29} \text{ kg} \end{split}$$

2.5.2 হাইসেনবার্গের অনিশ্চিয়তা নীতি (Heisenberg's Uncertainty Principle)

ওয়ার্নার হাইসেনবার্গ একজন জার্মান পদার্থবিদ, 1927 খ্রিস্টাব্দে অনিশ্চয়তা নীতি বিবৃত করেন যা কিনা বস্তু এবং বিকিরণের দ্বৈত প্রকৃতির ফল। এতে বলা হয়েছে যে **একটি ইলেকট্রনের** সঠিক অবস্থান এবং সঠিক ভরবেগ (বা গতিবেগ) যুগপৎ নির্ণয় করা অসম্ভব।

সমীকরণ (2.23) সাহায্যে এটি গাণিতিকভাবে প্রকাশ করা যায়

$$\Delta x \times \Delta p_x \ge \frac{h}{4\pi}$$

$$\exists h, \ \Delta x \times \Delta (mv_x) \ge \frac{h}{4\pi}$$

$$\exists h, \ \Delta x \times \Delta v_x \ge \frac{h}{4\pi m}$$

যেখানে Δx হচ্ছে কণাটির অবস্থানের অনিশ্চয়তা এবং Δp_x (বা Δv_x) হচ্ছে ভরবেগের (বা গতিবেগের) অনিশ্চয়তা কণাটির জন্য। যদি ইলেকট্রনের অবস্থান যথার্থভাবে নির্ণয় করা হয় (Δx এর মান ছোটো হয়), তখন ইলেকট্রনের গতিবেগ হবে অনিশ্চিত [$\Delta(v_x)$ এর মান বড়ো হয়]। অন্যদিকে, যদি ইলেকট্রনের গতিবেগ সূক্ষ্মভাবে জানা যায় [$\Delta(v_x)$ এর মান ছোটো], তখন ইলেকট্রনের অবস্থান হবে অনিশ্চিত (Δx এর মান বড় হবে)। তাহলে, আমরা যদি ইলেকট্রনের অবস্থান বা গতিবেগের উপর কয়েকটি ভৌত পরিমাপন চালাই, তার ফলাফল সবসময়ই হবে একটি অস্পন্ট বর্ণন বা দুর্বোধ্য ছবি।

অনিশ্চয়তা নীতি একটি উদাহরণের সাহায্যে ভালোভাবে বোঝা যায়। ধর তোমাকে বলা হল একটি অচিহ্নিত মিটার স্কেল দ্বারা এক টুকরো কাগজের বেধ নির্ণয় করতে। স্পস্টতই, যে ফলাফল পাওয়া যাবে তা অত্যন্ত ব্রুটিযুক্ত এবং অর্থহীন, সঠিক পরিমাপের জন্য তোমাকে এমন একটি অংশাঙ্কিত যন্ত্র ব্যবহার করতে হবে যার এককটি হবে কাগজের টুকরোর বেধ অপেক্ষা কম। অনুরূপভাবে, একটি ইলেকট্রনের অবস্থান নির্ণয় করতে হলে, আমাদের এমন একটি মিটার স্কেল ব্যবহার করতে হবে যার একক হবে ইলেকট্রন এর মাত্রা থেকে কম (মনে রাখতে হবে যে ইলেকট্রনকে একটি বিন্দু আধান ধরা হয় অর্থাৎ মাত্রাহীন)। একটি ইলেকট্রনকে একটি বিন্দু আধান ধরা হয় অর্থাৎ মাত্রাহীন)। একটি ইলেকট্রনকে একটি বিন্দু আধান ধরা হয় অর্থাৎ মাত্রাহীন)। একটি ইলেকট্রনকে একটি বিন্দু আধান ধরা হয় অর্থাৎ মাত্রাহীন)। যে 'আলোকি' ব্যবহার করা হয় তার তরঞ্চা দৈর্ঘ্য অবশ্যই ইলেকট্রন থেকে কম হতে হহবে। উক্ত আলোর বেশি ভরবেগ

যুক্ত ফোটনের $\left(p = rac{h}{\lambda}
ight)$ । সংঘাতের ফলে ইলেকট্রনের শক্তি

পরিবর্তন ঘটাতে পারে। এই পম্ধতির সাহায্যে আমরা নিঃসন্দেহেই ইলেকট্রনের অবস্থান নির্ণয় করতে পারবো, কিন্তু সংঘাতের পর ইলেকট্রনের গতিবেগ সম্পর্কে খুব কমই আমরা জানতে পারব।

অনিশ্চয়তা নীতির তাৎপর্য (Significance of Uncertainty Principle)

হাইসেন বার্গের অনিশ্চয়তা নীতির অন্যতম গুরুত্বপূর্ণ সংশ্লেষ হচ্ছে এই নীতি ইলেকট্রন বা অন্যান্য সদৃশকণার আবর্তনের জন্য কোন নির্দিন্ট পথ বা প্রক্ষেপ পথ আছে— এই ধারণা বাতিল করে দিয়েছে। কোনো বস্তুর প্রক্ষেপ পথ নির্ধারিত হবে বিভিন্ন মুহূর্তে তার অবস্থান বা গতিবেগ থেকে। যদি আমরা কোনো বস্তু একটি নির্দিন্ট মুহূর্তে কোথায় আছে এবং ওই মুহূর্তে তার গতিবেগ এবং তার উপর কার্যকরী বলের পরিমাণ জানতে পারি, তবে কিছুক্ষণ পর বস্তুটি কোথায় থাকবে তা আমরা বলতে পারি, তাহলে আমরা এই সিম্বান্তে উপনীত হতে পারি যে কোনো বস্তুর অবস্থান এবং গতিবেগই বস্তুটির প্রক্ষেপ পথ নির্ধারণ করে।

যেহেতু একটি নির্দিষ্ট মুহূর্তে ইচ্ছা হলেই ইলেকট্রনের মতো একটি অবপারমাণবিক কণার অবস্থান এবং গতিবেগ যুগপৎ সূক্ষ্মভাবে নির্ণয় করা যায় না, তাই ইলেকট্রনের প্রক্ষেপ সম্পর্কেও কিছু বলা সম্ভব নয়। হাইসেনবার্গের অনিশ্চয়তা নীতির ফল শধুমাত্র আণুবিক্ষণীক বস্তুর গতির জন্য তাৎপর্যপূর্ণ এবং অতিকায় বস্তুর জন্য এই প্রভাব নগন্য। নিমোক্ত উদাহরণ থেকে তা পরিষ্কার বোঝা যায়।

যদি অনিশ্চয়তা নীতি এমন একটি বস্তুর জন্য প্রয়োগ করা হয় যার ভর ধরা হলো প্রায় এক মিলিগ্রাম (10⁻⁶kg), তখন

$$\Delta v.\Delta x = \frac{h}{4\pi.m}$$
$$= \frac{6.626 \times 10^{-34} Js}{4 \times 3.1416 \times 10^{-6} kg} \approx 10^{-28} m^2 s^{-1}$$

ওয়ার্নার হাইসেনবার্গ (Werner Heisenberg) (1901 – 1976): ওয়ার্নার হাইসেনবার্গ মিউনিখ বিশ্ববিদ্যালয় থেকে 1923 খ্রিস্টাব্দে পদার্থ বিদ্যায় Ph.D. সম্মান লাভ করেন। তিনি তারপর এক বৎসর Gottingenএ ম্যাক্স বর্ণ এর সাথে এবং তিন বৎসর নীলস্ বোর এর সাথে কোপেনহেসেন্ এ কাজ করেন। তিনি লিপজিগ্ বিশ্ববিদ্যালয়ে 1927 খ্রিস্টাব্দ থেকে 1941 খ্রিস্টাব্দ পর্যন্ত পদার্থ বিদ্যার অধ্যাপক ছিলেন। দ্বিতীয় বিশ্বযুদ্দের সময় হাইসেনবার্গ জার্মানির পরমাণু বোমা বিষয়ক গবেষণার দায়িত্বে ছিলেন। যুদ্দের পরবর্তীকালে তিনি গটিনজেন এ অবস্থিত ম্যাক্স প্র্যাঙ্ক প্রতিষ্ঠানের পদার্থ বিদ্যায় অধিকর্তা হন। তিনি ছিলেন নিপুণ পর্বতারোহী। হাইসেনবার্গ 1932 খ্রিস্টাব্দে পদার্থ বিদ্যায় নোবেল পুরস্কারে ভূষিত হন।

 $\Delta v \Delta x$ এর যে মান পাওয়া গেলো তা খুবই ছোটো এবং তাৎপর্যহীন। তাহলে যে কেউ বলতে পারে যে এক মিলিগ্রাম বা তা থেকে বেশি ভর যুক্ত বস্তুর ক্ষেত্রে সংশ্লিষ্ট অনিশ্চয়তার মান কদাচিৎ কোন বাস্তব ফলাফল দেয়।

একটি আণুবীক্ষণিক বস্তুর যেমন একটি ইলেকট্রন এর ক্ষেত্রে $\Delta v.\Delta x$ এর মান যথেষ্ট বড় হয় এবং এই অনিশ্চয়তার মান বাস্তবসন্মত। উদাহরণ হিসেবে, একটি ইলেকট্রন যার ভর 9.11×10⁻³¹ kg, হাইসেনবার্গের অনিশ্চয়তা নীতি অনুসারে

$$\Delta v.\Delta x = \frac{h}{4\pi m}$$

= $\frac{6.626 \times 10^{-34} Js}{4 \times 3.1416 \times 9.11 \times 10^{-31} kg}$
= $10^{-4} m^{-2} s^{-1}$

তাহলে এর অর্থ হচ্ছে যে কেউ যদি ইলেকট্রনের সঠিক অবস্থান নির্ণয় করতে চায়, ধরা যাক সে অনিশ্চয়তা অবস্থানের মান 10⁻⁸ m, তখন অনিশ্চয়তা ∆v এর মান হবে

 $\frac{10^{-4}m^2s^{-1}}{10^{-8}m} \approx 10^4 m s^{-1}$

যা কিনা এত বড়ো যে বোরের কক্ষপথে (স্থির) আবর্তিত ইলেকট্রনের সনাতন চিত্রকে সমর্থন করে না। এর থেকে তাহলে এটাই বোঝা যায় যে এই নীতির পরিশুম্ব বস্তুব্যে ব্যবহৃত ইলেকট্রনের অবস্থান এবং ভরবেগের পূর্বে সম্ভাব্য শব্দটি লেখা প্রয়োজন, যা কিনা ইলেকট্রনকে একটি সঠিক অবস্থান এবং ভরবেগ দেয়। এমনটাই পরমাণুর কোয়ান্টাম বলবিজ্ঞান মডেলে বলা হয়েছে।

সমস্যা 2.15

একটি অণুবীক্ষণ যন্ত্রে উপযুক্ত ফোটন ব্যবহার করে একটি পরমাণুর মধ্যেকার একটি ইলেকট্রন এর অবস্থান একটি নির্দিষ্ট দূরত্ব 0.1 Å মধ্যে সনাক্ত করা হল। এর গতিবেগ নির্ণয়ে, অনিশ্চয়তার মান কত হবে ?

সমাধান

$$\Delta x \Delta p = \frac{h}{4\pi}$$
 অথবা $\Delta x m \Delta v = \frac{h}{4\pi}$

$$\Delta v = \frac{h}{4\pi \,\Delta x m}$$

$$\Delta v = \frac{6.626 \times 10^{-34} \,Js}{4 \times 3.14 \times 0.1 \times 10^{-10} \,m \times 9.11 \times 10^{-31} \,kg}$$

= 0.579×10⁷ m s⁻¹ (1J = 1 kg m² s⁻²)
= 5.79×10⁶ m s⁻¹

সমস্যা 2.16

একটি গলফ বল যার ভর 40g এবং এর দ্রুতি 45 m/s. যদি এর দ্রুতি 2% সঠিকতার মধ্যে পরিমাপ করা যায়, তবে এর অবস্থান গঠিত অনিশ্চয়তা নির্ণয় কর।

সমাধান

দ্রুতির অনিশ্চয়তা 2% অর্থাৎ $45 \times \frac{2}{100} = 0.9 m s^{-1}$ সমীকরণ (2.22) ব্যবহার করে

$$\Delta x = \frac{h}{4\pi m \Delta v}$$

 $4 \times 3.14 \times 40g \times 10^{-3} kgg^{-1} (0.9 ms^{-1})$

 $= 1.46 \times 10^{-33} \text{ m}$

যা কিনা একটি পরমাণু নিউক্লিয়াসের ব্যাসার্ধের তুলনায় প্রায় 10¹⁸গুণ ছোটো। পূর্বেই বলা হয়েছে যে বড়ো আকৃতির কণার জন্য অনিশ্চয়তা নীতিতে সূক্ষ্ম পরিমাপের জন্য কোনো তাৎপর্যপূর্ণ সীমা নেই।

বোরের মডেলের ব্যর্থতার কারণ সমূহ (Reasons for the Failure of the Bohr Model)

বর্তমানে কোনো একজন সহজেই বোর মডেলের ব্যর্থতার কারণ বুঝতে পারে। বোরের মডেল ইলেকট্রনকে একটি আহিত কণা হিসেবে ধরা হয়েছে, যা কি না নিউক্লিয়াসকে কেন্দ্র করে একটি নির্দিষ্ট বৃত্তাকার কক্ষে ঘুরে চলেছে। বোরের মডেলে ইলেকট্রনের তরঙ্গা প্রকৃতি ধরা হয়নি। তাছাড়া কক্ষ হচ্ছে একটি সুনির্দিষ্ট পথ এবং এই পথটি তখনই পুরোপুরিভাবে ব্যাখ্যা করা যায়, যদি একই সময়ে এরমধ্যে অবস্থিত ইলেকট্রনের অবস্থান এবং গতিবেগ সঠিকভাবে জানা যায়। হাইসেনবার্গের অনিশ্চয়তা নীতি অনুসারে তা সম্ভব নয়। হাইড্রোজেন পরমাণুর জন্য বোরের মডেলটি তাই শুধুমাত্র বস্থুর দ্বৈত প্রকৃতিকে অবজ্ঞা করে তাই নয়, হাইসেনবার্গের 1910 খ্রিস্টাব্দে অট্রিয়ান পদার্থবিদ এরভিন স্রোডিঞ্জার, ভিয়েনা বিশ্ববিদ্যালয় থেকে তাত্ত্বিক পদার্থ বিদ্যার উপর Ph.D. উপাধি লাভ করেন। প্লাব্জের অনুরোধে 1927 খ্রিস্টাব্দে, প্লাব্জের পর, স্রোডিঞ্জার বার্লিন বিশ্ববিদ্যালয়ের কার্যভার গ্রহণ করেন। 1933 খ্রিস্টাব্দে হিটলার এবং নাৎসিবাদ বা ফ্যাসিবাদ নীতির বিরোধিতার কারণে তিনি বার্লিন

এরভিন স্রোডিঞ্জার (1887-1961)

ছেড়ে, 1936 খ্রিস্টাব্দে অস্ট্রিয়ায় ফিরে গিয়েছিলেন। জার্মানির অস্ট্রিয়া আক্রমণের পর স্রোডিঞ্জারকে জোর করে তার অধ্যাপক পদ থেকে সরানো হয়েছিল। তখন তিনি আয়ারল্যান্ডের ডাবলিনে চলে যান যেখানে তিনি সতেরো বছর ধরে ছিলেন। 1933 খ্রিস্টাব্দে স্রোডিঞ্জার, পি.এ.এম. ডিরাক (P.A.M. Dirac) এর সহিত মিলিতভাবে পদার্থ বিদ্যায় নোবেল পুরস্কার লাভ করেছিলেন।

অনিশ্চয়তা নীতিরও বিরোধী। বোর মডেলের এই সমস্ত অন্তর্নিহিত দুর্বলতার জন্য বোরের মডেলটি অন্য পরমাণুর ক্ষেত্রে প্রয়োগ করা অর্থহীন। বস্তুত এই জন্যই পরমাণুর অভ্যস্তরীণ গঠন ব্যাখ্যা করার জন্য একটি নতুন মডেলের প্রয়োজন হলো যা কিনা বস্তুর কণা ও তরঙ্গা দ্বৈত ধর্ম এবং হাইসেন বার্গের অনিশ্চয়তা নীতিকে সমর্থন করবে। এরই ফলস্বরুপ কোয়ান্টাম বলবিদ্যার অবতারনা হয়।

2.6 পরমাণুর কোয়ান্টাম বলবিজ্ঞান মডেল (QUANTUM MECHANICALMODELOFATOM

সনাতন বলবিদ্যা যা নিউটনের গতিসূত্রের উপর ভিত্তি করে তৈরি হয়েছিল, তার সাহায্যে সমস্ত স্থৃলবস্তু যেমন পতনশীল পাথর খণ্ড, আবর্তনশীল গ্রহ সমূহ ইত্যাদির গতি সফলভাবে ব্যাখ্যা করতে পেরেছে যাদের মধ্যে অত্যাবশ্যকভাবেই কণার বৈশিষ্ট্য আছে এবং যা পূর্বোক্ত আলোচনায় দেখানো হয়েছে। যদিও এটি ইলেকট্রন, পরমাণু, অণু ইত্যাদির মত আণুবীক্ষণিক বস্তুর বৈশিষ্ট্য ব্যাখ্যা করতে ব্যর্থ হয়েছে। এর প্রধান কারণ হচ্ছে সনাতন বলবিদ্যাতে বস্তুর দ্বৈত প্রকৃতির ধারণাকে এবং অনিশ্চয়তা নীতিকে উপেক্ষা করা হয়েছে বিশেষ করে অবপারমাণবিক কণার ক্ষেত্রে। বিজ্ঞানের যে শাখাতে বস্তুর দ্বৈত প্রকৃতির ধারণাকে স্বীকার করা হয়েছে তার নাম কোয়ান্টাম বলবিদ্যা।

কোয়ান্টাম বলবিদ্যা হল একটি তাত্ত্বিক বিজ্ঞান যাতে পর্যবেক্ষণ যোগ্য তরজ্ঞা ধর্ম এবং কণাধর্ম আছে এমন আণুবীক্ষণিক বস্তুর গতি নিয়ে চর্চা করা হয়। এই সমস্ত বস্তু যে গতিসূত্র মান্য করে তা এর মধ্যে সুনির্দিষ্টভাবে বলা আছে। কোন বৃহদাকার বস্তুর (যাদের তরঙ্গাধর্ম উপেক্ষণীয়) ক্ষেত্রে কোয়ান্টাম বলবিদ্যা প্রয়োগ করা হলে যে ফলাফল পাওয়া যায়, তা সনাতন বলবিদ্যা থেকে প্রাপ্ত ফলাফলের অনুরূপ হয়। 1926 খ্রিস্টাব্দে ওয়ার্নার হাইসেন বার্গ এবং আরউইন শ্রোডিঞ্জার কোয়ান্টাম বলবিদ্যার স্বাধীনভাবে বিকাশ সাধন করেছেন। যদিও আমরা এখানে তরঙ্গা বলবিদ্যা নিয়ে আলোচনা করব যা কিনা তরঙ্গাগতি ধারণার উপর ভিত্তি করে তৈরি হয়েছে। তরঙ্গা বলবিদ্যার মৌলিক সমীকরণটি প্রতিষ্ঠা করেছিলেন স্রোডিঞ্জার এবং এর জন্য 1933 খ্রিস্টাব্দে তিনি পদার্থবিদ্যায় নোবেল পুরস্কারে ভূষিত হন। এই সমীকরণে ডি ব্রগলি প্রস্তাবিত বস্তুর তরঙ্গা কণাবাদ অন্তর্ভুক্ত হয়েছে যা কি না যথেষ্ট জটিল এবং সমাধানের জন্য উচ্চতর গণিতের জ্ঞান থাকা প্রয়োজন। বিভিন্ন সিস্টেমের জন্য এর সমাধান তোমরা উচ্চতর শ্রেণিতে জানতে পারবে।

একটি সিস্টেমের জন্য (যেমন একটি পরমাণু বা একটি অণু যার শক্তির পরিমাণ সময়ের সাপেক্ষে পরিবর্তিত হয় না) স্রোডিঞ্জারের সমীকরণটি যেভাবে লেখা হয় সেটি হল $\hat{H}\Psi = E\Psi$ যেখানে \hat{H} একটি গাণিতিক চালক যাকে **হ্যামিলটেনিয়ান** চালক বলা হয়। সিস্টেমের সামগ্রিক শক্তি প্রকাশকারী এই রাশিমালা থেকে স্রোডিঞ্জার চালকটি গঠন করার একটি প্রণালী দিয়েছিলেন। সিস্টেমের মোট শক্তি হিসাবে তিনি সমস্ত অবপারমাণবিক কণার (ইলেকট্রন, নিউক্লীয়াস) গতিশক্তি, ইলেকট্রন ও নিউক্লীয়াসের মধ্যকার আকর্ষণজনিত বিভব এবং ইলেকট্রন ও নিউক্লীয়াসের বিকর্ষণজনিত বিভব স্বতন্ত্রভাবে কাজ করে বলে ভেবেছিলেন। এই সমীকরণের সমাধান থেকে *E* এবং *ψ* এর মান জানা যায়।

হাইড্রোজেন পরমাণু এবং স্রোডিঞ্জার সমীকরণ (Hydrogen Atom and the Schrödinger Equation)

হাইড্রোজেন পরমাণুর ক্ষেত্রে স্রোডিঞ্জার সমীকরণ প্রয়োগ করে যে সমাধান পাওয়া গেল তা থেকে ইলেকট্রন যেসকল সম্ভাব্য শক্তিস্তরে থাকতে পারে এবং প্রত্যেকটি শক্তিস্তরের সাথে সম্পর্কিত ইলেকট্রনগুলোর সংশ্লিষ্ট তরজা অপেক্ষক (ψ) এর মান জানা যায়। নির্দিষ্ট শক্তিসম্পন্ন এই শক্তিস্তরগুলো এবং সংশ্লিষ্ট তরজা অপেক্ষকের চারিত্রিক বৈশিষ্ট্য প্রকাশ করার জন্য তিনটি কোয়ান্টাম সংখ্যার একটি সেট (set) (মুখ্য কোয়ান্টাম সংখ্যা *n*, অ্যাজিমুথাল বা গৌণ বা দিগংশীয় কোয়ান্টাম সংখ্যা *l* এবং চুম্বকীয় কোয়ান্টাম সংখ্যা *m*,) প্রয়োজন হয়, যা স্রোডিঞ্জার সমীকরণে প্রাকৃতিক সমাধান থেকে পাওয়া যায়। যখন একটি ইলেকট্রন যে কোন শক্তিস্তরে অবস্থান করে তখন ওই শস্তিস্তরের অনুরূপ তরঙ্গা অপেক্ষক থেকে ইলেকট্রনটি সম্পর্কে সমস্ত তথ্য পাওয়া যায়। ওই তরঙ্গা অপেক্ষকটি একটি গাণিতিক অপেক্ষক যার মান নির্ভর করে পরমাণুতে ইলেকট্রনের অবস্থানের উপর এবং এটি কোনো ভৌত তাৎপর্য বহন করে না। হাইড্রোজেন বা হাইড্রোজেন সদৃশ আয়নের জন্য যাদের একটি মাত্র ইলেকট্রন আছে সেরৃপ তরঙ্গা অপেক্ষককে পারমাণবিক কক্ষ বলে। একটি ইলেকট্রন যুক্ত এরূপ পরমাণু বা আয়নের তরঙ্গা অপেক্ষককে এক ইলেকট্রন পাওয়ার সম্ভাবনা ওই বিন্দুটির । ψ^2 । মানের সাথে সমানুপাতিক। হাইড্রোজেন পরমাণুর জন্য কোয়ান্টাম বলবিদ্যা থেকে যে ফলাফল পাওয়া যায় তার সাহায্যে হাইড্রোজেন পরমাণুর বর্ণালীকে সফলভাবে ব্যাখ্যা করা যায়, এছাড়া বোর মডেলের সাহায্যে যে কয়েকটি ঘটনা ব্যাখ্যা করা সম্ভব হয়নি তাদেরও ব্যাখ্যা করা যায়।

বহু ইলেকট্রন যুক্ত পরমাণুর ক্ষেত্রে স্রোডিঞ্জার সমীকরণ ব্যবহারে সমস্যাবলী: স্রোডিঞ্জার সমীকরণ বহু ইলেকট্রন যুক্ত পরমাণু দ্বারা সঠিকভাবে সমাধান করা যায় না। এই সমস্যাটির নিরসন করা যায় শুধুমাত্র অনুমানভিত্তিক পম্বতিতে। আধুনিক কম্পিউটার এর সাহায্যে এরূপ গণনা করলে দেখা যায় হাইড্রোজেন ব্যতিত যে কোনো পরমাণুর কক্ষের সাথে হাইড্রোজেন কক্ষের কোনো মৌলিক পার্থক্য নেই যা কিনা উপরে আলোচিত হয়েছে। মুখ্য পার্থক্য নিহিত আছে নিউক্লীয় আধান বৃদ্ধির সাথে। এই জন্যই সমস্ত কক্ষণুলো কিছুটা সংকোচিত অবস্থায় থাকে। অধিকন্তু, পরবর্তীতে তুমি দেখতে পাবে যে (উপঅনুচ্ছেদ 2.6.3 এবং 2.6.4) হাইড্রোজেন পরমাণুর কক্ষ বা হাইড্রোজেন সদৃশ পরমাণুর কক্ষের শস্তির পরিমান শুধুমাত্র কোয়ান্টাম সংখ্যা *n* উপর নির্ভর করলেও এর উপর, বহু ইলেকট্রন বিশিষ্ট পরমাণুর কক্ষের শস্তির পরিমাণ নির্ভর করে *n* এবং *l* এর উপর।

পরমাণুর তরঞ্জা বলবিদ্যা মডেলের গুরুত্বপূর্ণ বৈশিষ্ট সমূহ (Important Features of the Quantum Mechanical Model of Atom)

পরমাণুর তরঙ্গা বলবিদ্যা মডেলটি পরমাণুর গঠন সম্পর্কিত একটি ছবি, যা পরমাণুগুলোর ক্ষেত্রে স্রোডিঞ্জার সমীকরণ প্রয়োগের মাধ্যমে পাওয়া গেছে। পরমাণুর তরঙ্গা বলবিদ্যা মডেলটির গুরুত্বপূর্ণ বৈশিষ্টগুলো নিম্নরূপ :

 পরমাণুতে অবস্থিত একটি ইলেকট্রনের শক্তি কোয়ান্টাইজড হয় (অর্থাৎ শৃধুমাত্র নির্দিন্ট একটি মান থাকে)। উদাহরণস্বরপ পরমাণুর ইলেকট্রন সমূহ যখন নিউক্লিয়াস এর সাথে আবম্ধ থাকে।

- কোয়ান্টাইজড ইলেকট্রনীয় শক্তিস্তর এর অস্তিত্ব ইলেকট্রনের তরজা সদৃশ বৈশিষ্ট্য এবং স্রোডিঞ্জার তরজা সমীকরণের থেকে যে সমাধান পাওয়ার কথা তাই পাওয়া যায়।
- পরমাণু মধ্যেকার ইলেকট্রনের সঠিক অবস্থান এবং সঠিক গতিবেগ যুগপৎ নির্ণয় করা যায় না (হাইসেন বার্গের অনিশ্চয়তা নীতি), পরমাণুর মধ্যেকার ইলেকট্রনের পথ তাই কখনোই নির্ণয় করা যায় না বা সঠিক জানা যায় না। তাই, তুমি পরবর্তীতে দেখতে পাবে যে, শুধুমাত্র পরমাণুর বিভিন্ন বিন্দুতে ইলেকট্রন পাওয়ার সম্ভাবনা নিয়েই সকলে আলোচনা করে।
- 4. একটি পরমাণবিক কক্ষক হচ্ছে পরমাণুতে অবস্থিত একটি ইলেট্রনের তরঙ্গা অপেক্ষক *ψ*। যখন কোন একটি ইলেকট্রনকে তরঙ্গা অপেক্ষক দ্বারা বর্ণনা করা হয়, তখন আমরা বলি ইলেকট্রন পরমাণুর সেই কক্ষপথে অবস্থিত। এই সমস্ত "এক ইলেকটন কক্ষক তরঙ্গা অপেক্ষক" অথবা পরমাণর ইলেকট্রনীয় গঠনের ভিত্তিতে কক্ষকের উৎপত্তি হয়। প্রত্যেকটি কক্ষকে, ইলেকট্রনের একটি নির্দিষ্ট শক্তি বর্তমান। একটি কক্ষকের মধ্যে দু'টির বেশি ইলেকট্রন থাকতে পারে না। একটি বহু ইলেকট্রন বিশিষ্ট পরমাণুতে বিভিন্ন কক্ষকে ইলেকট্রন পূর্ণ হয় শক্তির ঊর্ধ্বক্রম অনুসারে। তাই একটি বহু ইলেকট্রন বিশিষ্ট পরমাণুতে প্রত্যেকটি ইলেকট্রন যে কক্ষকে উপস্থিত থাকবে সে, সেই কক্ষকের তরঙ্গা অপেক্ষক বিশিষ্ট হবে। পরমাণুর একটি ইলেকট্রন সম্পর্কিত সমস্ত তথ্য সঞ্চিত থাকে এর কক্ষক তরঙ্গা অপেক্ষক 🕡 এর মধ্যে এবং কোয়ান্টাম বলবিদ্যার সাহায্যে ৮-এর মান থেকে এই সমস্ত তথ্য বের করা গেছে।
- 5. একটি পরমাণুর একটি বিন্দুতে ইলেকট্রন পাওয়ার সম্ভাবনা, কক্ষক তরজা অপেক্ষকের বর্গের সমানুপাতিক অর্থাৎ ঐ বিন্দুর ।µ¹ এর সাথে। ।µ² সম্ভাবনা ঘনত্ব নামে পরিচিত এবং তা সর্বদাই ধনাত্মক। একটি পরমাণুর ক্ষেত্রে বিভিন্ন বিন্দুতে ।µ² এর মান থেকে নিউক্লিয়াসের কাছাকাছি কোথায় ইলেকট্রন পাওয়ার সম্ভাবনা বেশি তার ভবিয্যৎবাণী করা যায়।

2.6.1 কক্ষক সমূহ এবং কোয়ান্টাম সংখ্যা (Orbitals and Quantum Numbers)

একটি পরমাণুতে অনেক সংখ্যক কক্ষক থাকা সম্ভব। গুণগতভাবে

এই কক্ষকগুলোকে প্রভেদ করা যায় এদের আকার, আকৃতি এবং অভিবিন্যাস থেকে। একটি ছোট আকারের কক্ষক এর অর্থ হচ্ছে নিউক্লিয়াসের কাছাকাছি ইলেকট্রন পাওয়ার সম্ভাবনা অনেক বেশি। অনুরূপে আকৃতি ও অভিবিন্যাস এর অর্থ হচ্ছে কোনো একটি নির্দিশ্ট দিকে ইলেকট্রন পাওয়ার সম্ভাবনা অন্যান্য দিক থেকে বেশি হয়। কোয়ান্টাম সংখ্যার সাহায্যে পারমাণবিক কক্ষক সমূহের মধ্যে পার্থক্য যথাযথভাবে নিরূপণ করা যায়। প্রত্যেকটি কক্ষককে তিনটি কোয়ান্টাম সংখ্যা যথা *n*, *l* এবং *m*, দ্বারা চিহ্নিত করা যায়।

মুখ্য কোয়ান্টাম সংখ্যা 'n' একটি ধনাত্মক পূর্ণ সংখ্যা, যার মান n = 1,2,3.....। এই মুখ্য কোয়ান্টাম সংখ্যা দ্বারা কক্ষকের আয়তন এবং বৃহৎ পরিসরে শক্তির পরিমাপ করা যায়। হাইড্রোজেন পরমাণু এবং হাইড্রোজেন সদৃশ আয়ন (He⁺, Li²⁺, ইত্যাদি) এর কক্ষকের শক্তি এবং আয়তন শুধুমাত্র 'n' এর উপর নির্ভরশীল।

এছাড়াও মুখ্য কোয়ান্টাম সংখ্যা দ্বারা কক্ষ সনাক্তকরণ করা যায়। n এর মান বৃদ্ধির সাথে সাথে সম্ভাব্য কক্ষকের সংখ্যাও বৃদ্ধি পায় এবং 'n²' দ্বারা প্রকাশ করা হয়। 'n' এর একটি নির্দিন্ট মানের জন্য সকল কক্ষকগুলো সন্মিলিতভাবে পরমাণুর একটি কক্ষের সৃন্টি করে এবং এদের প্রকাশ করা হয় নিম্নলিখিত অক্ষরের সাহায্যে

 $n = 1 \ 2 \ 3 \ 4 \dots$

মুখ্য কোয়ান্টাম সংখ্যা '*n*' বৃদ্ধির সাথে সাথে কক্ষকের আয়তন বৃদ্ধি পায়। অন্যভাবে বললে ইলেকট্রন নিউক্লিয়াস থেকে দূরে অবস্থান করে। যেহেতু ঋণাত্মক আধান যুক্ত ইলেকট্রনকে ধনাত্মক আধান যুক্ত নিউক্লিয়াস থেকে দূরে সরিয়ে নিতে শক্তির প্রয়োজন হয়, তাই *n* এর মান বৃদ্ধির সাথে সাথে কক্ষকের শক্তির মান বৃদ্ধি পায়।

দিগংশীয় কোয়ান্টাম সংখ্যা '*l*' যা কিনা কক্ষীয় কৌণিক ভরবেগ বা সহায়ক কোয়ান্টাম সংখ্যা হিসেবেও পরিচিত। এর সাহায্যে কক্ষকের ত্রিমাত্রিক আকৃতিও নির্ধারণ করা যায়। *n* এর একটি নির্দিন্ট মানের জন্য, *l* এর মানকে *n* দ্বারা সীমায়িতভাবে প্রকাশ করা হয় 0 থেকে *n* – 1, অর্থাৎ, *n* এর একটি নির্দিন্ট মানের জন্য *l* এর সম্ভাব্য মানগুলো হল : *l* = 0, 1, 2, (*n*–1)।

উদাহরস্বরূপ, যখন n = 1, তখন *l* এর মান শুধুমাত্র 0, n = 2, এর জন্য *l* এর সম্ভাব্য মান 0 এবং 1, n = 3 এর জন্য *l* এর সম্ভাব্য মানগুলো হলো 0, 1 এবং 2। প্রত্যেকটি কক্ষ আবার এক বা অধিক সংখ্যক উপকক্ষ বা উপস্তর দ্বারা গঠিত। একটি মুখ্যকক্ষে উপকক্ষের সংখ্যা *n* এর মানের সমান হয়। উদাহরণস্বরূপ প্রথম কক্ষে (*n* = 1), একটি মাত্র উপকক্ষ যাকে যা *l* = 0 এর অনুরূপ। দ্বিতীয় মুখ্যকক্ষে (*n* = 2) দুটি উপকক্ষ (*l* = 0, 1) যাকে, তৃতীয় কক্ষে (*n* = 3) তিনটি উপকক্ষ (*l* = 0, 1, 2) থাকে এবং এরূপ। প্রত্যেকটি উপকক্ষ নির্ধারিত হয় একটি নির্দিন্ট মানের দিগংশীয় কোয়ান্টাম সংখ্যা দ্বারা। উপকক্ষের জন্য নির্ধারিত বিভিন্ন *l* এর মান সমূহ প্রকাশ হল নিম্নলিখিত চিহ্নের দ্বারা।

<i>l</i> এর মান :	0	1	2	3	4	5	
উপকক্ষের	S	р	d	f	g	h	
জন্য প্রতীক :							

সারণি 2.4-এ মুখ্য কোয়ান্টাম সংখ্যার বিভিন্ন মানের জন্য *l*-এর সম্ভাব্য মান এবং সংশ্লিষ্ট উপকক্ষটির সংকেত দেওয়া হল।

n	1	উপকক্ষের সংকেত
1	0	1s
2	0	2s
2	1	2p
3	0	3 <i>s</i>
3	1	3 <i>p</i>
3	2	3d
4	0	4s
4	1	4p
4	2	4d
4	3	4f

সারণি 2.4 উপকক্ষের সংকেত

চুম্বকীয় কক্ষক কোয়ান্টাম সংখ্যা m_l থেকে কক্ষকগুলো বিশেষ ত্রিমাত্রিক অভিবিন্যাস সম্পর্কে ধারণা পাওয়া যায়। যে কোনো উপকক্ষের জন্য (যাকে *l* দ্বারা সংজ্ঞায়িত করা হয়) m_l -এর সম্ভাব্য মান হল 2l+1 এবং এই মানগুলোকে নিচের মতো দেখানো হয় : $m_l = -l, -(l-1), -(l-2)... 0, ... (l-2), (l-1), l$

তাই l এর মান শূন্য হলে অর্থাৎ l=0 হলে m_j এর সম্ভাব্য

একমাত্র মানটি হবে $m_l = 0$, [2(0)+1 = 1] | l = 1 হলে m_l এর মান হবে -1, 0 এবং +1 [2(1)+1 = 3, 3টি p কক্ষক] | l = 2হলে $m_l = -2$, -1, 0, +1 এবং +2 হয় [2(2)+1 = 5, 5টি dকক্ষক] | এটা মনে রাখতে হবে যে m_l এর মান l এর মান থেকে পাওয়া যায় এবং l এর মান n এর মান থেকে পাওয়া যায় । তাহলে একটি পরমাণুর প্রত্যেকটি কক্ষককে প্রকাশ করা হয়েছে n, l এবং m_l এর মাণ সমন্বিত একটি সেট দ্বারা । কোয়েন্টাম সংখ্যা n = 2, l= 1, $m_l = 0$ দ্বারা যে কক্ষককে বর্ণনা করা হয়েছে সেটি হল দ্বিতীয় কক্ষের p উপকক্ষের একটি কক্ষক । নীচের তালিকায় উপকক্ষ ও সংশ্লিষ্ট কক্ষকের সংখ্যার মধ্যে সম্পর্ক টিকে দেখানো হয়েছে :

<i>l</i> এর মান	0	1	2	3	4	5
উপকক্ষের প্রতীক	S	р	d	f	g	h
কক্ষকের সংখ্যা	1	3	5	7	9	11

ইলেকট্রন ঘূর্ণন 's': একটি পরমাণুর কক্ষকের শস্তি, আকৃতি এবং অভিবিন্যাস, খুব ভালোভাবে ব্যাখ্যা করা যায় বর্ণিত তিনটি কোয়ান্টাম সংখ্যা দ্বারা। যদিও বহু ইলেকট্রন সমৃদ্ধ পরমাণুর রেখা বর্ণালীর ব্যাখ্যায় এই সকল কোয়ান্টাম সংখ্যাই যথেন্ট নয়, অর্থাৎ, কিছু সংখ্যক রেখাংশ প্রকৃতপক্ষে ডাবলেট রূপে থাকে (দুটি লাইন ঘনিন্টভাবে সন্নিহিত), ট্রিপলেট (তিনটি লাইন ঘনিন্টভাবে সন্নিহিত) ইত্যাদি।

এটি সুপারিশ করে যে, তিনটি কোয়ান্টাম সংখ্যা দ্বারা যে শক্তি স্তরগুলো পাওয়া যায় এগুলো ছাড়াও আরও শক্তিস্তর এতে বর্তমান। 1925 খ্রিস্টাব্দে জর্জ উলেনব্যাক (George Uhlenbeck) এবং স্যামুয়েল গোড়স্মিট (Samuel Goudsmit) চতুর্থ কোয়ান্টাম সংখ্যার প্রস্তাবনা করেন যাকিনা ইলেকট্রনের ঘূর্ণন কোয়ান্টাম সংখ্যা (*m*,) নামে পরিচিত। একটি ইলেকট্রন তার নিজের অক্ষ বরাবর ঘূর্ণন করে যা পৃথিবীর নিজের অক্ষ বরাবর ঘূর্ণনের অনুরূপ। অন্যভাবে বলা যায়, ইলেকট্রনের আধান এবং ভর ছাড়াও নিজস্ব ঘূর্ণন কৌণিক কোয়ান্টাম সংখ্যা আছে। ইলেকট্রনের ঘূর্ণন কৌণিক ভরবেগ একটি ভেক্টর রাশি যার দুটি অভিবিন্যাস আছে, যা একটি মনোনিত অক্ষের সঙ্গো সম্পর্কযুক্ত। এই দুটি অভিবিন্যাস সনাস্ত করা যায় ঘূর্ণন কোয়ান্টাম সংখ্যা *m*ু দ্বারা যার মান ধরা হয় +¹/₂ এবং –¹/₂। এদের বলা হয় ইলেকট্রনের দুটি ঘূর্ণায়মান অবস্থা এবং সাধারণত দুইটি তীর চিহ্ন দ্বারা প্রকাশ করা হয়, ↑ (উর্দ্বেঘূর্ণন) এবং ↓ (নিম্নঘূর্ণন)। দুটি ইলেকট্রন যাদের *m*ু এর মান ভিন্ন (একটি +¹/₂ এবং অন্যটির – ¹/₂) এদের বিপরীত ঘূর্ণন আছে বলা হয়।

একটি কক্ষক দু'টির বেশি ইলেকট্রন ধারণ করতে অক্ষম এবং এই দুটি ইলেকট্রন অবশ্যই বিপরীত ঘূর্ণন যুক্ত হবে।

চারটি কোয়ান্টাম সংখ্যা যে তথ্য প্রদান করে তা সংক্ষেপে এইরকম—

- i) n দ্বারা কক্ষ, কক্ষকের আকার এবং বৃহৎ পরিসরে কক্ষকের শক্তির পরিমাণ নির্ণয় করা যায়।
- ii) n তম কক্ষে, n সংখ্যক উপকক্ষ বর্তমান। l দ্বারা উপকক্ষ সনাক্ত করা যায় এবং কক্ষকের আকৃতি নির্ধারণ করা যায় (অনুচ্ছেদ 2.6.2 দেখো) একটি উপকক্ষে (2l+1) সংখ্যক প্রত্যেক প্রকারের কক্ষক আছে, অর্থাৎ প্রতি উপকক্ষে একটি s কক্ষক (l = 0), তিনটি p কক্ষক (l = 1) এবং পাঁচটি d কক্ষক (l = 2)। একটি বহু ইলেকট্রন বিশিষ্ট পরমাণুর ক্ষেত্রে l দ্বারা কিছু পরিমাণে কক্ষকের শক্তিও পরিমাপ করা যায়।

কক্ষ, কক্ষক এবং এদের গুরুত্ব (Orbit, orbital and its importance)

কক্ষ এবং কক্ষক সমাৰ্থক নয়। বোর প্রস্তাবিত একটি কক্ষ হচ্ছে একটি বৃত্তাকার পথ যা নিউক্লিয়াসকে কেন্দ্র করে আছে এবং একটি ইলেকট্রন এই পথ বরাবর চলাচল করে। হাইসেনবার্গের অনিশ্চয়তা, নীতি অনুসারে এই পথের সঠিক বর্ণনা দেওয়া প্রায় অসস্তব। তাই বোর কক্ষের কোনো প্রকৃত অর্থ নেই এবং এদের অস্তিত্ব পরীক্ষামূলকভাবে প্রমাণ করা সম্ভব নয়। অন্যদিকে, একটি পারমাণবিক কক্ষক হচ্ছে কোয়ান্টাম বলবিদ্যা ঘটিত ধারণা এবং যা বোঝায় পরমাণুর একটি ইলেকট্রন এর তরঙ্গা অপেক্ষক ψ । এটি চিহ্নিত করা যায় তিনটি কোয়ান্টাম সংখ্যা (n, lএবং m_l) দ্বারা এবং এর মান ইলেকট্রনের স্থানাঙ্কের উপর নির্ভর করে। ψ এর নিজস্ব কোনো ভৌত তাৎপর্য নেই। তরঙ্গা অপেক্ষক এর বর্গ অর্থাৎ $|\psi|^2$ এর ভৌত তাৎপর্য আছে। পরমাণুর কোনো একটি বিন্দুতে $|\psi|^2$ এর যে মান পাওয়া যায় তা ওই বিন্দুতে সম্ভাবনা ঘনত্ব। সম্ভাবনা ঘনত্ব $(|\psi|^2)$ হচ্ছে প্রতি একক আয়তনে সম্ভাবনা এবং $|\psi|^2$ ও একটি ছোটো আয়তনের (যা কিনা পরমাণু আয়তন হিসেবে পরিচিত) গৃণফল থেকে ওই আয়তনে ইলেকট্রন পাওয়ার সম্ভাবনা বোঝায় (একটি ক্ষুদ্র আয়তন যুক্ত মৌল বলার কারণ হচ্ছে $|\psi|^2$ এর মান এক অঞ্চল থেকে অন্য অঞ্চলে পরিবর্তিত হয় কিন্তু একটি ক্ষুদ্র আয়তনযুক্ত মৌলের ক্ষেত্রে এর মান ধ্রুবকে ধরা হয়)। একটি নির্দিন্ট আয়তনে মোট ইলেকট্রন পাওয়ার সম্ভাবনা নির্ণয় করা যায় $|\psi|^2$ এর সম্ভাব্য সমস্ত মানের যোগফল এবং মৌলের সহগামী আয়তন থেকে। এখান থেকেই একটি কক্ষকে অবস্থিত একটি ইলেকট্রনের সম্ভাব্য বিন্যাস/বন্টন পাওয়া যাবে।

- iii) m₁, কক্ষকের অভিবিন্যাস নির্দেশ করে, *l* এর একটি নির্দিষ্ট মানের জন্য, m₁ এর মান (2*l*+1), যা কি না উপকক্ষে অবস্থিত কক্ষকের সংখ্যার সমান। এর অর্থ হচ্ছে, যেভাবে তারা অভিবিন্যস্ত থাকে তার সংখ্যাই কক্ষকের সংখ্যা।
- iv) *m*ূইলেকট্রন ঘূর্ণনের অভিমুখ প্রকাশ করে।

সমস্যা 2.17

মুখ্য কোয়ান্টাম সংখ্যা n=3 হলে মোট কক্ষকের সংখ্যা নির্ণয় করো।

সমাধান

n = 3 এর জন্য, l এর সম্ভাব্য মান 0, 1 এবং 2। অর্থাৎ এখানে একটি 3s কক্ষক (n = 3, l = 0 এবং m_l = 0); তিনটি 3p কক্ষক (n = 3, l = 1 এবং m_l = -1, 0, +1); পাঁচটি 3d কক্ষক (n = 3, l = 2 এবং m_l = -2, -1, 0, +1+, +2)।

তাহলে, মোট কক্ষকের সংখ্যা 1+3+5 = 9 এই একই মান পাওয়া যায়, কক্ষকের সংখ্যা = n^2 এই সম্পর্ক দ্বারা, অর্থাৎ $3^2 = 9$ ।

সমস্যা 2.18

s, p, d, f প্রতীক ব্যবহার করে নিম্নোক্ত কোয়ান্টাম সংখ্যা দ্বারা কক্ষক সমূহ বর্ণনা করো।

(a) n = 2, l = 1, (b) n = 4, l = 0, (c) n = 5, l = 3, (d) n = 3, l = 2

সমাধান

	п	l	কক্ষক
a)	2	1	2p
b)	4	0	4s
c)	5	3	5f
d)	3	2	3 <i>d</i>

2.6.2 পারমাণবিক কক্ষকের আকৃতি (Shapes of Atomic Orbitals)

চিত্র 2.12 লেখচিত্র (a) কক্ষক তরঙ্গা অপেক্ষক Ψ (r); (b) 1s এবং 2s কক্ষকের জন্য সম্ভাব্য ঘনত্ব Ψ² (r) সেটি নিউক্লিয়াস থেকে ইলেকট্রনের দূরত্ব (r) এর একটি অপেক্ষক এর পরিবর্তন।

2.12(a), 1s (n = 1, l = 0) এবং 2s (n = 2, l = 0) কক্ষকের জন্য সেরুপ একটি লেখাচিত্র।

জার্মান পদার্থবিদ ম্যাক্স বর্ণ (Max Born) অনুসারে একটি বিন্দুতে তরঙ্গা অপেক্ষক এর বর্গ (অর্থাৎ | ψ |²) ঐ বিন্দুতে ইলেকট্রনের সম্ভাব্য অবস্থান ঘনত্ব বোঝায়। *r* অপেক্ষকের সাপেক্ষে ψ^2 এর পরিবর্তন, 1s এবং 2s কক্ষকের জন্য চিত্র 2.12(b) তে দেওয়া হল। এখানে আবার, তোমার মনে রাখা প্রয়োজন যে 1s এবং 2s কক্ষকের লেখচিত্রগুলো ভিন্ন।

এটা উল্লেখ করা যেতে পারে যে 1s কক্ষকের জন্য সম্ভাব্যতা ঘনত্ব নিউক্লিয়াসে সর্বোচ্চ এবং এটি থেকে দূরে সরে গেলে এই মান ক্রমশ কমতে থাকে।

অন্যদিকে, 2s কক্ষকের জন্য সম্ভাব্য ঘনত্ব প্রথমে দুত কমে শূন্য হয় এবং পুনরায় বাড়তে শুরু করে। একটি ক্ষুদ্র সর্বোচ্চ বিন্দুতে পৌঁছানোর পর এটি আবার কমতে থাকে এবং শূন্যের কাছাকাছি আসে যখন r এর মান পুনরায় বৃদ্ধি পায়। যে অঞ্চলে এই সম্ভাব্য ঘনত্ব অপেক্ষক কমে শূন্য হয় তা নিস্পন্দ তল (Nodal surfaces) বা কেবল নোড বলে। সাধারণভাবে, এটা পাওয়া গেছে যে ns কক্ষকের (n – 1) সংখ্যক নোড আছে, অর্থাৎ নোডের সংখ্যা মুখ্য কোয়ান্টাম সংখ্যা n বৃদ্ধির সাথে সাথে বৃদ্ধি পায়। অন্যভাবে 2s

রসায়ন

চিত্র 2.13 (a) 1s এবং 2s পারমাণবিক কক্ষকের সম্ভাব্য ঘনত্ব লেখচিত্র। ডটগুলোর ঘনত্ব ওই অঞ্চলের ইলেকট্রনের সম্ভাব্য ঘনত্বকে বোঝায়।

(b) 1s এবং 2s কক্ষকের পরিসীমা পৃষ্ঠ রেখাচিত্র।

দেখানো হল। এই সমস্ত চিত্রে নিউক্লিয়াসকেই মূল বিন্দু হিসেবে ধরা হয়েছে। এই ক্ষেত্রে, s-কক্ষকের মত পরিসীমা পৃষ্ঠ চিত্র গোলাকার নয়। এর পরিবর্তে প্রতিটি p-কক্ষক্ষের দুটি অংশ থাকে যাকে লোবস (lobes) বলে। যা নিউক্লিয়াসের মধ্য দিয়ে প্রবাহিত হয়ে সমতলের দুই দিকে অবস্থান করে। দুটি লোবস্ যে বিন্দুতে পরস্পারকে স্পর্শ

কক্ষকের এর জন্য নোডের সংখ্যা 1, 3s কক্ষকের এর জন্য 2 এবং এভাবে চলতে থাকে।

এরূপ সম্ভাব্য ঘনত্বের পরিবর্তন আধান-মেঘ চিত্রের (charge cloud diagrams) দ্বারা দেখানো যায় [চিত্র 2.13(a)]। এই চিত্রে একটি অঞ্চলের মধ্যে ডটগুলোর ঘনত্ব ওই অঞ্চলের ইলেকট্রন সম্ভাব্য ঘনত্বকে বুঝায়।

বিভিন্ন কক্ষকের জন্য একটি নির্দিষ্ট সম্ভাব্য ঘনত্বে পরিসীমা পৃষ্ঠ রেখাচিত্র কক্ষকের আকৃতির একটি মোটামুটি ভাল উপস্থাপনা। এই উপস্থাপনায়, একটি কক্ষকের জন্য আঁকা একটি **পরিসীমা পৃষ্ঠ** বা **সীমাসূচক রেখা** পৃষ্ঠের সম্ভাব্য ঘনত্ব। $|\psi|^2$ এর মান ধ্রুবক।

নীতিগতভাবে এরূপ অনেক পরিসীমা পৃষ্ঠ সম্ভব। অধিকন্তু একটি নির্দিষ্ট কক্ষকের জন্য, শুধুমাত্র একটি ধ্রুবক সম্ভাব্য ঘনত্ব* ঐ পরিসীমা পৃষ্ঠ লেখচিত্রটি কক্ষকের আকৃতির জন্য একটি ভালো উপস্থাপনা হিসেবে ধরা হয়। যা কি না একটি ঘেরা অঞ্চল অথবা আয়তন যেখানে ইলেকট্রন পাওয়ার সম্ভাবনা খুব বেশি, ধরো 90% চিত্র 2.13(b) তে 1s এবং 2s কক্ষকের পরিসীমা পৃষ্ঠ লেখচিত্র দেওয়া হলো। যে কেউ প্রশ্ন করতে পারে: কেন আমরা একটি ঘেরা অঞ্চলের পরিসীমা পৃষ্ঠ লেখচিত্র আঁকতে পারি না, যেখানে ইলেকট্রন পাওয়ার সম্ভাবনা 100 % ? এই প্রশ্নের উত্তর হল নিউক্লিয়াস থেকে যে কোনো অসীম দূরত্বই হউক না কেন সম্ভাব্য দূরত্ব $|\psi|^2$ এর কিছু মান থাকবে, যতই ক্ষুদ্র হউক না কেন। সুতরাং একটি নির্দিষ্ট আকারের পরিসীমা পৃষ্ঠ গঠন চিত্র যেখানে ইলেকট্রন পাওয়ার সম্ভাবনা 100% তা আঁকা সম্ভব নয়। s কক্ষকের জন্য পরিসীমা পৃষ্ঠ চিত্র আসলে গোলাকাকার যা নিউক্লিয়াসের উপর কেন্দ্রীভূত। দ্বিমাত্রিক অবস্থায়, এই গোলকটি দেখতে বৃত্তাকার। এটি একটি ঘেরা অঞ্চল যেখানে ইলেকট্রন পাওয়ার সম্ভাবনা প্রায় 90%।

তাই আমরা 1s এবং 2s কক্ষককে গোলাকাকৃতি দেখতে পাই। প্রকৃতপক্ষে, সমস্ত s কক্ষকসমূহ গোলীয়ভাবে প্রতিসম, অর্থাৎ একটি নির্দিষ্ট দূরত্বে ইলেকট্রন পাওয়ার সম্ভাবনা সবদিক দিয়েই সমান। এটি আরো পরিলক্ষিত হয়েছে যে s কক্ষকের আকার n এর মান বৃদ্ধি পাওয়ার সাথে সাথে বৃদ্ধি পায়। অর্থাৎ 4s > 3s > 2s > 1s এবং মুখ্য কোয়ান্টাম সংখ্যা বৃদ্ধির সাথে ইলেকট্রন ও নিউক্লিয়াস থেকে দূরে পাওয়া যায়।

চিত্র 2.14 এ তিনটি 2p কক্ষকের (l=1) পরিসীমা পৃষ্ঠ চিত্র

* যদি সম্ভাব্য ঘনত্ব ।♥|² একটি নির্দিন্ট পৃষ্ঠের জন্য ধ্রুবক হয়, তাহলে ওই তলে ।♥| ও ধ্রুবক হবে। ।♥|² এবং ।♥| এর পরিসীমা পৃষ্ঠ অভিন্ন।
করে সেই বিন্দুতে এই সম্ভাব্য ঘনত্ব অপেক্ষক এর মান শূন্য। তিনটি কক্ষকের আকার, আকৃতি এবং শক্তির পরিমাণ সমতূল্য। লোবসের অভিবিন্যাস দ্বারা এই কক্ষকসমূহের পার্থক্য নিরূপণ করা যায়। মনে করা হয় যে এই সমস্ত লোবস সমূহ x, y অথবা z অক্ষ বরাবর অবস্থিত এবং $2p_x$, $2p_y$, এবং $2p_z$ এদের দ্বারা চিহ্নিত করা হয়েছে। অধিকন্তু, আমাদের মনে রাখতে হবে যে, m_1 (-1, 0, +1) এর মান এবং x, y, z এর অভিমুখ এর মধ্যে সাধারণভাবে কোনো সম্পর্ক নেই। আমাদের জন্য এটি মনে রাখা যথেন্ট প্রয়োজন যে, কারণ m_1 এর তিনটি সম্ভাব্য মানের জন্য তিনটি p কক্ষকের অক্ষগুলো

চিত্র 2.15 পাঁচটি 3d কক্ষকের পরিসীমা পৃষ্ঠ রেখাচিত্র।

পরস্পরের সাথে লম্ভভাবে অবস্থিত। s কক্ষকের মত p কক্ষকের আকার ও শক্তির মানও মুখ্য কোয়ান্টাম সংখ্যা বৃদ্ধির সাথে সাথে বৃদ্ধি পায় এবং তাই বিভিন্ন p কক্ষকের শক্তির ক্রম এবং আকার এইরূপ 4p > 3p > 2p । অধিকন্তু, s কক্ষকের ন্যায়, p কক্ষকের সম্ভাব্য ঘনত্ব অপেক্ষকের মান, শূন্য এবং অসীম দূরত্ব ছাড়াও শূন্য হতে পারে যখন নিউক্লিয়াস থেকে দূরত্ব বৃদ্ধি পায়। নোডের সংখ্যা n-2 দ্বারা প্রকাশ করা হয়, যেখানে 3p কক্ষকের জন্য অরীয় নোড (radial node) এর সংখ্যা 1 এবং 4p কক্ষকের জন্য 2 এবং এভাবে চলতে থাকে।

l = 2 এর জন্য, যে কক্ষক আছে তা *d*- কক্ষক নামে পরিচিত এবং মুখ্য কোয়ান্টাম সংখ্যার (*n*) সর্বনিম্ন মান 3 কারণ *l* এর মানটি (*n*-1) থেকে বড়ো হতে পারে না । *l* = 2 এর জন্য *m*₁এর পাঁচটি মান আছে (-2, -1, 0, +1, +2) এবং তাই পাঁচটি *d* কক্ষক পাওয়া যায় । চিত্র 2.15 এ *d* কক্ষকের পরিসীমা পৃষ্ঠ চিত্র দেখানো হল ।

পাঁচটি *d* কক্ষকের নামকরণ করা হয়েছে d_{xy} , d_{yz} , d_{xz} , $d_{x^2-y^2}$ এবং d_z^2 হিসাবে। প্রথম চারটি *d* কক্ষকের আকৃতি একই রকম, অন্যদিকে পঞ্চম কক্ষকটি অর্থাৎ d_{z^2} এর আকৃতি অন্যদের থেকে আলাদা। কিন্তু পাঁচটি 3*d* কক্ষকের শক্তি সমতূল্য। *n* এর মান 3 অপেক্ষা বেশি এরূপ *d* কক্ষকগুলোর (4*d*, 5*d*...) আকৃতি, 3*d* কক্ষকের মত কিন্তু শক্তির পরিমাণ এবং আকার ভিন্ন।

অরীয় নোড ছাড়া (অর্থাৎ সম্ভাব্য ঘনত্ব অপেক্ষক এর মান শূন্য), np এবং nd কক্ষকের জন্য সম্ভাব্য ঘনত্ব অপেক্ষক এর মান, নিউক্রিয়াস (মূলবিন্দু) দিয়ে গেছে এরুপ তলে শূন্য হয়। উদাহরণস্বরূপ, p_z কক্ষকের ক্ষেত্রে, xy তলটি হল নোডাল তল, d_{xy} কক্ষকের ক্ষেত্রে দুটি নোডাল তল আছে যা মূল বিন্দু দিয়ে যায় এবং z অক্ষ বরাবর xy তলকে দ্বিখণ্ডিত করে। এদের কৌণিক নোড (angular node) বলে এবং কৌণিক নোড সংখ্যা 'l' দ্বারা প্রকাশ করা হয়। অর্থাৎ p কক্ষকের জন্য কৌণিক নোড একটি, d কক্ষকের জন্য কৌণিক নোডের সংখ্যা দুইটি এবং এভাবে চলতে থাকে। মোট নোডের সংখ্যা প্রকাশ করা হয় (n–1) দ্বারা, অর্থাৎ, কৌণিক নোড l এবং অবীয় নোড (n–l–1) এর যোগ ফল।

2.6.3 কক্ষকসমূহের শক্তি (Energies of Orbitals)

হাইড্রোজেন পরমাণুতে অবস্থিত একটি ইলেকট্রনের শক্তির পরিমাণ কেবলমাত্র মুখ্য কোয়ান্টাম সংখ্যা দ্বারাই নির্ণয় করা যায়। তাই নিম্নোক্তভাবে কক্ষকসমূহের শক্তির পরিমাণ বৃদ্ধি পায়:

পরিমাণ, যা হাইড্রোজেন পরমাণুর থেকে অন্যরকম, তা শুধুমাত্র এর মুখ্য কোয়ান্টাম সংখ্যার (কক্ষ) উপরই নির্ভর করে না, অধিকন্তু দিঘংশীয় কোয়ান্টাম সংখ্যার (উপকক্ষ) উপরও নির্ভরশীল। অর্থাৎ একটি নির্দিষ্ট মখ্য কোয়ান্টাম সংখ্যার জন্য s. p, d, f... কক্ষক সমূহের শক্তির পরিমাণ ভিন্ন। একটি প্রদত্ত মুখ্য কোয়ান্টাম সংখ্যার মধ্যে কক্ষক সমূহের শক্তি s<p<d<f ক্রমাণুসারে বৃদ্ধি পায়। উচ্চতর শক্তিস্তরের ক্ষেত্রে কক্ষক সমূহ যেমন 4s<3d এবং 6s<5d; 4f<6p এর কক্ষক শস্তির এই পার্থক্য উল্লেখযোগ্যভাবে সুস্পষ্ট এবং আশ্চর্যজনক। বহু ইলেকট্রন বিশিষ্ট পরমাণুর মধ্যে কক্ষক সমূহের বিভিন্ন রকমের শস্তির প্রধান কারণ হল ইলেকট্রন সমূহের পারস্পরিক বিকর্ষণ। হাইড্রোজেন পরমাণুতে ঋণাত্মক আধান যুক্ত ইলেকট্রন এবং ধনাত্মক আধানযুক্ত নিউক্লিয়াসের আকর্ষণজনিত কারণে শুধুমাত্র বৈদ্যুতিক মিথস্ক্রিয়া বর্তমান থাকে। বহু ইলেকট্রন বিশিষ্ট পরমাণু সমূহে, ইলেকট্রন এবং নিউক্লিয়াসের মধ্যেকার আকর্ষণ বল ছাড়াও প্রত্যেকটি ইলেকট্রনের সাথে অন্য ইলেকট্রনের বিকর্ষণ বলও বর্তমান থাকে। তাই বহু ইলেকট্রন বিশিষ্ট পরমাণতে একটি ইলেকট্রন এর স্থায়িত্বের কারণ হল মোট আকর্ষণ মিথস্ক্রিয়া, বিকর্ষণ মিথস্ক্রিয়া অপেক্ষা বেশি হওয়া। সাধারণভাবে বহিঃস্থ কক্ষে উপস্থিত ইলেকট্রন সমূহের বিকর্ষণজনিত মিথস্ক্রিয়া থেকে অন্তঃস্থ কক্ষের ইলেকট্রন সমূহের বিকর্ষণ মিথস্ক্রিয়া অধিক গুরুত্বপূর্ণ। অন্যদিকে, ইলেকট্রনের আকর্ষণজনিত মিথস্ক্রিয়া বৃদ্ধি পায় নিউক্লিয়াসে উপস্থিত ধনাত্মক আধান (Ze) বৃদ্ধির সাথে। অন্তঃস্থ কক্ষে ইলেকট্রন সমূহ নিউক্লিয়াসের মোট ধনাত্মক আধান (Ze) এর আকর্ষণ বল উপলব্ধি করে না। এই প্রভাব কমতে থাকে কারণ নিউক্রিয়াসের ধনাত্মক আধান অন্তঃস্থ কক্ষের ইলেকট্রন দ্বারা আংশিক আবৃত থাকে। যা কি না বহিঃস্থ কক্ষের ইলেকট্রন সমূহ নিউক্লিয়াস থেকে অন্তঃস্থ কক্ষের ইলেকট্রন সমূহ দ্বারা আবরণ নামে পরিচিত এবং বহিঃস্থ ইলেকট্রন সমূহ মোট সে ধনাত্মক আধান অনুভব করে তা কার্যকরী নিউক্লিয় আধান (Z_{eff} e) নামে পরিচিত। অন্তঃস্থ ইলেকট্রন সমূহ দ্বারা নিউক্লিয়াস থেকে বহিঃস্থ ইলেকট্রন সমূহে আবরণী প্রভাব থাকা সত্ত্বেও বহিঃস্থ ইলেকট্রন সমূহ যে আকর্ষণ বল অনুভব করে তা নিউক্লিয় আধান বৃদ্ধির সাথে বৃদ্ধি পায়। অন্যদিকে পরমাণু ক্রমাঞ্চ (Z) বুদ্ধির সাথে সাথে নিউক্লিয়াস এবং ইলেকট্রন (অর্থাৎ কক্ষকের শক্তি) মধ্যকার মিথস্ক্রিয়া জনিত শক্তির পরিমাণ হাস পায় (অর্থাৎ বেশি ধনাত্মমক হয়)।

এই উভয় আকর্ষণ এবং বিকর্ষণ মিথস্ক্রিয়া নির্ভর করে ইলেকট্রন

$$1s < 2s = 2p < 3s = 3p = 3d < 4s = 4p = 4d$$

= 4f < (2.23)

এবং চিত্র 2.16 এ তা দেখানো হয়েছে। যদিও, 2s এবং 2p কক্ষকের আকৃতি ভিন্ন, তথাপি একটি ইলেকট্রন 2s কক্ষক বা 2p কক্ষক যেখানেই থাক না কেন- এর শক্তির পরিমাণ একই থাকে। একই শক্তি সম্পন্ন কক্ষকদের সমশক্তি সম্পন্ন (degenerate) বলা হয়। পূর্বেই বলা হয়েছে যে, হাইড্রোজেন পরমাণুর 1s কক্ষকটি সবচেয়ে স্থিতিশীল অবস্থায় থাকে এবং একে ভূমিস্তর বলা হয়। এই কক্ষকে অবস্থিত ইলেকট্রন নিউক্লিয়াস দ্বারা সবচেয়ে দৃঢ়ভাবে আবন্ধ। একটি ইলেকট্রন হাইড্রোজেন পরমাণুতে যখন 2s, 2p অথবা অন্য উচ্চশক্তিস্তরে অবস্থান করে তাকে উত্তেজিত অবস্থা বলা হয়।

(a) হাইড্রোজেন পরমাণু এবং (b) বহু ইলেকট্রন বিশিষ্ট পরমাণু। মনে রাখবে যে হাইড্রোজেন পরমাণুর ক্ষেত্রে দিঘংশীয় (azimuthal) কোয়ান্টাম সংখ্যার মান ভিন্ন হলেও একই মুখ্য (principal) কোয়ান্টাম সংখ্যার মান বিশিষ্ট কক্ষদের শক্তি সমান। বহু ইলেকট্রনীয় পরমাণু সমূহের ক্ষেত্রে মুখ্য কোয়ান্টাম সংখ্যার মান সমান হলে বিভিন্ন দিঘংশীয় কোয়ান্টাম সংখ্যা বিশিষ্ট কক্ষক সমীহের শক্তি বিভিন্ন।

যে কক্ষে উপস্থিত থাকে এবং কক্ষকের আকৃতির উপর। উদাহরণস্বরূপ ইলেকট্রন এর উপস্থিতি গোলাকাকার s কক্ষকে হলে বহিঃস্থ ইলেকট্রন সমূহ দ্বারা নিউক্লিয়াস থেকে যে আবরণ অনুভব করে তা p কক্ষকে বর্তমান ইলেকট্রন অপেক্ষা অধিক কার্যকরী। অনুরূপে, p কক্ষকে বর্তমান ইলেকট্রন সমূহ বহিঃস্থ ইলেকট্রন, নিউক্লিয়াস থেকে যে আবরণ অনুভব করে তা d কক্ষকে বর্তমান ইলেকট্রন থেকে বেশি, যদিও এই সমস্ত কক্ষক একই কক্ষে অবস্থান করে। অধিকন্তু একটি কক্ষের মধ্যে, s কক্ষকের গোলাকার আকৃতির জন্য, s কক্ষকের ইলেকট্রন p কক্ষকের ইলেকট্রনের তুলনায় বেশি সময় নিউক্লিয়াসের কাছে ঘন সন্নিবিস্ট থাকে। একইভাবে p কক্ষকে উপস্থিত ইলেকট্রন d কক্ষকের ইলেকট্রনের তুলনায় বেশি সময় নিউক্লিয়াসের কাছাকাছি থাকে। অন্যদিকে, একটি নির্দিষ্ট কক্ষের (মুখ্য কোয়ান্টাম সংখ্যা) একটি ইলেকট্রন যে Z_{eff} অনুভব করে তা দিঘংশীয় কোয়ান্টাম সংখ্যা (1) বৃদ্ধির সাথে হ্রাস পায় অর্থাৎs কক্ষকের ইলেকট্রন p কক্ষকের ইলেকট্রনের তুলনায় খুবই শক্তভাবে নিউক্লিয়াসে আবদ্ধ থাকে এবং p কক্ষকের ইলেকট্রন, d কক্ষকের ইলেকট্রনের তুলনায় শস্তুভাবে আবদ্ধ থাকে। s কক্ষকের ইলেকট্রন এর শস্তির পরিমাণ, p কক্ষকের ইলেকট্রনের তুলনায় কম (বেশি ঋণাত্মক) এবং p কক্ষকের ইলেকট্রনের শক্তির পরিমাণ d কক্ষকের ইলেকট্রনের তুলনায় কম এবং এভাবে চলতে থাকে। যেহেতু নিউক্লিয়াস থেকে আবরণের পরিমাণ বিভিন্ন কক্ষকে অবস্থিত ইলেকট্রনের জন্য ভিন্ন হয়, তাই এটি একই কক্ষের (অথবা একই কোয়ান্টাম সংখ্যা) শক্তিস্তরের বিভাজন এর ব্যাপারটি পরিচালনা করে। অর্থাৎ যা পুর্বেই বলা হয়েছিল যে একটি কক্ষকে ইলেকট্রনের শক্তি নির্ভর করে n এবং l এর মানের উপর। গাণিতিকভাবে, কক্ষকের শক্তির পরিমাণ যে n এবং l এর মানের উপর নির্ভরশীল তা অত্যন্ত জটিল কিন্তু একটি সাধারণ সূত্র আছে তা হল, একটি কক্ষকের জন্য (n + l) এর মান সমান হয়, তবে যার n এর মান কম তার শক্তির পরিমাণও কম। সারণি 2.5 এ (n+l) এর সূত্র বর্ণনা করা হয়েছে এবং বহু ইলেকট্রন বিশিষ্ট পরমাণুর শক্তির স্তরসমূহ চিত্র 2.16 এ প্রদর্শন করা হয়েছে। এটা উল্লেখ করা যেতে পারে যে, একটি নির্দিষ্ট কক্ষের বিভিন্ন উপকক্ষে বহু ইকেট্রন বিশিষ্ট পরমাণুর ক্ষেত্রে শক্তি বিভিন্ন হয়। অধিকন্তু, হাইড্রোজেন পরমাণুতে, এদের শক্তির পরিমাণ সমান। পরিশেষে, এটি এখানে উল্লেখ করা প্রয়োজন যে একই উপকক্ষে বর্তমান কক্ষক সমূহের শক্তির পরিমাণ

কক্ষক	n এর মান	/ এর মান	(n + l) এর মান	
1 <i>s</i>	1	0	1 + 0 = 1	
2s	2	0	2 + 0 = 2	
2p	2	1	2 + 1 = 3	2p (n=2) এর শক্তির পরিমাণ কম
3s	3	0	3 + 0 = 3	3s (n=3)
3p	3	1	3 + 1 = 4	3p (n =3) এর শক্তির পরিমাণ কম
4s	4	0	4 + 0 = 4	4s (n =4)
3d	3	2	3 + 2 = 5	3d (n =3) এর শক্তির পরিমাণ কম
4 <i>p</i>	4	1	4 + 1 =5	4p (n =4)

টেবিল 2.5 (n+l) সূত্রের উপর নির্ভর করে শক্তির পরিমাণ বৃষ্ধির সাথে কক্ষকের বিন্যাস

পরমাণু ক্রমাঞ্চন (Z_{eff}) বাড়ার সাথে হ্রাস পায়। উদাহরণস্বরূপ, হাইড্রোজেন পরমাণুর 2s কক্ষকের শস্তির পরিমাণ লিথিয়াম পরমাণুর 2s কক্ষকের তুলনায় বেশি এবং অনুরূপভাবে লিথিয়াম এর সোডিয়াম অপেক্ষা বেশি এবং এভাবে চলতে থাকে। অর্থাৎ $E_{2s}(H) > E_{2s}(Li) > E_{2s}(Na) > E_{2s}(K)$ ।

2.6.4পরমাণুর কক্ষকের পূর্তি প্রক্রিয়া (Filling of Orbitals
in Atom)

বিভিন্ন পরমাণুর ক্ষেত্রে কক্ষকে ইলেকট্রন পূর্তি পাউলির অপবর্তন নীতর উপর ভিত্তি করে **আফবাও নীতি** অনুসারে হয়। হুন্ডের সর্বাধিক বহুকতা সূত্র এবং কক্ষকের আপেক্ষিক শক্তিস্তরের উপরও নির্ভর করে।

আফ্বাও নীতি (Aufbau Principle)

'আফবাও' একটি জার্মান শব্দ যার অর্থ 'গড়ে তোলা'। কক্ষকের গড়ে তোলার অর্থ হচ্ছে কক্ষকে ইলেকট্রন পূর্তি করা। এই নীতির অনুসারে পরমাণুগুলোর ভূমিস্তরে, কক্ষকগুলোর গতি তাদের শস্তির উধ্বর্কমে হয়। অন্যভাবে বলতে গেলে, ইলেকট্রন সমূহ প্রথম ভর্তি হয় কম শস্তি বিশিষ্ট সহজলভ্য কক্ষকে এবং তারপর শুধুমাত্র নিম্ন শস্তিস্তরের কক্ষক ভর্তি হওয়ার পরই ইলেকট্রন উচ্চশস্তি বিশিষ্ট কক্ষকে প্রবেশ করে। যেহেতু তোমরা উপরে পড়েছ একটি প্রদত্ত কক্ষকের শস্তি নির্ভর করে কার্যকরী নিউক্লিয় আধানের উপর এবং বিভিন্ন প্রকারের কক্ষক সমূহ বিভিন্নভাবে প্রভাবিত হয়। তাই সমস্ত পরমাণুর ক্ষেত্রে সর্বজনীনভাবে কক্ষক সমূহের শস্তির কোন সঠিক ক্রম নেই।

অধিকন্তু, কক্ষক সমূহের শক্তির নিম্নলিখিত ক্রমটি বিশেষভাবে উপযোগী :

1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 4f, 5d, 6p, 7s...

এই ক্রম যে পদ্ধতিতে মনে রাখা যায় তা চিত্র 2.17 এ দেওয়া

চিত্র 2.17 কক্ষক সমূহের পূর্তির ক্রম

রসায়ন

হলো । উপর থেকে শুরু করে, তিরসমূহের অভিমুখ দ্বারা কক্ষক পূর্তির ক্রম নির্দেশ করে, অর্থাৎ বাঁদিকের উপর থেকে ডান দিকের নীচ পর্যন্ত । সকল পরমাণুর ক্ষেত্রে এটি উল্লেখযোগ্যভাবে সঠিক যে, যোজন কক্ষের যোজ্যতা ইলেকট্রনগুলোর সাথে ইহা সম্পর্কিত । উদাহরণস্বরূপ, এই ক্রম অনুসারে অনুমান করা যায় যে পটাশিয়ামের যোজ্যতা ইলেকট্রন অবশ্যই 3d এবং 4s কক্ষকে পাওয়া যায় । শক্তিস্তরের পূর্তির ক্ষেত্রে উপরের ক্রমটি থেকে একটি প্রাথমিক ধারণা পাওয়া যায় । অনেক ক্ষেত্রে, কক্ষক সমূহ সমশক্তি সম্পন্ন হয় এবং পরমাণু গঠনের স্বল্প পরিবর্তনে পূর্তির ক্রমের পরিবর্তন হয় । তা সত্ত্বেও উপরের ক্রমটি পরমাণুর ইলেকট্রনীয় গঠন বিন্যাসের জন্য প্রয়োজনীয় । এক্ষেত্রে কিছ ব্যত্রিক্রমও ঘটে ।

পাউলির অপবর্জন নীতি (Pauli Exclusion Principle)

বিভিন্ন কক্ষক সমূহ যে সংখ্যক ইলেকট্রন দ্বারা পূর্ণ করা হয় তা অপবর্জন নীতি দ্বারা সীমাবন্ধ, যা দিয়েছেন অস্টিয়ার বিজ্ঞানী উলফ্গ্যাংগ পাউলি (Wolfgang Pauli) (1926)। এই নীতি অনুসারে : একটি পরমাণুর যে কোন দুটি ইলেকট্রন এর চারটি কোয়ান্টাম সংখ্যার সেট একই হয়না। পাউলির অপবর্জন নীতি এভাবে ও বলা যেতে পারে : "শুধুমাত্র দুটি ইলেকট্রন একই কক্ষকে থাকতে পারে এবং এই ইলেকট্রনসমূহ অবশ্যই বিপরীতমুখী ঘূর্ণন হবে।" এর অর্থ হল, যে দুটি ইলেকট্রনের তিনটি কোয়ান্টাম সংখ্যা n, l এবং m, এর মান একই হতে পারে কিন্তু ঘূর্ণন কোয়ান্টাম সংখ্যার মান বিপরীত হবে। পাউলির অপবর্জন নীতি একটি কক্ষকের ইলেকটন সংখ্যার উপর যে সীমাবন্ধতাা তা চাপিয়ে ছিলেন এর সাহায্যে যে কোন একটি উপকক্ষের ইলেকট্রন ধারণ ক্ষমতা নির্ণয় করা যায়। উদাহরণস্বরপ, 1s উপকক্ষে একটি মাত্র কক্ষক বর্তমান এবং তাই 1s উপকক্ষে সর্বোচ্চ 2টি ইলেকট্রন থাকতে পারে, p এবং d উপকক্ষে সর্বোচ্চ ইলেকট্রন সংখ্যা 6 এবং 10 এবং এভাবেই চলতে থাকে। যার সারাংশ হচ্ছে : মুখ্য কোয়ান্টাম সংখ্যা n হলে, এ কক্ষে সর্বোচ্চ ইলেকট্রন সংখ্যার মান হবে2n²।

হুন্ডের সর্বাধিক মাল্টিপ্রিসিটি নিয়ম (Hund's Rule of Maximum Multiplicity)

এই সূত্র দ্বারা একই উপকক্ষে বর্তমান কক্ষকসমূহের ইলেকট্রন বিন্যাস ব্যাখ্যা করা যায় (অর্থাৎ, যে সকল কক্ষকের শক্তি সমান তাদের সমশন্তি সম্পন্ন কক্ষক বলে)।এই নীতি বন্তুব্য হল : **একটি উপকক্ষে** (*p*, *d* বা *f*) বর্তমান কক্ষক সমূহে ইলেকট্রন তখনই জোড় হবে যতক্ষণ না পর্যন্ত উপকক্ষের প্রত্যেকটি কক্ষকই অন্তত একটি ইলেকট্রন দ্বারা পূর্ণ হয়। অর্থাৎ একক (singly) ভাবে অধিকৃত থাকে।

যেহেতু 3টি p, 5টি d এবং 7টি f কক্ষক আছে, তাহলে p, d এবং f কক্ষকে ইলেকট্রন জোড় যথাক্রমে শুরু হবে বিন্যাসের চতুর্থ, ষষ্ঠ এবং অফ্টম ইলেকট্রনের ক্ষেত্রে। এটি পরিলক্ষিত হয় যে অর্ধপূর্ণ এবং সম্পূর্ণভাবে পূর্ণ সমশক্তি সম্পন্ন কক্ষক সমূহ তাদের নিজস্ব প্রতিসাম্যের জন্য বেশি স্থায়ী হয়।

2.6.5 পরমাণুর ইলেকট্রনীয় বিন্যাস (Electronic Configuration of Atoms)

একটি পরমাণুর কক্ষক সমূহে ইলেকট্রনের বন্টনকে **ইলেকট্রনীয়** বিন্যাস বলা হয়। যদি কেউ বিভিন্ন পারমাণবিক কক্ষক সমূহে ইলেকট্রন পূর্তির সাধারণ নিয়মগুলো মনে রাখে তবে খুব সহজেই সে ইলেকট্রনীয় বিন্যাস লিখতে পারবে।

বিভিন্ন পরমাণুর ইলেকট্রনীয় বিন্যাস দু'টিভাবে প্রকাশ করা যায়। উদাহরণস্বরূপ :

(i) s^a p^bd^c প্রতীক

(ii) কক্ষক চিত্ৰ

প্রথম প্রতীক, একটি উপকক্ষকে উপস্থাপন করা যায় নিজ নিজ অক্ষর চিহ্ন দ্বারা এবং উপকক্ষে বর্তমান ইলেকট্রন সংখ্যা a, b, c, ... ইত্যাদির মত শীর্ষ দেশে লিখন দ্বারা। বিভিন্ন কক্ষে বর্তমান একই প্রকারের উপকক্ষের মধ্যে পার্থক্য হয় প্রত্যেকটি উপকক্ষের পূর্বে লেখা মুখ্য কোয়ান্টাম সংখ্যা দ্বারা। দ্বিতীয় প্রতীকে উপকক্ষে অবস্থিত প্রত্যেকটি কক্ষককে প্রকাশ করা হয় একটি বাক্স চিহ্ন দ্বারা এবং ধনাত্মক দিকে ঘূর্ণনরত ইলেকট্রনকে তীর (1) দ্বারা অথবা ঋণাত্মক দিকে ঘূর্ণনরত ইলেকট্রনকে তীর (1) দ্বারা প্রকাশ করা হয়। দ্বিতীয় প্রতীক প্রথমটি অপেক্ষা সুবিধাজনক কারণ এর সাহায্যে চারটি কোয়ান্টাম সংখ্যা প্রকাশ করা যায়।

হাইড্রোজেন পরমাণুতে শুধুমাত্র একটি ইলেকট্রন বর্তমান যা সর্বনিম্ন শক্তি সম্পন্ন কক্ষক 1s এ যায়। হাইড্রোজেন পরমাণুর ইলেকট্রনীয় বিন্যাস 1s¹ এর অর্থ হচ্ছে এর একটি ইলেকট্রন 1s কক্ষকে আছে।হিলিয়ামে দ্বিতীয় ইলেকট্রনটিও 1sকক্ষকে থাকতে পারে। ফলে এর বিন্যাস 1s²। এই দুটি ইলেকট্রন একটি অপরটি থেকে বিপরীত ঘূর্ণনের জন্য আলাদা, যা পূর্বে বলা হয়েছে এবং কক্ষীয় চিত্র থেকে তা দেখা যায়।

Η	1	He	↑↓
	1s		1s

লিথিয়ামের (Li) তৃতীয় ইলেকট্রনটি পাউলীয় অপবর্জন নীতির কারণে 1s কক্ষকে প্রবেশ করতে পারে না। তাহলে এটি দ্বিতীয় সহজলভ্য পছন্দ অনুসারে, 2s কক্ষকে যায়। Li এর ইলেকট্রনীয় বিন্যাস 1s²2s¹ । 2s কক্ষক আরো একটি ইলেকট্রন ধারণ করতে পারে। রেবিলিয়াম (Be) পরমাণুর বিন্যাস, তাহলে 1s² 2s² (সারণি 2.6 দেখো, পৃষ্ঠা সংখ্যা 66 যেখানে মৌলদের ইলেকট্রনীয় বিন্যাস আছে)।

পরবর্তী ছয়টি মৌল বোরন (B, 1s²2s²2p¹), কার্বন (C, 1s²2s²2p²), নাইট্রোজেন (N, 1s²2s²2p³), অক্সিজেন (O, 1s²2s²2p⁴), ফ্লুরিন (F, 1s²2s²2p⁵) এবং নিওন (Ne, 1s²2s²2p⁶), যেখানে 2p কক্ষক ক্রমান্বয়ে ভর্তি হয়েছে। এই প্রক্রিয়াটি নিওন পরমাণুতে এসে সম্পূর্ণ হয়েছে। এই সমস্ত মৌলের কক্ষীয় চিত্র নিমোন্তভাবে প্রকাশ করা যায়:

সোডিয়াম (Na, 1s²2s²2p⁶3s¹) থেকে আর্গন (Ar,1s²2s²2p⁶3s²3p⁶) পর্যন্ত মৌলের ইলেকট্রন বিন্যাস পম্বতি লিথিয়াম থেকে নিওন পর্যন্ত মৌলের অনুরূপ। কেবল পার্থক্য শুধু এটাই যে এখান থেকে 3s এবং 3p কক্ষক সমূহের পূর্তি শুরু হয়েছে। এই পদ্বতিকে সহজ করা যায় আমরা যদি প্রথম দুটো কক্ষকের মোট ইলেকট্রন সংখ্যাকে নিওন মৌল (Ne) দ্বারা প্রকাশ করি। সোডিয়াম থেকে আর্গন পর্যন্ত মৌলদের ইলেকট্রনীয় বিন্যাস লেখা যায় (Na, [Ne]3s¹) হতে (Ar, [Ne] 3s²3p⁶)। যে সমস্ত কক্ষে ইলেকট্রন সম্পূর্ণভাবে পূর্ণ তারা অন্তঃস্থ ইলেকট্রন নামে পরিচিত এবং যে সমস্ত ইলেকট্রনীয় কক্ষে যুক্ত হয় তাদের **যোজ্যতা ইলেকট্রন** বলা হয়। উদাহরণস্বরূপ, Ne এ যে ইলেকট্রন থাকে তা অন্তঃস্থ (core) ইলেকট্রন এবং Na থেকে Ar-এ যে সকল ইলেকট্রন থাকে তারা **যোজ্যতা ইলেকট্রন**। পটাশিয়াম (K) এবং ক্যালসিয়াম (Ca) এর ক্ষেত্রে, 4s কক্ষকের শক্তি 3d কক্ষক অপেক্ষা কম, ফলে যথাক্রমে একটি ও দুটি ইলেকট্রন দ্বারা পূর্ণ হয়।

একটি নতুন পদ্ধতি অনুসরণ করা যা কি না শুরু হয়েছে স্ক্যানডিয়াম (Sc) থেকে। 3d কক্ষকের শক্তি 4p কক্ষকের অপেক্ষা কম বলে প্রথমে অধিকৃত হয়। ফলস্বরূপ পরবর্তী দশটি মৌলের জন্য, স্ক্যানডিয়াম (Sc), টাইটেনিয়াম (Ti), ভ্যানাডিয়াম (V), ক্রোমিয়াম (Cr), ম্যাঞ্চানিজ (Mn), আয়রন (Fe), কোবাল্ট (Co), নিকেল (Ni), কপার (Cu) এবং জিঙ্ক (Zn) যেখানে পাঁচটি 3d কক্ষক ক্রমান্বয়ে অধিকৃত হয়। এ ব্যাপারটি জানলে আমরা বিভ্রান্ত হতে পারি যে ক্রোমিয়াম এবং কপার এর ক্ষেত্রে যথাক্রমে 4s কক্ষকে দুটি করে এবং 3d কক্ষকে চারটি এবং নয়টির পরিবর্তে পাঁচটি এবং দশটি ইলেকট্রন থাকে। এর কারণ হচ্ছে সম্পূর্ণভাবে পূর্ণ এবং অর্ধপূর্ণ কক্ষক অধিক সুস্থিত (অর্থাৎ কম শক্তি সম্পন্ন)। তাই $p^3, p^6, d^5, d^{10}, f^7, f^{14}$ ইত্যাদি ইলেকট্রনীয় বিন্যাস, যারা কিনা অর্ধপূর্ণ অথবা সম্পূর্ণভাবে পূর্ণ তারা অধিক সুস্থিত। একারণে ক্রোমিয়াম এবং কপার যথাক্রমে d^5 এবং d^{10} ইলেকট্রনীয় বিন্যাস লাভ করে (অনুচ্ছেদ 2.6.7) [সতর্কতা: ব্যতিক্রম বিদ্যমান]।

3d কক্ষকের পূর্তির পর, 4p কক্ষক পূর্ণ হতে শুরু করে যা গ্যালিয়াম (Ga) থেকে শুরু করে ক্রিপটনে (Kr) সম্পূর্ণ হয়। এর পরবর্তী আঠারোটি মৌলের ক্ষেত্রে রুবিডিয়াম (Rb) থেকে জেনন (Xe) পর্যন্ত, 5s, 4d এবং 5p কক্ষক সমূহের (পূর্তির ধরন) 4s, 3d এবং 4p কক্ষকের মতো যা উপরে আলোচিত হয়েছে। তারপর আসে 6s কক্ষকের পালা। সিজিয়াম (Cs) এবং বেরিয়াম (Ba) এর ক্ষেত্রে, এই কক্ষকটি যথাক্রমে একটি এবং দু'টি ইলেকট্রন ধারণ করে। তারপর ল্যাম্থানাম (La) থেকে মারকারি (Hg), এদের ক্ষেত্রে ইলেকট্রন পূর্তি শুরু হয় 4f এবং 5d কক্ষকে। এরপর ভর্তি হয় 6p, তারপর 7s এবং সর্বশেষে 5f এবং 6d কক্ষক সমূহ। ইউরেনিয়ামের (U) পরবর্তী মৌল সমূহ স্বল্পস্থায়ী (short-lived) এবং এরা সবাই কৃত্রিমভাবে প্রস্তুত হয়। জ্ঞাতি মৌল সমূহের ইলেকট্রনীয় বিন্যাস সারণি 2.6 দেখানো হলো। (যা বর্ণালীবীক্ষণ পদ্ধতিতে নির্ধারিত হয়েছে)।

ইলেকট্রনীয় বিন্যাস জানার প্রয়োজনীয়তা কী ? বস্তুত রসায়নের যে আধুনিক পদ্ধতি তা প্রায় সম্পূর্ণভাবে নির্ভর করে ইলেকট্রনীয় বিন্যাস এর উপর, যা রাসায়নিক আচরণ বুঝতে এবং ব্যাখ্যা করতে সাহায্য করে। উদাহরণ হিসেবে প্রশ্ন করা যায়— কেন দুই বা তার বেশি পরমাণু সমন্বিত হয়ে অণু গঠন করে ? কেন কিছু মৌল ধাতু যখন অন্যেরা অধাতু ? কেন হিলিয়াম এবং আর্গন মৌল সমূহ নিষ্ক্রিয় কিন্ডু হ্যালোজেন মৌলগুলো সক্রিয় ? ইলেকট্রনীয় বিন্যাস থেকে এর সহজ ব্যাখ্যা নির্ণয় করা যায়। এই সমস্ত প্রশ্নের কোন উত্তর ডালটনের পরমাণুর গঠন থেকে পাওয়া যায় না। পরমাণুর ইলেকট্রনীয় গঠন বিশদভাবে বোঝা অত্যন্ত প্রয়োজনীয় যার সাহায্যে আধনিক রসায়নের বিভিন্ন জ্ঞান পাওয়া সন্তব।

2.6.6 সম্পূর্ণভাবে পূর্ণ এবং অর্ধপূর্ণ উপকক্ষের স্থায়ীত্ব (Stability of Completely Filled and Half Filled Subshells)

একটি মৌলের পরমাণুর ভূমিস্তরের ইলেকট্রনীয় বিন্যাস সর্বদাই এমন হয় যাতে, সংশ্লিফ্ট মোট ইলেকট্রনীয় শক্তি সর্বনিম্ন হয়। বেশির ভাগ পরমাণুর ইলেকট্রনীয় বিন্যাস অনুচ্ছেদ 2.6.5 দেওয়া মূল নীতিগুলো অনুসরণ করে। যদিও কিছু মৌলের ক্ষেত্রে যেমন Cu অথবা Cr, যেখানে দু'টি কক্ষক (4s এবং 3d) শক্তিগতভাবে সামান্য ভিন্ন, একটি ইলেকট্রন একটি নিম্নশক্তি বিশিফ্ট কক্ষক (4s) থেকে একটি উচ্চশক্তি বিশিফ্ট কক্ষক (3d)তে স্থানান্তরিত হয়, যদি এরকম স্থানান্তরের ফলে একটি উচ্চশক্তিযুক্ত কক্ষে বর্তমান সমস্ত কক্ষক এর ফলে সম্পূর্ণভাবে পূর্ণ বা অর্ধপূর্ণ হয়। Cr এবং Cu এর এই যোজ্যতা ইলেকট্রনীয় বিন্যাস, তাহলে যথাক্রমে 3d⁴ 4s² এবং 3d⁹ 4s² না হয়ে 3d⁵ 4s¹ এবং 3d¹⁰ 4s¹ হয়, লক্ষ করা গেছে এই সমস্ত ইলেকট্রনীয় বিন্যাসের জন্য পরমাণু অতিরিক্ত স্থায়িত্ব লাভ করে।

সম্পূর্ণভাবে পূর্ণ বা অর্ধপূর্ণ উপকক্ষের স্থিতিশীলতার কারণ

সম্পূর্ণভাবে পূর্ণ এবং অর্ধপূর্ণ কক্ষক সমূহের স্থায়ীত্ব নিম্নলিখিত কারণে হয় :

1. প্রতিসম ইলেকট্রন বিন্যাস : এটি সুবিদিত যে প্রতিসাম্য স্থায়ীত্বকে পরিচালিত করে। সম্পূর্ণভাবে পূর্ণ অথবা অর্ধপূর্ণ কক্ষক সমূহের প্রতিসম ইলেকট্রন বিন্যাস লাভের কারণে এগুলো বেশি সুস্থিত হয়। ইলেকট্রন সমূহ যদি একই কক্ষকে থাকে (এখানে 3*d*) তারা সমশন্তিসম্পন্ন হয় কিন্তু স্থানিক বিতরণ ভিন্ন হয়। অতএব, তাদের পরস্পরের আবরণ তুলনামূলক কম এবং ইলেকট্রন সমূহ নিউক্লিয়াস দ্বারা আরো দৃঢ়ভাবে আকৃষ্ট হয়।

2. বিনিময় শক্তি: যখন দুই বা বেশি ইলেকট্রন সমূহ যারা একই দিকে ঘূর্ণনশীল এবং একটি উপকক্ষের সমশস্তি সম্পন্ন কক্ষকে বর্তমান থাকে, তা থেকেই স্থিতিশীলতার প্রভাব উৎপন্ন হয়। এই সমস্ত ইলেকট্রনগুলো যখন তাদের স্থান পরিবর্তনের প্রবণতা দেখায় এবং স্থান পরিবর্তনের কারণে যে শক্তি যুক্ত করে তাকে **বিনিময় শক্তি** বলে। এই পরিবর্তনের সংখ্যা সর্বোচ্চ হবে যখন উপকক্ষটি হয় অর্ধপূর্ণ অথবা সম্পূর্ণভাবে পূর্ণ থাকে (চিত্র 2.18) এর ফলস্বরূপ বিনিময় শস্তি সর্বোচ্চ এবং স্থিতিশীলতা ও সর্বোচ্চ হয়। তোমরা হয়তো জান যে বিনিময় শক্তি হুন্ডের সূত্র অনুসারে হয়। অর্থাৎ সমশস্তিসম্পন্ন কক্ষকগুলো যতক্ষণ পর্যন্ত খালি থাকবে, ততক্ষণ ইলেকট্রনগুলো এককভাবে ওই কক্ষকগুলো পূর্ণ করবে এবং প্রত্যেকের ঘূর্ণন একইদিকে হবে। অন্যভাবে বলা যায়, অর্ধপূর্ণ বা সম্পূর্ণভাবে পূর্ণ উপকক্ষের ঐ অতিরিক্ত স্থিতিশীলতার কারণ হচ্ছে (i) তুলনামূলক কম আবরণ, (ii) ক্ষুদ্রতর কুলম্বীয় বিকর্ষণ শক্তি এবং (iii) বৃহত্তর বিনিময় শক্তি। বিনিময় শক্তি সম্পর্কে উচ্চতর শ্রেণিতে বিশদভাবে জানতে পারবে।

মৌল	τZ	1 s	2 s	2 p	3 s	3 <i>p</i>	3 d	4 s	4 <i>p</i>	4 <i>d</i>	4 <i>f</i>	5 s	5 <i>p</i>	5d 5j	f	6 s	6 <i>p</i>	6 <i>d</i>	7 s
Н	1	1																	
He	2	2													_				
Li Be	3 4	2	$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$																
B	5	2	2	1															
C	6	2	2	2															
N O	8	2	$\begin{vmatrix} 2\\ 2 \end{vmatrix}$	3															
F	9	2	2	5															
Ne	10	2	2	6															
Na	11	2	2	6	1														
Mg Al	12	2	$\begin{vmatrix} 2\\ 2 \end{vmatrix}$	6	$\begin{vmatrix} 2\\ 2 \end{vmatrix}$	1													
Si	14	2	2	6	2	2													
Р	15	2	2	6	2	3													
S	16	2	2	6	2	4													
Ar	17	2	$\frac{2}{2}$	6	2	5													
K	19	2	2	6	2	6		1											
Ca	20	2	2	6	2	6		2											
Sc	21	2	$\begin{vmatrix} 2 \\ 2 \end{vmatrix}$	6	2	6	1	2											
V	22	2	$\begin{bmatrix} 2\\ 2 \end{bmatrix}$	6 6	2	6	2	$\begin{bmatrix} 2\\ 2 \end{bmatrix}$											
Cr*	24	2	2	6	2	6	5	1											
Mn	25	2	2	6	2	6	5	2											
Fe	26	2	$\begin{vmatrix} 2 \\ 2 \end{vmatrix}$	6	2	6	6	2											
Ni	27	2	$\begin{bmatrix} 2\\ 2 \end{bmatrix}$	6 6	2	6	8	$\begin{bmatrix} 2\\ 2 \end{bmatrix}$											
Cu*	29	2	2	6	2	6	10	1											
Zn	30	2	2	6	2	6	10	2											
Ga	31	2	2	6	2	6	10	2	1										
Ge	32	2	$\begin{vmatrix} 2 \\ 2 \end{vmatrix}$	6	$\frac{2}{2}$	6	10	$\begin{vmatrix} 2 \\ 2 \end{vmatrix}$	2										
Se	33 34	2	$\begin{bmatrix} 2\\2 \end{bmatrix}$	6	2	6	10	$\frac{2}{2}$	4										
Br	35	2	2	6	2	6	10	2	5										
Kr	36	2	2	6	2	6	10	2	6		1								
Rb Sr	37	2	$\frac{2}{2}$	6	2	6	10	$\frac{2}{2}$	6		2								
Y	39	2	2	6	2	6	10	2	6	1	2								
Zr	40	2	2	6	2	6	10	2	6	2	2								
Nb*	41	2	$\begin{vmatrix} 2 \\ 2 \end{vmatrix}$	6	2	6	10	$\begin{vmatrix} 2 \\ 2 \end{vmatrix}$	6	4	1								
Tc	42	2	$\frac{2}{2}$	6	2	6	10	2	6	6	1								
Ru*	44	2	2	6	2	6	10	2	6	7	1								
Rh*	45	2	2	6	2	6	10	2	6	8	1								
Pd*	46 47	$\frac{2}{2}$	$\frac{2}{2}$	6	$\frac{2}{2}$	6	10	$\frac{2}{2}$	6	10	1								
Cd	48	2	2	6	2	6	10	2	6	10	2								
In	49	2	2	6	2	6	10	2	6	10	2	1							
Sn	50	2	2	6	2	6	10	2	6	10	2	2							
Te	51	2	$\frac{2}{2}$	6	2	6	10	$\frac{2}{2}$	6	10	2	3							
I	53	2	2	6	2	6	10	2	6	10	2	5							
Xe	54	2	2	6	2	6	10	2	6	10	2	6							

সারণী 2.6 মৌল সমূহের ইলেকট্রনীয় বিন্যাস

* ব্যতিক্রমী ইলেকট্রনীয় বিন্যাস যুক্ত মৌল সমূহ

পরমাণুর গঠন

মৌল	₹Z	1 s	2 s	2 <i>p</i>	3 s	3 p	3 d	4 s	4 p	4 d	4 <i>f</i>	5 s	5 <i>p</i>	5 <i>d</i> 5 <i>f</i>	65	6 <i>p</i>	6 d	7 s
Cs Ba La* Ce* Pr Nd Pm Sm Eu Gd* Tb Dy Ho Er Tw Yb Lu Hf Ta W Re Os Ir Pt* Au* Hg Tl Pb Bi Po At Rn	55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 980 81 82 83 84 85 86	$\begin{array}{c} 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ $	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	10 10	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	666666666666666666666666666666666666666	10 10 10 10 10 10 10 10 10 10 10 10 10 1	2 3 4 5 6 7 7 9 10 11 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	666666666666666666666666666666666666666	1 1 2 3 4 5 6 7 9 10 10 10 10 10 10 10 10 10 10	1 2 2	1 2 3 4 5 6		
Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg***	87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	10 10 10 10 10 10 10 10 10 10 10 10 10 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	66666666666666666666666666666666	10 10 10 10 10 10 10 10 10 10 10 10 10 1	14 14	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	66666666666666666666666666666666	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	$ \begin{array}{c} 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 10 \\ \end{array} $	1 2 2 2 2 2 2 2 2 2 2 2 2 2

** 112 বা এর অধিক পরমাণু ক্রমাজ্ঞ বিশিস্ট মৌল তারা বিবৃত হয়েছে কিন্তু এখনো অনুমোদিত নয় এবং নামাকরণও হয়নি।

সারাংশ

পরমাণু মৌলের গঠনকারী উপাদান। তারা মৌলের ক্ষুদ্রতম অংশ যা বিক্রিয়ায় অংশগ্রহণ করে। জন ডালটন 1808 খ্রিস্টাব্দে প্রথম পারমাণবিক তত্ব প্রস্তাবনা করেন, যেখানে বলা হয়েছিল যে পরমাণু বস্তুর চূড়ান্ত অবিভাজ্য কণা। উনবিংশ শতাব্দীর শেষার্ধে, পরীক্ষালব্দভাবে প্রমাণিত হয়েছিল, পরমাণু সমূহ বিভাজ্য এবং তারা তিনটি মূল কণিকা ইলেকট্রন, প্রোটন এবং নিউট্রন দ্বারা গঠিত। অবপারমাণবিক কণার আবিষ্কার বিভিন্ন পারমাণবিক গঠন চিত্রের প্রস্তাবনার সাহায্যে পরমাণুর গঠন ব্যাখ্যা করার জন্য আমাদের পরিচালিত করেছে।

1898 খ্রিস্টাব্দে থমসন প্রস্তাবনা করেন যে পরমাণু একটি সমভাবে বর্ণিত ধনাত্মক আধান যুক্ত গোলক যাতে ইলেকট্রনসমূহ গ্রথিত থাকে। এই মডেল অনুসারে ধরা হয়েছিল, পরমাণুর ভর সমানভাবে পরমাণুর মধ্যে ছড়িয়ে আছে। রাদারফোর্ড 1909 খ্রিস্টাব্দে তার বিখ্যাত ∞-কণা বিক্ষেপ পরীক্ষার দ্বারা প্রমাণ করেন এই ধারণা ভুল। রাদারফোর্ড এই সিম্ধান্তে উপনীত হন যে পরমাণু গঠিত হয় ক্ষুদ্র ধনাত্মক আধান যুক্ত নিউক্লিয়াস যা এর কেন্দ্রকে বর্তমান এবং ইলেকট্রন সমূহ এর চারপাশে বৃত্তকার পথে আবর্তন করে। রাদারফোর্ডের পারমাণবিক মডেল, সৌর জগতের অনুরূপ এবং এটি নিশ্চিতভাবে থমসনের পারমাণবিক মডেল থেকে উন্নতরূপ। কিন্তু এই তত্ত্ব পরমাণুর স্থায়ীত্ব ব্যাখ্যা করতে অসমর্থ। অর্থাৎ ইলেকট্রন কেন নিউক্লিয়াসে পড়ে যায় না। এই তত্ত্বে পরমাণুর ইলেকট্রনীয় গঠন অর্থাৎ বিন্যাস সম্পর্কে এবং নিউক্লিয়াসের চারদিকে অবস্থিত ইলেকট্রনের আপেক্ষিক শক্তি সম্পর্কে কোনো উল্লেখ নেই। নীলস বোর 1913 খ্রিস্টাব্দে হাইড্রোজেন পরমাণুর জন্য তাঁর গঠন চিত্রের সাহায্যে রাদারফোর্ডের গঠন চিত্রের অসুবিধাগুলো দূর করেন। বোর দাবি করেন যে ইলেকট্রন সমূহ নিউক্লিয়াসকে কেন্দ্র করে বৃত্তাকার পথে আবর্তিত হয়। কতগুলো নির্দিন্ট কক্ষ বিদ্যমান থাকতে পারে এবং প্রত্যেকটি কক্ষ একটি নির্দিন্ট শক্তিসম্পন্ন। বোরের বিভিন্ন কক্ষে ঘূর্ণায়মান ইলেকট্রনের শক্তি গণনা করেন এবং প্রত্যেকটি কক্ষের জন্য ইলেকট্রন এবং নিউক্লিয়াসের দূরত্ব সম্পর্কে ভবিষ্যৎ বাণী করেন। বোর এর গঠন চিত্র হাইড্রোজেন পরমাণু বর্ণালী ব্যাখ্যার জন্য একটি সফল গঠন চিত্র হিসেবে ধরা হয়, কিন্তু বহু ইলেকট্ররন বিশিষ্ট পরমাণুর বর্ণালীর ব্যাখ্যা দিতে তা অসমর্থ। এর কারণটি সহসাই আবিষ্কৃত হয়েছিল। বোরের গঠনচিত্রে এটি ইলেকট্রনকে ধরা হয়েছিল একটি আধানযুক্ত কণা যা নিউক্লিয়াসকে কেন্দ্র করে সুসংজ্ঞায়িত বৃত্তাকার পথে আবর্তিত হয়। বোরের তত্ত্বে ইলেকট্রনের তরঞ্চা প্রকৃতি উপেক্ষা করা হয়েছে। একটি কক্ষ হচ্ছে একটি সুনির্দিন্ট সংজ্ঞায়িত পথ এবং এই পথটিকে তখনই শুধুমাত্র সম্পূর্ণভাবে প্রকাশ করা যায় যখন ইলেকট্রনের সঠিক অবস্থান এবং সঠিক গতিবেগ একই সময়ে জানা যায়। হাইসেনবার্গের অনিশ্চয়তা নীতি অনুসারে তা কমানোই সম্ভব নয়। হাইড্রোজেন পরমাণুর জন্য বোরের মডেল, তাহলে শুধুমাত্র ইলেকট্রনের দ্বৈত চরিত্রকেই উপেক্ষা করে ন, এটি হাইসেন বার্গের অনিশ্চয়তা নীতিও অস্বীকার করে।

এরউইন স্রোন্ডিজার 1926 খ্রিস্টাব্দে একটি সমীকরণ এর প্রস্তাবনা করেন যা **স্রোডিজার** সমীকরণ নামে পরিচিত, যার সাহায্যে শূন্যে ইলেকট্রন বিন্যাস এবং পরমাণুতে অনুমোদিত শক্তিস্তর এর বর্ণনা করা যায়। এই সমীকরণে অস্তর্ভুক্ত হয়েছে ডি-ব্রগলীয় ধারণা অর্থাৎ তরঞ্চা কণার দ্বৈত চরিত্র। হাইসেন বার্গের অনিশ্চয়তা নীতির সাথেও এটি সঙ্গতিপূর্ণ। হাইড্রোজেন পরমাণুর ইলেকট্রনের জন্য স্রোঙিজার সমীকরণের সমাধান করলে তা থেকে পাওয়া যায় সম্ভাব্য শক্তিস্তর যেখানে ইলেকট্রন অবস্থান করে এবং এর অনুরূপ তরঞ্চা অপেক্ষক (ψ) (যা ইলেকট্রনের সঙ্গো সম্পর্ক যুক্ত প্রত্যেকটি শক্তিস্তরের গাণিতিক অপেক্ষক)। এই সমস্ত কোয়ান্টাইশড শক্তিস্তর এবং অনুরূপ তরঞ্চা অপেক্ষক চিহ্নিত করা যায় তিনটি কোয়ান্টাম সংখ্যার সেট এর সাহায্যে (মুখ্য কোয়ান্টাম সংখ্যা *n*, দিগংশীয় কোয়ান্টাম সংখ্যা / এবং চৌম্বকীয় কোয়ান্টাম সংখ্যা *m*₁)। এই ধারণাগুলো স্রোডিজার এর সমীকরণের সমাধান থেকে একটি স্বাভাবিক পরিণতি হিসাবে উঠে আসে। তিনটি কোয়ান্টাম সংখ্যার মানের সীমাবন্ধতাও অবশ্য এই সমাধান থেকেই স্বাভাবিকভাবে আসে। কোয়ান্টাম বল বিদ্যার ধারণা অনুযায়ী প্রাপ্ত হাইড্রোজেন পরমাণুর মডেল, হাইড্রোজেন পরমাণুর বর্ণালীর ব্যাখ্যা দিতে সফল, যা বোরের পরমাণু মডেল দ্বারা ব্যাখ্যা করা যায় না।

পরমাণুর কোয়ান্টাম বলবিদ্যা মডেল অনুসারে, একটি পরমাণুতে উপস্থিত ইলেকট্রনগুলো বিভিন্ন কক্ষপথে বিন্যস্ত থাকে। এই কক্ষগুলো আবার এক বা একাধিক উপকক্ষ সমন্বিত এবং ধারণা করা হয় উপকক্ষ সমূহ আবার এক বা একাধিক কক্ষক এর সমন্বয়ে গঠিত— যেগুলো ইলেকট্রন ধারণ করে। হাইড্রোজেন বা হাইড্রোজেন সদৃশ পম্বতির জন্য (যেমন He⁺, Li²⁺ ইত্যাদি) একটি কক্ষে অবস্থিত সমস্ত কক্ষকের শক্তির পরিমাপ সমান হয়। একটি বহু ইলেকট্রন বিশিষ্ট পরমাণুর কক্ষকের শক্তির পরিমাণ *n* এবং *l* এর মানের উপর নির্ভরশীল: একটি কক্ষকের জন্য (*n* + *l*) মান যত কম, তার শক্তির পরিমাণও তত কম। যদি দু'টি কক্ষকের (*n* + *l*) মান সমান হয়, তবে যে কক্ষকের *n* এর মান কম এর শস্তির পরিমানও কম। একটি পরমাণুতে এরকম অনেক কক্ষক সম্ভব এবং ইলেকট্রন সমূহ ওই কক্ষকগুলোতে শক্তিস্তরের ঊর্ধ্বক্রম অনুসারে পাউলির **অপবর্জন নীতি** মেনে (একটি পরমাণুতে যে-কোনো দুটি ইলেকট্রন এর চারটি কোয়ান্টাম সংখ্যার সেট এক হয় না) এবং হুন্ডের সর্বাধিক মান্টিপ্লিসিটি নিয়ম (একই উপকক্ষে বর্তমান কক্ষক সমূহে ইলেকট্রন জোড় হওয়া ততক্ষণ পর্যন্ত সম্ভব নয় যতক্ষণ না ওই উপকক্ষে বর্তমান প্রত্যেকটি কক্ষক একটি করে ইলেকট্রন দ্বারা পূর্ণ হয় অর্থাৎ একক পূর্ণ হয়) হয়। এই নীতিগুলোই পরমাণুর ইলেকট্রনীয় গঠনের ভিত্তি।

অনুশীলনী

- 2.1 (i) এমন ইলেকট্রনের সংখ্যা গণনা করো যারা মোট এক গ্রাম ভর সৃষ্টি করে।
 - (ii) এক মোল ইলেকট্রনের ভর এবং আধান গণনা করো।
- 2.2 (i) এক মোল মিথেনে উপস্থিত মোট ইলেকট্রন সংখ্যা গণনা করো।
 - (ii) 7 mg ¹⁴C এর মধ্যে নিউট্রনের (a) মোট সংখ্যা এবং (b) মোট ভর নির্ণয় কর ৷ (ধরে নাও একটি নিউট্রনের ভর 1.675 × 10⁻²⁷ kg)
 - (iii) STP তে 34 mg NH₃ তে উপস্থিত প্রোটনের (a) মোট সংখ্যা এবং (b) মোট ভর নির্ণয় কর। উন্নতা এবং চাপের পরিবর্তন হলে উত্তরের কোনো পরিবর্তন হবে কি?
- 2.3 নিম্নলিখিত নিউক্লিয়াসগুলোতে নিউট্রন এবং প্রোটনের সংখ্যা কত ?
 - ${}^{13}_{6}C, {}^{16}_{8}O, {}^{24}_{12}Mg, {}^{56}_{26}Fe, {}^{88}_{38}Sr$
- 2.4 নীচে প্রদত্ত পরমাণু ক্রমাঞ্চন (Z) এবং পারমাণবিক ভর (A) যুক্ত পরমাণুগুলোর সম্পূর্ণ চিহ্ন লিখ।
 - (i) Z = 17, A = 35.
 - (ii) Z = 92, A = 233.
 - (iii) Z = 4, A = 9.
- 2.5 সোডিয়াম বাতি থেকে নির্গত হলুদ বর্শের আলোক রশ্মির তরঙ্গা দৈর্ঘ (λ) 580 nm. হলুদ আলোক রশ্মির কম্পাঙ্ক (ν) এবং তরঙ্গা সংখ্যা (⊽) গণনা করো।
- 2.6 নিচে প্রদত্ত প্রতিটি ফোটনের শক্তি নির্ণয় করো।
 - (i) 3×10¹⁵ Hz. কম্পাঞ্চ বিশিষ্ট আলোকের ক্ষেত্রে এবং
 - (ii) 0.50 Å তরঙ্গা দৈর্ঘ্য বিশিষ্ট আলোকের ক্ষেত্রে
- 2.7 2.0 × 10⁻¹⁰ s পর্যায়কাল বিশিষ্ট একটি আলোক তরঙ্গের তরঙ্গা দৈর্ঘ্য, কম্পাঞ্চ এবং তরঙ্গা সংখ্যা নির্ণয় করো।
- 2.8 4000 pm তরঙ্গা দৈর্ঘ্য বিশিষ্ট আলোক ফোটনের সংখ্যা কত যেগুলো মোট 1J শস্তি সরবরাহ করে ?
- 2.9 $4 \times 10^{-7} \,\mathrm{m}$ তরঙ্গা দৈর্ঘ্য বিশিষ্ট একটি ফোটন কোন ধাতব তলে আঘাত করলে এবং ঐ ধাতুর কার্য অপেক্ষক 2.13 eV হলে
 - (i) ফোটনের শক্তি (eV)
 - (ii) নিঃসরণের ক্ষেত্রে গতিশক্তি এবং
 - (iii) ফোটো ইলেকট্রনের গতিবেগ নির্ণয় করো

 $(1 \text{ eV} = 1.6020 \times 10^{-19} \text{ J}).$

- 2.10 সোডিয়াম পরমাণুকে আয়নীত করতে তড়িৎ চৌম্বকীয় বিকিরণের 242 nm তরঙ্গা দৈর্ঘ্যই পর্যাপ্ত। সোডিয়ামের আয়নায়ন শক্তি kJ mol⁻¹ এককে নির্ণয় করো।
- 2.11 25 ওয়াট ক্ষমতার একটি বাল্ব 0.57μm তরঙ্গা দৈর্ঘ্য বিশিষ্ট একবর্ণের হলুদ আলোক রশ্মি নির্গত করে। প্রতি সেকেন্ডে কোয়ান্টা নিঃসরণের হার গণনা করো।

- 2.12 কোনো ধাতুর উপরিতলে 6800 Å তরঙ্গা দৈর্ঘের আলোক রশ্মি আপতিত হলে শূন্য গতিবেগ সম্পন্ন ইলেকট্রন নির্গত হয়। ধাতুর সূচনা কম্পাঙ্ক (v₀) এবং কার্য অপেক্ষক(W₀) নির্ণয় করো।
- 2.13 যখন হাইড্রোজেন পরমাণুর একটি ইলেকট্রন *n* = 4 শক্তিস্তর থেকে *n* = 2 শক্তিস্তরে অবতরিত হলে বিকীর্ণ আলোক রশ্মির তরঞ্চা দৈর্ঘ্য কত ?
- 2.14 যদি হাইড্রোজেন পরমাণুর ইলেকট্রনটি n = 5 কক্ষে উপস্থিত থাকে তবে হাইড্রোজেন পরমাণুটিকে আয়নিত করতে কত শক্তির প্রয়োজন ? তোমার উত্তর হাইড্রোজেন পরমাণুর আয়নায়ন এনথ্যালপির সহিত তুলনা কর (n = 1 কক্ষ থেকে ইলেকট্রনটি অপসারিত করতে প্রয়োজনীয় শক্তি)
- 2.15 হাইড্রোজেন পরমাণুর উত্তেজিত ইলেকট্রন n = 6 শক্তিস্তর থেকে ভূমিস্তরে অবতরিত হলে বিকিরিত রেখার সর্বাধিক সংখ্যা কত ?
- 2.16 (i) হাইড্রোজেন পরমাণুর প্রথম কক্ষের শক্তি $-2.18 \times 10^{-18} \, \mathrm{J} \, \mathrm{atom}^{-1}$. তাহলে পঞ্জম কক্ষের শক্তি কত হবে ?
 - (ii) হাইড্রোজেন পরমাণুর ক্ষেত্রে বোরের পঞ্চম কক্ষের ব্যাসার্ধ নির্ণয় কর।
- 2.17 পরমাণবিক হাইড্রোজেনের বামার শ্রেণির সর্বাধিক তরঙ্গা দৈর্ঘ্য যুক্ত স্থানান্তরের ক্ষেত্রে তরঙ্গা সংখ্যা নির্ণয় করো।
- 2.18 হাইড্রোজেন পরমাণুর ইলেকট্রনটিকে প্রথম বোরকক্ষ থেকে পঞ্চম বোর কক্ষে নিয়ে যাওয়ার জন্য প্রয়োজনীয় শক্তি জুল এককে কত এবং যখন ইলেকট্রনটি পুনরায় ভূমিস্তরে ফিরে আসে তবে বিকীর্ণ আলোক রশ্মির তরঙ্গা দৈর্ঘ্য কত ? ভূমিস্তরে ইলেকট্রনের শক্তি –2.18 × 10⁻¹¹ ergs.
- 2.19 হাইড্রোজেন পরমাণুতে ইলেকট্রনের শক্তি $E_n = (-2.18 \times 10^{-18})/n^2$ J. n = 2 কক্ষ থেকে একটি ইলেকট্রনকে সম্পূর্ণরূপে নির্গত করতে প্রয়োজনীয় শক্তি নির্ণয় কর। এর্প স্থানান্তরের ক্ষেত্রে আলোক রশ্মির সর্বাধিক তরজা দৈর্ঘ্য cm এককে কত হবে ?
- 2.20 2.05 × 10⁷ m s⁻¹ গতিবেগ সম্পন্ন একটি ইলেকট্রনের তরঙ্গা দৈর্ঘ্য নির্ণয় করো।
- 2.21 একটি ইলেকট্রনের ভর 9.1×10^{-31} kg. যদি এর গতিশস্তি 3.0×10^{-25} J হয় তবে এর তরঙ্গা দৈর্ঘ্য নির্ণয় করো।
- 2.22 নীচের কোণগুলো আইসোইলেকট্রনিক অর্থাৎ যাদের মধ্যে সমান সংখ্যক ইলেকট্রন বর্তমান ?

Na⁺, K⁺, Mg²⁺, Ca²⁺, S²⁻, Ar.

- 2.23
 (i) নীচের আয়ন সমূহের ইলেকট্রন বিন্যাস লিখ:

 (a) H⁻ (b) Na⁺ (c) O²⁻ (d) F⁻
 - (ii) যে সমস্ত মৌলগুলোর সর্ববহিম্থ কক্ষের কাজের ইলেকট্রন বিন্যাস (a) 3s¹ (b) 2p³ এবং (c) 3p⁵?
 - (iii) নীচের বিন্যাসগুলো কোন্ কোন্ পরমাণুকে নির্দেশ করে?

(a) [He] $2s^1$ (b) [Ne] $3s^2 3p^3$ (c) [Ar] $4s^2 3d^1$.

- 2.24 n এর কোন নিম্নতর মান দ্বারা g কক্ষকের অস্তিত্বকে প্রকাশ করা যায় ?
- 2.25 একটি ইলেকট্রন 3*d* উপকক্ষের যে কোন একটিতে উপস্থিত। উক্ত ইলেকট্রনটির n, l এবং m, এর সম্ভাব্য মান লেখো।
- 2.26 কোনো মৌলের একটি পরমাণুতে 29টি ইলেকট্রন এবং 35টি নিউট্রন আছে। (i) এর প্রোটন সংখ্যা এবং (ii) মৌলটির ইলেকট্রন বিন্যাস লেখো।
- 2.27 H_2^+, H_2^- এবং O_2^+ এর মধ্যে ইলেকট্রনের সংখ্যা নির্ণয় করো।
- 2.28 (i) n = 3 পরমাণবিক কক্ষকের সম্ভাব্য l এবং m, এর মানগুলো কী কী ?
 - (ii) 3d কক্ষকের ইলেকট্রন সমূহের কোয়ান্টাম সংখ্যাগুলোর (m, and l) তালিকা তৈরি করো।
 - (iii) নীচের কোন্ কোন্ উপকক্ষগুলো সম্ভব?

1p, 2s, 2p এবং 3f

পরমাণুর গঠন

2.29	s, p, d চিহ্নের সাহায্যে নিম্নলিখিত কোয়ান্টাম সংখ্যাগুলো দ্বারা বর্ণিত কক্ষকগুলো নির্ণয় করো।
	(a) $n=1$, $l=0$; (b) $n=3$; $l=1$ (c) $n=4$; $l=2$; (d) $n=4$; $l=3$.
2.30	কারণ সহ ব্যাখ্যা করো, নিম্নলিখিত কোন কোয়ান্টাম সংখ্যার সেট সম্ভব নয়।
	(a) $n = 0$, $l = 0$, $m_l = 0$, $m_s = +\frac{1}{2}$
	(b) $n = 1$, $l = 0$, $m_l = 0$, $m_s = -\frac{1}{2}$
	(c) $n = 1$, $l = 1$, $m_l = 0$, $m_s = +\frac{1}{2}$
	(d) $n=2, l=1, m_l=0, m_s=-\frac{1}{2}$
	(e) $n=3$, $l=3$, $m_1 = -3$, $m_s = +\frac{1}{2}$
	(f) $n=3$, $l=1$, $m_l = 0$, $m_s = +\frac{1}{2}$
2.31	কোনো পরমাণুতে নিম্নলিখিত কোয়ান্টাম সংখ্যা যুক্তু কয়টি ইলেকট্রন আছে?
	(a) $n = 4, m_s = -\frac{1}{2}$ (b) $n = 3, l = 0$
2.32	দেখাও যে, হাইড্রোজেন পরমাণুর বোর কক্ষের পরিধি, কক্ষপথের চারপাশে ঘূর্ণায়মান ইলেকট্রনের সাথে যুক্ত ডি-ব্রোগলির তরঙ্গা দৈর্ঘ্যের সঙ্গো সরল গুণিতক।
2.33	He⁺ বর্ণালীর বামার স্থানান্তর n = 4 থেকে n = 2 এর একই তরঙ্গা দৈর্ঘ্য বিশিষ্ট হাইড্রোজেন বর্ণালীর কোন স্থানান্তরের সমান?
2.34	He ⁺ (g) → He ²⁺ (g) + e ⁻ এই প্রক্রিয়াটির প্রয়োজনীয় শক্তি নির্ণয় করো।
	H পরমাণুতে ভূমিস্তরে আয়নায়ন শক্তি 2.18 × 10 ⁻¹⁸ J atom ⁻¹
2.35	যদি একটি কার্বন পরমাণুর ব্যাস 0.15 nm হয়, তবে 20 cm দৈর্ঘ্যের একটি সরল রেখাতে পশাপাশি বসানো যায় এরূপ কার্বন পরমাণুগুলোর সংখ্যা নির্ণয় করো।
2.36	2 ×10 ⁸ সংখ্যক কার্বন পরমাণুকে পাশাপাশি সাজানো হল। যদি এইরূপ সজ্জায় দৈর্ঘ্য 2.4 cm হয় তবে কার্বন পরমাণুর ব্যাসার্ধ নির্ণয় করো।
2.37	জিংক পরমাণুর ব্যাস 2.6 Å। (a) pm এককে জিংক পরমাণুর ব্যাসার্ধ এবং (b) যদি জিংক পরমাণুগুলোকে পাশাপাশি দৈর্ঘ্য বরাবর সাজানো হয় তবে 1.6 cm দৈর্ঘ্যে উপস্থিত পরমাণুর সংখ্যা নির্ণয় করো।
2.38	একটি নির্দিষ্ট কণা 2.5 × 10 ⁻¹⁶ C স্থির তড়িৎ আধান বহন করে। এতে উপস্থিত ইলেকট্রন সমূহের সংখ্যা নির্ণয় করো।
2.39	মুলিকেন পরীক্ষায় উদ্দীপ্ত X-রশ্মি দ্বারা তৈল বিন্দুগুলোকে স্থির তড়িৎ আধানে আহিত করা হয়। যদি তৈল বিন্দুর উপর স্থির তড়িৎ আধান –1.282 × 10 ⁻¹⁸ C হয় তবে এতে উপস্থিত ইলেকট্রনের সংখ্যা নির্ণয় করো।
2.40	রাদারফোর্ডের পরীক্ষায় সাধারণত ভারী পরমাণু যেমন গোল্ড, প্লাটিনাম ইত্যাদির পাতলা পাতকে α-কণার দ্বারা আঘাত করা হয়। যদি পাতলা পাত হিসাবে হালকা পরমাণু যেমন অ্যালুমিনিয়াম ইত্যাদি ব্যবহার করা হয় তবে উপরের ফলাফলগুলোর মধ্যে কীরূপ পরিবর্তন পরিলক্ষিত হবে ?
2.41	⁷⁹ Br এবং ⁷⁹ Br প্রতীক দুটি লেখা যায় কিন্তু $^{35}_{79}$ Br এবং ³⁵ Br প্রতীকগুলো গ্রহণযোগ্য নয়। সংক্ষেপে উত্তর দাও।
2.42	81 ভরসংখ্যা বিশিষ্ট কোনো মৌলের পরমাণুতে প্রোটনের তুলনায় 31.7% নিউট্রন বেশি আছে। মৌলের পরমাণবিক প্রতীকটি লেখো।
2.43	এক একক ঋণাত্মক আধানযুক্ত একটি আয়নের ভর সংখ্যা 37 । যদি আয়নটিতেই ইলেকট্রনের তুলনায় 11.1% বেশি নিউটন থাকে তবে আয়নটির চিহ্ন নির্ণয় করো।

- 2.44 3 একক ধনাত্মক আধান যুক্ত একটি আয়নের ভর সংখ্যা 56 এবং ইলেকট্রনের তুলনায় 30.4% নিউট্রন বেশি আছে। আয়নটির চিহ্ন লেখো।
- 2.45 নিম্নলিখিত বিকিরণগুলোকে কম্পাঙ্কের ঊর্ধ্বক্রম অনুসারে সাজাও : (a) মাইক্রোওভেন চুল্লীর বিকিরণ (b) ট্রাফিক সিগন্যালের পিতাভ হলুদ বর্দের আলোক (c) FM রেডিওর বিকিরণ (d) মহাশূন্য থেকে আগত মহাজাগতিক রশ্মি (e) X-রশ্মি
- 2.46 নাইট্রোজেন লেজার 337.1 nm তরঞ্চা দৈর্ঘ্য বিশিষ্ট বিকিরণ উৎপন্ন করে। যদি নির্গত ফোটনের সংখ্যা 5.6 × 10²⁴ হয় তবে এই লেজারের ক্ষমতা নির্ণয় করো।
- 2.47 সাইনবোর্ডে সাধারণত নিয়ন গ্যাস ব্যবহৃত হয়। যদি এটি 616 nm এ শক্তিশালী বিকিরণ নির্গত করে তবে (a) বিকিরণের কম্পাজ্ঞ্ব (b) 30 s সময়ে বিকিরণ দ্বারা অতিক্রান্ত দূরত্ব (c) কোয়ান্টামের শক্তি এবং (d) যদি এটি 2 J শক্তি উৎপন্ন করে তবে কোয়ান্টার সংখ্যা নির্ণয় করো।
- 2.48 জ্যোর্তিবিজ্ঞান সংক্রান্ত পর্যবেক্ষনে, দূরবর্তী তারাগুলো থেকে দৃশ্যমান সংকেতগুলো সাধারণত দুর্বল হয়। যদি ফোটন সনাক্তকরণ যন্ত্র 600 nm তরঞ্চা দৈর্ঘ্যের বিকিরণ থেকে মোট 3.15 × 10⁻¹⁸ J শক্তি সংগ্রহ করে তবে সনাক্তকরণ যন্ত্রে সংগ্রহিত ফোটনের সংখ্যা নির্ণয় করো।
- 2.49 উত্তেজিত অবস্থায় অণুসমূহের জীবনকাল প্রায়ই ন্যানো সেকেন্ড পরিসরে পালস্ড (pulsed) বিকিরণ উৎস ব্যবহার করে পরিমাপ করা হয়। যদি বিকিরণ উৎসের সময়কাল 2 ns এবং উৎস থেকে নির্গত ফোটনের সংখ্যা 2.5 × 10¹⁵ হয় তবে উৎসের শস্তি নির্ণয় করো।
- 2.50 589 nm এবং 589.6 nm এত দীর্ঘতম তরঙ্গা দৈর্ঘ্য বিশিষ্ট শোষণ ডাবলেট পরিলক্ষিত হয়। প্রতিটি স্থানান্তরের কমাঙ্ক এবং দুটি উত্তেজিত স্তরের শক্তির পার্থক্য নির্ণয় করো।
- 2.51 সিজিয়াম পরমাণুর কার্য অপেক্ষক 1.9 eV । বিকিরণের (a) সুচনা তরঙ্গা দৈর্ঘ্য এবং (b) সুচনা কম্পাঙ্ক নির্ণয় করো। যদি সিজিয়াম মৌলটিকে 500 nm তরঙ্গা দৈর্ঘ্যের সাহায্যে উদ্ভাসিত করা হয় তবে নিঃসৃত ফোটো ইলেকট্রনের গতিশক্তি এবং গতিবেগ নির্ণয় করো।
- 2.52 সোডিয়াম ধাতুকে বিভিন্ন তরঙ্গা দৈর্ঘ্যের সাহায্যে উদ্ভাসিত করা হলে নিম্নলিখিত ফলাফলগুলো দেখা যায় (a) সুচনা তরঙ্গা দৈর্ঘ্য এবং (b) প্লাজ্জের ধ্রুবক নির্ণয় কর।

λ (nm)	500	450	400
$v \times 10^{-5} (cm s^{-1})$	2.55	4.35	5.35

- 2.53 আলোক তড়িৎ প্রভাব পরীক্ষায় সিলভার ধাতু থেকে নিঃসৃত ফোটো ইলেকট্রনগুলোকে থামাতে 0.35 V বিভব প্রয়োগ করা হয়, যখন বিকিরণের তরঙ্গা দৈর্ঘ্য হল 256.7 nm, সিলভার ধাতুর কার্য অপেক্ষক নির্ণয় করো।
- 2.54 যদি 150 pm তরঙ্গা দৈর্ঘ্যের একটি ফোটন একটি পরমাণুকে আঘাত করে এবং এর অভ্যন্তর থেকে একটি আবন্ধ ইলেকট্রন 1.5 × 10⁷ m s⁻¹ গতিবেগে নির্গত হয়, তবে নিউক্লিয়াসের সঙ্গো এটি যে শক্তিতে আবন্ধ থাকে তা নির্ণয় করো।
- 2.55 প্যাসেন সারির বর্ণালি n তম উচ্চ কক্ষ থেকে শুরু হয় এবং n = 3 কক্ষে শেষ হয় এবং একে v = 3.29 × 10¹⁵ (Hz) [1/ 3² - 1/n²] দ্বারা প্রকাশ করা যায়। যদি স্থানান্তরটি 1285 nm এ দৃশ্যমান হয় তবে n এর মান নির্ণয় কর। বর্ণালীটি কোন অঞ্জলে অবস্থিত ?
- 2.56 নির্গমন স্থানান্তরের তরঙ্গা দৈর্ঘ্য নির্ণয় করো যা 1.3225 nm ব্যাসার্ধ যুক্ত কক্ষ থেকে শুরু হয় এবং 211.6 pm ব্যাসার্ধযুক্ত কক্ষে শেষ হয়। এই বুপান্তরটি কোন্ সারিভুক্ত তার নাম লেখো এবং ইহার বর্ণালীগত অবস্থান লেখো।
- 2.57 ডি-ব্রগলির দ্বারা প্রস্তাবিত পদার্থের দ্বৈত সন্তা মতবাদটি ইলেকট্রন অনুবীক্ষণ যন্ত্রের আবিষ্কারের মূল কারণ যা প্রায়ই জৈবিক অণুর এবং অন্যান্য ধরনের বস্তুর উচ্চতর বিবর্ধিত প্রতিবিম্ব সৃষ্টিতে ব্যবহৃত হয়। যদি অণুবীক্ষণ যন্ত্রে ইলেকট্রনের গতিবেগ 1.6 × 10⁶ ms⁻¹ হয় তবে ইলেকট্রনের সঙ্গো যুক্ত ডি-ব্রগলির তরঞ্চা দৈর্ঘ্য নির্ণয় কর।

পরমাণুর গঠন

- 2.58 ইলেকট্রন বিচ্ছুরণের মতো, নিউট্রন বিচ্ছুরণ অণুবীক্ষণ যন্ত্রও অণুর গঠন নির্ণয়ের ক্ষেত্রে ব্যবহৃত হয়। যদি 800 pm তরঞ্চা দৈর্ঘ্য এই ক্ষেত্রে ব্যবহৃত হয় তবে নিউট্রনের সঙ্গো সংযুক্ত বৈশিষ্টগত গতিবেগ নির্ণয় করো।
- 2.59 যদি প্রথম বোর কক্ষে একটি ইলেকট্রনের গতিবেগ 2.19 × 10⁶ ms⁻¹ হয় তবে এর সঙ্গে সংযুক্ত ডি-ব্রগলির তরঙ্গা দৈর্ঘ্য নির্ণয় করো।
- 2.60 1000 V বিভব প্রভেদের মধ্যে গতিশীল একটি প্রোটনের গতিবেগ 4.37 × 10⁵ ms⁻¹। যদি একই গতিবেগে গতিশীল একটি হকি বলের ওজন 0.1 kg হয় তবে এই গতিবেগের সঙ্গো সংযুক্ত তরঙ্গা দৈর্ঘ্য নির্ণয় করো।
- 2.61 যদি একটি ইলেকট্রনের অবস্থান ± 0.002 nm পর্যন্ত নির্ভুলভাবে পরিমাপ করা যায় তবে ইলেকট্রনের ভরবেগ পরিমাপের অনিশ্চয়তা নির্ণয় কর। যদি ইলেকট্রনের ভরবেগ *h*/4π_m × 0.05 nm হয় তবে এই মান সঠিকভাবে নির্ধারনের ক্ষেত্রে কোনো অসুবিধা আছে কি?
- 2.62 ছয়টি ইলেকট্রনের কোয়ান্টাম সংখ্যা সমূহ নিম্নে দেওয়া হল। এদের শক্তির ঊর্ধ্বক্রম অনুসারে সাজাও। এই সমন্বয়গুলোর মধ্যে কারোর শক্তি কী সমান আছে:

1.
$$n = 4, l = 2, m_l = -2, m_s = -\frac{1}{2}$$

2. $n = 3, l = 2, m_l = 1, m_s = +\frac{1}{2}$

3
$$n=4$$
 $l=1$ $m=0$ $m=+-$

4.
$$n = 3, l = 2, m_l = -2, m_s = -\frac{1}{2}$$

5. $n = 3, l = 1, m_l = -1, m_s = +\frac{1}{2}$

6.
$$n = 4, l = 1, m_l = 0, m_s = +\frac{1}{2}$$

- 2.63 ব্রোমিন পরমাণুতে 35টি ইলেকট্রন আছে। এর 2p উপকক্ষে 6টি ইলেকট্রন, 3p উপকক্ষে 6টি ইলেকট্রন এবং 4p উপকক্ষে 5টি ইলেকট্রন আছে। এদের মধ্যে কোন্ ইলেকট্রনটি সর্বনিম্ন কার্যকরী নিউক্লিয়ার আধান অনুভব করে ?
- 2.64 নিম্নলিখিত উপকক্ষের জোড়গুলোর মধ্যে কোন্টি সবচেয়ে বেশি কার্যকরী নিউক্লিয়ার বল অনুভব করবে ?

(i) 2s এবং 3s, (ii) 4d এবং 4f, (iii) 3d এবং 3p.

- 2.65 Al এবং Si এর অযুগ্ম ইলেকট্রনগুলো 3p উপকক্ষে উপস্থিত। কোন্ ইলেকট্রনগুলো নিউক্লিয়াস থেকে অধিক কার্যকরী নিউক্লিয়ার বল অনুভব করবে ?
- 2.66 অযুগ্ম ইলেকট্রন সংখ্যা নির্দেশ করো— (a) P, (b) Si, (c) Cr, (d) Fe এবং (e) Kr.
- 2.67 (a) n = 4 কক্ষের সঙ্গে কয়টি উপকক্ষ সংযুক্ত থাকে ?
 - (b) n = 4 কক্ষের উপকক্ষ সমূহে উপস্থিত ইলেকট্রন সংখ্যা কত যাদের m_s মান $\frac{1}{2}$

তৃতীয় অধ্যায় (UNIT 3)

মৌলসমূহের শ্রেণিবিভাগ এবং ধর্মাবলির পর্যাবৃত্তি (Classification of Elements and Periodicity in Properties)

উদ্দেশ্য (Objectives)

এই অধ্যায়টি অধ্যয়নের পর তোমরা সক্ষম হবে—

- মৌলসমূহকে এদের ধর্মের ভিন্তিতে শ্রেণিবদ্ধকরণের ধারণা থেকে কীভাবে পর্যায় সারণির বিকাশ ঘটেছে তা উপলব্ধি করতে।
- পর্যায় সূত্রটি বুঝতে।
- পর্যায়ভিত্তিক শ্রেণিবিভাগের ভিত্তি হিসাবে পরমাণু ক্রমাঞ্চ এবং ইলেকট্রনিক বিন্যাস এর তাৎপর্য উপলব্ধি করতে।
- IUPAC নামকরণ অনুসারে Z >100 বিশিষ্ট মৌল সমূহের নামকরণ করতে।
- মৌলসমূহকে s, p, d, f ব্লকে শ্রেণিভুক্ত করতে এবং তাদের মুখ্য ধর্মগুলো সম্পর্কে জানতে।
- মৌলসমূহের ভৌত ও রাসায়নিক ধর্মের পর্যায়ভিত্তিক প্রবণতাকে চিহ্নিত করতে।
- মৌলসমূহের সক্রিয়তার তুলনা করতে এবং প্রকৃতিতে তাদের প্রাচুর্যের সাথে সম্পর্কিত করতে।
- আয়নন এনথ্যালাপি এবং ধাতব ধর্মের সম্পর্ককে
 ব্যাখ্যা করতে।
- পরমাণুর কিছু গুরুত্বপূর্ণ বৈশিষ্ট্য যেমন পারমাণবিক/আয়নীয় ব্যাসার্ধ, আয়নায়ন এনথ্যালপি, ইলেকট্রন গ্রহণ এনথ্যালপি, তড়িৎ ঋণাত্মকতা, যোজ্যতা সম্পর্কিত ধারণা আলোচনা করার জন্য উপযুক্ত যথাযথ বৈজ্ঞানিক শব্দ ভাণ্ডার ব্যবহার করতে।

The Periodic Table is arguably the most important concept in chemistry, both in principle and in practice. It is the everyday support for students, it suggests new avenues of research to professionals, and it provides a succinct organization of the whole of chemistry. It is a remarkable demonstration of the fact that the chemical elements are not a random cluster of entities but instead display trends and lie together in families. An awareness of the Periodic Table is essential to anyone who wishes to disentangle the world and see how it is built up from the fundamental building blocks of the chemistry, the chemical elements.

Glenn T. Seaborg

এই অধ্যায়ে আমরা পর্যায়সারণির অগ্রগতির ইতিহাস, যার ফলে এটি বর্তমানরূপ পেয়েছে এবং আধুনিক পর্যায় সূত্র অধ্যয়ন করব। আমরা এটাও জানব যে কী করে পর্যায়ভিত্তিক শ্রেণিবিভাগ-এর ফলশ্রুতিতে পরমাণুর যুক্তিযুক্ত ইলেকট্রন বিন্যাস পাওয়া যায়। পরিশেষে আমরা মৌলসমূহের ভৌত এবং রাসায়নিক ধর্মের পর্যায়ভিত্তিক প্রবণতা নিয়ে পর্যালোচনা করব।

3.1কেন মৌলের শ্রেণিবিন্যাস প্রয়োজন ? (WHY DO WE NEED TO
CLASSIFY ELEMENTS ?)

আমরা এখন জানি সব ধরনের পদার্থের মূল একক হল মৌল। 1800 খ্রিস্টাব্দে মাত্র 31 টি মৌলের কথা জানা ছিল। 1865 খ্রিস্টাব্দে মৌলের এই সংখ্যা প্রায় দ্বিগুণ পরিমাণ বৃদ্ধি পেয়ে 63 হয়েছিল। বর্তমানে 114 টি মৌলের অস্তিত্ব জানা গেছে। এদের মধ্যে সাম্প্রতিক আবিস্কৃত মৌলগুলো হল মনুষ্য নির্মিত। নতুন মৌল সংশ্লেষদের প্রক্রিয়াটি জারি রয়েছে। মৌলের সংখ্যা এত বিশাল হওয়ায় পৃথকভাবে এদের প্রত্যেকের রসায়ন অধ্যয়ন করা খুবই দুরুহ। এই সমস্যার সমাধানের জন্য বিজ্ঞানীগণ মৌলগুলোকে শ্রেণিবিন্যস্ত করে নিজেদের জ্ঞানকে সংগঠিত করে একটি নিয়মানুগ পদ্বতি অনুসন্থ্যান করতে শুরু করেন। এর ফলে শুধু যে মৌলগুলোর রাসায়নিক চরিত্রকে যুন্তিসহকারে ব্যাখ্যা করা যাবে তাই নয়, পরবর্তী অধ্যয়নের জন্য নতুন মৌলের অস্তিত্বের ব্যাপারেও অনুমান করা যাবে। মৌলসমূহের শ্রেণিবিভাগ এবং ধর্মাবলির পর্যাবৃত্তি

3.2 পর্যায়ভিত্তিক শ্রেণিবিভাগের উৎপত্তি (GENESIS OF PERIODIC CLASSIFICATION)

পরীক্ষা এবং পর্যবেক্ষনের ভিত্তিতে কিছু সংখ্যক বিজ্ঞানীর অর্জিত জ্ঞানের নিয়মানুগ রীতিবম্ধকরণের ফলস্রুতিতেই মৌলগুলোকে বিভিন্ন শ্রেণিতে বিন্যস্ত করা এবং পর্যায়সূত্র ও পর্যায়সারণির ক্রমবিকাশ সম্ভব হয়েছে। 1800 খ্রিস্টাব্দের গোড়ার দিকে জার্মান রসায়নবিদ জোহান ডোবেরিনার সর্বপ্রথম মৌলগুলোর ধর্মের মধ্যে ধারাবাহিকতা লক্ষ করেন। 1829 খ্রিস্টাব্দে তিনি, তিনটি করে মৌলের বেশ কয়েকটি গ্রুপের মধ্যে ভৌত এবং রাসায়নিক ধর্মের সাদৃশ্য লক্ষ করেন (ত্রয়ী)। তিনি লক্ষ করেছিলেন যে, প্রত্যেকটি ত্রয়ীর মাঝখানের মৌলটির পারমাণবিক গুরুত্ব অপর দুটি মৌলের পারমাণবিক গুরুত্বের প্রায় মধ্যবর্তী মানের হয় (সারণি 3.1)। তিনি আরও লক্ষ করলেন যে ত্রয়ীর মাঝখানের মৌলটি ত্রয়ীর অন্য দুটো মৌলের মধ্যবর্তী ধর্ম বিশিষ্ট হয়। ডোবেরিনারের সম্পর্কটি ত্রয়ী সূত্র নামে পরিচিত হলেও, এটি সামান্য কয়েকটি মৌলের ক্ষেত্রে প্রযোজ্য ছিল বলে কাকতালীয় ক্রমবর্ধমান পারমাণবিক গুরুত্ব অনুসারে সাজান এবং লক্ষ করেন কোনো একটি মৌল থেকে গণনা শুরু করলে পরবর্তী অন্টম মৌলটির ধর্ম, প্রথম মৌলটির অনুরূপ হয় (সারণি 3.2)। সংগীতের স্বরগ্রামে অন্টম স্বরটিতে যেমন প্রথম স্বরটির পুনরাবৃত্তি হয়, এই সম্পর্কটিও ছিল অনেকটা ঐরকম। ক্যালশিয়াম পর্যন্ত মৌলের ক্ষেত্রে নিউল্যান্ডস্ -এর অন্টক সূত্রটি প্রযোজ্য হয়। যদিও তাঁর এই ধারণাটিকে ঐ সময়ে ব্যাপকভাবে গৃহীত হয়নি তবুও পরবর্তীকালে 1887 খ্রিস্টাব্দে লন্ডনের রয়াল সোসাইটি এ বিষয়ে কাজের জন্য ডেভি মেডেল (Devy Medal) দিয়ে উনাকে সম্মানিত করেন।

আমরা আজ যে পর্যায় সূত্র জানি, তার উন্নতির জন্য রাশিয়ান রসায়নবিদ ডিমিট্রি মেন্ডেলিয়েভ (Dmitri Mendeleev) (1834-1907) এবং জার্মান রসায়নবিদ লোথার মেয়ার (1830-1895) এর কাছে আমরা ঋণী। স্বতন্ত্রভাবে কাজ করে, এই দুই রসায়নবিদ 1869 খ্রিস্টাব্দে উপস্থাপিত করেন যে, মৌলগুলোকে এদের ক্রমবর্ধমান পারমাণবিক গুরুত্ব অনুসারে সাজানো হলে, একটি নির্দিষ্ট

মৌল	পারমাণবিক গুরুত্ব	মৌল	পারমাণবিক গুরুত্ব	মৌল	পারমাণবিক গুরুত্ব
Li	7	Ca	40	Cl	35.5
Na	23	Sr	88	Br	80
K	39	Ba	137	I	127

সারণি-3.1 ডোবেরিনারের ত্রয়ী (Dobereiner's Triads)

ঘটনা বলে মনে করা হয়েছিল এবং বর্জন করা হয়েছিল। মৌলগুলোকে শ্রেণিবম্ব করার পরবর্তী প্রচেফাটি করে ছিলেন 1862 খ্রিস্টাব্দে ফ্রান্স ভৃতত্ত্ববিদ এ. ই. বি. ডি চানকর্টিস (A. E. B. de Chancourtois)। তিনি ঐ সময় পর্যন্ত আবিষ্কৃত মৌলগুলোকে একটি চোঙ আকৃতির সারণিতে ক্রমবর্ধমান পারমাণবিক গুরুত্ব অনুসারে সাজিয়ে মৌলগুলোর ধর্মের পর্যায়ভিত্তিক পুনরাবৃত্তি প্রদর্শন করেন। তাঁর এই প্রচেস্টাও বিশেষ মনোযোগ আকর্ষণ করতে পারেনি। ইংরেজ রসায়নবিদ জন আলেকজান্ডার নিউল্যান্ডস্ 1865 খ্রিস্টাব্দে 'অয্টক সূত্র' (Law of Octaves) প্রকাশ করেছিলেন। তিনি মৌলগুলোকে অবকাশের পর অবস্থিত মৌলগুলোর এদের ভৌত ও রাসায়নিক ধর্মের মধ্যে সাদৃশ্য লক্ষকরা যায়। লোথার মেয়ার (Lothar Meyer) পারমাণবিক গুরুত্বের সাপেক্ষে মৌলের ভৌত ধর্মের যেমন পারমাণবিক আয়তন, গলনাঞ্চক এবং স্ফুটনাঙ্কক এর রেখাচিত্র অঙ্জন করে পর্যায়ভিত্তিক ধর্মের পুনরাবৃত্তির নমুনা প্রাপ্ত করেন। লোথার মেয়ারের পর্যবেক্ষন কিন্তু নিউল্যান্ডস-এর মত ছিল না, তিনি এই পর্যায় ভিত্তিক পুনরাবৃত্তির ধরনটিতে দৈর্ঘ্যের পরিবর্তন লক্ষ করেছিলেন। 1868 খ্রিস্টাব্দে, লোথার মেয়ার মৌলগুলোর একটি সারণির অবতারণা করেছিলেন যা ছিল আধুনিক পর্যায় সারণির প্রায় অনুরূপ।

মৌল	Li	Be	В	С	N	0	F
পা. গুরুত্ব	7	9	11	12	14	16	19
মৌল	Na	Mg	Al	Si	Р	S	C1
পা. গুরুত্ব	23	24	27	29	31	32	35.5
মৌল	K	Ca					
পা. গুরুত্ব	39	40					

সারণি-3.2 নিউল্যান্ডস অস্টক (Newlands' Octaves)

বিজ্ঞানী ডিমিট্রি মেন্ডেলিয়েভ (Dmitri Mendeleev) ও লোথার মেয়ার দুজনেই পর্যায়-সূত্রের বিষয়ে গবেষণার জন্য স্বীকৃতি পেলেও মেন্ডেলিয়েভের সূত্রটি সামান্য আগে প্রকাশিত হওয়ায় পর্যায় সূত্রের সঞ্চো মেন্ডেলিয়েভের নামই সাধারণত উল্লেখিত হয়।

যদিও মৌলগুলোর মধ্যে পর্যায়ভিত্তিক সম্পর্ক খোঁজার কাজটা ডোবেরিনার শুরু করেছিলেন, কিন্তু বিজ্ঞানী মেন্ডেলিয়েভই সর্বপ্রথম পর্যায়সূত্র প্রকাশ করেছিলেন। পর্যায় সূত্রের বিবৃতিটি নিম্নরূপ :

মৌলের ধর্ম সমূহ এদের পারমাণবিক গুরুত্ব বৃদ্ধির সঙ্গে পর্যায়ক্রমে পুনরাবৃত্ত হয়।

মেন্ডেলিয়েড মৌলগুলোকে ক্রমবর্ধমান পারমাণবিক গুরুত্ব অনুসারে সাজিয়ে কতকগুলো অনুভূমিক সারি এবং উল্লম্ব স্তম্ভে স্থাপন করেন যাতে সমধর্মী মৌলগুলো একই উল্লম্ব স্তম্ভ বা গ্রুপে অবস্থান করে। মেন্ডেলিয়েভের মৌলের শ্রেণিবিন্যাস পম্বতি লোথার মেয়ারের চেয়ে অধিক সম্প্রসারিত ছিল। তিনি সম্পূর্ণরূপে পর্যায়বৃত্তির তাৎপর্যের স্বীকৃতি দেন এবং ভৌত ও রাসায়নিক ধর্মের ভিত্তিতে মৌলের শ্রেণিবিন্যাসকে বৃহত্তর পরিসরে ব্যবহার করেন। প্রকৃতিপক্ষে মেন্ডেলিয়েড স্থূল সংকেত এবং মৌলের দ্বারা গঠিত যৌগের ধর্মের সাদৃশ্যের উপর নির্ভর করেছিলেন। তিনি অনুধাবন করেছিলেন, যদি পারমাণবিক গুরুত্বের ক্রম যথাযথভাবে অনুসৃত হয়, তখন কিছু মৌলের শ্রেণিবিন্যাসের ক্ষেত্রে তার পম্বতি কার্যকরী হয়না। তিনি পারমানবিক গুরুত্ব এর ক্রম বাদ দিয়ে চিস্তা করেন কেননা তিনি ভেবেছিলেন পারমানবিক

পরিমাপ সম্ভবত ভুল এবং সমধর্মী মৌলগুলোকে একত্রে স্থাপন করেন। উদাহরণস্বরূপ, টেলুরিয়ামের (গ্রুপ-vi) চেয়ে নিম্ন পারমাণবিক ওজন হওয়া সত্ত্বেও আয়োডিনকে (গ্রুপ-vii) ধর্মের সাদৃশ্যের জন্য ফ্লু রিন, ক্লোরিন এবং ব্রোমিনের সঙ্গো স্থান দেওয়া হয়েছে (সারণি-3.1)। একই সময়ে মৌলের শ্রেণিবিন্যাসে তার প্রাথমিক লক্ষ ছিল সমধর্মী মৌলের একই গ্রপে অবস্থান। তিনি লক্ষ করেন যে কিছু মৌল এখনও আবিষ্ণৃত হয়নি এবং সেজন্য সারণিতে অনেক ফাঁকা স্থান রেখেছিলেন। উদাহরণস্বরুপ, মেন্ডেলিয়েভের পর্যায় সারণি প্রকাশিত হওয়ার সময় গ্যালিয়াম এবং জার্মেনিয়াম এই দুটো মৌলই অনাবিষ্ণৃত ছিল। তিনি অ্যালুমিনিয়ামের নীচে ফাঁকা জায়গা এবং সিলিকনের নীচে ফাঁকা জায়গা রাখেন এবং এই মৌলগুলোকে একা অ্যালুমিনিয়াম এবং একা সিলিকন নাম দেন। মেন্ডেলিয়েভ শুধুমাত্র গ্যালিয়াম এবং জার্মেনিয়ামের অস্তিত্বের পূর্বাভাস করেননি, তাদের কিছু ভৌত ধর্ম নিয়েও আলোচনা করেছিলেন। এই মৌলগুলো পরবর্তীকালে আবিষ্কৃত হয়েছিল। এই মৌলগুলোর কিছু ধর্ম মেন্ডেলিয়েভের পূর্বাভাস সম্পর্কে এবং এগুলো পরীক্ষামূলকভাবে প্রাপ্ত তথ্য সারণি 3.3-এ তালিকাভুক্ত করা হল।

মৌলের পরিমাণগত ধর্ম সম্বন্ধে ভবিষ্যৎবাণী এবং যথাযথ শ্রেণিবিন্যাসে মেন্ডেলিয়েভের সপ্রতিভ ধারণার সফালতা তাঁকে ও তাঁর পর্যায় সারণিকে বিখ্যাত করেছে। মেন্ডেলিয়েভের পর্যায়সারণি 1905 খ্রিস্টাব্দে প্রকাশিত হয়। যা সারণি 3.1-এ প্রদর্শিত হল।

সারণি-3.3 একা অ্যালুমিনিয়াম (গ্যালিয়াম) এবং একা-সিলিকন মৌলের জন্য মেন্ডেলিয়েভের ভবিষ্যৎবাণী [Mendeleev's Predictions for the Elements Eka-aluminium (Gallium) and Eka-silicon (Germanium)]

ชม์	একা অ্যালুমিনিয়াম (আনুমানিক)	গ্যালিয়াম (প্রাপ্ত)	একা সিলিকন (আনুমানিক)	জার্মেনিয়াম (প্রাপ্ত)
পারমাণবিক ওজন	68	70	72	72.6
মনত্ব / (g/cm³)	5.9	5.94	5.5	5.36
গলনাঙ্ক /K	Low	302.93	ব্যস্ত	1231
অক্সাইডের সংকেত	E ₂ O ₃	Ga ₂ O ₃	EO ₂	GeO2
ক্লোরাইডের সংকেত	ECl ₃	GaCl ₃	ECl ₄	GeCl ₄

রসায়ন

	VIII		ron Cobalt Nickel e Co Ni (Cu) 5.9 59 59	uthenium Rhodium Palladium tu Rh Pd (Ag) 01.7 103.0 106.5		smium Iridium Platinum s Ir Pt (Au) 91 193 194.9		RO4
	NII IIV	Fluorine F 19.0 Chlorine CI 35.45	Manganese I: Mn 55.0 E Bromine Br 79.95	- F F I I I 126.9	1			R2O7 OMPOUNDS
	IV	Oxygen O 16.00 Sulphur S 32.06	Chromium Cr 52.1 Selenium Se	Molybdenum Mo 96.0 Tellurium 127.6	1	Tungsten W 184	Uranium U 239	JINE OXIDES RO ₃ IS HYDROGEN C
লর শ্রোতিসমূহ	ν	Nitrogen N 14.04 Phosphorus P 31.0	Vanadium V 51.4 Arsenic As 75	Niobium Nb 94.0 Antimony Sb 120.0	1	Tantalum Ta 183 Bismuth Bi Bi	1	HIGHER SAL R2O5 GHER GASEOU RH3
মৌৰে	IV	Carbon C 12.0 Silicon Si	Titanium Ti 48.1 Germanium 72.3	Zirconium Zr 90.6 Tin Sn 119.0	Cerium Ce 140	- Lead Pb 206.9	Thorium Th 232	RO 2 HI RH A
	III	- Boron B 11.0 Aluminium Aluminium 27.0	Scandium Sc 44.1 Gallium Ga Ga	Yttrium Y 89.0 Indium In 114.0	Lanthanum La 139	Ytterbium Yb 173 Thallium Tl 204.1	1	R203
	п	- Beryllium Be 9.1 Magnesium Mg 24.3	Calcium Ca 40.1 Zinc Zn 65.4	Strontium Sr 87.6 Cadmium Cd 112.4	Barium Ba 137.4	- Mercury Hg 200.0	Radium Ra 224	RO
	Ι	Hydrogen H 1.008 Lithium 1.003 7.03 7.03 8.0dium Na 23.5	Potassium K 39.1 Copper Cu 63.6	Rubidium Rb 85.4 Silver Ag 107.9	Caesium Cs 132.9	- Gold Au 197.2	1	$\mathbb{R}_2\mathbb{O}$
	0	- Helium He 4.0 Neon Ne 19.9	Argon Ar 38	Krypton Kr 81.8	Xenon Xe 128	1	1	R
શ્રત્રીય		3 5 1	4 5	6 7	8 0	10	12	

গ্রুপ এবং সারণিতে মৌলসমূহের পর্যায়ভিত্তিক পল্ধতি (PERIODIC SYSTEM OF THE ELEMENTS IN GROUPS AND SERIES)

মৌলসমূহের শ্রেণিবিভাগ এবং ধর্মাবলির পর্যাবৃত্তি

ছবি 3.1- পূর্বে প্রকাশিত মেভেলিয়েভের পর্যায় সারণি (Mendeleev's Periodic Table published earlier) ডিমিট্রি মেন্ডেলিয়েভ (Dmitri Mendeleev) রাশিয়ার সাঁইবেরিয়া অঞ্চলের টোবালক্সে (Tobalsk) জন্ম গ্রহণ করেন। তাঁর বাবার মৃত্যুর পর তাঁর পরিবার সেন্ট পিটার্সবার্গে চলে যায়। 1856 খ্রিস্টাব্দে তিনি রসায়নে তাঁর মাস্টার ডিগ্রি এবং 1865 খ্রিস্টাব্দে ডক্টরেট ডিগ্রি অর্জন করেন। তিনি সেন্ট পিটারবার্গ বিশ্ববিদ্যালয়ে অধ্যাপনা শুরু করেন, যেখানে তিনি 1867 খ্রিস্টাব্দে সাধারণ রসায়নের অধ্যাপক হিসেবে নিযুক্ত হন। তাঁর বিখ্যাত পাঠ্য বই 'Principles of Chemistry' এর প্রাথমিক কাজ মেন্ডেলিয়েভকে পর্যায় সূত্র এবং পর্যায় সারনির প্রস্তাবনায় উদ্ধুম্ব করে। ঐ সময়ে পরমাণুর গঠন অজানা ছিল এবং মৌলের ধর্মসমূহ কোনো না কোনোভাবে পারমাণবিক গুরুত্বের সঙ্গো সম্পর্কযুক্ত। মেন্ডেলিয়েভের এই ধারণাটি নিত্যান্তই কাল্পনিন। কিছু মৌলকে রাসায়নিক ধর্মের ভিত্তিতে সঠিক গ্রুপে স্থাপন করতে গিয়ে মেন্ডেলিয়েভ কিছু মৌল জোড়ের ক্রম পরিবর্তন করে বিপরীতক্রমে লিখেন এবং এদের পারমাণবিক গুরুত্ব (ভর) ভুল বলে প্রমান করেন। মেন্ডেলিয়েভ সেই সময়ে অজানা মৌলগুলোর জন্য পর্যায় সারণির

রসায়ন

বিজ্ঞানী ডিমিট্রি ইভনোডিস মেন্ডেলিয়েভ (1834-1907)

দেখেছেন, তার থেকে তিনি তাদের ধর্মের ভবিষ্যৎবাণী করেন। মেন্ডেলিয়েভের ভবিষ্যৎবাণী বিস্ময়করভাবে সঠিক বলে প্রমাণিত হয় যখন ঐ মৌলগুলো পরে আবিষ্ণুত হয়েছিল।

মেন্ডেলিয়েভের পর্যায় সূত্র পরবর্তী কয়েক দশক ধরে বিভিন্ন ক্ষেত্রে গবেষণার কাজকে অনুপ্রাণিত করেছে। প্রথম দুটি নোবেল গ্যাস হিলিয়াম এবং আর্গন 1890 খ্রিস্টাব্দে আবিষ্কৃত হয় এবং সমধর্মী অনুরূপ প্রস্তাবিত মৌলের পরিবার থাকার সম্ভাবনার কথা বলেন। এই ধারণা থেকে অনুপ্রাণিত হয়ে রামসে ক্রিপটন এবং জেনন আবিষ্কার করতে সমর্থ হয়েছিলেন। বিংশ শতাব্দির প্রথমদিকে ইউরেনিয়াম এবং থোরিয়াম এর তেজস্ক্রিয় অবক্ষয় সারি সংক্রান্ত কাজগুলো সম্পন্ন করার সময়ও পর্যায় সারণির নিয়মগুলো অনুসরণ করা হয়েছিল।

মেন্ডেলিয়েভের বহুমুখী প্রতিভা ছিল। তিনি রাশিয়ার প্রাকৃতিক সম্পদের সঙ্গে সংযুক্ত অনেক সমস্যার উপর কাজ করেছিলেন। তিনি একটি নির্ভুল ব্যারোমিটার আবিষ্কার করেছিলেন। 1890 খ্রিস্টাব্দে তিনি অধ্যাপনা থেকে পদত্যাগ করেন। তিনি ওজন ও পরিমাপ ব্যুরোর পরিচালক হিসেবে নিযুক্ত হন। 1907 খ্রিস্টাব্দে তাঁর মৃত্যুর পূর্ব পর্যন্ত তিনি বেশ কিছু ক্ষেত্রে গুরুত্বপূর্ণ গবেষণার কাজ চালিয়ে যান।

তুমি আধুনিক পর্যায় সারণিতে (ছবি-3.2) লক্ষ করবে যে, 101 পরমাণু ক্রমাজ্ঞ বিশিষ্ট মৌলের নাম মেন্ডেলিভিয়াম রেখে মেন্ডেলিয়েভের নামটি অমর করে রাখা হয়েছে। এই মৌলের আবিষ্কারক আমেরিকান বিজ্ঞানী গ্লেন, টি, সিবর্গ (Glenn T. Seaborg) এই নাম প্রস্তাব করেছিলেন, মহান রাশিয়ান রসায়নবিদ এর অগ্রণী ভূমিকার স্বীকৃতিতে, যিনি প্রথম মৌলের পর্যায়ভিত্তিক পম্থতিতে অনাবিষ্কৃত মৌলের রাসায়নিক ধর্মের ভবিয্যদ্বানী করেছিলেন, এটি ছিল এমনই একটি নীতি যা ছিল প্রায় সমস্ত ইউরেনিয়াম উত্তর মৌলগুলোর আবিষ্কারের চাবিকাঠি।

3.3 আধুনিক পর্যায় সূত্র এবং পর্যায় সারণির বর্তমান রূপ (MODERN PERIODIC LAW AND THE PRESENT FORM OF THE PERIODIC TABLE)

আমাদের মনে রাখতে হবে যে মেন্ডেলিয়েভ যে সময়ে তার পর্যায় সারণির বিকাশ করেছিলেন, রসায়নবিদ্গণ তখন পরমাণুর অভ্যন্তরীণ গঠন সম্পর্কে কিছুই জানতেন না। বিংশ শতাব্দীর গোড়ার দিকে অব পারমাণবিক কণিকা সম্পর্কিত তত্ত্বের প্রভূত বিকাশ ঘটেছিল। 1913 খ্রিস্টাব্দে ইংরেজ পদার্থবিদ হেনরি মোজলে (Henry Moseley), X-রশ্মির বর্ণালী থেকে মৌলগুলোর বৈশিষ্ট্যসূচক ধর্মের মধ্যে একটি ধারাবাহিকতা লক্ষ করেন। পারমাণবিক সংখ্যার (z) এর সাপেক্ষে $\sqrt{\gamma}$ (যেখানে γ হল নির্গত X-রশ্মির কম্পাঙ্ক) এর লেখচিত্র অঙ্জন করলে একটি সরলরেখা পাওয়া যায়, কিন্ডু পারমাণবিক ভরের সঙ্গে $\sqrt{\gamma}$ -এর লেখচিত্র এরকম কোন রেখা পাওয়া যায় না। এভাবে তিনি দেখালেন যে, পারমাণবিক ভরের চেয়ে পারমাণবিক সংখ্যা অধিকতর মৌলিক ধর্ম। মেন্ডেলিয়েতের পর্যায় সূত্রটি সেই অনুযায়ী পরিবর্তন করা হয়েছিল। এটি আধুনিক পর্যায় সূত্র হিসাবে পরিচত এবং এটিকে এভাবে বিবৃত করা যেতে পারে:

"মৌল সমূহের ভৌত এবং রাসায়নিক ধর্মগুলো এদের পারমানবিক সংখ্যা বৃদ্ধির সঙ্গে সঙ্গে পর্যায়ক্রমে পুনরাবৃত্ত হয়"।

পর্যায় সূত্রটি প্রকৃতিতে প্রাপ্ত 94টি স্বাভাবিক মৌলের মধ্যে তুলনামূলক আলোচনায় গুরুত্বপূর্ণ ভূমিকা পালন করে (ইউরিনায়ামের আকরিক পীচ্ ব্লেন্ড এ অ্যাক্টিনিয়াম এবং প্লুটো অ্যাক্টিনিয়াম এর মত নেপচুনিয়াম এবং প্রোটোনিয়াম পাওয়া যায়)। এটি অজৈব রসায়ন অধ্যয়নে নতুনভাবে অনুপ্রাণিত করে এবং যার ফলস্বরূপ বর্তমানে স্বল্প আয়ু বিশিষ্ট কৃত্রিম মৌলের সৃষ্টি সম্ভব হয়েছে।

তোমাদের মনে আছে যে, পরমাণু ক্রমাঞ্চ নিউক্লিয়াসের আধানের সমান (অর্থাৎ প্রোটন সংখ্যা) বা প্রশম পরমাণুতে ইলেকট্রন সংখ্যার সমান হয়। এর ফলে মৌলসমূহের পর্যায়বৃত্তিতে কোয়ান্টাম সংখ্যা এবং ইলেকট্রন বিন্যাসের তাৎপর্য উপলব্ধি করা সহজ হয়। বাস্তবে এটি স্বীকৃত যে পর্যায় সূত্র ইলেকট্রন বিন্যাসের পর্যায় ভিত্তিক পরিবর্তনের ফল, যেটি প্রকৃতপক্ষে মৌল এবং তাদের যৌগের ভৌত ও রাসায়নিক ধর্ম নির্ধারন করে। সময়ের সাথে সাথে, বিভিন্ন প্রকারের পর্যায় সারণি তৈরি করা হয়েছে। কিছু ক্ষেত্রে রাসায়নিক বিক্রিয়া এবং যোজ্যতার উপর জোড় দেওয়া হয়েছে। আবার কিছুক্ষেত্রে মৌলের ইলেকট্রন বিন্যাসের উপর জোর দেওয়া হয়েছে। মৌলের পর্যায় সারণির আধুনিক সংস্করণ যাকে দীর্ঘ পর্যায় সারণি বলে জানি সেটি হল সবচেয়ে সুবিধাজনক এবং ব্যাপকভাবে ব্যবহৃত হয় (সারণি-3.2)। অনুভূমিক সারিগুলোকে পর্যায় (মেন্ডেলিয়েভের মতে পংক্তি) এবং উল্লম্ভ স্তম্ভগুলোকে গ্রুপ বা শ্রেণি বলে। মৌলের পরমাণুগুলো যাদের সর্বশেষ কক্ষের ইলেকট্রন বিন্যাস একই রকম তা উল্লম্ভ সারিতে অবস্থান করে। এদের গ্রুপ বা পরিবার হিসাবে উল্লেম্থ করা হয়। IUPAC (International Union of Pure & Applied Chemistry) সুপারিশ অনুযায়ী গ্রুপের পুরোনো প্রতীক IA ... VIIA, VIII, IB ... VIIB এবং 0 এর পরিবর্তে 1 থেকে 18 সংখ্যা লেখা হয়।

সারণিতে মোট সাত (7)টি পর্যায় আছে। কোনো পর্যায়ে অবস্থিত মৌলগুলোর সর্বোচ্চ মুখ্য কোয়ান্টাম সংখ্যাটি (*n*) হল পর্যায় সংখ্যা। প্রথম পর্যায়ে দুটো মৌল আছে। পরবর্তী পর্যায়গুলোর মধ্যে রয়েছে যথাক্রমে ৪, ৪, 18, 18 এবং 32টি মৌল। সপ্তম পর্যায়টি অসম্পূর্ণ এবং যষ্ঠ (6th) পর্যায়ের মত এর মধ্যেও তাত্বীকভাবে সর্বোচ্চ 32টি মৌল থাকা সম্ভব (কোয়ান্টাম সংখ্যার ভিত্তিতে)। পর্যায় সারণির এরুপ গঠনে যষ্ঠ এবং সপ্তম পর্যায়ের প্রতিটিতে 14টি করে মৌলকে (যথাক্রমে ল্যানথানয়েড এবং অ্যাক্টিনয়েড) নীচে পৃথক স্থানে স্থান দেওয়া হয়েছে।

3.4100-এর বেশি পারমাণবিকসংখ্যা বিশিষ্ট মৌলের নামকরণ
(NOMENCLATURE OF ELEMENTS
WITH ATOMIC NUMBERS > 100)

নতুন মৌলগুলোর নামকরণে ঐতিহ্যগতভাবে আবিষ্কারকের বিশেষাধিকার ছিল এবং প্রস্তাবিত নামটি IUPAC দ্বারা অনুমোদন করা হতো। সাম্প্রতিক বছরগুলোতে এ নিয়ে কিছু বিতর্ক সৃষ্টি হয়েছে। উচ্চ পরমাণু ক্রমাঞ্চ বিশিস্ট নতুন মৌলগুলো এতই অস্থায়ী যে, খুবই স্বল্প পরিমাণে, কখনও কখনও এদের কয়েকটি পরমাণুই পাওয়া যায়। তাই এদের সংশ্লেষণ এবং ধর্ম নির্ধারনে অত্যন্ত অত্যাধুনিক ব্যয়বহুল সরঞ্জাম এবং গবেষণাগারের প্রয়োজন। এই ধরনের কাজ প্রতিযোগিতামূলক মানসিকতার সঙ্গো বিশ্বে শুধুমাত্র কিছু পরীক্ষাগারেই করা হয়।

^{*} বিংশ শতাব্দির মধ্যভাগে 1940 খ্রিস্টাব্দে গ্লেনটি সিবর্গের (Glenn T. Seaborg's) প্লুটোনিয়াম (plutonium) এবং তৎসঙ্গে 94 থেকে 102 পরমাণু ক্রমাঙ্ক বিশিষ্ট ইউরিনিয়াম উত্তর মৌলসমূহের আবিষ্কারের ফলে পর্যায়সারণিতে যে পুনঃবিন্যাস ঘটে তার ফলে অ্যাক্টিনয়েডগুলোকে ল্যাম্থানয়েডের নীচ্চ স্থান দেওয়া হয়েছে। সিবর্গকে তার গবেণার স্বীকৃতিস্বরূপ 1951 খ্রিস্টব্দে নোবেল পুরস্কারে ভূষিত করা হয়। 106 নং মৌলকে তার সম্মানার্থে সিবর্গিয়াম (Sg) নাম দেওয়া হয়েছে।

নষ্ক্রিয় গাসে		0	2 He	$1s^2$	10	$Ne^{2s^22p^6}$	18	$\operatorname{Ar}_{3s^2 3p^6}$	36	Kr	$4s^{2}4p^{6}$	54	Xe	$5s^25p^6$	86	$\operatorname{Rn}_{6s^26p^6}$	118	Uuo	
ų <u>e</u>			17	VII B	6	$\mathrm{F}_{2s^22p^5}$	17	CI $3s^23p^5$	35	Br	$4s^{2}4p^{5}$	53	Ι	$5s^25p^5$	85	$\operatorname{At}_{6s^26p^5}$	117	Uus	
ধি মৌল	সংখ্যা		16	VI B	8	$O_{2s^2 2p^4}$	16	${\mathop{\rm S}}^2{}_{3p^4}$	34	Se	$4s^{2}4p^{4}$	52	Te	$5s^{2}5p^{4}$	84	$PO \\ 6s^2 6p^4$	116	Lv	
প্রতিনি	শ্ৰেণি		15	V B	7	N $2s^2 2p^3$	15	P $3s^23p^3$	33	\mathbf{As}	$4s^{2}4p^{3}$	51	Sb	$5s^{2}5p^{3}$	83	${\operatorname{Bi}}_{6s^26p^3}$	115	Uup	
			14	IV B	9	$C_{2s^2 2p^2}$	14	$\operatorname{Si}_{3s^2 3p^2}$	32	Ge	$4s^{2}4p^{2}$	50	Sn	$5s^{2}5p^{2}$	82	$Pb_{6s^26p^2}$	114	FI	
			- 13	III B	5	$\mathbf{B}_{2s^22p^1}$	13	$\operatorname{Al}_{3s^2 3p^1}$	31	Ga	$4s^{2}4p^{1}$	49	In	$5s^{2}5p^{1}$	81	Tl $6s^26p^1$	113	Uut	
							- 2	II B	30	Zn	$3d^{10}4s^{2}$	48	Cd	$4d^{10}5s^2$	80	$\mathrm{Hg}_{5d^{10}6s^2}$	112	Cn	
							11	IB	29	Cu	$3d^{10}4s^{11}$	47	Ag	$4d^{10}5s^{1}$	79	$\operatorname{Au}_{5d^{10}6s^1}$	111	Rg	মাল
							10	° ↑	28	ïZ	$3d^{8}4s^{2}$	46	Pd	$4d^{10}$	78	$\operatorname{Pt}_{5d^96s^1}$	110	Ds	<u>দান্ধিগত (</u>
							6	- IIIA -	27	Co	$3d^{7}4s^{2}$	45	Rh	$4d^{8}5s^{1}$	77	$\operatorname{Ir}_{5d^{2}6s^{2}}$	109	Mt	ভাস্তরীণ স
					ত মেলি	રચોર્પે હ	×	, \	26	Fe	$3d^{6}4s^{2}$	44	Ru	$4d^{7}5s^{1}$	76	Os 5d ^{66s²}	108	Hs	<i>रि</i> -
			$\mathrm{H}_{1S^{1}}$		<i>d</i> -সন্ধিগ	শ্রেলি স শ	7	VIIA	25	Mn	$3d^{5}4s^{2}$	43	Tc	$4d^{5}S^{2}$	75	$\operatorname{Re}_{5d^56s^2}$	107	Bh	
							ý	VIA	24	Cr	$3d^{5}4s^{1}$	42	Mo	$4d^{5}5s^{1}$	74	W 5d ⁴ 6s ²	106	S B	
							v	νA	23	>	$3d^{3}4s^{2}$	41	Nb	$4d^{4}5s^{1}$	73	$Ta_{5d^36s^2}$	105	Db	
							4	IVA	22	ij	$3d^{2}4s^{2}$	40	Zr	$4d^{2}5s^{2}$	72	$_{4f}^{Hf} 5d^{2}6s^{2}$	104	Rf	
							- ന	HIIA	21	Sc	$3d^{1}4s^{2}$	39	Υ	$4d^{1}5s^{2}$	57	La^* 5 d^{16s^2}	89	Ac^{**} $6d^{1}7s^{2}$	
প্র	- 3	म९चार्ग	5	IIA	4	Be^{2s^2}	12	${ m Mg}_{3S^2}$	20	Ca	$4s^2$	38	\mathbf{Sr}	$5s^{2}$	56	Ba_{6S^2}	88	Ra_{7S^2}	
અહિ		্ জ্বলি হ	1	IA	ю	Li 2s¹	11	Na 3s ¹	19	Х	$4s^1$	37	Rb	$5s^{1}$	55	Cs ¹	87	Fr_{7s^1}	
						0	(- 1 w	U>>	۲ 4	লাঁচা	6	5			9		2	-

71	Lu	$4f^{14}5d^{1}6s$	103	Lr	$5f^{14}6d^{1}7$
70	Чþ	$4f^{14}5d^{0}6s^{2}$	102	No	$5f^{14}6d^{0}7s^{2}$
69	Tm	$4f^{13}5d^{0}6s^{2}$	101	рМ	$5f^{13}6d^07s^2$
89	Er	$4f^{12}5d^{0}6s^{2}$	100	Fm	$5f^{12}6d^{0}7s^{2}$
67	Но	$4f^{11}5d^{0}6s^{2}$	66	Es	$5f^{11}6d^{0}7s^{2}$
99	Dy	$4f^{10}5d^{1}6s^{2}$	98	Cf	$5f^{10}6d^{0}7s^{2}$
65	τb	$4f^{9}5d^{0}6s^{2}$	67	Bk	$5f^{9}6d^{0}7s^{2}$
64	Gd	$4f^{3}5d^{1}6s^{2}$	96	Cm	$5f^76d^17s^2$
63	Eu	$4f^{7}5d^{0}6s^{2}$	95	Am	$5f^76d^97s^2$
62	Sm	$4f^{6}5d^{0}6s^{2}$	94	Pu	$5f^{6}d^{0}7s^{2}$
61	Pm	$4f^{5}5d^{0}6s^{2}$	93	Np	$5f^{4}6d^{1}7s^{2}$
09	Nd	$4f^{4}5d^{0}6s^{2}$	92	Ŋ	$5f^{3}6d^{1}7s^{2}$
69	\mathbf{Pr}	$4f^{3}5d^{0}6s^{2}$	91	Pa	$5f^26d^17s^2$
58	Ce	$4f^{2}5d^{0}6s^{2}$	90	Th	$5f^{0}6d^{2}7s^{2}$
*	ଗଧାଂସାବ(ରେ ଓଏ ଜାନ -0-1 ∕ 2	4f Dd 6s	**	আান্টিনয়েডস্ "	$5f^{-}6d^{-}7s^{-}$

ছবি 3.2- মৌল সমূহের পরমাণু ক্রমাঞ্চ এবং সর্ববহিষ্থা কক্ষের ভূমিন্তর ইলেকট্রন বিন্যাস দীর্ঘ পর্যায় সারণির 1984 খ্রিস্টাব্দে IUPAC এর সুপারিশ অনুযায়ী শ্রেণিগুলোকে 🛛 1-

18 নমনে চিহিন্ত করা হয়েছে। নমনের পুরালো পম্বতির IA ... VIIA, VIII, IB ... VIIB এবং 0 এর পরিবর্তে এই চিহ্ন দারা পরিবর্তন করা হয়েছে।

রসায়ন

15

.

Г

80

মৌলসমূহের শ্রেণিবিভাগ এবং ধর্মাবলির পর্যাবৃত্তি

বিজ্ঞানীগণ নতুন মৌলের নির্ভরযোগ্য তথ্য সংগ্রহ করার আগেই অনেক সময় তা আবিস্কারের দাবি করার জন্য প্রলোভিত হন। উদাহরণস্বরূপ— আমেরিকান এবং সোভিয়েত বিজ্ঞানীগণ একই সাথে 104 পারমাণবিক সংখ্যা বিশিষ্ট মৌলের আবিষ্কারের দাবি পেশ করেন। আমেরিকানরা একে রাদারফোর্ডিয়াম এবং সোভিয়েতরা একে কুরচেটোভিয়াম নামে অভিহিত করেন। এই সমস্যা সমাধানের জন্য IUPAC উদ্যোগ নেয় এবং সুপারিশ করে যে, নতুন মৌলটির আবিষ্কার প্রমানিত না হওয়া পর্যন্ত এবং মৌলটির নাম অফিসিয়ালি স্বীকৃতি লাভ না করা পর্যন্ত, মৌলটির পারমাণু ক্রমাঞ্চ থেকে সরাসরি নামাকরণের এমন একটি প্রথাগত পম্বতি অনুসরণ করতে হবে, যেমন 0 এবং 1 থেকে 9 পর্যন্ত সংখ্যাগুলোকে মূল ল্যাটিন শব্দ দ্বারা প্রকাশ করা হয়। 3.4 নং সারণিতে তা দেখানো হল- মূল ল্যাটিন শব্দগুলোকে সংখ্যার মত পর পর বসিয়ে পারমাণবিক সংখ্যাটি গঠন করার পর শেষে 'ইয়াম' (ium) যোগ করে নামাকরণ শেষ করা হয়। 100 এর বেশি পরমাণু ব্রমাঞ্চ বিশিষ্ট মৌলগুলোর IUPAC নাম 3.5 নং সারণিতে দেখানো হলো।

সংখ্যা	নাম	সংক্ষিপ্ত চিহ্ন
0	নিল (nil)	n
1	আন (un)	u
2	বাই (bi)	b
3	ট্রাই (tri)	t
4	কোয়াড (quad)	q
5	পেন্ট (pent)	р
6	হেক্স (hex)	h
7	সেপ্ট (sept)	S
8	অক্ট (oct)	0
9	এন (enn)	e
1 2 3 4 5 6 7 8 9	আন (un) বাই (bi) ট্রাই (tri) কোয়াড (quad) পেন্ট (pent) হেক্স (hex) সেপ্ট (sept) অক্ট (oct) এন (enn)	u b t q p h s o e

সারণি-3.4 মৌলের IUPAC নামকরণে ব্যবহৃত মূল ল্যাটিন শব্দ এব	2
চিহ্ন সমূহ (Notation for IUPAC Nomenclature of Elements))

পরমাণু	IUPAC পদ্ধতিতে	ঙৰ	IUPAC	
ক্রমাঙ্ক	নাম বা সুপরিকল্পিত নাম		নাম	চহ্
101	Unnilunium	Unu	Mendelevium	Md
102	Unnilbium	Unb	Nobelium	No
103	Unniltrium	Unt	Lawrencium	Lr
104	Unnilquadium	Unq	Rutherfordium	Rf
105	Unnilpentium	Unp	Dubnium	Db
106	Unnilhexium	Unh	Seaborgium	Sg
107	Unnilseptium	Uns	Bohrium	Bh
108	Unniloctium	Uno	Hassium	Hs
109	Unnilennium	Une	Meitnerium	Mt
110	Ununnillium	Uun	Darmstadtium	Ds
111	Unununnium	Uuu	Rontgenium	Rg
112	Ununbium	Uub	Copernicium	Cn
113	Ununtrium	Uut	Nihonium	Nh
114	Ununquadium	Uuq	Flerovium	Fl
115	Ununpentium	Uup	Moscovium	Mc
116	Ununhexium	Uuh	Livermorium	Lv
117	Ununseptium	Uus	Tennessine	Ts
118	Ununoctium	Uuo	Oganesson	Og

সারণি-3.5: 100-এর বেশি পরমাণু ক্রমাঙ্ক বিশিষ্ট মৌলের নামকরণ

এভাবে, নতুন মৌলটি প্রথমে একটি অস্থায়ী নাম পায়, যার সঙ্গে তিনটি অক্ষর রয়েছে। প্রতিটি দেশের IUPAC প্রতিনিধিদের ভোট দ্বারা পরে স্থায়ী নাম এবং প্রতীক প্রাপ্ত হয়। স্থায়ী নামটির দ্বারা দেশের (বা দেশের অন্তর্গত রাজ্যের) যেখানে মৌলটি আবিস্কৃত হয়েছিল প্রতিভাত বা একজন উল্লেখযোগ্য বিজ্ঞানীকে শ্রুম্বা জানানো হয়। এখন পর্যন্ত 118 পরমাণু ক্রমাজ্ঞ বিশিষ্ট মৌলগুলি আবিস্কৃত হয়েছে। সমস্ত পরমানবিক সংখ্যা বিশিষ্ট মৌলগুলোর অফিসিয়াল নাম IUPAC দ্বারা ঘোষণা করা হয়েছে।

সমস্যা-3.1

120 পারমাণবিক সংখ্যা বিশিষ্ট মৌলটির IUPAC নাম এবং চিহ্ন কি হবে ?

সমাধান :

সারণি 3.4 সংখ্যা 1,2 এবং 0 এর মূল ল্যাটিন শব্দ থেকে যথাক্রমে আন (Un), বাই (bi) এবং নিল (nil)। সুতরাং মৌলটির চিহ্ন এবং নাম হল যথাক্রমে Ubn এবং আনবাই নিলিয়াম(Unbinilium)।

3.5 মৌল সমূহের ইলেকট্রন বিন্যাস এবং পর্যায় সারণি (ELECTRONIC CONFIGURATIONS OF ELEMENTS AND THE PERIODIC TABLE)

পূর্বের অধ্যায়ে আমরা জেনেছি যে, একটি পরমাণুর মধ্যে বর্তমান একটি ইলেকট্রনকে 4টি কোয়ান্টাম সংখ্যার একটি সেট দ্বারা প্রকাশ করা হয়, এবং মুখ্য কোয়ান্টাম সংখ্যা (*n*) প্রধান শক্তিস্তরকে প্রকাশ করে যা কক্ষ নামে পরিচিত। আমরা বিভিন্ন উপকক্ষে ইলেকট্রন পূর্তি সম্পর্কে পড়েছি, যেগুলো পরমাণুর কক্ষক (*s*, *p*, *d*, *f*) নামেও পরিচিত। পরমাণুর কক্ষকের মধ্যে ইলেকট্রনের বন্টনকে ইলেকট্রন বিন্যাস বলে। পর্যায় সারণিতে একটি মৌলের অবস্থান থেকে সর্ববহিস্থ কক্ষকের কোয়ান্টাম সংখ্যাগুলো জানা যায়। এই পরিচ্ছেদে আমরা মৌলের ইলেকট্রন বিন্যাস এবং দীর্ঘ পর্যায় সারণির মধ্যে প্রত্যক্ষ সম্পর্ক লক্ষ করব।

(a) পর্যায়ের মধ্যে ইলেকট্রন বিন্যাস (Electronic Configurations in Periods)

পর্যায়, সর্ববহিস্থ বা যোজ্যতা কক্ষের মুখ্য কোয়ান্টাম সংখ্যা 'n' এর মান নির্দেশ করে। অন্যভাবে, পর্যায়সারণির প্রত্যেক পরবর্তী পর্যায়ে (successive period) ইলেকট্রনের পূর্তি পরবর্তী উচ্চতর মুখ্য শক্তিস্তর (n = 1, n = 2, প্রভৃতি) পূর্ণ হওয়ার সাথে সম্পর্কিত। রসায়ন

এটি সহজেই লক্ষ্য করা যায় যে, প্রতি পর্যায়ে বর্তমান মৌল সংখ্যা শক্তিস্তরে উপস্থিত পূর্ণ হওয়া পারমাণবিক কক্ষকের সংখ্যার দ্বি-গুণ। প্রথম পর্যায়টি (n = 1) সর্বনিম্নস্তর (1s) পূর্তির মাধ্যমে শুরু হয়, তাই প্রথম পর্যায়ে হাইড্রোজেন (ls^1) এবং হিলিয়াম (ls^2) এই দুটি মৌল থাকে। এইভাবে প্রথম কক্ষ (K-shell) পূর্ণ হয়। দ্বিতীয় পর্যায় (n=2) শুরু হয় লিথিয়াম (Li) থেকে এবং তৃতীয় ইলেকট্রনটি 2s কক্ষকে প্রবেশ করে। পরের মৌল বেরিলিয়ামের 4টি ইলেকট্রন আছে। এর ইলেকট্রন বিন্যাস $1s^2 2s^2$ । পরবর্তী মৌল বোরণ থেকে শুরু হয়ে 2p কক্ষক (orbital) ইলেকট্রন দ্বারা পূর্ণ হয় এবং L কক্ষ (Shell) নিয়নে (1s²2s²2p⁶) শেষ হয়। এভাবে দ্বিতীয় পর্যায়ে 8টি মৌল আছে। তৃতীয় পর্যায় (n = 3) সোডিয়াম দিয়ে শুরু হয় এবং ইলেকট্রন 3s কক্ষকে (orbital) প্রবেশ করে। 3s এবং 3p কক্ষকের ক্রমান্বয়ে ইলেকট্রন পূর্ণ হওয়ার ফলে তৃতীয় পর্যায়ে সোডিয়াম থেকে আর্গন পর্যন্ত মোট ৪টি মৌল থাকে। চতুর্থ পর্যায় (n=4) শুরু হয় পটাশিয়াম (K) দিয়ে এবং ইলেকট্রন 4s কক্ষক (orbital) পূর্ণ করে। এখন তুমি এটি লক্ষ করতে পার যে, 4p কক্ষক (orbital) পূর্ণ হওয়ার পূর্বে শক্তির দিক দিয়ে অনুকূল 3d কক্ষক (orbital) পূর্ণ হয় এবং আমরা তথাকথিত 3d সন্ধিগত মৌলের সারিকে লক্ষ করতে পারি। এটি স্কেন্ডিয়াম (Sc) (Z = 21) দিয়ে শুরু হয়, যার ইলেকট্রন বিন্যাস $3d^{1}4s^{2}$ । জিঙ্ক (Zn)মৌলে এসে 3d কক্ষকটি পূর্ণ হয়, যার ইলেকট্রন বিন্যাস 3d¹⁰4s²। 4র্থ পর্যায় 4p কক্ষক (orbital) পুর্ণ হওয়ার মাধ্যমে ক্রিপটন (Kr) দিয়ে শেষ হয়। সব মিলিয়ে 4র্থ পর্যায়ে 18টি মৌল আছে। 4র্থ পর্যায়ের সঙ্গে সদৃশ 5ম(n=5) পর্যায় যা রুবিডিয়াম দিয়ে শুরু হয় এবং এর রয়েছে 4d সন্ধিগত সারি, যেটি ইট্রিয়াম (Y) (Z = 39) থেকে শুরু। এই পর্যায়টি 5p কক্ষক (orbital) পুর্ণ হওয়ার মাধ্যমে জেননে (Xe) শেষ হয়। 6ষ্ঠ পর্যায়ে (n = 6) 32টি মৌল আছে এবং ক্রমান্বয়ে ইলেকট্রনগুলো 6s, 4f, 5d এবং 6p কক্ষকে প্রবেশ করে। 4f কক্ষক পূর্তির ক্রম সিরিয়াম (Ce) থেকে শুরু করে লোটেশিয়ামে (Lu) শেষ হয়। ফলে আমরা 4f অভ্যন্তরীণ সন্ধিগত সারি পাই, যাকে ল্যান্থানয়েড সারি বলে। 6ষ্ঠ পর্যায়ের সঞ্চো সদৃশ 7ম পর্যায়ের (n = 7) 7s, 5f, 6d এবং 7p কক্ষক (orbital) ক্রমান্বয়ে পূর্ণ হয় এবং আমাদের তৈরি অধিকাংশ তেজস্ক্রিয় মৌলগুলো এর অন্তর্ভুক্ত। এই পর্যায় 118 পারমাণবিক সংখ্যা বিশিষ্ট মৌল দিয়ে শেষ হবে, যা নোবেল গ্যাস মৌলের অন্তর্ভুক্ত হবে। অ্যাক্টেনিয়ামের (Z=89) পর 5f কক্ষক (orbital) পুর্ণ হতে শুরু হয়, ফলে 5f অভ্যন্তরীণ সন্ধিগত সারি পাওয়া যায় যা অ্যাক্টিনয়েড সারি নামে পরিচিত।

মৌলসমূহের শ্রেণিবিভাগ এবং ধর্মাবলির পর্যাবৃত্তি

4f এবং 5f অভ্যন্তরীণ সন্ধিগত মৌলগুলোকে পর্যায়সারণির গঠনাকৃতি বজায় রাখার এবং সমধর্মী মৌলগুলোকে একই স্তম্ভে রাখার শ্রেণিবিন্যাসের নীতিটি বজায় রাখার জন্য আলাদা স্থানে রাখা হয়েছে।

সমস্যা-3.2

পর্যায় সারণির 5ম পর্যায়ে 1৪টি মৌল বর্তমান থাকার যথার্থতা কিভাবে যাচাই করবে ?

সমাধান :

যখন n = 5, l = 0, 1, 2, 3, 4.

সম্ভ্যাব্য অরবিট্যাল 4*d*, 5*s* এবং 5*p* এর শক্তির উর্দ্ধক্রম হল— 5*s* < 4*d* < 5*p* । সম্ভাব্য অরবিট্যালের মোট সংখ্যা = 9 স্থান দেওয়া যাবে এমন সর্বোচ্চ ইলেকট্রন সংখ্যা = 9×2=18 সুতরাং 5ম পর্যায়ে 18টি মৌল বর্তমান।

(b) গ্রুপ ভিত্তিক ইলেকট্রন বিন্যাস (Groupwise Electronic Configurations)

একই উল্লম্ব স্তম্ভে বা গ্রুপে বর্তমান মৌলগুলোর একই যোজ্যতা কক্ষ ইলেকট্রন বিন্যাস আছে। তারা সম ধর্ম বিশিষ্ট এবং বহিস্থ কক্ষকে একই সংখ্যক ইলেকট্রন থাকে। উদাহরণস্বরূপ— গ্রুপ-I মৌলসমূহের (ক্ষার ধাতু) প্রত্যেকের যোজ্যতা কক্ষের ইলেকট্রন বিন্যাস হল ns¹, তা নিচে দেখানো হল—

পর্যায়ভিত্তিক শ্রেণিবিন্যাসের ক্ষেত্রে একটি তাত্ত্বিক ভিত্তি প্রদান করে। পর্যায় সারণির একটি উল্লস্ত সারিতে বর্তমান মৌলগুলো একটি গ্রুপ বা পরিবার গঠন করে এবং একই রাসায়নিক ধর্ম প্রদর্শন করে। এ সাদৃশ্য পরিলক্ষিত হয় কারণ এই মৌলগুলোর সর্ববহিস্থ কক্ষে সমান সংখ্যক ইলেকট্রন থাকে এবং এদের ইলেকট্রনের বিন্যাস একই রকম হয়। কোন্ ধরণের কক্ষকে ইলেকট্রন স্থান পাচ্ছে, তার উপর নির্ভর করে মৌলগুলোকে 4 টি ব্লকে অর্থাৎ s- ব্লক, p- ব্লক, d- ব্লক এবং f- ব্লকে শ্রেণিবিভক্ত করা যায়। চিত্র-3.3 এ ইহা বর্ণনা করা হয়েছে। আমরা এই শ্রেণিতে দুটি ব্যতিক্রম লক্ষ করি। যদিও হিলিয়াম s-ব্লকের অন্তর্গত কিন্তু p-ব্লকের অন্য গ্রপ 18 মৌলের সঙ্গে এর অবস্থান সমর্থন যোগ্য কারণ এর যোজ্যতা কক্ষক ইলেকট্রন দ্বারা পূর্ণ থাকে (1s²) এবং ফলস্বরুপ অন্য নোবেল গ্যাসের বৈশিষ্ট্যমূলক ধর্মগুলো প্রদর্শন করে। অন্য ব্যতিক্রমি মৌলটি হল হাইড্রোজেন। এর একটি মাত্র ১-ইলেকট্রন আছে এবং এই জন্য গ্রুপ-1 (ক্ষার ধাতু)-এ স্থান দেওয়া যায়। এটি নোবেল গ্যাসের ইলেকট্রন বিন্যাস অর্জনের জন্য একটি ইলেকট্রন গ্রহণ করতে পারে এবং এই জন্য গ্রপ-17 (হ্যালোজেন পরিবার) মৌলের মত আচরণ করতে পারে। এই বিশেষ কারণটির জন্য আমরা হাইড্রোজেনকে পর্যায় সারণির একেবারে উপরের দিকে পৃথকভাবে স্থান দিতে পারি, যা চিত্র-3.2 এবং চিত্র- 3.3 তে প্রদর্শিত হল। আমরা পর্যায় সারণিতে এই চার

পারমাণবিক সংখ্যা (Atomic number)	চিহ্ন (Symbol)	ইলেক্ট্রন বিন্যাস (Electronic configuration)
3	Li	$1s^22s^1$ (অথবা) [He] $2s^1$
11	Na	1 <i>s</i> ² 2 <i>s</i> ² 2 <i>p</i> ⁶ 3 <i>s</i> ¹ (অথবা) [Ne]3 <i>s</i> ¹
19	K	$1s^22s^22p^63s^23p^64s^1$ (অথবা) [Ar] $4s^1$
37	Rb	$1s^22s^22p^63s^23p^63d^{10}4s^24p^65s^1$ (অথবা) [Kr]5 s^1
55	Cs	1 <i>s</i> ² 2 <i>s</i> ² 2 <i>p</i> ⁶ 3 <i>s</i> ² 3 <i>p</i> ⁶ 3 <i>d</i> ¹⁰ 4 <i>s</i> ² 4 <i>p</i> ⁶ 4 <i>d</i> ¹⁰ 5 <i>s</i> ² 5 <i>p</i> ⁶ 6 <i>s</i> ¹ (অথবা) [Xe]6 <i>s</i> ¹
87	Fr	$[\mathrm{Rn}]7s^1$

এইভাবে, এটি দেখা যায় যে একটি মৌলের বৈশিষ্ট্যগুলোর উপর পর্যায় ক্রমিক নির্ভরতা এর পারমাণবিক সংখ্যার উপর নির্ভর করে কিন্তু এর আপেক্ষিক পারমাণবিক ভরের উপর নয়।

3.6 ইলেকট্রন বিন্যাস এবং মৌলের প্রকারভেদ : s, p, d, f ব্লক(ELECTRONIC CONFIGURATIONSAND TYPES OF ELEMENTS: s, p, d, f BLOCKS)

আউফবাও (aufbau) নীতি এবং পরমাণুর ইলেকট্রন বিন্যাস

ধরনের মৌলগুলোর প্রধান বৈশিষ্ট্যগুলো সংক্ষেপে আলোচনা করব। এই মৌলগুলোর সম্পর্কে পরে আরও বিশদভাবে আলোচনা করব। এদের বৈশিষ্ট্য আলোচনার সময় নির্দিষ্ট পরিভাষা ব্যবহার করা হয়েছে যা 3.7 অনুচ্ছেদে লিপিবন্ধ করা হয়েছে।

3.6.1 s-ব্লক মৌল সমূহ (The s-Block Elements)

গ্রুপ-1 (ক্ষার ধাতু সমূহ) এবং গ্রুপ-2 মৌলসমূহ (ক্ষারীয় মৃত্তিকা ধাতু সমূহ) যাদের সর্বশেষ কক্ষের ইলেকট্রন বিন্যাস ns¹ এবং ns²

🚃 📖 📖 অধাতু 🥅 📖 এবং 🥅 ধাতুকল্পের পৃথক অবস্থানও দেখানো হয়েছে।

সারণি 3.3 : কক্ষকগুলো পুর্তির উপর ভিত্তি করে পর্যায় সারণিতে বিভিন্ন ব্লকের মৌলগুলোর স্থান যা ধাতু,

Lu

Yb

Tm

Εr

Но

Dy

Tb

Gd

Eu

Sm

Pm

Νd

 $\mathbf{P}_{\mathbf{\Gamma}}$

Ce

Lanthanoids 4f

f-BLOCK

Lr

No

Md

Fm

 $\mathbf{E}_{\mathbf{S}}$

Cf

Bk

Cm

Am

Pu

Np

D

Ра

Th

Og

Rn

Xe

Kr

84

He

18

Ne

Ar

রসায়ন

এরা *s*-ব্লক মৌলের অন্তর্গত। এরা, সকলেই সক্রিয় ধাতু এবং এদের আয়নয়ন এনথ্যালপি কম। এরা সহজেই বাহিরের কক্ষের ইলেকট্রন বর্জন করে 1+ আয়ন (ক্ষার ধাতু সমূহের ক্ষেত্রে) অথবা 2+ আয়ন (ক্ষারীয় মৃত্তিকা ধাতু সমূহের ক্ষেত্রে) উৎপন্ন করে। গ্রুপের উপর থেকে নীচে নামলে মৌলের ধাতব ধর্ম এবং সক্রিয়তা বৃদ্ধি পায়। অধিক সক্রিয়তার জন্য এদেরকে প্রকৃতিতে বিশুদ্ধ অবস্থায় পাওয়া যায় না। লিথিয়াম এবং বেরিলিয়াম ব্যতিত সকল *s*-ব্লক মৌলের যৌগগুলো প্রধানত আয়নীয়।

3.6.2 p-ব্লক মৌল সমূহ (The p-Block Elements)

p-ব্লক মৌল সমূহ গ্রুপ-13 থেকে 18 তে অবস্থিত। এদের এবং s-ব্লক মৌল সমূহকে একত্রে প্রতিনিধি মৌল বা মূল শ্রেণির মৌল বলে। প্রতি পর্যায়ের সর্বশেষ কক্ষের ইলেকট্রন বিন্যাস ns²np¹ থেকে ns²np⁶-এ পরিবর্তিত হয় । প্রতি পর্যায়ের সর্বশেষ মৌলটি নোবেল গ্যাস এবং এর যোজ্যতা কক্ষের ইলেকট্রন বিন্যাস ns²np⁶। নোবেল গ্যাসের যোজ্যতা কক্ষের কক্ষকগুলো ইলেকট্রন দ্বারা পূর্ণ থাকে। ফলে ইলেকট্রন গ্রহণ বা বর্জন দ্বারা এই সুস্থিত বিন্যাস নস্ট করা খুবই কঠিন। এইজন্য নোবেল গ্যাসগলোর রাসায়নিক সক্রিয়তা খুবই কম। নোবেল গ্যাস পরিবার ছাড়া রাসায়নিকভাবে গুরুত্বপূর্ণ দুটি অধাতুর গ্রুপ বা শ্রেণি আছে। এরা হল হ্যালোজেন (গ্রুপ-17) এবং চ্যালকোজেন (গ্রুপ-16), এই দুটি গ্রুপের মৌল সমূহের উচ্চ ঋণাত্বক ইলেকট্রন গ্রহণ এনথ্যালপি আছে এবং এরা সহজেই একটি বা দুটি ইলেকট্রন গ্রহণ করে নোবেল গ্যাসের ইলেকট্রন বিন্যাস লাভ করে। একটি পর্যায়ের বামদিক থেকে ডানদিকে অগ্রসর হলে অধাতব চরিত্র বৃদ্ধি পায় এবং গ্রুপের উপর থেকে নীচে নামলে ধাতব চরিত্র বৃদ্ধি পায়।

3.6.3 *d*-ব্লক মৌল সমূহ (সন্ধিগত মৌল সমূহ) [The *d*-Block Elements (Transition Elements)]

এই মৌল সমূহ পর্যায় সারণির মধ্যবর্তীস্থানে গ্রুপ-3 থেকে গ্রুপ-12-তে অবস্থিত। এই মৌল সমূহের বৈশিষ্ট্য হল এদের অস্তঃস্থ *d* কক্ষকটিতে ইলেকট্রন স্থান পায় এবং তাই এদের *d* ব্লক মৌল বলে। এদের সর্বশেষ কক্ষের ইলেকট্রন বিন্যাস হল $(n-1)d^{1-10}ns^{0-2}$ । এরা সকলেই ধাতু। এরা সাধারণত রঙিন আয়ন তৈরি করে, পরিবর্তনশীল যোজ্যতা (জারনস্তর), প্যারাম্যাগনেটিক ধর্ম প্রদর্শণ করে এবং প্রায়শই অনুঘটক রুপে ব্যবহৃত হয়। এদের মধ্যে Zn, Cd এবং Hg সন্ধিগত মৌলের বেশির ভাগ ধর্ম প্রদর্শন করে না কারণ এদের ইলেকট্রন বিন্যাস (*n*-1) *d*¹⁰*ns*²। সন্ধিগত ধাতব মৌলগুলো, রাসায়নিকভাবে *s*-ব্লক মৌলের সক্রিয় ধাতু এবং গ্রুপ-13 এবং 14 এর কম সক্রিয় মৌলগুলোর মধ্যে সেতু তৈরি করে, তাই এরা সন্ধিগত মৌল নামে পরিচিত।

3.6.4 f-ব্লক মৌল সমূহ (অভ্যন্তরীন সন্ধিগত মৌল সমূহ) [The f-Block Elements (Inner-Transition Elements)]

পর্যায় সারণির নীচে অবস্থিত দুটি সারির মৌলকে ল্যানথ্যানয়েড, Ce(Z = 58) থেকে Lu(Z = 71) এবং অ্যাক্টিনয়েড, Th(Z = 90) থেকে Lr (Z = 103) বলে। এদের সর্বশেষ কক্ষের ইলেকট্রন বিন্যাস হল— (n-2)f¹⁻¹⁴ (n-1)d⁰⁻¹ns²। এই শ্রেণির প্রতিটি মৌলের সর্বশেষ ইলেকট্রনটি f-কক্ষকে প্রবেশ করে। সেজন্য এই দুটি সারির মৌলগুলোকে অভ্যন্তরীণ সন্থিগত মৌল বলে (f-ব্লক মৌল)। এরা সকলেই ধাতু। প্রত্যেক সারির অন্তর্গত মৌলগুলোর ধর্ম প্রায় একইরকম। প্রথমদিকে অ্যাক্টিনয়েড মৌলের রসায়ন অনুরূপ ল্যানথ্যানয়েড মৌলের রসায়নের তুলনায় খুবই জটিল ছিল কারণ এই সকল অ্যাক্টিনয়েডের একাধিক জারণ স্তর সম্ভব। অ্যাক্টিনয়েড মৌলগুলো তেজস্ক্রিয় হয়। বেশিরভাগ অ্যাক্টিনয়েড মৌল নেনোগ্রাম বা তার থেকেও কম পরিমাণে নিউক্লিয় বিক্রিয়ার দ্বারা উৎপন্ন করা হয় এবং এদের রসায়ন সম্পূর্ণভাবে জানা যায় নি। ইউরিনিয়ামের পরের মৌলগুলোকে ট্রান্সইউরিনিয়াম বা ইউরেনিয়ামউজ্র মৌল বলে।

সমস্যা-3.3

117 এবং 120 পরমাণু কমাঙ্ক (Z) বিশিষ্ট মৌলগুলো এখনও আবিস্কৃত হয়নি। কোন্ পরিবার বা গ্রুপে তুমি মৌল দুটিকে স্থাপন করবে এবং প্রতি ক্ষেত্রে এদের ইলেকট্রন বিন্যাস লেখো।

সমাধান :

আমরা চিত্র 3.2 তে দেখতে পাই 117 পরমাণবিক সংখ্যা বিশিষ্ট মৌলটি হ্যালেজেন পরিবারে (গ্রুপ-17) অবস্থিত এবং মৌলটির ইলেকট্রন বিন্যাস হবে [Rn] 5f¹⁴6d¹⁰7s²7p⁵ । 120 পরমাণু ক্রমাঙ্ক বিশিষ্ট মৌলটি গ্রুপ-2 (ক্ষারীয় মৃত্তিকা ধাতু)তে অবস্থিত এবং মৌলটির ইলেকট্রন বিন্যাস হবে [Uuo]8s² ।

3.6.5 ধাতু, অধাতু এব ধাতুকল্প সমূহ (Metals, Non-metals and Metalloids)

s, p, dএবং f মৌলসমূহকে শ্রেণি বিন্যাস করার পাশাপাশি ধর্মের ভিত্তিতে মৌলগুলোকে বিশদভাবে শ্রেণি বিন্যাস করা হয়েছে। যা চিত্র- 3.3 তে দেখানো হয়েছে। মৌলগুলোকে ধাতু এবং অধাতু এই দুটি ভাগে ভাগ করা হয়। পর্যায় সারণির বামদিকে অবস্থিত 78% এর বেশি জ্ঞাত মৌলগুলো হল ধাতু। ধাতুগুলো প্রধানত ঘরের তাপমাত্রায় কঠিন [ব্যতিক্রম পারদ (তরল), গ্যালিয়াম এবং সিজিয়াম খুবই নিম্ন গলনাঙ্ক বিশিষ্ট (এদের গলনাঙ্ক যথাক্রমে 303K এবং 302K)]। ধাতুগুলো সাধারণত উচ্চ গলনাঞ্চ এবং স্ফুটনাঙ্ক বিশিষ্ট। এরা তাপ এবং তড়িতের সুপরিবাহী। এরা নমনীয় (আঘাত করে হালকা পাতে পরিনত করা যায়) এবং প্রসারণশীল (তার তৈরি করা যায়)। অপর পক্ষে, অধাতুগুলো পর্যায় সারণির ডান পাশের উপরের দিকে অবস্থিত। আসলে পর্যায় বরাবর বামদিক থেকে ডানদিকে ধাতব চরিত্র পরিবর্তিত হয়ে অধাতব চরিত্র বৃদ্ধি পায়। অধাতৃগলো সাধারণত ঘরের তাপমাত্রায় কঠিন বা গ্যাসীয় হয়। এরা নিম্ন গলনাজ্ঞ্ব এবং স্ফুটনাজ্ঞ্ব বিশিষ্ট (ব্যতিক্রম-বোরণ এবং কার্বন)। এদের তাপ এবং তডিতের পরিবাহীতা কম। অধিকাংশ কঠিন অধাতব মৌল ভঙ্গার এবং নমনীয়ও নয় বা প্রসারণশীলও নয়। পর্যায় সারণির একটি গ্রুপের উপর থেকে নিচে নামলে মৌলের ধাতব চরিত্র বৃদ্ধি পায় এবং পর্যায় বরাবর বামদিক থেকে ডান দিকে অগ্রসর হলে অধাতব চরিত্র বৃদ্ধি পায়। চিত্র 3.3তে প্রদর্শিত মৌলের ধাতব ধর্ম থেকে অধাতব ধর্মের পরিবর্তনের রেখাটি আঁকা বাকা অপ্রত্যাশিত নয়। ধাতু এবং অধাতুর মধ্যে বিভাজন সৃষ্টিকারী এই মৌলগুলো (যেমন-সিলিকন, জার্মেনিয়াম, আর্সেনিক, অ্যান্টিমনি এবং টেলুরিয়াম) পর্যায়সারণিতে উপর থেকে নীচের দিকে কৌণিক পথে অগ্রসর হয় এবং ধাতু ও অধাতু উভয়ের ধর্ম প্রদর্শন করে। এই মৌলগুলোকে অর্ধধাতু বা ধাতুকল্প বলে।

সমস্যা-3.4

মৌলের পরমাণু ক্রমাঙ্ক এবং পর্যায় সারণিতে অবস্থান বিবেচনা করে, নিম্নের মৌলগুলোকে ক্রমবর্ধমান ধাতব ধর্ম অনুসারে সাজাও : Si, Be, Mg, Na, P.

সমাধান :

শ্রেণি বরাবর নিচের দিকে মৌলের ধাতব ধর্ম বৃদ্ধি এবং পর্যায় বরাবর বামদিক থেকে ডানদিকে ধাতব ধর্ম হ্রাস পায়। সুতরাং ধাতব ধর্মের ক্রমবর্ধমাণ ক্রমটি হল : P < Si < Be < Mg < Na. রসায়ন

3.7 মৌলের পর্যায়ক্রমিক ধর্মের ক্রম (Periodic Trends in Properties of Elements)

আমরা যদি পর্যায় সারণির কোনো গ্রুপের নীচের দিকে অগ্রসর হই বা পর্যায় বরাবর অগ্রসর হই তখন মৌল সমূহের ভৌত ও রাসায়নিক ধর্মের পরিবর্তনের বিভিন্ন ধারা পরিলক্ষিত হয়। উদাহরণস্বরূপ, একটি পর্যায়ের মধ্যে রাসায়ণিক সক্রিয়তার ক্রম থ্রপ-1 ধাতুর ক্ষেত্রে উচ্চ, সারণির মাঝের দিকের মৌলের ক্ষেত্রে নিম্নতর এবং বৃদ্ধি পেয়ে গ্রুপ-17 অধাতুগুলোতে সর্বোচ্চ হয়। অনুরূপভাবে, প্রতিনিধি ধাতু সমূহের গ্রুপের মধ্যে (যেমন ক্ষার ধাতু) সক্রিয়তা গ্রুপের নীচের দিকে অগ্রসর হলে বৃদ্ধি পায়, অপরপক্ষে, অধাতু সমূহের গ্রুপের মধ্যে (যেমন-হ্যালোজেন), সক্রিয়তা গ্রুপের নীচের দিকে হ্রাস পায়। কিন্তু কেন মৌলসমূহের বৈশিষ্টগুলো এই প্রবণতা অনুসরণ করে? এবং কীভাবে আমরা পর্যাবৃত্তি ব্যাখ্যা করতে পারি ? এই প্রশ্নের উত্তরের জন্য অবশ্যই আমাদের পরমাণুর গঠন সমন্ধীয় তত্ত্ব এবং পরমাণুর ধর্মসমূহের দিকে নজর দিতে হবে। এই পরিচ্ছেদে আমরা কিছু ভৌত এবং রাসায়ণিক ধর্মের পর্যায়ক্রমিক ক্রম নিয়ে আলোচনা করব এবং ইলেকট্রন সংখ্যা ও শক্তিস্তরের ভিত্তিতে এগুলো ব্যাখ্যা করতে চেস্টা করব।

3.7.1 ভৌত ধর্ম সমূহের প্রবনতা (Trends in Physical Properties)

মৌলের অসংখ্য ভৌত ধর্ম আছে, যেমন-গলনাক্ষ এবং স্ফুটনাক্ষ, গলন এবং বাষ্পীভবন তাপ, অ্যাটোমাইজেশন শক্তি প্রভৃতি যা পর্যাবৃত্তি পরিবর্তন প্রদর্শণ করে। কিন্তু এখানে আমরা পারমাণবিক এবং আয়নীয় ব্যাসার্ধ, আয়নন এনথ্যালপি, ইলেকট্রন গ্রহণ এনথ্যালপি এবং তড়িৎ ঋণাত্মকতার প্রবনতার বিষয়ে আলোচনা করব।

(a) পারমাণবিক ব্যাসার্ধ (Atomic Radius)

তুমি খুবই ভাল ভাবে কল্পনা করতে পার যে, একটি পরমাণুর আকৃতি নির্ণয় করা একটি বলের ব্যাসার্ধ নির্ণয় করার চেয়ে খুবই দূরূহ। তুমি কি জান কেন ? প্রথমতঃ, পরমাণুর আকার (পরমাণুর ব্যাসার্ধ ~ 1.2 Å অর্থাৎ, 1.2 × 10⁻¹⁰ m) খুবই ছোট। দ্বিতীয়তঃ, পরমাণুর আকার যথাযথভাবে নির্ণয় করা যায় না, কারণ, যেহেতু পরমাণু চারপাশে ইলেকট্রন একটি নির্দিষ্ট পরিধীতে থাকে না। অন্যভাবে বলতে গেলে, কোন ব্যবহারিক পদ্ধতি নেই যার দ্বারা কোন পরমাণুর আকার মাপা যায়। অধিকাংশ ক্ষেত্রে সংযুক্ত অবস্থায় পরমাণুগুলোর মধ্যবর্তী দূরত্ব থেকে পারমাণবিক আকারের একটি গণনা করা যেতে পারে। একটি অধাতব মৌলের পরমাণুর আকার নির্ণয় করার জন্য একটি ব্যবহারিক পদ্ধতি অবলম্বন করা যায়। একটি সমযোজী অণুতে এক বন্ধন দ্বারা যুক্ত দুটি পরমাণুর মধ্যবর্তী দুরত্বের মান থেকে তা গণনা করা হয় এবং এই মান থেকে একটি মৌলের সমযোজী ব্যাসার্ধ নির্ণয় করা যায়। উদাহরণস্বরূপ, একটি ক্লোরিন অণুর (Cl₂) বন্ধন দূরত্ব 198 pm । সুতরাং ক্লোরিনের পারমাণবিক ব্যাসার্ধ = 99 pm। ধাতুর ক্ষেত্রে, আমরা ধাতব ব্যাসার্ধকে এভাবে সংজ্ঞায়িত করতে পারি যে, ধাতব কেলাসে ধাতু কোরের আন্তঃআণবিক দূরত্বের অর্ধেকই হল ধাতব ব্যাসার্ধ। উদাহরণস্বরূপ, কঠিন কপারের, দুটো পাশাপাশি কপার পরমাণুর দূরত্ব 256 pm। সুতরাং Cu পরমাণুর ধাতন ব্যাসার্ধ = 128 pm। ব্যবহারের সুবিধার্থে এই বইটিতে আমরা, মৌলটি ধাতু না অধাতু তার উপর নির্ভর করে, সমযোজী বা ধাতব ব্যাসার্ধ উভয় ক্ষেত্রেই পরমাণবিক ব্যাসার্ধ পদটি ব্যবহার করেছি। পারমাণবিক ব্যাসার্ধ X-রশ্মি বা অন্য বর্ণালিবীক্ষণ পদ্ধতির দ্বারা পরিমাপ করা যায়।

কিছু সংখ্যক মৌলের পারমাণবিক ব্যাসার্ধ সারণি-3.6 এ তালিকা ভুক্ত করা হল। দুটো প্রবণতা সুপন্ট। আমরা এই প্রবণতাগুলো নিউক্লিয়াসের আধান এবং শক্তিস্তরের সাহায্যে ব্যাখ্যা করতে পারি। পারমাণবিক আকার সাধারণত পর্যায় বরাবর রুমাম্বয়ে হ্রাস পায় যা চিত্র 3.4 (a) এ দ্বিতীয় পর্যায়ের মৌলগুলোর ক্ষেত্রে দেখানো হয়েছে। এর কারণ হলো, একই পর্যায়ভুক্ত মৌলের পরমাণুগুলোর সর্ববহিস্থ কক্ষের ইলেকট্রনগুলো যোজ্যতা কক্ষে অবস্থান করে এবং পরমাণু রুমাজ্ঞ বৃদ্ধির ফলে পরমাণু কেন্দ্রকের আধান বৃদ্ধি পাওয়ায় পরমাণুর বহিস্তরে অবস্থিত ইলেকট্রনগুলোর উপর কেন্দ্রকের আকর্ষণ বল তীব্রতর হয়। পর্যায় সারণির একটি পরিবার বা গ্রুপে পারমাণবিক ব্যাসার্ধ পরমাণু ক্রমাজ্ঞ বৃদ্ধির মেলে রুমান্বয়ে বৃদ্ধি পায় যা সারণি 3.4 (b)তে দেখানো হল। ক্ষার ধাতু এবং হ্যালোজেনের ক্ষেত্রে, যদি আমরা গ্রুপের নীচের দিকে অগ্রসর হই তাহলে মুখ্য কোমান্টাম সংখ্যার (*n*) মান বৃদ্ধি পায় এবং যোজ্যতা ইলেকট্রনগুলো নিউক্লিয়াস থেকে দুরে সরে যায়। অন্তঃস্থ কক্ষকগুলো ইলেকট্রন দ্বারা পূর্ণ থাকাতেই এরকম হয় এবং এরাই বহিঃস্থ ইলেকট্রনের প্রতি নিউক্রিয়াসের আকর্ষণকে আবৃত করে রাখে। ফলস্বরূপ পরমাণুর আকার বৃদ্ধি পায় এবং পারমাণবিক ব্যাসার্ধ বৃদ্ধির মধ্যে এর প্রতিফলন ঘটে।

লক্ষকরে দেখ এখানে নোবেল গ্যাসের পারমাণবিক ব্যাসার্ধ বিবেচনা করা হয়নি। এদের অণুগুলো এক পরমাণুক হয় বলে এদের ক্ষেত্রে এই ব্যাসার্ধের (বন্ধনবিহীন ব্যাসার্ধ) মান খুব বেশি হয়। আসলে, নোবেল গ্যাসের ব্যাসার্ধের তুলনা সমযোজী ব্যাসার্ধের সঞ্চো না করে অন্য মৌলের ভ্যানডার ওয়ালস ব্যাসার্ধের সঞ্চো করা উচিত।

পরমাণু (দ্বিতীয় পর্যায়)	Li	Be	В	С	N	0	F
পারমাণবিক ব্যাসার্ধ	152	111	88	77	74	66	64
পরমাণু (তৃতীয় পর্যায়)	Na	Mg	Al	Si	Р	S	Cl
পারমাণবিক ব্যাসার্ধ	186	160	143	117	110	104	99

সারণি- 3.6(a) পারমাণবিক ব্যাসার্ধ/pm পর্যায় বরাবর (Atomic Radii/pm Across the Periods)

সারণি- 3.6(b) পারমাণবিক ব্যাসার্ধ/pm শ্রেণির নীচ বরাবর (Atomic Radii/pm Down a Family)

পরমাণু (গ্রুপ- I)	পারমাণবিক ব্যাসার্ধ	পরমাণু (গ্রুপ- 17)	পারমাণবিক ব্যাসার্ধ
Li	152	F	64
Na	186	Cl	99
K	231	Br	114
Rb	244	Ι	133
Cs	262	At	140

রসায়ন

ছবি 3.4 (a) দ্বিতীয় পর্যায় বরাবর পারমাণবিক ব্যাসার্ধের সঙ্গে পরমাণ ক্রমাজ্জের পরিবর্তন।

ছবি 3.4 (b) ক্ষার ধাতু এবং হ্যালোজেন মৌলের পারমাণবিক ব্যাসার্ধের সঞ্চো ও পরমাণু ক্রমাজ্বের পরিবর্তন।

(b) আয়নীয় ব্যাসার্ধ (Ionic Radius)

মৌলের পরমাণু ইলেকট্রন বর্জন করে ক্যাটায়ন, এবং ইলেকট্রন গ্রহণ করে অ্যানায়ন উৎপন্ন করে। আয়নীয় কেলাসে আয়নীয় ব্যাসার্ধ ক্যাটায়ন এবং অ্যানায়নের মধ্যেকার দূরত্ব পরিমাপ করে নির্ণয় করা হয়। সাধারণভাবে, কোন মৌলের আয়নীয় ব্যাসার্ধ, পারমাণবিক ব্যাসার্ধের মত একই প্রবণতা প্রদর্শন করে। ক্যাটায়নের আকার মূল পরমাণু অপেক্ষা ছোট হয়, কারণ এর মধ্যে কম সংখ্যক ইলেকট্রন থাকে যদিও এর নিউক্লিয়াসের আধান একই থাকে। একটি অ্যানায়নের আকার মূল পরমাণু অপেক্ষা বড় হয় কারণ এক বা একাধিক ইলেকট্রনের সংযোগের ফলে উৎপন্ন অ্যানায়নে ইলেকট্রনগুলোর মধ্যে বিকর্ষণ বৃদ্ধি পায় এবং নিউক্লিয়াসের কার্যকরী আধান হ্রাস পায়। উদাহরণস্বরূপ, ফ্লুরাইড আয়নের (F⁻) আয়নীয় ব্যাসার্ধ হল 136 pm যদিও ফ্লোরিণের পারমাণবিক ব্যাসার্ধ হল মাত্র 64 pm. অপরপক্ষে, সোডিয়ামের পারমাণবিক ব্যাসার্ধ হল মাত্র 64 pm. অপরপক্ষে, সোডিয়ামের পারমাণবিক ব্যাসার্ধ 186 pm এর তুলনায় Na⁺এর আয়নীয় ব্যাসার্ধ 95 pm.

কিছু পরমাণু বা আয়নের মধ্যে আমরা যখন সমানসংখ্যক ইলেকট্রনের উপস্থিতি লক্ষ করি তখন আমরা এদের **আইসো**-**ইলেকট্রনিক পদার্থ*** বলি। উদাহরণস্বরূপ O²⁻, F⁻, Na⁺ এবং Mg²⁺এর মধ্যে সমান সংখ্যক ইলেকট্রন (10) আছে। তাদের ব্যাসার্ধ ভিন্ন হয় কারণ এদের নিউক্লিয়াসের আধান ভিন্ন। ক্যাটায়নের ধনাত্মক আধান বেশি হওয়ার ফলে এদের ব্যাসার্ধ ছোট হয় কারণ ইলেকট্রনের প্রতি নিউক্লিয়াসের আকর্ষণ বেশি। অ্যানায়নের ঋণাত্মক আধান অধিক হ লে এদের ব্যাসার্ধ বেশি হয়। এক্ষেত্রে, ইলেক্ট্রনের মোট বিকর্ষণ বল নিউক্লিয়াসের আধান অতিক্রম করে এবং আয়ণের আকার বৃদ্ধি পায়।

সমস্যা-3.5

নিম্নলিখিত পরমাণু বা আয়নগুলোর মধ্যে কোনটির আকার বৃহত্তর এবং ক্ষুদ্রতর ?

Mg, Mg²⁺, Al, Al³⁺.

সমাধান :

পারমাণবিক ব্যাসার্ধ পর্যায় বরাবর হ্রাস পায়। ক্যাটায়ণের আকার মূল পরমাণু অপেক্ষা ক্ষুদ্রতর। আইসো ইলেকট্রনিক পরমাণু বা আয়ণের মধ্যে যার ধনাত্মক আধান বেশি তার ব্যাসার্ধ ক্ষুদ্রতর হবে। সুতরাং বৃহত্তর পরমাণুটি হল Mg. এবং ক্ষুদ্রতর আয়ণটি হল Al³⁺.

(c) আয়নাইজেশন এনথ্যালপি বা আয়নন বিভব (Ionization Enthalpy)

একটি মৌলের ইলেকট্রন বর্জন করার প্রবণতার পরিমাণগত পরিমাপ, আয়নন এনথ্যালপি দ্বারা প্রকাশ করা হয়। ইহা ভূমিস্তরে স্থিত কোনো মৌলের একটি বিচ্ছিন্ন, গ্যাসীয় পরমাণু (X) থেকে একটি ইলেকট্রন অপসারণ করতে যে শক্তির প্রয়োজন হয় তা নির্দেশ করে।

^{*} সমান সংখ্যক পরমাণু এবং সমান সংখ্যক যোজক ইলেকট্রন সমন্বিত একই গঠনাকৃতি বিশিষ্ট দুই বা ততোধিক এমন কিছু পরমাণু, আয়ন বা মূলক যার সাথে সংশ্লিষ্ট মৌলের প্রকৃতির কোন সম্পর্ক নেই।

অন্যভাবে, একটি মৌল X এর প্রথম আয়নন এনথ্যালপি হলো 3.1 সমীকরণে প্রদর্শিত এনথ্যালপির পরিবর্তন (Δ_{an}H)

$$X(g) \to X^{+}(g) + e^{-}$$
 ... (3.1)

আয়নন এনথ্যালপি kJ mol⁻¹এককে প্রকাশিত হয়। আমরা দ্বিতীয় আলগাভাবে যুক্ত ইলেকট্রন বের করতে প্রয়োজনীয় শক্তির দ্বারা দ্বিতীয় আয়নন এনথ্যালপি সংজ্ঞায়িত করতে পারি। এটি হল 3.2 সমীকরণ দ্বারা প্রদর্শিত বিক্রিয়াটি সম্পন্ন করার জন্য প্রয়োজনীয় শক্তির পরিমাপ।

$$X^{+}(g) \to X^{2+}(g) + e^{-}$$
 ... (3.2)

একটি পরমাণু থেকে ইলেকট্রন বের করতে সর্বদা শক্তির প্রয়োজন এবং তাই আয়নন এনথ্যালপি সর্বদা ধনাত্মক হয় । দ্বিতীয় আয়নন এনথ্যালপি, প্রথম আয়নন এনথ্যালপি অপেক্ষা অধিক হয় কারণ একটি ধনাত্মক আয়ন থেকে একটি ইলেকট্রন বের করা, একটি প্রশম পরমাণু থেকে বের করার চেয়ে অধিক কঠিন । একইভাবে, তৃতীয় আয়নন এনথ্যালপি দ্বিতীয় আয়নন এনথ্যালপি অপেক্ষা অধিক এবং এভাবে ক্রমন্বয়ে বৃদ্ধি পায় । সঠিকভাবে উল্লেখ না থাকলে আয়নন এনথ্যালপি বলতে প্রথম আয়নন এনথ্যালপিকে বোঝায় ।

পরমাণু ক্রমাঙ্ক 60 পর্যন্ত মৌলগুলোর প্রথম আয়নন এনথ্যালপি চিত্র 3.5 এ দেখানো হয়েছে। লেখচিত্রটির পর্যাবৃত্তি একেবারে লক্ষ্যণীয়। তুমি লক্ষ্য করবে যে নোবেল গ্যাস যাদের সর্বশেষ কক্ষপথ ইলেকট্রন দ্বারা পূর্ণ এবং খুব সুস্থিত ইলেকট্রন বিন্যাস বর্তমান তাদের ক্ষেত্রে সর্বোচ্চ।অপরপক্ষে, ক্ষার ধাতুগুলোর ক্ষেত্রে সর্বনিম্ন, আয়নন এনথ্যালপির কম মান তাদের অধিক

ছবি 3.6 (a) পরমাণু ক্রমাঙ্কের ভিত্তিতে দ্বিতীয় পর্যায়ের মৌলগুলোর প্রথম আয়নন এনথ্যালাপি (Δ ়H)।

সক্রিয়তার সঙ্গো হওয়াটা সম্পর্কযুক্ত। এছাড়াও তুমি দুটো ক্রম দেখতে পাবে, প্রথম আয়নন এনথ্যালপি সাধারণত পর্যায় বরাবর বৃদ্ধি এবং শ্রেণির নিচে দিকে হ্রাস পায়। পর্যায় সারণির দ্বিতীয় পর্যায়ের এবং প্রথম গ্রুপের মৌলের জন্য এই প্রবণতার ক্রম যথাক্রমে চিত্র *3.6(a)* এবং *3.6(b)*-তে দেখানো হল। তুমি উপলব্ধি করবে যে, আয়নন এনথ্যালপি এবং পারমাণবিক ব্যাসার্ধ একে অপরের সঙ্গো সম্পর্কযুক্ত ধর্ম। এই প্রবণতা বুঝতে, আমাদের দুটো কারণ বিবেচনা করতে হবে : (i) নিউক্লিয়াসের প্রতি ইলেকট্রনের আকর্ষণ এবং (ii) ইলেকট্রনের একে অপরকে বিকর্ষণ। কোন পরমাণুর যোজক ইলেকট্রনগুলো যে কার্যকরী নিউক্লীয় আধান অনুভব করে, তা নিউক্লিয়াসের প্রকৃত আধান থেকে কম হয়, কারণ নিউক্লীয় আধানকে অন্তঃ ইলেকট্রনগুলো যোজক ইলেকট্রন থেকে আড়াল বা আবৃত করে রাখে।

ছবি 3.6 (b) পরমাণু ক্রমাঙ্কের ভিত্তিতে ক্ষার ধাতব মৌলগুলোর আয়নন এনথ্যালাপি (Δ ˌH)।

উদাহরণস্বরূপ লিথিয়াম (Li) পরমাণুর 2s ইলেকট্রনগুলোকে অন্তঃ 1s ইলেকট্রনগুলো নিউক্লিয়াস থেকে আড়াল করে রাখে। ফলস্বরূপ যোজক ইলেকট্রনগুলো যে মোট (Net) ধনাত্মক আধান অনুভব করে তা প্রকৃত আধান +3 থেকে কম হয়। সাধারণ আবরণী প্রভাব তখনই কার্যকরী হয় যখন অন্তঃকক্ষের কক্ষকগুলো ইলেকট্রন দ্বারা পূর্ণ থাকে। ক্ষারধাতুগুলোর মধ্যে এই ঘটনাটি লক্ষ করা যায়, যাদের মধ্যে নোবেল গ্যাসের ইলেকট্রন বিন্যাসের পরে যোজক কক্ষটিতে একটি করে ns ইলেকট্রন থাকে।

দ্বিতীয় পর্যায় বরাবর আমরা যখন লিথিয়াম থেকে ফ্রুরিনের দিকে অগ্রসর হই, পরবর্তী ইলেকট্রনগুলো তখন একই মৃখ্য শক্তিস্তরে যুক্ত হয় এবং অন্তঃইলেকট্রন দ্বারা নিউক্লীয় আধানকে আবরণ করে রাখার মাত্রার ততটা বৃদ্ধি হয় না, যাতে করে একটি নিউক্লিয়াসের প্রতি ইলেকট্রনের আকর্ষণ বৃদ্ধিকে প্রতিহত করতে পারে। ফলে পর্যায় বরাবর ক্রমবর্ধমান নিউক্লীয় আধানের মাত্রা আবরণী প্রভাব থেকে বেশি হয়। এ কারণে সর্ববহিস্থ কক্ষের ইলেকট্রনগুলো আরও বেশি দৃঢ়ভাবে যুক্ত থাকে এবং আয়নন এনথ্যালপি পর্যায় বরাবর বৃদ্ধি পায়। আমরা যখন কোনো গ্রুপের নীচের দিকে অগ্রসর হই, সর্ববহিস্থ কক্ষের ইলেকট্রনগুলো নিউক্লিয়াস থেকে ক্রমণ দূরে সরে যায় বলে অন্তঃস্তরের ইলেকট্রনগুলোর দ্বারা নিউক্লিয়াসের আধান অধিকতর আবৃত থাকে। এক্ষেত্রে ক্রমবর্ধমান আকর্ষণ থেকে বেশি হয় এবং গ্রুপ বরাবর সর্ববহিস্থ কক্ষ থেকে ইলেকট্রন অপসারণ করার জন্য কম শক্তির প্রয়োজন হয়।

চিত্র 3.6 (b) এ তুমি লক্ষ্য করবে যে বোরণের (Z = 5) প্রথম আয়নন এনথ্যালপি Be(Z = 4) এর চেয়ে সামান্য কম, যদিও প্রথমটির নিউক্লিয়াসের আধান অধিকতর। যখন আমরা একই মুখ্য কোয়ান্টাম স্তর বিবেচনা করি তখন একটি s-ইলেকট্রন একটি p-ইলেকট্রনের চেয়ে বেশি মাত্রায় নিউক্লিয়াস দ্বারা আকর্ষিত হয়। বেরিলিয়ামের ক্ষেত্রে আয়নাইজেশনের সময় যে ইলেকট্রনটি নির্গত হয় সেটি হল s-ইলেকট্রন। অপর পক্ষে, বোরনের (B) আয়নাইজেশনে p-ইলেকট্রন। অপর পক্ষে, বোরনের (B) আয়নাইজেশনে p-ইলেকট্রন। লার্গত হয়। আবরনী প্রভাবকে ভেদ করে নিউক্লীয়াসের দিকে অগ্রসর হওয়ার ক্ষমতা 2p ইলেকট্রন থেকে বেশি হয়। সেইজন্য বোরণেরে 2p ইলেকট্রন বেরিলিয়ামের 2s ইলেকট্রনের চেয়ে ভিতরের অন্তঃ ইলেকট্রন দ্বারা নিউক্লিয়াস থেকে অধিক মাত্রায় আচ্ছাদিত থাকে। এবং বেরিলিয়ামের 2s ইলেকট্রন মুক্ত করার তুলনায় বেরেণের 2p ইলেকট্রন মুক্ত করা সহজতর। সুতরাং বোরণের প্রথম আয়নন এনথ্যালপি বেরিলিয়ামের চেয়ে কম হয়। রসায়ন

আরেকটি ব্যতিক্রম হল— অক্সিজেনের প্রথম আয়নন এনথ্যালপি নাইট্রোজেনের তুলনায় কম। এর কারণ হল, নাইট্রোজেন পরমাণুর তিনটি 2p ইলেকট্রন তিনটি ভিন্ন পারমাণবিক অরবিট্যালে অবস্থান করে (হুন্ডের সূত্রানুসারে)। অপরপক্ষে অক্সিজেন পরমাণুতে, 4টি 2p ইলেকট্রনের মধ্যে 2টি ইলেকট্রন অবশ্যই 2p অরবিট্যালের একটিতে প্রবেশ করে। ফলস্বরূপ ইলেকট্রন-ইলেকট্রন বিকর্ষণ বৃদ্ধি পায়। তাই অক্সিজেন পরমাণু থেকে চতুর্থ 2p ইলেকট্রনটিকে বের করা নাইট্রোজেন পরমাণুর 3টি 2p ইলেকট্রনের একটি ইলেকট্রন বের করার চেয়ে সহজতর।

সমস্যা-3.6

তৃতীয় পর্যায়ের *Na, Mg* এবং *Si* মৌলগুলোর প্রথম আয়নন এনথ্যালপির ($\Delta_i H$) মান যথাক্রমে 496, 737 এবং 786 kJ mol⁻¹. *Al* এর প্রথম $\Delta_i H$ এর মান 575 বা 760 kJ mol⁻¹ ¹ এর মধ্যে কোনটির খুব কাছাকাছি বলে তোমার মনে হয়। তোমার উত্তরের সত্যতা যাছাই করো।

সমাধান :

এটি 575 kJ mol⁻¹ এর খুব কাছাকাছি হবে। *Al* এর ক্ষেত্রে এই মান *Mg* এর চেয়ে কম হবে। এক্ষেত্রে নিউক্লীয়াস এবং 3p ইলেকট্রনের মধ্যে 3s ইলেকট্রনগুলোর আবরণী প্রভাব কার্যকর হয়।

(d) ইলেকট্রন গ্রহণ এনথ্যালপি (Electron Gain Enthalpy) যখন প্রশম গ্যাসীয় পরমাণু (X) ইলেকট্রন গ্রহণ করে তখন অ্যানায়ণে পরিণত হয়। এই পম্ধতিতে যে এনথ্যালপির পরিবর্তন হয়, তাকে ইলেকট্রন গ্রহণ এনথ্যালপি (Δ_{eg}H) বলে। সমীকরণ 3.3 অনুসারে কোন পরমাণু কত সহজে ইলেকট্রন গ্রহণ করে অ্যানায়নে পরিণত হবে, তার পরিমাপ ইলেকট্রন গ্রহণ এনথ্যালপি থেকে জানা যায়।

$$X(g) + e^{-} \rightarrow X^{-}(g) \tag{3.3}$$

মৌলের উপর নির্ভর করে, পরমাণুর ইলেকট্রন গ্রহণ করার প্রক্রিয়া তাপগ্রাহী বা তাপমোচী হয়। অনেক মৌলের ক্ষেত্রে পরমাণু ইলেকট্রন গ্রহণ করলে যে শক্তি নির্গত হয়, তার ইলেকট্রন গ্রহণ এনথ্যালপি ঋণাত্মক। উদাহরণস্বরূপ,গ্রুপ-17 মৌলের (হ্যালোজেনের মৌল সমূহ) ইলেকট্রন গ্রহণ এনথ্যালপি মান অধিক ঋণাত্মক হয় কারণ এরা একটি ইলেকট্রন গ্রহণ করে সুস্থিত নোবেল গ্যাসের ইলেকট্রন বিন্যাস লাভ করে। অপরপক্ষে, নোবেল গ্যাসের উচ্চ ধনাত্মক ইলেকট্রন গ্রহণ এনথ্যালপি মান অধিক ধনাত্মক হয় কারণ ইলেকট্রন গ্রহণ এনথ্যালপি মান অধিক ধনাত্মক হয় কারণ ইলেকট্রনগ্রি গ্রহণ এনথ্যালপি মান অধিক ধনাত্মক হয় কারণ

গ্রুপ- 1	$\Delta_{eg}H$	গ্রুপ- 16	$\Delta_{_{eg}}H$	গ্রুপ- 17	$\Delta_{eg}H$	ଣୁମ- 0	$\Delta_{eg}H$
Н	- 73					Не	+48
Li	- 60	0	- 141	F	- 328	Ne	+116
Na	- 53	S	-200	Cl	- 349	Ar	+ 96
K	- 48	Se	- 195	Br	- 325	Kr	+ 96
Rb	- 47	Те	- 190	I	- 295	Xe	+ 77
Cs	- 46	Ро	- 174	At	-270	Rn	+68

সারণি- 3.7 ইলেকট্রন গ্রহণ এনথ্যালপি/(kJ mol⁻¹)

ইলেকট্রন বিন্যাস লাভ করে। এটা উল্লেখ করা যেতে পারে যে, পর্যায় সারণির নোবেল গ্যাসের আগে উপরের দিকে অবস্থিত ডানদিকের মৌলগুলোর উচ্চ ঋণাত্মক ইলেকট্রন গ্রহণ এনথ্যালপি বর্তমান।

ইলেকটন গ্রহণ এনথ্যালপির পরিবর্তন, আয়নন এনথ্যালিপির পরিবর্তনের চেয়ে কম নিয়মিত হয়। একটি সাধারণ নিয়ম হল, পর্যায় বরাবর পরমাণু ক্রমাঞ্চক বৃদ্ধিতে মৌলের ইলেকট্রন গ্রহণ এনথ্যালপি অধিক ঋণাত্মক হয়। পর্যায় বরাবর বামদিক থেকে ডানদিকে কার্যকরী নিউক্লিয়ার আধান বৃদ্ধি পায় এবং ক্ষুদ্রতর পরমাণুর একটি ইলেকট্রন গ্রহণ করা সহজতর হবে। সেই জন্য গৃহীত ইলেকট্রন সর্বদা ধনাত্মক আধান যুক্ত নিউক্লিয়াসের কাছাকাছি অবস্থান করবে। আমরা অবশ্যই আশা করতে পারি যে, ইলেকট্রন গ্রহণ এনথ্যালপি শ্রেণির উপর থেকে নীচে কম ঋণাত্মক হয়, কেননা পরমাণু আকারে বৃদ্ধি পায় এবং যুক্ত ইলেকট্রন নিউক্লিয়াস থেকে দূরবর্তী স্থানে অবস্থান করে। সারণি 3.7-এ তা উল্লেখ করা হয়েছে। যদিও, অক্সিজেন বা ফ্লরিণের ইলেকট্রন গ্রহণ এনথ্যালপি গ্রুপের পরবর্তী মৌলের চেয়ে কম ঋণাত্মক হয়। এর কারণ যখন অক্সিজেন বা ফ্লুরিন একটি ইলেকট্রন গ্রহণ করে, তখন যুক্ত ইলেকট্রনটি নিম্নতর শক্তিস্তরে (n = 2) প্রবেশ করে এবং ইলেকট্রন এই স্তরে বর্তমান অন্যান্য ইলেকট্রন দ্বারা প্রবলভাবে বিকর্ষিত হয়। n = 3 শক্তিস্তরের জন্য (S বা Cl), যুক্ত ইলেকট্রনটি অধিক স্থান দখল করে থাকে এবং ইলেকটন-ইলেকটন বিকর্ষণ খুবই কম হয়।

(e) অপরাতড়িৎ ধর্মীতা বা তড়িৎ ঋণাত্মকতা (Electronegativity)
যৌগের মধ্যে বর্তমান বন্থন সৃষ্টিকারী ইলেকট্রন জোড়কে কোনো

সমস্যা-3.7

নীচের কোনটির ঋণাত্মক ইলেকট্রন গ্রহণ এনথ্যালপি সবচেয়ে বেশি এবং কোনটির সবচেয়ে কম হবে ?

P, S, Cl, F.

তোমার উত্তর ব্যাখ্যা করো।

সমাধান :

আমরা কোন পর্যায়ের পর্যায় বরাবর বামদিক থেকে ডানদিকে অগ্রসর হলে ইলেকট্রন গ্রহণ এনথ্যালপির মান সাধারণত অধিক ঋণাত্মক হয়। একটি গ্রুপের নীচের দিকে অগ্রসর হলে ইলেকট্রন গ্রহণ এনথ্যালপির মান কম ঋণাত্মক হয়। এছাড়াও 2p অরবিট্যালে যুক্ত ইলেকট্রন, বৃহদাকার 3p অরবিট্যালে যুক্ত ইলেকট্রন অপেক্ষা অধিক মাত্রায় বিকর্ষিত হয়। সেজন্য মৌলগুলোর মধ্যে ক্লোরিনের ঋণাত্মক ইলেকট্রন গ্রহণ এনথ্যালপি সবচেয়ে বেশি। মৌলগুলোর মধ্যে ফসফরাসের ঋণাত্মক ইলেকট্রন গ্রহণ এনথ্যালপির মান সবচেয়ে কম।

পরমাণু নিজের দিকে আকর্ষণ করার গুণগত পরিমাপকে তড়িৎ-ঋণাত্মকতা বলে। আয়নন এনথ্যালপি এবং ইলেকট্রন গ্রহণ এনথ্যালপির মত এটি পরিমাপ যোগ্য নয়। যদিও মৌলের অপরাতড়িৎ ধর্মীতার সংখ্যামান নির্ণয়ের কিছু সূচক স্কেল, যেমন পাউলিং স্কেল, মুলিকেন-জেফি স্কেল, আলরেড-রেকো স্কেল তৈরি করা হয়েছে। এদের মধ্যে পাউলিং স্কেল খুব ব্যাপকভাবে ব্যবহৃত হয়।

^{*} অনেক বইয়ে কোনো পরমাণুর ইলেকট্রন আসন্তি (A_c) সমীকরণ 3.3-এ প্রদর্শিত ঋণাত্মক এনথ্যালপির পরিবর্তন হিসাবে অনেক ক্ষেত্রে সংজ্ঞায়িত করা হয়। তাপগতিবিদ্যার প্রচলিত রীতি অনুযায়ী যখন একটি পরমাণু ইলেকট্রন গ্রহণ করে শস্তি নির্গত করে, তখন ইলেকট্রন আসন্তি ধণাত্মক ধরা হয়। একটি পরমাণু যখন ইলেকট্রন গ্রহণ করে, তখন যদি শস্তি সরবরাহ করা হয়, তবে মৌলের ইলেকট্রন আসন্তি ঋণাত্মক চিহ্ন দ্বারা নির্দেশ করা হয়। অধিকন্তু, ইলেকট্রন আসন্তি যেহেতু পরম শৃন্য অবস্থায় সংজ্ঞায়িত করা হয় এবিং সেজন্য অন্য যে কোনো উন্নতায় (T) বিক্রিয়ক এবং বিক্রিয়াজাত পদার্থের তাপক্ষমতা, এই সমীকরণ দ্বারা গণনা করা হয়েহে Δ_mH = -A_c - 5/2 RT।

লিনাস পাউলিং একজন আমেরিকার বিজ্ঞানী 1922 খ্রিস্টাব্দে তিনি ফ্রুরিন মৌলের ইলেকট্রন আকর্ষণ করার ক্ষমতা (4.0) সর্বোচ্চ সুনির্দিষ্ট করেন। কিছু মৌলের তড়িৎ-ঋণাত্মকতার আণুমানিক মান সারণি 3.8 (a) প্রদর্শন করা হল।

প্রদত্ত কোন একটি মৌলের তড়িৎ-ঋণাত্মকতার মান সর্বদা ধ্রবক হয় না, মৌলটি কোন ধরণের মৌলের সাথে রাসায়নিক বন্ধনে আবন্ধ এর মান তার সাথে পরিবর্তিত হয়। যদিও এটি পরিমাপ যোগ্য রাশি নয়, তবু এর থেকে দুটি পরমাণুকে বন্ধন দ্বারা সংযুক্ত

করতে কি পরিমাণ বলের প্রয়োজন, সে সম্পর্কে একটি অর্থপূর্ণ অনুমান করা যায়, — এটি এমন একটি সম্পর্ক, যার সমন্ধে তোমরা পরবর্তী সময়ে গবেষণা করবে।

পর্যায় সারণিতে মৌলের তড়িৎ-ঋণাত্মকতা সাধারণত পর্যায় বরাবর বামদিক থেকে ডানদিকে বৃদ্ধি পায় (ধর লিথিয়াম (*Li*)) থেকে ফ্লুরিন (F) এবং শ্রেণি বরাবর নীচের দিকে হ্রাস পায় (ধর ফ্রুরিন (F) থেকে অ্যাসটেটাইন (At))। কিভাবে এই প্রবণতা ব্যাখ্যা করবে? তডিৎ ঋণাত্মকতা পারমাণবিক ব্যাসার্ধের সাথে সম্পর্কিত হতে পারে কি, যা প্রতি পর্যায় বরাবর বামদিক থেকে ডানদিকে ক্রমান্বয়ে হ্রাস পায় কিন্তু শ্রেণি বরাবর উপর থেকে নীচে বৃদ্ধি

পায়। পর্যায় বরাবর পারমাণবিক ব্যাসার্ধ হাস পাওয়ার ফলে মৌলের

সর্ববহিস্থা কক্ষের (যোজ্যতা কক্ষ) ইলেকট্রন সমূহ এবং নিউক্লিয়াসের মধ্যে আকর্ষণ বল বৃদ্ধি পায়। ফলে তড়িৎ ঋণাত্মকতাও বৃদ্ধি পায়। একই কারণে, একটি শ্রেণির উপর থেকে নীচে পারমাণবিক ব্যাসার্ধ বৃদ্ধির ফলে মৌলের তড়িৎ ঋণাত্মকতা হ্রাস পায়। এই প্রবণতা আয়নন এনথ্যালপির অনুরূপ।

তড়িৎ ঋণাত্মকতা এবং পারমাণবিক ব্যাসার্ধের মধ্যে সম্পর্ক জেনে তুমি কি এখন তড়িৎ ঋণাত্মকতা এবং অধাতব ধর্মের মধ্যে সম্পর্ক নির্ণয় করতে পারছো ?

ছবি 3.7 পর্যায় সারণিতে মৌলগুলোর পর্যাবৃত্ত প্রবণতা সমূহ সারণি- 3.8 (a) তড়িৎ ঋণাত্মকতার মান (পাউলিং স্কেল অনুযায়ী) পর্যায় বরাবর

পরমাণু (দ্বিতীয় পর্যায়)	Li	Be	В	С	Ν	0	F
তড়িৎ ঋণাত্মকা	1.0	1.5	2.0	2.5	3.0	3.5	4.0
পরমাণু (তৃতীয় পর্যায়)	Na	Mg	Al	Si	Р	S	Cl
তড়িৎ ঋণাত্মকা	0.9	1.2	1.5	1.8	2.1	2.5	3.0

সারণি- 3.8 (b) তডিৎ ঋণাত্মকতার মানসমূহ (পাউলিং স্কেল অনযায়ী) গ্রপের নীচ বরাবর

পরমাণু (গ্রুপ- I)	তড়িৎ ঋণাত্মকতার মান	পরমাণু (গ্রুপ- 17)	তড়িৎ ঋণাত্মকতার মান		
Li	1.0	F	4.0		
Na	0.9	Cl	3.0		
K	0.8	Br	2.8		
Rb	0.8	I	2.5		
Cs	0.7	At	2.2		

অধাতব মৌলের ইলেকট্রন গ্রহণ করার প্রবণতা প্রচণ্ড বেশি। সুতরাং মৌলের অধাতব ধর্মের সঙ্গো তড়িৎ ঋণাত্মকতা সরাসরি সম্পর্কযুক্ত। আরো বিস্তারিত ভাবে বলা যায় যে, মৌলের ধাতব ধর্ম তড়িৎ ঋণাত্মকতার ব্যস্তানুপাতিক। এভাবে, পর্যায় বরাবর তড়িৎ ঋণাত্মকতা বৃষ্দির সঙ্গো মৌলের অধাতব ধর্ম বৃষ্দি পায় (বা ধাতব ধর্ম হ্রাস পায়)। একইভাবে শ্রেণি বরাবর উপর থেকে নীচে মৌলের তড়িৎ ঋণাত্মকতা হ্রাসের ফলে অধাতব ধর্ম হ্রাস পায় (বা ধাতব ধর্ম বৃষ্দি পায়)।

এই সমস্ত পর্যায়ভিত্তিক প্রবণতার ক্রম 3.7 চিত্রে দেখানো হয়েছে।

3.7.2 রাসায়নিক ধর্মের পর্যায়ভিত্তিক ক্রম (Periodic Trends in Chemical Properties)

মৌলের অধিকাংশ রাসায়নিক ধর্মের ক্রম যেমন কর্ণ সম্পর্ক, নিষ্ক্রিয় জোড় প্রভাব, ল্যানথানয়েড সংকোচন প্রভৃতি পরবর্তী অধ্যায়ে প্রতিটি গ্রুপ অনুযায়ী আলোচনার করা হবে। এই অধ্যায়ে আমরা মৌলের যোজ্যতার পর্যায়ভিত্তিক ধর্ম এবং দ্বিতীয় পর্যায়ের মৌলগুলোর ব্যতিক্রমি ধর্ম নিয়ে আলোচনা করব [(Li) লিথিয়াম থেকে ফ্রুরিন (F)]।

(a) যোজ্যতা বা জারণ স্তরের পর্যাবৃত্তি (Periodicity of Valence or Oxidation States)

যোজ্যতা হল মৌলের গুরুত্বপূর্ণ বৈশিষ্ট্যমূলক ধর্ম এবং এদের ইলেকট্রন বিন্যাস থেকে যোজ্যতা সম্পর্কে ধারণা পাওয়া যায়। প্রতিনিধি মৌলের যোজ্যতা, সাধারণত মৌলের পরমাণুটির সর্বশেষ কক্ষে বর্তমান ইলেকট্রন সংখ্যা বা আট থেকে সর্বশেষ কক্ষে বর্তমান ইলেকট্রন সংখ্যার বিয়োগফলের সমান; যা নীচে দেখানো হল।

আজকাল জারণস্তর শব্দটি প্রায়ই যোজ্যতা প্রকাশ করার জন্য ব্যবহার করা হয়। দুটো অক্সিজেন যুক্ত যৌগ OF₂ এবং Na₂O বিবেচনা করো। এই যোগগুলোতে বর্তমান মৌল তিনটির তড়িৎ ঋণাত্মকতার ক্রম F>O>Na। ফ্লুরিনের প্রতিটি পরমাণুর সর্বশেষ কক্ষের ইলেকট্রন বিন্যাস 2s²2p⁵, প্রতিটি F পরমাণু অক্সিজেন পরমাণুর সঞ্চো একটি ইলেকট্রনের অংশীদারিত্বের দ্বারা সমযোজী বন্ধন তৈরি করে OF₂ অণু গঠন করে। যদিও সর্বোচ্চ তড়িৎ ঋণাত্মক মৌল F এর জারনস্তর-1. যেহেতু অণুটির মধ্যে দুটো F পরমাণু বর্তমান এবং অক্সিজেন পরমাণুর সর্বশেষ কক্ষের ইলেকট্রন বিন্যাস 2s²2p⁴, এটি F পরমাণুর সঙ্গো দুটো ইলেকট্রন অংশীদারিত্বের দ্বারা ব্যবহার করে এবং +2 জারণস্তর প্রদর্শন করে। Na₂O অণুতে, অক্সিজেন অধিক তড়িৎ ঋণাত্মক হওয়ায় প্রতিটি Na পরমাণু থেকে একটি করে মোট দুটি ইলেকট্রন গ্রহণ করে –2 জারণস্তর প্রদর্শন করে। অপরপক্ষে, Na-এর সর্বশেষ কক্ষের ইলেকট্রন বিন্যাস 3s¹, এটি একটি ইলেকট্রন অক্সিজেনকে দান করে +1 জারণস্তর দেখায়। এভাবে, কোনো যৌগে বর্তমান কোনো মৌলের জারণস্তর তড়িৎ যৌগের অণুতে মৌলটির পরমাণু ঋণাত্মকতার ভিত্তিতে, যে পরিমাণ আধান অর্জন করে তার সাহায্যে ব্যাখ্যা করা যায়।

সমস্যা-3.8

পর্যায় সারণি ব্যবহার করে, নিম্নলিখিত মৌল জোড়ের দ্বারা সৃষ্ট যৌগের সংকেত লেখ :

- (a) সিলিকন এবং ব্রোমিন,
- (b) অ্যালুমিনিয়াম এবং সালফার।

সমাধান :

- (a) সিলিকন হল গ্রুপ-14 মৌল, এর যোজ্যতা 4;
 রোমিন হ্যালোজেন পরিবারে অবস্থিত, এর যোজ্যতা 1. সুতরাং যৌগটির সংকেত হবে SiBr,
- (b) Al গ্রুপ-13 এ অবস্থিত, এর যোজ্যতা, 3; S-গ্রুপ-16 মৌল, এর যোজ্যতা-2. সুতরাং যৌগটির সংকেত হবে Al,S₃.

মৌলের যোজ্যতার কিছু পর্যায় ক্রমিক প্রবণতা (হাইড্রাইড এবং অক্সাইডের) সারণি 3.9 এ প্রদর্শন করা হলো— অন্যান্য মৌলের রাসায়নিক ধর্মের সঞ্চো সম্পর্কযুক্ত পর্যায়ভিত্তিক ক্রম এই বইয়ের অন্যত্র আলোচনা করা হয়েছে।

গ্রুপ	1	2	13	14	15	16	17	18
যোজ্যতা ইলেক্ট্রন সংখ্যা	1	2	3	4	5	6	7	8
যোজ্যতা	1	2	3	4	3,5	2,6	1,7	0,8

রসায়ন

গ্রুপ	1	2	13	14	15	16	17
হাইড্রাইড	LiH		B_2H_6	CH ₄	NH ₃	H ₂ O	HF
এর সংকেত	NaH	CaH ₂	AlH ₃	SiH_4	PH ₃	H ₂ S	HCl
	KH			GeH ₄	AsH ₃	H ₂ Se	HBr
				SnH_4	SbH ₃	H ₂ Te	HI
অক্সাইডের	Li ₂ O	MgO	B ₂ O ₃	CO ₂	N ₂ O ₃ , N ₂ O ₅		_
সংকেত	Na ₂ O	CaO	Al ₂ O ₃	SiO ₂	P_4O_6, P_4O_{10}	SO ₃	Cl_2O_7
	K ₂ O	SrO	Ga ₂ O ₃	GeO ₂	As_2O_3 , As_2O_5	SeO ₃	-
		BaO	In ₂ O ₃	SnO ₂	Sb ₂ O ₃ , Sb ₂ O ₅	TeO ₃	-
				PbO ₂	Bi ₂ O ₃ –	_	

সারণি- 3.9-এ মৌলের যোজ্যতার পর্যায়ভিত্তিক ক্রম তাদের যৌগের সংকেত সহ দেখানো হয়েছে।

অনেক মৌল আছে যারা পরিবর্তনশীল যোজ্যতা প্রদর্শন করে। ইহা বিশেষত সন্ধিগত এবং অ্যাক্টিনয়েড মৌলের বৈশিষ্ট্য গত ধর্ম, যা আমরা পরে আলোচনা করব।

(b) দ্বিতীয় পর্যায়ের মৌলগুলোর ব্যত্রিকমি ধর্ম সমূহ (Anomalous Properties of Second Period Elements)

প্রতি গ্রুপের প্রথম মৌল, গ্রুপ-1 (লিথিয়াম), গ্রুপ-2 (বেরিলিয়াম) এবং গ্রুপ-13-17 (বোরন থেকে ফ্রুরিন), গ্রুপের অন্যান্য মৌলের সঙ্গো বিভিন্ন ক্ষেত্রে ধর্মের পার্থক্য দেখা যায়। উদাহরণ স্বরূপ, লিথিয়াম অন্যান্য ক্ষার ধাতু থেকে পৃথক, বেরিলিয়াম অন্যান্য ক্ষারীয় মৃত্তিকা ধাতু থেকে পৃথক। এরা সর্বদা সমযোজী যৌগ গঠন করে এবং গ্রুপের অন্যান্য মৌলগুলো প্রধানত তড়িৎযোজী যৌগ গঠন করে।আসলে, লিথিয়াম এবং বেরিলিয়ামের আচরণ পরবর্তী গ্রুপের

ধর্ম		মৌল	
ধাতব ব্যাসার্ধ M/ pm	Li	Be	В
	152	111	88
	Na	Mg	Al
	186	160	143
	Li	Be	
আয়নিক ব্যাসার্ধ M ⁺ / pm	76	31	
	Na	Mg	
	102	72	

দ্বিতীয় মৌলের সঙ্গো অর্থাৎ যথাক্রমে Mg এবং Al সঙ্গো অধিকতর সদৃশ । এই ধরনের সাদৃশ্যভিত্তিক সাধারণত পর্যায়কে বৈশিস্ট্যের অন্তর্গত তির্যক বা কর্ণ সম্পর্ক হিসাবে উল্লেখ করা হয়।

কী কারণে s এবং p ব্লকের প্রতি গ্রুপের প্রথম মৌল একই গ্রুপের অন্যান্য মৌলগুলো থেকে রাসায়নিক ধর্মে পৃথক আচরণ করে ? মৌলগুলোর ব্যতিক্রমী ধর্মের কারণ তাদের ক্ষুদ্র আকার, উচ্চ আধান/ব্যাসার্ধ-এর অনুপাত এবং উচ্চ তড়িৎ ঋণাত্মকতা। এছাড়াও গ্রুপের প্রথম মৌলের 4টি যোজ্যতা কক্ষক আছে (2s এবং 2p), কিন্তু গ্রুপের দ্বিতীয় মৌলের মধ্যে বন্ধন তৈরিতে সক্ষম এমন যোজ্যতা কক্ষে এ ধরণের 9টি কক্ষক বর্তমান (3s, 3p, 3d)। এর ফলে, প্রতি গ্রুপের প্রথম মৌলের সর্বোচ্চ সমযোজী যোজ্যতা 4 হয় (উদাহরণ স্বরূপ বোরণ শুধুমাত্র [BF₄]- গঠন করে)। কিন্তু গ্রুপের

> অন্যান্য মৌলগুলো তাদের যোজ্যতা কক্ষ প্রসারিত করে 4 জোড়ার বেশি ইলেকট্রন গ্রহণ করতে পারে। উদাহরণস্বরূপ অ্যালুমিনিয়াম [AIF₆]³⁻ গঠন করে। এছাড়াও একই গ্রুপের পরবর্তী মৌলগুলোর তুলনায় *p*-ব্লকের প্রথম মৌল সমূহ নিজেদের মধ্যে *p*_π – *p*_π বহু বন্ধন গঠনের প্রবণতা দেখায়। (উদাহরণস্বরূপ C = C, C = C, N = N, N = N) এবং দ্বিতীয় পর্যায়ের অন্যান্য মৌলের সঙ্গেও বহু বন্ধন গঠনের প্রবণতা (উদাহরণস্বরূপ C = O, C = N, C = N, N = O) দেখায়।
মৌলসমূহের শ্রেণিবিভাগ এবং ধর্মাবলির পর্যাবৃত্তি

সমস্যা-3.9

 $[AlCl(H_2O)_5]^{2^4}$ এর মধ্যে Al এর জারণস্তর এবং সমযোজী যোজ্যতা সমান হয় কি ?

সমাধান :

না, Al এর জারণস্তর হল +3 এবং সমযোজী যোজ্যতা হল 6.

3.7.3 পর্যায়ভিত্তিক ক্রম এবং রাসায়নিক সক্রিয়তা (Periodic Trends and Chemical Reactivity)

আমরা কিছু মৌলিক ধর্মের যেমন পারমাণবিক এবং আয়নিক ব্যাসার্ধ, আয়নন এনথ্যালপি, ইলেকট্রন গ্রহণ এনথ্যালপি এবং যোজ্যতার পর্যায়ভিত্তিক ক্রম নিয়ে পর্যালোচনা করেছি। আমরা এখন জানি পর্যাবৃত্তি মৌলের ইলেকট্রন বিন্যাসের সঙ্গো সম্পর্কযুক্ত। অর্থাৎ মৌলের রাসায়নিক ও ভৌত ধর্মবলী প্রকাশিত হয় মৌলের ইলেকট্রন বিন্যাস দ্বারা। এখন আমরা মৌলের মৌলিক ধর্মবলী এবং তাদের রাসায়নিক সক্রিয়তার মধ্যে সম্পর্ক জানার চেম্টা করব।

আমরা জানি যে, পারমাণবিক এবং আয়নিক ব্যাসার্ধ সাধারণত পর্যায়ের বাম থেকে ডান দিকে হ্রাস পায়। এর ফলে আয়নন এনথ্যালপি সাধারণত বৃদ্ধি পায় (কিছু ব্যতিক্রম 3.7.1 (a) অংশে দেখানো হয়েছে) এবং ইলেকট্রন গ্রহণ এনথ্যালপি পর্যায় বরাবর অধিকতর ঋণাত্মক হয়। অন্যভাবে বলা যায়, কোনো পর্যায়ের একেবারে বামদিকের মৌলের আয়নন এনথ্যালপি সব চেয়ে কম এবং একেবারে ডানদিকের মৌলের ইলেকট্রন গ্রহণ এনথ্যালপি সবচেয়ে বেশি ঋণাত্মক। (বি:দ্র: নোবেল গ্যাসের কক্ষগুলো সম্পূর্ণভাবে ইলেকট্রন দ্বারা পূর্ণ থাকে বলে এদের ইলেকট্রন গ্রহণ এনথ্যালপি ধনাত্মক)। এর ফলে দুটি চরম প্রান্তে রাসায়নিক সক্রিয়তা সর্বোচ্চ এবং কেন্দ্রে সর্বনিম্ন হয়। এভাবে, বামদিকের চরম সীমায় অবস্থিত মৌলগুলো সর্বোচ্চ রাসায়নিক সক্রিয়তার জন্য (ক্ষার ধাতুর মধ্যে) একটি ইলেকট্রন বর্জন করে ক্যাটায়নে পরিণত হয় এবং ডানদিকের চরম সীমায় (হ্যালেজেনের মধ্যে) অবস্থিত মৌলগুলো ইলেকট্রন গ্রহণ করে অ্যানায়নে পরিণত হয়। এই ধর্ম মৌলের জারণ এবং বিজারণ ধর্মের সঙ্গে সম্পর্কযুক্ত যা তোমরা পরবর্তীকালে শিখবে। তাছাড়া, এটি মৌলের ধাতব এবং অধাতব ধর্মের সঙ্গে সরাসরি সম্পর্কযুক্ত। এভাবে, মৌলের ধাতব ধর্ম, বামদিকের সর্বশেষ প্রান্তে অবস্থিত মৌলে সর্বোচ্চ এবং তা ক্রমে হাস পায়। অধাতব ধর্ম পর্যায় বরাবর বাম দিক থেকে ডান দিকে ক্রমান্বয়ে বৃদ্ধি পায়।

একটি মৌলের রাসায়নিক সক্রিয়তা সবচেয়ে সঠিকভাবে প্রদর্শন করা যায় এর সঙ্গে অক্সিজেন এবং হ্যালোজেন মৌলের বিক্রিয়ার দ্বারা। এখানে আমরা মৌলের সঙ্গে শুধুমাত্র অক্সিজেনের বিক্রিয়ার কথা বিবেচনা করব। পর্যায়ের চরম সীমায় অবস্থিত মৌলগুলো অক্সিজেনের সঙ্গে যুক্ত হয়ে অক্সাইড গঠন করে। বামদিকের চরম সীমায় অবস্থিত মৌল অক্সিজেনের সঙ্গে যুক্ত হয়ে সাধারণত ক্ষারীয় (উদাহরণস্বরূপ Na₂O) অক্সাইড, অপরপক্ষে ডানদিকের চরম সীমায় অবস্থিত মৌল তীব্র অল্লিক অক্সাইড (উদাহরণস্বরূপ Cl₂O) গঠন করে। পর্যায়ের মধ্যবর্তীস্থানে অবস্থিত মৌলের অক্সাইডগুলো (উদাহরণস্বরূপ Al₂O₃, As₂O₃) উভধর্মী বা প্রশম (উদাহরণস্বরূপ CO, NO, N₂O) হয়। উভধর্মী অক্সাইডগুলো ক্ষারের সঙ্গে আল্লিক ধর্ম এবং অ্যাসিডের সঙ্গে ফারকীয় ধর্ম প্রদর্শন করে। অপরপক্ষে, প্রশম অক্সাইডগুলো কোন আল্লিক বা ক্ষারকীয় ধর্ম প্রদর্শন করে না।

সমস্যা-3.10

জলের সঙ্গে রাসায়নিক বিক্রিয়ার সাহায্যে দেখাও যে Na₂O একটি ক্ষারকীয় অক্সাইড এবং Cl₂O একটি আন্নিক অক্সাইড। সমাধান :

Na₂O জলের সঙ্গে বিক্রিয়া করে তীব্র ক্ষার, অপর পক্ষে, Cl₂O₂ জলের সঙ্গে বিক্রিয়া করে তীব্র অ্যাসিড তৈরি করে।

 $Na_2O + H_2O \rightarrow 2NaOH$

 $Cl_2O_7 + H_2O \rightarrow 2HClO_4$

এদের ক্ষারীয় এবং আম্লিক ধর্ম গুণগতভাবে লিটমাস কাগজ দ্বারা পরীক্ষা করা যায়।

পর্যায় বরাবর সন্ধিগত ধাতুর (3*d* সারি) পারমাণবিক ব্যাসার্ধের পরিবর্তন প্রতিনিধি মৌলের তুলনায় খুব কম হয়। অভ্যন্তরীণ সন্ধিগত (4f সারি) ধাতুর মধ্যে পারমাণবিক ব্যাসার্ধের পরিবর্তন খুবই কম। এদের আয়নন এনথ্যালপির মান s এবং *p*-ব্লক মৌলের মধ্যবর্তী। এর ফলে এরা গ্রুপ-1 এবং গ্রুপ-2 ধাতুর চেয়ে কম তড়িৎ ধনাত্মক।

একটি গ্রুপের মধ্যে, পারমাণবিক সংখ্যা বৃদ্ধির ফলে পারমাণবিক এবং আয়নিক ব্যাসার্ধ বৃদ্ধি পায় এবং আয়নন এনথ্যালপি ধীরে ধীরে হ্রাস পায় এবং প্রধান (প্রতিনিধিত্ব মৌল) গ্রুপের মৌলগুলোর ইলেকট্রন গ্রহণ এনথ্যালপি নিয়মিত হ্রাস (তৃতীয় পর্যায়ের কিছু ব্যতিক্রমী মৌল সহ অধ্যায় 3.7.1(d) এ প্রদর্শন করা হয়েছে) পায়।

পরবর্তী সময়ে শিখবে। যদিও সম্বিগত মৌলের ক্ষেত্রে, বিপরীত ক্রম লক্ষ করা যায়। এটি পারমাণবিক আকার এবং আয়নন এনথ্যালপির সাহায্যে ব্যাখ্যা করা যায়।

এভাবে, ধাতব ধর্ম গ্রুপের নীচের দিকে ক্রমশ বৃদ্ধি পায় এবং অধাতব ধর্ম হ্রাস পায়। এই ক্রমটিকে মৌলগুলোর বিজারণ এবং জারণ ধর্মের সঞ্চো সম্পর্কিত করা যেতে পারে যা তুমি

সারাংশ (Summary)

এই অধ্যায়ে তোমরা পর্যায় সূত্র এবং পর্যায় সারণির অগ্রগতি অধ্যয়ন করেছ। মেন্ডেলিয়েভের পর্যায় সারণি পারমাণবিক ভরের (গুরুত্বের) উপর ভিত্তি করে রচিত। আধুনিক পর্যায় সারণিতে মৌলগুলোকে তাদের পারমাণু ক্রমাজ্জে ক্রম অনুসারে 7টি অণুভূমিক সারি (পর্যায়) এবং 18টি উল্লম্ব স্তম্বে (গ্রুপ বা পরিবার) সাজানো হয়েছে। একটি পর্যায়ের মধ্যে পরমাণু ক্রমাজ্জ হল ধারাবাহিক কিন্তু একটি গ্রুপে ইহা একটি পর্যায়ভিত্তিক নমুনায় বৃদ্ধি পায়। একই গ্রুপের মৌলগুলোর যোজ্যতা কক্ষের ইলেকট্রন বিন্যাস একই এবং সেজন্য একই রাসায়নিক ধর্ম প্রদর্শন করে। যা হোক, একই পর্যায়ের মৌলগুলোর যোজ্যতা কক্ষের ইলেকট্রন সংখ্যা ক্রমান্ধয়ে বৃদ্ধি পায় এবং ফলে বিভিন্ন যোজ্যতা প্রদর্শন করে। পার্হাক, একই পর্যায়ের মৌলগুলোর বামদিক থেকে ডানদিকে ইলেকট্রন সংখ্যা ক্রমান্ধয়ে বৃদ্ধি পায় এবং ফলে বিভিন্ন যোজ্যতা প্রদর্শন করে। পর্যায় সারণিতে তাদের ইলেকট্রন বিন্যাসের ভিত্তিতে 4 ধরনের মৌল স্বীকৃত হতে পারে। এগুলো হলো s ব্লক, p ব্লক, d ব্লক এবং f ব্লক মৌল। হাইড্রোজেনের 1s কক্ষকে একটি ইলেকট্রন বর্তমান, ইহা পর্যায় সারণিতে একক অনন্য স্থান অধিকার করে। পরিচিত জ্ঞাত মৌলগুলোর মধ্যে 78% এর বেশি ধাতু। পর্যায় সারণির উপরের দিকে অধাতুগুলো অবস্থিত এবং এদের সংখ্যা 20-এর চেয়ে কম। ধাতু এবং অধাতুর মধ্যবর্তী মৌলসমূহ যারা সীমানা রেখায় অবস্থিত তাদের (উদাহরণস্বরুপ-*Si, Ge, As*) মেটালয়েড বা ধাতুকল্প বলে। একটি গ্রুপের মধ্যে পরমাণু ক্রমাঙ্গ্ব সৌলের ভৌত এবং রাসায়নিক ধর্ম পর্যায়ক্রমে পরিবর্তিত হয়।

পারমাণবিক আকার, আয়নন এনথ্যালপি, ইলেকট্রন গ্রহণ এনথ্যালপি, তড়িৎ ঋণাত্মকতা এবং যোজ্যতার পর্যায় ক্রমিক প্রবণতা পরিলক্ষিত হয়। একটি পর্যায়ের বামদিক থেকে ডানদিকে অগ্রসর হলে পারমাণবিক ব্যাসার্ধ হ্রাস পায় এবং একটি গ্রুপে পরমাণু ক্রমাঞ্চ বৃন্দিতে বৃন্দি পায়। আয়নন এনথ্যালপি সাধারণত পর্যায় বরাবর বৃন্দি এবং গ্রুপের নীচের দিকে হ্রাস পায়। এছাড়া তড়িৎ ঋণাত্মকতাও অনুরূপ প্রবণতা দেখায়। পর্যায় বরাবর ইলেকট্রন গ্রহণ এনথ্যালপি সাধারণত অধিক ঋণাত্মক হয় এবং গ্রুপের নীচের দিকে কম ঋণত্মক হয়। যোজ্যতার কিছুটা পর্যায়বরাবর ইলেকট্রন গ্রহণ এনথ্যালপি সাধারণত অধিক ঋণাত্মক হয় এবং গ্রুপের নীচের দিকে কম ঋণত্মক হয়। যোজ্যতার কিছুটা পর্যায়বৃত্তি আছে। উদাহরণস্বরূপ, প্রতিনিধি মৌলগুলোর ক্ষেত্রে সর্বশেষ কক্ষকে বর্তমান ইলেকট্রন সংখ্যা অথবা আট থেকে সর্বশেষ কক্ষকে বর্তমান ইলেকট্রন সংখ্যার বিয়োগফল উভয়েই যোজ্যতা প্রকাশ করে। একটি পর্যায়ের দুটো প্রান্তে রাসায়নিক সক্রিয়তা সর্বাধিক এবং মধ্যবর্তী স্থানে সর্বনিম্ন হয়। একটি পর্যায়ে বামদিকের চরম সীমায় অবস্থিত মৌল রাসায়নিকভাবে সক্রিয়। কারণ এরা সহজে ইলেকট্রন বর্জন করে (অথবা নিম্ন আয়নন এনথ্যালপির জন্য)। অধিক সক্রিয় মৌলগুলো প্রকৃতিতে মুক্ত অবস্থায় পাওয়া যায় না। এদের সাধারণত সংযুক্ত অবস্থায় পাওয়া যায়। পর্যায়ে বাম দিকের মৌলের দ্বারা সৃস্ট অক্সাইড ক্ষারীয় এবং ডানদিকের মৌলের দ্বারা সৃস্ট অক্সাইড আল্লিক প্রকৃতির হয়। মধ্যবর্তী স্থানে অবস্থিত মৌলের অক্সাইডগুলো উভধর্মী বা প্রশম হয়।

অনুশীলনী (Exercises)

- 3.1 পর্যায় সারণির সুবিন্যস্ত রূপটির মূল বিষয়বস্তু কী?
- 3.2 মেন্ডেলিয়েভ কোন গুরুত্বপূর্ণ ধর্মটি তার পর্যায় সারণিতে মৌলের শ্রেণি বিন্যাসে ব্যবহার করেছিলেন এবং তিনি কী সঠিক ছিলেন ?
- 3.3 মেন্ডেলিয়েভের পর্যায় সূত্র এবং আধুনিক পর্যায় সূত্রের মধ্যে পদ্ধতিগত মৌলিক পার্থক্য কী ?
- 3.4 কোয়ান্টাম সংখ্যার ভিত্তিতে, প্রমাণ কর পর্যায় সারণির 6ষ্ঠ পর্যায়ে 32টি মৌল বর্তমান।

মৌলসমূহের শ্রেণিবিভাগ এবং ধর্মাবলির পর্যাবৃত্তি

- 3.5 114 পরমাণু ক্রমাঞ্চ বিশিষ্ট মৌলটি পর্যায় সারণির কোন পর্যায় এবং কোন শ্রেণিতে অবস্থিত ?
- 3.6 একটি মৌলের পরমাণু ক্রমাঞ্চ লেখো যা পর্যায় সারণির তৃতীয় পর্যায়ের 17 নং গ্রুপে অবস্থিত।
- 3.7 নীচের দুটি নাম দ্বারা কোন কোন মৌলের নামকরণ করা হয়েছে।
 - (i) লরেন্স বাকলে পরীক্ষাগারে
 - (ii) সিবগর্স গ্রুপে?
- 3.8 একই গ্রুপের মৌলগুলো একই ভৌত এবং রাসায়নিক ধর্ম প্রদর্শন করে কেন ?
- 3.9 পারমাণবিক ব্যাসার্ধ এবং আয়নিয় ব্যাসার্ধ বলতে আসলে তুমি কী বুঝ ?
- 3.10 পারমাণবিক ব্যাসার্ধ কীভাবে পর্যায় এবং গ্রুপে পরিবর্তিত ঘটে ? তুমি কীভাবে এই পরিবর্তন ব্যাখ্যা করবে ?
- 3.11 সম ইলেকট্রন বিশিষ্ট পরমাণু বা আয়ন বলতে কী বোঝ? একটি পরমাণু বা আয়নের নাম লেখো যা নিম্নলিখিত প্রতিটি পরমাণু বা আয়েনর সঞ্চো সম ইলেকট্রন বিশিষ্ট।
 - (i) F^- (ii) Ar (iii) Mg^{2+} (iv) Rb^+
- 3.12 নিম্নলিখিত আয়নগুলো বিবেচনা করো :
 - N³⁻, O²⁻, F⁻, Na⁺, Mg²⁺ এবং Al³⁺
 - (a) এদের মধ্যে কী মিল আছে?
 - (b) আয়নীয় ব্যাসার্ধের উর্দ্ধক্রম অনুসারে এদের সাজাও।
- 3.13 ক্যাটায়নের ব্যাসার্ধ এর মূল পরমাণু থেকে ক্ষুদ্রতর এবং অ্যানায়নের ব্যাসার্ধ এর মূল পরমাণু থেকে বৃহত্তর কেন ? ব্যাখ্যা করো।
- 3.14 আয়নন এনথ্যালপি এবং ইলেকট্রন গ্রহণ এনথ্যালপি সজ্ঞায়িত করার সময় বিচ্ছিন্ন গ্যাসীয় পরমাণু এবং ভূমিস্তর শব্দগুলোর তাৎপর্য কী? **ইঞ্চিাত :** তুলনার উদ্দেশ্যে প্রয়োজন।
- 3.15 একটি হাইড্রোজেন পরমাণুর ভূমিস্তরে অবস্থিত একটি ইলেকট্রনের শক্তি –2.18×10⁻¹⁸J | J mol⁻¹ এককে পারমাণবিক হাইড্রোজেনের আয়নন এনথ্যালপি গণনা করো। **ইজিাত :** মোল ধারণার তত্ত্ব প্রয়োগ করে উত্তর নির্ণয় করো।
- 3.16 দ্বিতীয় পর্যায়ের মৌলগুলোর প্রকৃত আয়নন এনথ্যালপির ক্রম Li < B < Be < C < O < N < F < Ne হলে নীচের উক্তিগুলো ব্যাখ্যা করো—
 - (i) Be এর Δ, Η এর মান B থেকে বেশি।
 - (ii) Ο এর Δ, Η এর মান Ν এবং F এর চেয়ে কম।
- 3.17 কীভাবে ব্যাখ্যা করবে, Na এর প্রথম আয়নন এনথ্যালপি Mg এর চেয়ে কম কিন্তু এর (Na) দ্বিতীয় আয়নন এনথ্যালপি Mg এর চেয়ে বেশি ?
- 3.18 কী কী বিষয়গুলোর কারণে মৌলগুলোর আয়নন এনথ্যালপির মান গ্রুপ বরাবর মূল গ্রুপের উপর হতে নীচের দিকে হ্রাস পায়?
- 3.19 গ্রুপ 13 মৌলগুলোর প্রথম আয়নন এনথ্যালপির মান (kJ mol⁻¹) নিম্নরূপ :
 - B Al Ga In Tl
 - 801 577 579 558 589

তুমি কীভাবে সাধারণ ক্রম থেকে এই বিচ্যুতি ব্যাখ্যা করবে ?

3.20 নীচের প্রতিটি মৌল জোড়ের মধ্যে কোন মৌলটির ঋণাত্মক ইলেকট্রন গ্রহণ এনথ্যালপি বেশি ?

(i) O অথবা F (ii) F অথবা Cl

- 3.21 তুমি কি মনে করো অক্সিজেনের দ্বিতীয় ইলেকট্রন গ্রহণ এনথ্যালপি প্রথমের চেয়ে ধনাত্মক, অধিক ঋণাত্মক বা কম ঋণাত্মক ? তোমার উত্তরের স্বপক্ষে যুক্তি দাও।
- 3.22 ইলেকট্রন গ্রহণ এনথ্যালপি এবং তড়িৎ ঋণাত্মকতার মধ্যে মৌলিক পার্থক্য কী ?

- রসায়ন
- সব নাইট্রোজেন যৌগে, পাউলিং স্কেলে N-এর তড়িৎ ঋণাত্মকতার মান 3.0, এই বক্তব্য সম্পর্কে তুমি কী মত পোষণ করো ? 3.23
- মৌলের পরমাণুর ব্যাসার্ধের সঙ্গে সম্পর্কযুক্ত তত্ত্বটি নিচের দুটির ক্ষেত্রে ব্যাখ্যা করো : 3.24
 - (a) একটি ইলেকট্রন গ্রহণ।
 - (b) একটি ইলেকট্রন বর্জন।
- তুমি কি মনে করো একই মৌলের দুটো আইসোটোপের প্রথম আয়নন এনথ্যালপির মান একই বা ভিন্ন ? উত্তরের স্বপক্ষে 3.25 যুক্তি দাও।
- ধাতু এবং অধাতুর মধ্যে মুখ্য পার্থক্যগুলো কী কী? 3.26
- পর্যায় সারণি ব্যবহার করে নিম্নলিখিত প্রশ্নগুলোর উত্তর দাও। 3.27
 - (a) একটি মৌল চিহ্নিত করো যার বাইরের উপকক্ষে 5টি ইলেকট্রন আছে।
 - (b) একটি মৌল চিহ্নিত করো যার দুটো ইলেকট্রন বর্জন করার প্রবণতা আছে।
 - (c) একটি মৌল চিহ্নিত করো যার দুটো ইলেকট্রন গ্রহণ করার প্রবণতা আছে।
 - (d) একটি গ্রুপ চিহ্নিত করো, যার মধ্যে ধাতু, অধাতু সাধারণ তাপমাত্রায় তরল এমন কি গ্যাসীয় অবস্থায় বর্তমান।
- থ্রপ-1 মৌলগুলোর মধ্যে সক্রিয়তার উর্দ্ধক্রম হলো Li < Na < K < Rb <Cs যদিও থ্রপ 17 মৌলগুলোর মধ্যে সক্রিয়তার 3.28 ক্রম F > CI > Br > I. ব্যাখ্যা করো।
- s, p, d এবং f ব্লক মৌলসমূহের সর্বশেষ কক্ষের সাধারণ ইলেকট্রন বিন্যাস লেখো। 3.29
- পর্যায় সারণিতে মৌলগুলোর অবস্থান নির্দেশ করো, যাদের সর্বশেষ কক্ষের ইলেকট্রন বিন্যাস— 3.30

(i) ns^2np^4 , (지체(ন n=3 (ii) $(n-1)d^2ns^2$ (지체(ন n=4, 의직 (iii) $(n-2)f^7 (n-1)d^1ns^2$ (지체(ন n=6.

কিছু মৌলের প্রথম (Δ,Η₁) এবং দ্বিতীয় (Δ,Η₂) আয়নন এনথ্যালপি (kJ mol⁻¹ এককে) এবং ইলেকট্রন গ্রহণ এনথ্যালপি 3.31 $(\Delta_{_{eg}}H)$ (kJ mol $^{-1}$ এককে) নীচে দেওয়া হল—

মৌল	ΔH_1	ΔH_2	$\Delta_{eg}H$
Ι	520	7300	-60
Π	419	3051	-48
III	1681	3374	-328
IV	1008	1846	-295
V	2372	5251	+48
VI	738	1451	-40

উপরের মৌলগুলোর মধ্যে কোনটি :

- (a) কম সক্রিয় মৌল।
- (b) সবচেয়ে বেশি সক্রিয় ধাতু।
- (c) সবচেয়ে বেশি সক্রিয় অধাতু।
- (d) সবচেয়ে কম সক্রিয় অধাতু।
- (e) ধাতু যা সুস্থিত দ্বৈত হ্যালাইড তৈরি করে যার সংকেত MX,(X= হ্যালোজেন).
- (f) ধাতু যা প্রধানত MX সংকেত বিশিষ্ট সুস্থিত সমযোজী হ্যালাইড তৈরি করে (X= হ্যালোজেন)?
- নিম্নলিখিত মৌল জোড়ের সংযোগে গঠিত সুস্থিত দ্বৈত যৌগগুলোর সংকেত নির্ণয় করো। 3.32
 - (a) লিথিয়াম (*Li*) এবং অক্সিজেন (O)।
 - (b) ম্যাগনেসিয়াম (Mg) এবং নাইট্রোজেন (N)।

 - (c) অ্যালুমিনিয়াম (Ai) এবং আয়োডিন (I)। (d) সিলিকন (Si) এবং অক্সিজেন (O)।

 - (e) ফসফরাস (P) এবং ফ্লুরিন (F)।
- (f) 71 পরমাণু ক্রমাঞ্চ বিশিষ্ট মৌল এবং ফ্লুরিন (F)।
- 3.33 আধুনিক পর্যায় সারণিতে যে মানটি পর্যায় নির্দেশ করে তা হলো —
 - (a) পরমাণু ক্রমাঞ্চন।
 - (b) পারমাণবিক ভর।

98

মৌলসমূহের শ্রেণিবিভাগ এবং ধর্মাবলির পর্যাবৃত্তি

- (c) মুখ্য কোয়ান্টাম সংখ্যা।
- (d) গৌণ কোয়ান্টাম সংখ্যা।
- আধুনিক পর্যায় সারণির সঙ্গে সম্পর্কযুক্ত নিম্নলিখিত বিবৃতিগুলোর মধ্যে কোনটি সঠিক নয়? 3.34
 - (a) *p*-ব্লকের 6টি গ্রুপ আছে কারণ *p* উপকক্ষে বর্তমান সবগুলো কক্ষক (orbital) সর্বাধিক 6টি ইলেকট্রন ধারণ করে।
 - (b) d-ব্লকের ৪টি গ্রুপ আছে কারণ d- উপকক্ষে বর্তমান সবগুলো কক্ষকে সর্বাধিক ৪টি ইলেকট্রন ধারণ করে।
 - (c) প্রতি ব্লকের বর্তমান গ্রুপের সংখ্যা ঐ উপকক্ষ পূর্ণ করা ইলেকট্রন সংখ্যার সমান হয়।
 - (d) সর্বশেষ উপকক্ষের জন্য ব্লকটি গৌণ (azimuthal) কোয়ান্টাম সংখ্যার মান নির্দেশ করে যা ইলেকট্রন বিন্যাস গঠনে ব্যবহৃত ইলেকট্রন সংখ্যা।
- মৌলের রাসায়ন ধর্ম যোজ্যতা ইলেকট্রন দ্বারা প্রভাবিত হবে। নিম্নলিখিত বিষয়গুলোর মধ্যে কোন্টি যোজ্যতা কক্ষকে 3.35 প্রভাবিত করে না?
 - (a) যোজক মুখ্য কোয়ান্টাম সংখ্যা (n)।
 - (b) নিউক্লিয়াসের আধান (Z)।
 - (c) নিউক্লিয়াসের ভর।
 - (d) অন্তঃইলেকট্রন সংখ্যা।
- সম ইলেকট্রনীয় F⁻, Ne এবং Na⁺ এর আকার নিচের কোনটি দ্বারা প্রভাবিত হয়— 3.36
 - (a) নিউক্লিয়াসের আধান (Z)
 - (b) যোজক মুখ্য কোয়ান্টাম সংখ্যা (n)
 - (c) সর্ববহিস্থ কক্ষকে ইলেকট্রন-ইলেকট্রন বিকর্ষণ।
 - (d) কোন কারণই নয় কারণ এদের আকার একই।
- আয়নন এনথ্যালপি (ionization enthalpy) সম্পর্কিত নীচের কোন্ বিবৃতিটি সঠিক নয়? 3.37
 - (a) প্রতি ইলেকট্রনের জন্য আয়নন এনথ্যালপি ক্রমান্বয়ে বৃদ্ধি পায়।
 - (b) নোবেল গ্যাসের অন্তস্থলীয় বিন্যাস থেকে ইলেকট্রন বের করতে সবচেয়ে বেশি আয়নন শক্তি অনুভব হয়।
 - (c) যোজ্যতা ইলেকট্রনের শেষ আয়নন এনথ্যালপি একটি বড় ব্যবধান দ্বারা চিহ্নিত করা হয়।
 - (d) নিম্নতর n এর মান বহনকারী কক্ষক থেকে ইলেকট্রন বর্জন করা উচ্চতর n এর মান বহনকারী কক্ষকের চেয়ে সহজতর।
- B, Al, Mg এবং K মৌলগুলো বিবেচনা করে এদের ধাতব ধর্মের সঠিক ক্রমটি হল— 3.38

(a) B > Al > Mg > K (b) Al > Mg > B > K

(c) Mg > Al > K > B (d) K > Mg > Al > B

B, C, N, F এবং Si মৌলগুলো বিবেচনা করে এদের অধাতব ধর্মের সঠিক ক্রমটি হল— 3.39

(a) B > C > Si > N > F (b) Si > C > B > N > F

(c) F > N > C > B > Si (d) F > N > C > Si > B

- F, Cl, O এবং N মৌলগুলো বিবেচনা করে এদের জারণ ধর্মের ভিত্তিতে রাসায়নিক সক্রিয়তার সঠিক ক্রমটি হল— 3.40
 - (a) F > Cl > O > N(b) F > O > Cl > N
 - (c) Cl > F > O > N(d) O > F > N > Cl

অধ্যায় ৪ **(UNIT 4)**

রাসায়নিক বন্ধন এবং আণবিক গঠন (CHEMICAL BONDING AND MOLECULAR STRUCTURE)

উদ্দেশ্য (Objectives)

এই অধ্যায় অধ্যয়নের পর তুমি যা যা জানবে তা হল—

- রাসায়নিক বন্ধনে কোসে্ল-লুইস পন্থা
- অন্টক সূত্র এবং এর সীমাবন্ধতার ব্যাখ্যা,
 সরল অণুর লুইস গঠন আঁকার পন্ধতি
- বিভিন্ন ধরনের বন্ধন তৈরির ব্যাখ্যা
- VSEPR তত্ত্বের বর্ণনা এবং সরল অণুর জ্যামিতিক গঠনের ধারণা
- সমযোজী বন্ধন তৈরিতে ভ্যালেন্স বন্ড (valence bond) তত্ত্বের ব্যাখ্যা
- সমযোজী বন্ধনের দিক্ নির্দেশক ধর্ম
- s, p এবং d কক্ষক যুক্ত বিভিন্ন ধরনের সংকরায়নের ব্যাখ্যা এবং সরল সমযোজী অণুর আকৃতির ধারণা
- স্বজাতি নিউক্লিয়াস যুক্ত দ্বিপরমাণুক অণুর (Homonuclear diatomic molecules) আণবিক কক্ষক তত্ত্বের ব্যাখ্যা
- হাইড্রোজেন বন্থন ধারণার ব্যাখ্যা

ি বিজ্ঞানীরা প্রতিনিয়ত নতুন যৌগ আবিষ্কার করে চলেছেন, এ সম্পর্কিত তথ্যগুলি ক্রমানুসারে সাজিয়ে বর্তমান জ্ঞানের সাহায্যে ব্যাখ্যা করার চেফ্টা করেছেন, পূর্বের মতামত সংশোধন বা নতুন আবিষ্ণৃত ঘটনাগুলি ব্যাখ্যা করার জন্য নতুন তত্ত্বের বিকাশ করেছেন।

পদার্থ এক বা একাধিক মৌল দ্বারা গঠিত। স্বাভাবিক অবস্থায় মৌলের পরমাণু স্বাধীন অবস্থায় থাকে না— ব্যতিক্রম নিষ্ক্রিয় গ্যাসের পরমাণু। তা সত্ত্বেও অনেকগুলি পরমাণু একত্রে যুক্ত হয়ে বিশেষ চারিত্রিক বৈশিষ্ট যুক্ত একটি পদার্থ উৎপন্ন করে। এই ধরনের পরমাণপুঞ্জ দ্বারা গঠিত পদার্থকেই বলা হয় অণু। অণুমধ্যস্থ পরমাণগলির মধ্যে একটি বল কাজ করে যাতে পরমাণুগুলি একত্রে থাকতে পারে। যে আকর্ষণ বল দ্বারা বিভিন্ন রাসায়নিক অণুতে বিভিন্ন উপাদান (পরমাণু, আয়ন ইত্যাদি) গুলি একত্রে অবস্থান করে তাকেই বলা হয় রাসায়নিক বন্ধন। বিভিন্ন মৌলের পরমাণু বিভিন্ন উপায়ে যুক্ত হওয়ার ফলে রাসায়নিক যৌগের সৃষ্টি হয় বলে কিছু প্রশ্নের সম্মুখীন হতে হয়। পরমাণু সংযোজিত হয় কেন ? কেন কিছু নির্দিন্ট সমন্বয় সম্ভব ? কেন কিছু কিছু পরমাণু সংযোজিত হয় এবং অন্যরা হয় না ? কেন অণুগুলির নির্দিষ্ট আকৃতি আছে ? এইসব প্রশ্নের উত্তর পাওয়ার জন্য সময়ের সাথে সাথে বিভিন্ন তত্ত্বও বিভিন্ন ধারণার অবতারণা করা হয়েছে। এইগুলি হল Kossel-Lewis (কোসেল-লুইস) ধারণা, যোজন কক্ষের ইলেকট্রন জোড়ার মধ্যে বিকর্ষণ তত্ত্ব (VSEPR Theory), যোজ্যতা বন্ধন তত্ত্ব, আণবিক কক্ষক তত্ত্ব ইত্যাদি। মৌলের পারমাণবিক গঠন, মৌলের ইলেকট্রন বিন্যাস এবং পর্যায় সারণীর সাথে সাথে যোজ্যতার বিভিন্ন তত্ত্বের বিবর্তন এবং রাসায়নিক বন্ধনের প্রকৃতির ব্যাখ্যা গভীরভাবে সম্পর্কযুক্ত। প্রত্যেক তন্ত্রই অধিকতর সুস্থিত হতে চায়, বন্ধনই প্রকৃতিগত উপায় যেখানে শক্তি হ্রাসের মাধ্যমে তন্ত্রটি সুস্থিত হয়।

4.1 রাসায়নিক বন্ধনের ক্ষেত্রে কোসেল-লুইস পন্থা (KOSSEL-LEWIS APPROACH TO CHEMICAL BONDING)

ইলেকট্রনের সাহায্যে রাসায়নিক বন্ধন গঠনের ব্যাখ্যা দেবার অনেকবার চেস্টা হয়েছিল, কিন্তু 1916 খ্রিস্টাব্দে কোসেল ও লুইসই, একটি স্বাধীন সন্তোষজনক ব্যাখ্যা দিতে সমর্থ হন। তারাই সর্বপ্রথম নিষ্ক্রিয় গ্যাসগুলির নিষ্ক্রিয়তার উপর ভিত্তি করে যোজ্যতার একটি যুক্তিগ্রাহ্য ব্যাখ্যা দেন।

একটি ধনাত্মক আধানবাহী কার্নেল (Kernel) (অন্তঃস্থ ইলেকট্রন যুক্ত নিউক্লিয়াস) এবং বহিঃস্থ কক্ষপথে সর্বোচ্চ আটটি ইলেকট্রন থাকবে এর ভিত্তিতে লুইস পরমাণুকে চিত্রিত করেন। তিনি আরও ধারণা করেছিলেন যে এই আটটি ইলেকট্রন একটি ঘনকের কৌণিক বিন্দুতে অধিকৃত থাকে যা কার্নেল (Kernel) কে পরিবেস্টন করে থাকে। সোডিয়ামের সর্ববস্থি কক্ষে থাকা একটি মাত্র ইলেকট্রন ঘনকের একটি কৌণিক বিন্দু দখল করবে যেখানে নিষ্ক্রিয় গ্যাসের আটটি কৌণিক বিন্দুই অধিকৃত থাকবে। ইলেকট্রনের এই অফ্টক একটি নির্দিষ্ট সুস্থিত ইলেকট্রন সজ্জাকে সূচিত করে। লু**ইসের** স্বীকার্য ছিল যে রাসায়নিক বন্ধন গঠনের মাধ্যমে, পরমাণুগুলি সুস্থিত অফ্টক অবস্থায় পৌঁছায় বা অফ্টক পূর্তি লাভ করে। সোডিয়াম এবং ক্লোরিনের ক্ষেত্রে সোডিয়াম থেকে ক্লোরিনে একটি ইলেকট্রন স্থানান্তরিত হয়ে Na⁺ এবং Cl⁻ আয়ন গঠনের মধ্য দিয়ে এটা ঘটতে পারে। অন্যান্য অণু যেমন Cl₂, H₂, F₂, ইতাদির ক্ষেত্রে পরমাণুগুলির মধ্যে ইলেকট্রন যুগলের অংশীদারিত্বের মাধ্যমে বন্ধন গঠিত হয়। এই পম্বতিতে **প্রতিটি পরমাণুর বহিঃস্থ কক্ষকটি সুস্থিত** অস্টক প্রাপ্ত হয়।

লুইস প্রতীক (Lewis Symbols): অণু গঠনের ক্ষেত্রে শুধুমাত্র বহিঃস্থ ইলেকট্রনগুলি রাসায়নিক বিক্রিয়ায় অংশগ্রহণ করে এবং এগুলি **যোজ্যতা ইলেকট্রন** নামে পরিচিত। ভিতরের কক্ষের ইলেকট্রনগুলি যথেষ্ট সুরক্ষিত থাকে এবং রাসায়নিক বিক্রিয়ায় অংশগ্রহণ করে না। একজন আমেরিকান রাসায়নবিদ জে এন লুইস, একটি পরমাণুর যোজ্যতা ইলেকট্রনগুলিকে সুচিত করার জন্য সরল প্রতীকের প্রবর্তন করেন। এই প্রতীকগুলিকে লুইস প্রতীক ও বলে। উদাহরণ হিসেবে দ্বিতীয় পর্যায়ের মৌলগুলির লুইস প্রতীক নিচের মতো হবে—

Li Be $\cdot B \cdot \cdot C \cdot \cdot N \cdot \cdot O \cdot \cdot F \cdot \cdot N e$

লুইস প্রতীকের তাৎপর্য (Significance of Lewis Symbols) : প্রতীকের চারপাশের বিন্দু (ডট)গুলি যোজ্যতা ইলেকট্রনের সংখ্যাকে বোঝায়। যোজক ইলেকট্রনের এই সংখ্যা মৌলের সাধারণ বা শ্রেণিগত যোজ্যতা (group valence) নির্ণয়ে সাহায্য করে। মৌলগুলোর শ্রেণিগত যোজ্যতা লুইস প্রতীকে ব্যবহৃত ডটের সমান হয় অথবা ডট সংখ্যা বা যোজক ইলেকট্রনের সংখ্যাকে ৪ থেকে বিয়োগ করতে হয়।

রাসায়নিক বন্ধন সম্পর্কে কোসেল নীচের বিষয়গুলির উপর দৃষ্টিপাত করেন (Kossel, in relation to chemical bonding, drew attention to the following facts) :

- পর্যায় সারণিতে তীব্র তড়িৎ ঋণাত্মক হ্যালোজেন এবং তীব্র তড়িৎ ধনাত্মক ক্ষারীয় ধাতুগুলো নিষ্ক্রিয় গ্যাসগুলোর সাহায্যে পৃথক হয়েছে।
- হ্যালোজেন পরমাণু থেকে ঋণাত্মক আয়ন এবং ক্ষারীয় ধাতব পরমাণু থেকে ধণাত্মক আয়ন গঠন হয় সংশ্লিষ্ট পরমাণুর দ্বারা ইলেকট্রন গ্রহণ বা বর্জনের মাধ্যমে।
- এইভাবে গঠিত ঋণাত্মক বা ধনাত্মক আয়ন, নিষ্ক্রি য় গ্যাসের মতো সুস্থিত ইলেকট্রন বিন্যাস লাভ করে। নিষ্ক্রি য় গ্যাসগুলোর (ব্যত্রিক্রম হিলিয়াম এর দুটি ইলেকট্রন থাকে) বহিস্থ কক্ষে আটটি ইলেকট্রনের একটি নির্দিষ্ট সুস্থিত ইলেকট্রন বিন্যাস রয়েছে, এটি হল ns²np⁶।
- ঋণাত্মক ও ধনাত্মক আয়নগুলো স্থির তড়িৎ আকর্ষণ বলের মাধ্যমে সুস্থিত হয়।

উদাহরণ হিসেবে, সোডিয়াম ও ক্লোরিনের সংযোগে সোডিয়াম ক্লোরাইড গঠনকে উপরের পরিকল্পনা অনুযায়ী ব্যাখ্যা করা যেতে পারে—

Na	\rightarrow	$Na^+ + e^-$
[Ne] 3s ¹		[Ne]
$Cl + e^{-}$	\rightarrow	Cl ⁻
[Ne] $3s^2 3p^5$		[Ne] $3s^2 3p^6$ or [Ar]
$Na^+ + Cl^-$	\rightarrow	NaCl or Na ⁺ Cl ⁻
একইভাবে, CaF	₂ এর গঠ•	ন প্রণালী দেখানো যেতে পারে
Ca \rightarrow	· Ca ²	$e^{+} + 2e^{-}$
$[Ar]4s^2$		[Ar]
$\mathbf{E} \rightarrow \mathbf{z}^{-}$		Γ^{-}

$F + e^-$	\rightarrow	F^{-}
[He] $2s^2 2p^5$	[He	e] $2s^2 2p^6$ or [Ne]
$Ca^{2+} + 2F^{-}$	\rightarrow	CaF_2 or $Ca^{2^+}(F^-)_2$

ধনাত্মক ও ঋণাত্মক আয়নগুলোর মধ্যে স্থির তড়িৎ আকর্ষণ বলের প্রভাবে যে বন্ধন তৈরি হয় তাকে তড়িৎযৌজী বন্ধন নাম দেওয়া হয়েছিল। তড়িৎ যোজ্যতা, আয়নে উপস্থিত একক আধানের সংখ্যার সমান। তাই ক্যালসিয়ামের ধনাত্মক তড়িৎ যোজ্যতা 2 এবং ক্লোরিণের ঋণাত্মক তড়িৎ যোজ্যতা 1 নির্ধারিত হয়েছে। কোসেলের স্বীকার্যগুলো ইলেকট্রন স্থানান্তরের মাধ্যমে আয়ন গঠন এবং আয়নীয় কেলাস যৌগ গঠনের আধুনিক ধারণা প্রদান করেছল। আয়নীয় যৌগগুলিকে বুঝতে ও প্রণালীবদ্ধ করতে তার মতামতগুলো খুবই মূল্যবান। একই সময়ে তিনি এটাও লক্ষ করেছিলেন যে একটা বিশাল সংখ্যক অণুর গঠন প্রণালী তার মতামতের সাথে খাপ খায় না।

4.1.1 অফ্টক নিয়ম (Octet Rule) :

1916 সালে কোসেল এবং লুইস, পরমাণুগুলোর মধ্যে রাসায়নিক সংযোগ সংক্রান্ত একটি গুরুত্বপূর্ণ তত্ত্বের অবতারণা করেন যা **রাসায়নিক বন্ধনের ইলেকট্রনীয় তত্ত্ব** নামে পরিচিত। এই মতবাদ অনুসারে একটি পরমাণু থেকে অন্য পরমাণুতে যোজ্যতা ইলেকট্রন স্থানান্তরের মাধ্যমে (গ্রহণ বা বর্জন) বা যোজ্যতা কক্ষে আটটি ইলেকট্রন করার জন্য যোজ্যতা ইলেকট্রনের অংশীদারিত্বের মাধ্যমে পমাণুগুলো যুক্ত হয়। এটি **অফক সত্র** নামে পরিচিত।

4.1.2 সমযোজী বন্ধন (Covalent Bond) :

1919 সালে ল্যাঙম্যুর অন্টকের স্থিতিশীল ঘনকীয় ব্যবস্থার ধারণটি পরিত্যাগ করে এবং সমযোজী বন্ধন শব্দটিকে যুক্ত করে লুইসের স্বীকার্যগুলো আরও উন্নত করেন। ক্লোরিন অণুর Cl₂ গঠনকে বিচার্যের মধ্যে এনে লুইস-ল্যাঙমুর তত্ত্বটি ভালো বোঝা যায়। ক্লোরিণ পরমাণুর ইলেকট্রন বিন্যাস হল [Ne]3s² 3p⁵ সেখানে আর্গনের ইলেকট্রন বিন্যাস থেকে 1টি ইলেকট্রন কম থাকে। ক্লোরিণের দুটি পরমাণুর মধ্যে একটি ইলেকট্রন জোড়ের ভাগীদারিত্বের মধ্য দিয়ে ক্লোরিন অণু Cl₂ গঠিত হয়। প্রতিটি ক্লোরিণ পরমাণু একটি করে ইলেকট্রন দান করে ভাগীদারি ইলেকট্রন জোড়াটি গঠন করে। এই পম্বতিতে দুটি ক্লোরিণ পরমাণুই নিকটতম নিষ্ক্রিয় গ্যাস (যেমন, আর্গন) এর মতো বহিঃস্থ কক্ষপথে অন্টক লাভ করে।

দুটি ক্লোরিন পরমাণুর মধ্যে সমযোজী বন্ধন

বিন্দুগুলো (৬ট) ইলেক্ট্রনকে বোঝাচ্ছে। এই গঠনগুলো লুইস ডট গঠন নামে পরিচিত।

একই প্রকার পরমাণু বা ভিন্ন প্রকারের পরমাণু যুক্ত হয়ে অণু গঠন করলেও লুইস ডট গঠনটি লেখা যায়। এখানে গুরুত্বপূর্ণ শর্তগুলো হল—

- পরমাণুগুলোর মধ্যবর্তী প্রতিটি ভাগীদারি ইলেকট্রন জোরের জন্য একটি বন্ধন গঠিত হবে।
- ভাগীদার জোরাটি গঠন করার জন্য অংশগ্রহণকারী প্রতিটি পরমাণু কমপক্ষে একটি ইলেকট্রন দান করবে।
- ইলেকট্রন অংশীদারিত্বের বা ভাগীদারিত্বের ফলে সংযোগকারী প্রতিটি পমাণু শেষ কক্ষপথে নিষ্ক্রিয় মৌলের অনুরূপ ইলেকট্রন বিন্যাস প্রাপ্ত হবে।

তাই জলের এবং কার্বন টেট্রাক্লোরাইডের সমযোজী বন্ধনের গঠন এভাবে দেখানো যেতে পারে—

হাইড্রোজেন পরমাণু ২টি এবং অক্সিজেন আটটি ইলেকট্রন প্রাপ্ত হয়।

প্রতিটি ক্লোরিন পরমাণু এবং কার্বন পরমাণুটি আটটি ইলেক্ট্রন প্রাপ্ত হয়

তাই, যখন দুটো পরমাণু একটি ইলেকট্রন যুগল অংশীদারিত্ব করে তখন বলা হয় যে তারা একটি সমযোজী বন্ধনের সাহায্যে যুক্ত হয়েছে। অনেক যৌগে আমরা একাধিক সমযোজী বন্ধন পাই। একাধিক বন্ধন গঠনকে দুটি পরমাণুর মধ্যে একাধিক ইলেকট্রন জোড়ের ভাগীদারিত্ব হিসেবে বিবেচনা করা হয়। যদিও দুটি পরমাণু দুটি ইলেকট্রন জোড় ভাগীদারি করে, তবে তাদের মধ্যে গঠিত সমযোজী বন্ধনকে দ্বিবন্ধন বলে। উদাহরণ হিসেবে কার্বনডাই অক্সাইডের অণুতে কার্বন এবং অক্সিজেনের মধ্যে আমরা দ্বিবন্ধন দেখতে পাই। একিভাবে, ইথিন অণুতে, দুটি কার্বন পরমাণু একটি দ্বিবন্ধনের সাহায্যে যুক্ত হয়।

যখন সংযোগ অংশগ্রহণকারী পরমাণুগুলো তিনটি ইলেক্ট্রন জোড়ার ভাগীদার হয় তখন পরমাণুদুটির মধ্যে ত্রিবন্ধন গঠিত হয়। যেমন দুটি নাইট্রোজেন পরমাণু নিয়ে একটি নাইট্রোজেন অণু এবং দুটি কার্বন পরমাণু নিয়ে ইথাইন অণুর গঠনে ত্রিবন্ধন তৈরি হয়।

4.1.3 সরল অণুর ক্ষেত্রে লুইস প্রস্তাবনা (লুইস গঠন) Lewis Representation of Simple Molecules (the Lewis Structures)

ভাগীদারি ইলেকট্রন জোড় এবং অফ্টক সূত্রের ভিত্তিতে লুইস ডট গঠন (চিত্র), পরমাণু ও আয়নসমূহের মধ্যে বন্ধনের চিত্র প্রদান করে। এই চিত্র সম্পূর্ণরুপে বন্ধনকে এবং অণুর আচরণকে ব্যাখ্যা করতে পারে না। তবে এটি অণুর গঠন প্রণালী এবং তার ধর্ম বিস্তৃতভাবে ব্যাখ্যা করতে সাহায্য করে। তাই অণুগুলির লুইস ডট গঠন উপস্থাপন খুব প্রয়োজনীয়। নীচের ধাপগুলোকে অনুসরণ করে লুইস ডট গঠন লেখা যায়—

 এই গঠনটি লেখার জন্য প্রয়োজনীয় মোট ইলেকট্রন সংখ্যা সংযোগকারী পরমাণুগুলির (Combining atoms) যোজ্যতা ইলেকট্রন যোগ করে পাওয়া যায়।

উদাহরণ স্বরূপ, মিথেন (CH₄) অণুতে বন্ধন গঠনের জন্য প্রয়োজনীয় আটটি যোজ্যতা ইলেকট্রন পাওয়া যায় (একটি কার্বন পরমাণু থেকে চারটি এবং চারটি হাইড্রোজেন পরমাণু থেকে চারটি)।

অ্যানায়নের ক্ষেত্রে, একটি ঋণাত্মক আধানের অর্থ হল একটি

ইলেক্ট্রন যুক্ত হওয়া। ক্যাটায়নের ক্ষেত্রে প্রতিটি ধনাত্মক আধানের অর্থ হল যোজ্যতা ইলেকট্রনগুলো থেকে একটি করে ইলেকট্রন বিয়োগ হওয়া।

উদাহরণ হিসেবে, CO₃²⁻ আয়নে দুটি ঋণাত্মক আধান বোঝায় যে, নিস্তড়িৎ পরমাণুগুলি দ্বারা প্রদন্ত ইলেকট্রন সংখ্যার সঙ্গে অতিরিক্ত দুটি ইলেকট্রন যুক্ত হয়েছে। NH₄⁺ আয়নের ক্ষেত্রে বোঝায় যে, নিস্তড়িৎ পরমাণুগুলির দল থেকে একটি ইলেকট্রন অপসারিত হয়েছে।

- সংযোগকারী পরমাণুগুলির রাসায়নিক চিহ্ন জেনে এবং যৌগটির গঠনচিত্র সম্পর্কে ধারণা নিয়ে (জেনে বা বুদ্ধি দিয়ে কল্পনা করে) পরমাণুগুলোর মোট বন্ধনের সমানুপাতে ভাগীদারি ইলেকট্রন তাদের মধ্যে বন্টন করা সহজ হয়।
- সাধারণভাবে সবচেয়ে কম তড়িৎ ঋণাত্মক পরমাণু, অণু বা আয়নের ঠিক মধ্যভাগে থাকে। উদাহরণস্বরূপ, NF₃ এবং CO₃^{2–} -এ নাইট্রোজেন এবং কার্বন অণুর মধ্যভাগে থাকে, যেখানে ফ্লোরিন এবং অক্সিজেন প্রান্তীয় অবস্থানে থাকে।
- এক বম্বনে ব্যবহৃত ভাগীদার ইলেকট্রন জোড়াগুলো অংশগ্রহণের পর অবশিষ্ট ইলেকট্রন জোড়াগুলো বহু বন্ধন গঠনে ব্যবহৃত হয় বা নিঃসঞ্চা ইলেকট্রন যুগল হিসেবে থাকে। মূল উদ্দেশ্য হল প্রতিটি বন্ধনকারী পরমাণুর অষ্টক পূর্তি হতে হবে।

তালিকা 4.1 এ লুইস প্রস্তাবনার ভিত্তিতে কয়েকটি অণু এবং আয়ন দেওয়া হল—

অণু/আয়ন	লুইস	উপস্থাপন
H_2	Н:Н *	H – H
O_2	:Ö::Ö:	:Ö=Ö:
O_3		:0 ⁰⁺ :0:_
NF_3	:F: :F:	$\ddot{\mathbf{F}} - \ddot{\mathbf{N}} - \ddot{\mathbf{F}}$ $\dot{\mathbf{F}}$
CO ₃ ²⁻	$\begin{bmatrix} \vdots \vdots$	$\begin{bmatrix} : \mathbf{O}: \\ : \mathbf{O}: -\mathbf{C} - \mathbf{O}: \\ : \mathbf{O} - \mathbf{C} - \mathbf{O}: \end{bmatrix}^{2^{-1}}$
HNO_3	∷::: : <u>○:</u> :::::::::::::::::::::::::::::::	

তালিকা 4.1 লুইস প্রস্তাবিত কয়েকটি অণু

প্রতিটি হাইড্রোজেন পরমাণু হিলিয়াম (ইলেক্ট্রন দ্বয়ী duplet) এর বিন্যাস প্রাপ্ত হয়েছে।

রসায়ন

সমস্যা- 4.1

CO অণুর লুইস ডট গঠন লেখো। সমাধান :

ধাপ-1 : কার্বন ও অক্সিজেনের পরমমাণুর সর্বমোট যোজ্যতা ইলেকট্রনের সংখ্যা গুনে নাও। কার্বন ও অক্সিজেন পরমাণুর সর্ববহিঃস্থ (যোজ্যতা) কক্ষপথের ইলেকট্রন বিন্যাস হল যথাক্রমে 2s² 2p² এবং 2s² 2p⁴। প্রাপ্ত যোজ্যতা ইলেকট্রন হল 4 + 6 =10.

ধাপ-2 : কার্বন মনোক্সাইডের গঠন চিত্র (Skeletal structure) লেখা যায় C O.

ধাপ-3 : কার্বন ও অক্সিজেনের মধ্যে একটি এক বন্ধন আঁকো (একটি ভাগীদার ইলেকট্রন জোড় দিয়ে) এবং অক্সিজেনের অন্টক পূর্ণ করো। বাকি দুটি ইলেকট্রন কার্বনের নিঃসঞ্চা যুগল হবে।

C O: বা C — O:

এতে কার্বনের অস্টক পূর্ণ হয়নি। তাই আমাদের কার্বন ও অক্সিজেনের মধ্যে একাধিক বন্ধনের সজ্জায় যেতে হবে (এক্ষেত্রে ত্রিবন্ধন)। এটি দুটি পরমাণুর অস্টক নিয়ম সম্পূর্ণ করবে।

সমস্যা- 4.2

নাইট্রাইট আয়নের NO_2^- এর লুইস গঠন লেখো। সমাধান :

ধাপ-1 : নাইট্রোজেন ও অক্সিজেন পরমাণুর যোজ্যতা ইলেকট্রন এবং অতিরিক্ত একক ঋণাত্মক আধান (একটি ইলেকট্রনের সমান) সহ মোট ইলেকট্রন সংখ্যা গণনা করো।

> N(2s² 2p³), O (2s² 2p⁴) 5 + (2 × 6) +1 = 18 টি ইলেকট্ৰন

ধাপ-2 : NO₂⁻ এর গঠন চিত্র (Skeletal structure)টি লেখা যায়— O N O

ধাপ-3 : প্রতিটি অক্সিজেনের অস্টক পূর্ণ করে, নাইট্রোজেন ও অক্সিজেন পরমাণুর মধ্যে একটি একবন্ধন (একটি ভাগীদার ইলেকট্রন জোড়) আঁকো। এটি নাইট্রোজেনের অফ্টক সম্পূর্ণ করে না। যদি না বাকি দুটি ইলেকট্রন এতে নিঃসঞ্চা যুগল তৈরি না করে।

তাই আমাদের নাইট্রোজেন এবং যে-কোনো একটি অক্সিজেন পরমাণুর মধ্যে একাধিক বন্ধনের জন্য পুনর্বিন্যাস (এক্ষেত্রে দ্বিন্ধন) করতে হবে। এতে আমরা নীচের মতো লুইস ডট গঠন পাব—

$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}^{-1}$$

$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}^{-1} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}^{-1}$$

$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}^{-1}$$

4.1.4 কার্যকরী আধান (Formal Charge)

সাধারণত, লুইস বিন্দু গঠন সংকেত অণুর সঠিক আকৃতি উপস্থাপন করতে পারে না। বহু পরমাণু সমম্বিত আয়নের ক্ষেত্রে মোট আধানটি হল সমগ্র আয়নটির আধান, কোনো একটি নির্দিষ্ট পরমাণুর নয়। তবে প্রতিটি পরমাণুর কার্যকরী আধান (Formal charge) বরাদ্দ করা সম্ভব। বহু পরমাণু সমন্বিত অণু বা আয়নে উপস্থিত কোন পরমাণুর কার্যকরী আধানকে সংজ্ঞায়িত করা যায়— ঐ পরমাণুর মুক্ত বা বিচ্ছিন্ন অবস্থায় যোজ্যতা কক্ষে উপস্থিত ইলেকট্রন সংখ্যা এবং লুইস গঠনে বরাদ্দ ইলেকট্রন সংখ্যার পার্থক্য দ্বারা।

অণু মধ্যস্থ পরমাণুর কার্যকরী আধান গণনা করতে হলে, পরমাণুটির প্রতিটি ভাগীদার জোাড়া থেকে একটি ইলেকট্রন এবং নিঃসঞ্চা ইলেকট্রন যুগলের উভয় ইলেকট্রনকে ধরতে হবে।

এসো আমরা ওজোন (O₃) অণুকে বিবেচনা করি। ওজোন (O₃) অণুর লুইস গঠন আঁকা যেতে পারে,

পরমাণুগুলিকে 1, 2 এবং 3 দ্বারা সংখ্যায়িত করা হল। পরমাণুগুলির কার্যকরী আধান :

• 1 চিহ্নিত কেন্দ্রীয় 'O' পরমাণু

$$6-2-\frac{1}{2}(6)=+1$$

• 2 চিহ্নিত প্রান্তীয় 'O' পরমাণু

$$6-4-\frac{1}{2}(4)=0$$

3 চিহ্নিত প্রান্তীয় 'O' পরমাণু

$$6-6-\frac{1}{2}(2)=1$$

কার্যকরী আধানসহ O, অণুকে নীচে উপস্থাপিত করা হল।

আমাদের অবশ্যই বুঝতে হবে যে কার্যকরী আধান, অণুর মধ্যে আধানের প্রকৃত পৃথকীকরণ নির্দেশ করে না। লুইস গঠনে অণুর মধ্যে পরমাণুর উপর যে আধান নির্দেশিত থাকে সেটি যোজ্যতা ইলেকট্রনগুলিকে চিহ্নিত করতে সাহায্য করে।

কার্যকরী আধানের সাহায্যে একটি যৌগের সম্ভাব্য অনেকগুলি লুইস গঠনের মধ্য থেকে সর্বনিম্ন শক্তি সম্পন্ন গঠনটিকে নির্বাচন করা যায়।

সাধারণত, সর্বনিম্ন শক্তি সম্পন্ন গঠন সেটিই হবে, যার মধ্যে অধিক সংখ্যক পরমাণুর কার্যকরী আধানের মানগুলো সবচেয়ে কম থাকবে।

কার্যকরী আধান হল একটি বিষয় যার ভিত্তি হল, সম্পূর্ণ সমযোজী বন্ধন যেখানে ইলেকট্রন জোড়াগুলো প্রতিবেশী পরমাণুগুলোর মধ্যে সমভাবে ভাগীদারি হয়।

4.1.5 অফক সূত্রের সীমাবন্ধতা (Limitations of the Octet Rule)

অস্টক সূত্র, যদিও প্রয়োজনীয়, কিন্তু সর্বজনীন নয়। এটি বেশিরভাগ জৈবযৌগের গঠন আকৃতি বুঝতে যথেস্ট কার্যকরী এবং পর্যায়সারণীর দ্বিতীয় পর্যায়ের মৌলগুলির যৌগের ক্ষেত্রে প্রযোজ্য। অস্টক সূত্রে তিন প্রকারের ব্যতিক্রম রয়েছে।

কেন্দ্রীয় পরমাণুতে অসম্পূর্ণ অফ্টক (The incomplete octet of the central atom)

কিছু কিছু যৌগে কেন্দ্রীয় পরমাণুকে ঘিরে থাকা/আবেস্টন করে থাকা ইলেকট্রন সংখ্যা আট (৪) এর চেয়ে কম। বিশেষত, যে সকল মৌলের যোজ্যতা ইলেকট্রন সংখ্যা চার (4) এর চেয়ে কম তাদের ক্ষেত্রে।

উদাহরণ হিসেবে— লিথিয়াম ক্লোইড (LiCl), বেরিলিয়াম হাইড্রাইড (BeH₂) এবং বোরন ট্রাইক্লোরাইড (BCl₃)।

লিথিয়াম, বেরিলিয়াম, বোরণের যোজ্যতা ইলেকট্রন সংখ্যা যথাক্রমে 1, 2, 3. অ্যালুমিনিয়াম ক্লোরাইড (AlCl₃), বোরন ট্রাইফ্রুরাইড (BF₃) এই ধরনের আরো কিছু যৌগ।

বিজোড় ইলেকট্ৰন সমন্বিত অণু (Odd-electron molecules)

নাইট্রিক অক্সাইড (NO), নাইট্রোজেন ডাইঅক্সাইড (NO₂)-এর মতো বিজোড় ইলেকট্রন সমন্বিত অণুর ক্ষেত্রে প্রতিটি পরমাণুতে অফ্টকপূর্তি হয় না।

$$\ddot{N} = \ddot{O}$$
 $\ddot{O} = \dot{N} - \ddot{O}$

প্রসারিত অস্টক (The expanded octet)

পর্যায়সারণির তৃতীয় পর্যায়ের মৌল এবং এদের পরবর্তী মৌলগুলির ক্ষেত্রে 3s, 3p কক্ষক ছাড়াও 3d কক্ষককে বন্ধন গঠনের জন্য পাওয়া যায়।

এসব মৌলের বেশ কিছু সংখ্যক যৌগের কেন্দ্রীয় পরমাণুর চারপাশে আটের (৪) বেশি যোজক ইলেকট্রন থাকে। একে প্রসারক অফটক নিয়ম হিসেবে অভিহিত করা হয়। এসব ক্ষেত্রগুলোতে অবশ্যই অফটক নিয়ম প্রযোজ্য হয় না। এ ধরনের যৌগের আরও কিছু উদাহরণ হলো— PF₅, SF₆, H₂SO₄ এবং কিছু অসমযোজী যৌগ।

P পরমাণুর চারপাশে S পরমাণুর চারপাশে S পরমাণুর চারপাশে 10টি ইলেক্ট্রন 12টি ইলেক্ট্রন 12টি ইলেক্ট্রন মজার বিষয় হল, সালফার এমন যৌগও গঠন করে সেখানে অস্টক নিয়মটি মান্য হয়। সালফার ডাইক্লোরাইডে সালফার পরমাণুর চারপাশে আটটি ইলেকট্রন রয়েছে।

CI-S-CI: 제 CI:S CI:

অফ্টক তত্ত্বের অন্যান্য ত্রুটি (Other drawbacks of the octet theory)

- স্পন্টত নিষ্ক্রিয় গ্যাসগুলোর রাসায়নিক নিষ্ক্রিয়তার উপর ভিত্তি করেই অন্টক সূত্রটি প্রতিষ্ঠিত। তবে কিছু নিষ্ক্রিয় গ্যাস (যেমন জেনন এবং ক্রিপ্টন) অক্সিজেন এবং ফ্লোরিনের সাথে যুক্ত হয়ে কিছু যৌগ গঠন করে। যেমন— XeF₂, KrF₂, XeOF₂ ইত্যাদি।
- এই তত্ত্বটি অণুর আকার সম্পর্কে কোনো ধারণা দেয় না।
- তত্ত্বটি অণুর শস্তি সম্পর্কে ধারণা দেয় না বলে, অণুর আপেক্ষিক স্থায়িত্বের কোনো ব্যাখ্যা দিতে পারে না।

4.2 আয়নীয় বা তড়িৎযোজী বন্ধন (Ionic or Electrovalent Bond)

আয়নীয় বন্ধন সৃষ্টির ক্ষেত্রে কোসেল এবং লুইস এর তত্ত্বের যে প্রয়োগ রয়েছে সেটি থেকে আয়নীয় যৌগ গঠনের জন্য প্রয়োজনীয় প্রাথমিক শর্তগুলো হল—

- নিস্তড়িত পরমাণু থেকে ধনাত্মক ও ঋণাত্মক আয়ন উৎপন্ন হবার প্রবণতা
- কঠিন কেলাসিত যৌগে ধনাত্মক ও ঋণাত্মক আয়নগুলোর বিন্যাস বা কেলাস জালক গঠন।

আয়নীভবন প্রকৃতপক্ষে আয়ন গঠনের প্রক্রিয়া একটি নিস্তড়িত পরমাণু থেকে এক বা একাধিক ইলেকট্রন বর্জন হয়ে ধনাত্মক আয়ন তৈরি হওয়া এবং একটি নিস্তড়িত পরমাণুর সাথে এক বা একাধিক ইলেকট্রন যুক্ত হয়ে ঋণাত্মক আয়ন গঠন হওয়া।

M(g) → M⁺(g) + e⁻; (আয়নীভবন এনথ্যালপি) (Ionization enthalpy) X(g) + e⁻ → X⁻(g); (ইলেকট্ৰন গ্ৰহণ এনথ্যালপি) (Electron gain enthalpy) M⁺(g) + X⁻(g) → MX(s)

গ্যাসীয় অবস্থায় কোনো পরমাণু যখন একটি ইলেকট্রন গ্রহণ করে তখন এনথ্যালপির যে পরিবর্তন হয়, তাকেই ইলেকট্রন গ্রহণ এনথ্যালপি **Δ**_{eg}H বলা হয় [অধ্যায় 3]। ইলেকট্রন গ্রহণের এই পম্বতিটি তাপগ্রাহী বা তাপমোচী দুইই হতে পারে। অপরদিকে আয়নীভবন সর্বদাই তাপগ্রাহী। ইলেকট্রন আসন্তি (Electron affinity) হল ইলেকট্রন গ্রহণের মাধ্যমে শক্তির পরিবর্তনের ঋণাত্মক মান।

স্বভাবতই, যে সকল ক্যাটায়ন গঠনকারী মৌলের আয়নায়ন বিভব কম এবং অ্যানায়ন গঠনকারী মৌলের ইলেকট্রন আসন্তি বেশি, তারাই সহজে আয়নীয় বন্ধন গঠন করে।

বেশির ভাগ আয়নীয় যৌগে ক্যাটায়ন পাওয়া যায় ধাতব মৌলগুলো থেকে এবং অ্যানায়ন তৈরি হয় অধাতব মৌল থেকে। অ্যামোনিয়াম আয়ন, NH₄⁺ (দুটো অধাতব মৌল থেকে তৈরি) একটি ব্যতিক্রম।

কেলাসিত অবস্থায় থাকা আয়নীয় যৌগগুলি, কুলম্বীয় শক্তিদ্বারা আবন্দ্ব ক্যাটায়ন ও অ্যানায়নগুলোর শৃঙ্খলিত ত্রিমাত্রিক সজ্জার মাধ্যমে গঠিত হয়। আয়নগুলোর আকার, তাদের বিন্যস্ত হবার ধরন এবং আরও কিছু বিষয়ের উপরে নির্ভর করে যৌগগুলো কেলাসিত হয়ে বিভিন্ন কেলাসাকার গঠন উৎপন্ন করে। সোডিয়াম ক্লোরাইড NaCl এর কেলাসিত গঠনটি নীচে উদাহরণ হিসেবে দেওয়া হল—

আয়নীয় কঠিন পদার্থগুলোতে, আয়নীভবন এনথ্যলপি এবং ইলেকট্রন গ্রহণ এনথ্যলপির সমন্টি ধনাত্মক হতে পারে, কিন্তু কেলাস জালক তৈরি হবার সময় কিছু শক্তি মুক্ত হয় বলে কেলাসটিকে সুস্থিত হয়। উদাহরণ হিসেবে Na(g) এর থেকে Na⁺(g) গঠনের জন্য আয়নীভবন এনথ্যালপি 495.8 kJ mol⁻¹ যেখানে Cl(g) + e⁻→ Cl⁻(g) পরিবর্তনে ইলেকট্রন গ্রহণ এনথ্যালপি – 348.7 kJ mol⁻¹। এই দুই এর সমন্টি 147.1 kJ mol⁻¹। এটি NaCl(s) এর জালক গঠনের জন্য ব্যয়িত শক্তি (–788 kJ mol⁻¹) এর তুলনায় বেশি। এজন্য এই পদ্ধতিতে শোষিত শক্তির তুলনায় মুক্ত শক্তির পরিমাণ বেশি হয়। তাই একটি আয়নীয় যৌগের স্থিতিশীলতার গুণগত পরিমাপ যৌগটির ল্যাটিস গঠন এনথ্যালপি দ্বারা নির্মিত হয়, শুধুমাত্র গ্যাসীয় অবস্থার। আয়নগুলোর অফক প্রাপ্তির উপর নয়। যেহেতু আয়নীয় যৌগ গঠনে জালক শস্তির (lattice enthalpy) এর বিশেষ ভূমিকা রয়েছে তাই এ সম্পর্কে জানার গুরুত্ব রয়েছে।

4.2.1 জালক শক্তি/ল্যাটিস এনথ্যালপি (Lattice Enthalpy)

এক মোল পরিমাণ কঠিন আয়নীয় যৌগকে সম্পূর্ণভাবে গ্যাসীয় উপাদানে আলাদা করতে প্রয়োজনীয় শক্তিকে ঐ কঠিন আয়নীয় যৌগের ল্যাটিস শক্তি (lattice enthalpy) রূপে সংজ্ঞায়িত করা হয়। উদাহরণ হিসেবে, NaCl-এর ল্যাটিস এনথ্যালপি 788 kJ mol⁻¹ এর অর্থ হলো এক মোল কঠিন NaCl কে এক মোল Na⁺ (g) এবং এক মোল Cl⁻(g) এ অসীম দূরত্বে আলাদা করতে 788 kJ শক্তি প্রয়োজন। এই পম্বতিতে বিপরীত ধর্মী আয়নগুলোর মধ্যে আকর্ষণ বল ও সমজাতীয় আয়নগুলোর মধ্যে বিকর্ষণ বল দুই-ই কার্যকর হয়। কঠিন কেলাসগুলো ত্রিমাত্রিক হওয়াতে আকর্ষণ ও বিকর্ষণ বলের বিনিময় থেকে সরাসরি ল্যাটিস এনথ্যালপি নির্ণয় করা সম্ভব হয় না। কেলাসন জ্যামিতির সাথে সম্পর্কযুক্ত বিষয়গুলোকেও যুক্ত করতে হবে।

4.3 বন্ধন স্থিতিমাপসমূহ (Bond Parameters)

4.3.1 বন্ধন দৈর্ঘ্য (Bond Length)

একটি অণুতে বন্ধন দ্বারা যুক্ত দুটি পরমাণুর নিউক্লিয়াসণুলোর মধ্যে সাম্য অবস্থায় যে দূরত্ব থাকে তার দ্বারা বন্ধন দৈর্ঘ্যকে সংজ্ঞায়িত করা হয়। স্পেক্ট্রোস্কোপি, X-রশ্মি অপবর্তন, ইলেকট্রন অপবর্তন ইত্যাদি কৌশলের সাহায্যে বন্ধন দৈর্ঘ্য পরিমাপ করা হয়। এদের সম্পর্কে তোমরা পরবর্তী শ্রেণিতে জানবে। বন্ধন দৈর্ঘ্যে অংশগ্রহণকারী প্রতিজোড়া পরমাণুর অবদান থাকে। সমযোজী বন্ধনের ক্ষেত্রে প্রতিটি পরমাণুর অবদানকে ওই পরমাণুর সমযোজী ব্যাসার্ধ বলে।

সমযোজী বন্ধনে আবন্ধ দুটি পরমাণু যখন নিজেদের স্পর্শ করে অবস্থান করে, তখন স্পর্শতল থেকে পরমাণুর কেন্দ্রকের ন্যূনতম দুরত্ব দ্বারা পরমাণুটির আনুমানিক সমযোজী ব্যাসার্ধ পরিমাপ করা হয়। সমধর্মী পরমাণুর দ্বারা গঠিত অণুতে পরমাণু দুটির মধ্যে সমযোজী বন্ধনের দূরত্বের অর্ধেক দূরত্বকে সমযোজী ব্যাসার্ধ হিসেবে ধরা হয়।

চিত্র 4.1 একটি সমযোজী অণু AB-এর বম্থন দৈর্ঘ্য R = r_A + r_B (R হল বম্থন দৈর্ঘ্য এবং r_A, r_B হল যথাব্রুমে A এবং B পরমাণুর সমযোজী ব্যাসার্ধ)

ভেন্ডার ওয়াল ব্যাসার্ধ, একটি পরমাণু বন্ধন না করা অবস্থায় তার যোজক কক্ষসহ সঠিক আকারকে প্রকাশ করে। একটি কঠিন পদার্থের আলাদা আলাদা বিভিন্ন অণুগুলির একই প্রকার পরমাণুগুলোর মধ্যকার দূরত্বের অর্ধেককে ভেন্ডার ওয়াল ব্যাসার্ধ (The vander Waals radius) বলে। ক্লোরিনের সমযোজী এবং ভেন্ডার ওয়াল ব্যাসার্ধগুলি চিত্র নং 4.2 তে দেখানো হল।

চিত্র 4.2 ক্লোরিন অণুর সমযোজী এবং ভেন্ডার ওয়াল ব্যাসার্ধ। ভিতরের বৃত্তগুলো ক্লোরিণ পরমাণুকে বোঝাচ্ছে। (r_{vdw} এবং r_c যথাক্রমে ভেন্ডার ওয়াল এবং সমযোজী ব্যাসার্ধগুলো বোঝাচ্ছে।)

কিছু আদর্শ একবন্ধন, দ্বিবন্ধন ও ত্রিবন্ধনের বন্ধন দৈর্ঘ্য সারণি 4.2 এ এবং কিছু অতিপরিচিত মৌলের বন্ধন দৈর্ঘ্য সারণি 4.3 এ

রসায়ন

4.3.2 বন্ধন কোণ (Bond Angle)

একটি অণু বা জটিল আয়নের কেন্দ্রীয় পরমাণুর চারপাশে বন্ধন সক্ষম ইলেকট্রন যুগলসহ যে কক্ষকগুলো আছে, সে কক্ষকগুলোর মধ্যেকার কোণকে বন্ধন কোণ বলে। বন্ধন কোণকে ডিগ্রি এককে প্রকাশ করা হয় যাকে স্পেকট্রোস্কোপিক পম্বতিতে পরীক্ষামূলকভাবে নির্ণয় করা হয়। এটি একটি অণু বা জটিল আয়নের কেন্দ্রীয় পরমাণুর চারপাশে কক্ষকগুলোর বন্ধন ব্যবস্থা সম্পর্কে কিছু ধারণা দেয়। ফলস্বর্প এটি এর আকার নির্ণয়ে আমাদের সাহায্য করে। উদাহরণ হিসেবে জলের H–O–H বন্ধন কোণ নীচের মতো উপস্থাপন করা যায়—

4.3.3 বন্ধন এনথ্যালপি/বন্ধন শক্তি (Bond Enthalpy)

 104.5°

গ্যাসীয় অবস্থায় 1 মোল পরিমাণ প্রতিটি অণুতে উপস্থিত দুটি পরমাণুর মধ্যকার বন্ধনকে ভাঙতে প্রয়োজনীয় শক্তির দ্বারা একে সংজ্ঞায়িত করা হয়। বন্ধন এনথ্যালপি/বন্ধন শস্তির একক হল kJ mol⁻¹। উদাহরণ হিসেবে, হাইড্রোজেন অণুর H – H বন্ধন শস্তি হল 435.8 kJ mol⁻¹।

 $H_2(g) \rightarrow H(g) + H(g); \Delta_a H^{\ominus} = 435.8 \text{ kJ mol}^{-1}$

একইভাবে, একাধিক বন্ধনযুক্ত যেমন O₂ এবং N₂ অণুগুলোর বন্ধন শক্তি/বন্ধন এনথ্যালপি (Bond Enthalpy) নীচের মতো—

$$O_{\gamma} (O = O) (g) \rightarrow O(g) + O(g);$$

 $\Delta H^{\odot} = 498 \text{ kJ mol}^{-1}$

 $N_2 (N \equiv N) (g) \rightarrow N(g) + N(g);$

$$\Delta_{a}H^{\odot} = 946.0 \text{ kJ mol}^{-1}$$

এটা গুরুত্বপূর্ণ যে, বন্ধন বিভাজন শক্তি বেশি মানেই অণুতে বন্ধন শক্তিশালী হওয়া। HCl-এর মতো বহু নিউক্লিয়াস যুক্ত দ্বিপারমাণবিক অণুতে আমরা পাই,

HCl (g) \rightarrow H(g) + Cl (g); $\Delta_{a}H^{\ominus} = 431.0 \text{ kJ mol}^{-1}$

বহু পারমাণবিক অণুর ক্ষেত্রে বন্ধন শস্তির পরিমাপ করা বেশ জটিল। উদাহরণ হিসেবে জলের অণুর ক্ষেত্রে দুটি O – H বন্ধনকে ভাঙ্গাতে প্রয়োজনীয় শস্তির পরিমাণ এক নয়।

দেওয়া হল। কয়েকটি পরিচিত মৌলের সমযোজী ব্যাসার্ধ সারণি 4.4 এ তালিকা বন্ধ করা হল।

সারণি 4.2 কয়েকটি এক, দ্বি ও ত্রিবম্ধনের গড় বম্ধন দৈর্ঘ্য

বন্ধনের প্রকৃতি (Bond Type)	সমযোজী বন্ধনের ব্যাসার্ধ (pm)
O-H	96
С–Н	107
N–O	136
C–O	143
C–N	143
C–C	154
C=O	121
N=O	122
C=C	133
C=N	138
C≡N	116
C≡C	120

সারণী 4.3 কয়েকটি পরিচিত অণুর বন্ধন দৈর্ঘ্য

অণু	বন্ধন দৈৰ্ঘ্য	
(Bond Type)	(pm)	
$H_{2}(H - H)$	74	
$F_{2}(F-F)$	144	
$Cl_2(Cl-Cl)$	199	
$Br_{2}(Br - Br)$	228	
$I_2(I-I)$	267	
$N_{2} (N \equiv N)$	109	
$O_{2}(O = O)$	121	
HF (H – F)	92	
HCl(H-Cl)	127	
HBr (H – Br)	141	
HI (H – I)	160	

সারণী 4.4 সমযোজী ব্যাসার্ধ *r_{cov}/(pm)

Н	37					
С	77(1)	Ν	74 (1)	O 66(1)	F	64
	67 (2)		65(2)	57 (2)	Cl	99
	60(3)		55(3)			
		Р	110	S 104(1)	Br	114
				95(2)		
		As	121	Se 104	Ι	133
		Sb	141	Te 137		

* প্রথম বন্ধনীতে নির্দেশিত হয়নি, এরুপ মানগুলো কেবলমাত্র একবন্ধনের জন্য (অধ্যায় 3-র পর্যায়ক্রমিক প্রবনতার ক্রমটি দেখো)।

H₂O(g) → H(g) + OH(g); $\Delta_a H_1^{\ominus} = 502 \text{ kJ mol}^{-1}$ OH(g) → H(g) + O(g); $\Delta_a H_2^{\ominus} = 427 \text{ kJ mol}^{-1}$

 $\Delta_{a}H^{\circ}$ -এর মানের এই পার্থক্য থেকে বোঝা যায় যে, পরিবর্তিত কিছু রাসায়নিক পরিবর্তনের জন্য দ্বিতীয় O – H বন্ধনটিতে কিছু পরিবর্তন সংঘটিত হয়। এই কারণেই C₂H₅OH (ইথানল) এবং জলের মতো কিছু অণুতে একই রকম O – H বন্ধনে বিভিন্ন পরিমাণ শক্তি থাকে। তাই বহুপারমাণবিক অণুর ক্ষেত্রে গড় বন্ধন শক্তি (mean or average bond enthalpy) শব্দটি ব্যবহৃত হয়।

মোট বন্ধন বিভাজন শক্তিকে, (Total bond dissociation enthalpy) যতগুলো বন্ধন ভেঙেছে তার সংখ্যা দিয়ে ভাগ করে গড় বন্ধন শক্তি পাওয়া যায়। যেমন জলের অণুর ক্ষেত্রে,

গড় বন্ধন শক্তি (Average bond enthalpy) = $\frac{502 + 427}{2}$ = 464.5 kJ mol⁻¹

4.3.4 বন্ধন ক্রম (Bond Order)

লুইম বর্ণিত সমযোজী বন্ধনে একটি অণুর দুটি পরমাণুর মধ্যে বন্ধনের সংখ্যার ভিত্তিতে বন্ধন ক্রম দেওয়া হয়। উদাহরণ হিসেবে, H₂ (একজোড়া ভাগীদার ইলেকট্রন সহ), O₂ (দুই জোড়া ভাগীদার ইলেকট্রন সহ), N₂ (তিন জোড়া ভাগীদার ইলেকট্রন সহ) বন্ধন ক্রম হল যথাক্রমে 1, 2 এবং 3। একইভাবে, CO তে (C এবং O-এর মধ্যে তিনজোড়া ভাগীদার ইলেকট্রন) বন্ধনক্রম হল 3। N₂-এর বন্ধনক্রম হল 3 এবং Δ_aH[©] হল 946 kJ mol⁻¹, দ্বিপারমাণবিক অণুগুলোর মধ্যে এটিই হল সর্বোচ্চ বন্ধন শক্তি (Bond enthalpy molecules)।

সমসংখ্যক ইলেকট্রন বিশিষ্ট আইসোইলেকট্রনিক অণু (Isoelectronic molecules) এবং আয়নগুলোর বন্ধনক্রম অভিন্ন হয়। উদাহরণ হিসেবে F₂ এবং O₂^{2–}-এর বন্ধনক্রম 1; N₂, CO এবং NO⁺এর বন্ধনক্রম 3 হয়। অণুগুলোর স্থায়িত্ব বোঝার জন্য প্রয়োজনীয় সাধারণ আন্তঃসম্পর্কটি হল— বন্ধনক্রম বৃদ্ধির সাথে সাথে বন্ধন এনথ্যালপি বৃদ্ধি পায় এবং বন্ধন দৈর্ঘ্য হ্রাস পায়।

4.3.5 সংস্পন্দন গঠন/রেজোনেন্স গঠন (Resonance Structures)

এটা প্রায়ই লক্ষ করা গেছে যে, কোনো অণুর একটি লুইস গঠনচিত্র, তার পরীক্ষালব্ধ বহু ধর্মকে যথাযথ উপস্থাপন করতে যথেস্ট নয়। উদাহরণরূপে, ওজোন, O₃ অণুকে নীচের I নং এবং II নং গঠনের সাহায্যে প্রকাশ করা যায়।

চিত্র 4.3 O₃ অণুর সংস্পন্দন (I এবং II নং গঠনটি O₃ অণুর দুটি সম্ভাব্য আকার (canonical form) কিন্তু III নং গঠনটি এর সঙ্করায়ণ সংস্পন্দন)

দুটি গঠনেই আমরা একটি O – O এক বন্ধন ও একটি O = O দ্বিনম্বন পাই। O – O এবং O = O এর স্বাভাবিক বন্ধন দৈর্ঘ্য যথাক্রমে 148 pm এবং 121 pm। পরীক্ষামূলকভাবে এটি নির্ণীত হয়েছে যে, O₃ অণুতে অক্সিজেন-অক্সিজেন বন্ধন দৈর্ঘ্য সমান (128 pm)। তাই O3 অণুতে অক্সিজেন-অক্সিজেন বন্ধনটি একটি দ্বিবম্বন ও একটি এক বম্বনের অন্তবর্তী। তাই এটি উপরে বর্ণিত লুইস গঠনগুলোর মধ্যে শুধুমাত্র যে-কোনো একটি গঠন দ্বারা একে প্রকাশ করা যায় না। 🖸 - এর মতো অণুগুলোর সঠিক গঠনচিত্র উপস্থাপন করতে গিয়ে উদ্ভূত সমস্যা সমাধানের চেষ্টা থেকেই সংস্পন্দন এর ধারণার সৃষ্টি হয়েছে। সংস্পন্দনের ধারণায়, যখন একটি লুইস গঠনচিত্র কোনো অণুর গঠনকে সঠিকভাবে ব্যাখ্যা করতে পারে না, তখন একই পরিমাণ শক্তি, নিউক্লিয়াসগুলোর অবস্থান, বন্ধনে যুক্ত ইলেকট্রন (bonding electron) বা বন্ধনে যুক্ত নয় এমন ইলেকট্রন (non bonding electrons pairs) বা ইলেকট্রন যুগলকে নিয়ে একাধিক ক্যানোনিকেল জোড়/আকৃতির সঞ্চরায়িত গঠনচিত্র নেওয়া হয়। যা অণুটিকে সঠিকভাবে বর্ণনা করতে পারে। ওজোন O₃-এর জন্য উপরে দেখানো (I, II)-এর দুটি সম্ভাব্য গঠন। III নং গঠনচিত্রটি এদের সংকরায়িত গঠন, যা O₃ অণুর গঠনকে অধিক সঠিকভাবে উপস্থাপন করে। একে সংস্পন্দন সংকরায়ণ অবস্থা (resonance hybrid) বলে। সংস্পন্দনকে দুইদিকে দুটো মুখবিশিষ্ট তির চিহ্ন (↔) দ্বারা প্রকাশ করা হয়।

রেজোনেন্স গঠনের আরও কিছু উদাহরণ হল কার্বনেট আয়ন এবং কার্বনডাই অক্সাইড অণুর গঠন—

সমস্যা-4.3

 ${
m CO}_3^{2-}$ আয়নের রেজোনেন্স গঠন ব্যাখ্যা করো। অথবা রেজোনেন্স এর উপর ভিত্তিকরে ${
m CO}_3^{2-}$ আয়নের গঠন ব্যাখ্যা করো।

সমাধান

কার্বন এবং অক্সিজেন পরমাণুর মধ্যে দুটি এক বন্ধন এবং একটি দ্বিবন্ধনের উপস্থিতির উপর ভিত্তি করে কেবলমাত্র একটি লুইস গঠন দ্বারা CO_3^{2-} আয়নটিকে সঠিকভাবে উপস্থাপন করা যায় না কারণ এটি অসমবন্ধনের উপস্থিতি নির্দেশ করে। কিন্ডু পরীক্ষালব্ধ ফল অনুযায়ী CO_3^{2-} আয়নের সবগুলি কার্বন-অক্সিজেন বন্ধন সমতুল্য। সুতরাং কার্বোনেট আয়নকে ক্যানোনিকেল রূপ I, II এবং III দ্বারা রেজোন্যান্স হাইব্রিড-এর মাধ্যমে সব থেকে ভালভাবে প্রকাশ করা যায়।

চিত্র 4.4 CO₃² অণুর রেজোনেন্স (সংস্পন্দন) I, II & III হল তিনটি ক্যানোনিকেল রুপ।

সমস্যা-4.4

CO2 অণুর গঠন ব্যাখ্যা করো।

সমাধান

পরীক্ষামূলকভাবে নির্ধারিত যে CO₂ অণুতে কার্বন-অক্সিজেন বন্ধন দৈর্ঘ্য 115 Pm. সাধারণত কার্বন-অক্সিজেনের মধ্যবর্তী দ্বিবন্ধনের বন্ধন দৈর্ঘ্য এবং ত্রিবন্ধনের বন্ধন দৈর্ঘ্য যথাক্রমে 121 Pm এবং 110 Pm. CO₂ অণুতে কার্বন-অক্সিজেন বন্ধন দৈর্ঘ্য 115 Pm যাা কার্বন-অক্সিজেন দ্বিবন্ধন ও ত্রিবন্ধনের মধ্যবর্তী। স্পফ্টত, একটি মাত্র লুইস গঠন এই অবস্থাটি ব্যাখ্যা করতে পারে না, ফলে একের অধিক লুইস গঠনের **প্রয়োজনীয়তা দেখা দেয়।** যার ফলে CO₂ এর গঠনকে ক্যানোনিকেল গঠন I, II, III এর রেজোন্যান্স হাইব্রিড এর দ্বারা ভালোভাবে ব্যাখ্যা করা যায়।

.0.:.C:: 0: ←	\rightarrow \dot{O} \dot{C} \dot{O} \dot{O} \leftarrow	→ . ⁺ C .O.
Ι	II	III
চিত্র 4.5 CO ₃ অণু	া্র রেজোন্যান্স I, II, III ব	হ্যার্নোনিকেল রুপ
দ্বারা উপস্থাপিত হ	হয়েছে।	

সাধারণভাবে এটা বলা যায় যে,

- রেজোন্যান্স, অণুটিকে স্থিতিশীল করে যেহেতু রেজোন্যান্স হাইব্রিডের শক্তি যে-কোনো একটি ক্যানোনিকেল গঠনের শক্তির চেয়ে কম।
- রেজ্যোন্যান্স সামগ্রিকভাবে বন্ধনের গড় বিশিষ্ট্য প্রকাশ করে। তাই O₃ এর I এবং II দুটি ক্যানোনিকেল রূপের (চিত্র 4.3) যে-কোনো একটি থেকে রেজোন্যান্স হাইব্রিডের শক্তি কম হয়।

রেজোন্যান্স সম্পর্কীয় অনেক ভ্রান্ত ধারণা আছে সেগুলিকেও একই সঙ্গো দূর করা দরকার। মনে রাখা উচিত যে,

- ক্যানোনিকেল রূপের কোনো বাস্তব অস্তিত্ব নেই।
- অণুটি সময়ের একটি নির্দিষ্ট ব্যবধানে একটি ক্যানোনিকেল গঠনে থাকে না, আবার সময়ের আরেক নির্দিষ্ট ব্যবধানে আরেকটি ক্যানোনিকেল গঠনে বিদ্যমান থাকে না।
- টটোমারিজমে কিটো এবং ইনল টটোমারিক রূপগুলোর মধ্যে সাম্যাবস্থা বিদ্যমান, কিন্তু ক্যানোনিকেল রূপগুলোর মধ্যে এমন ধরনের কোনোও সাম্যাবস্থা থাকে না।
- অণুর ক্যানোনিকেল রূপগুলো যে একটিমাত্র গঠন দ্বারা প্রকাশ করা হয় তাকে রেজোন্যান্স হাইব্রিড বলে এবং ক্যানোনিকেল রূপগুলিকে একটি মাত্র লুইস গঠন দ্বারা চিত্রিত করা যায় না।

4.3.6 বন্ধনের ধ্রুবীয়তা (Polarity of Bonds)

একশ শতাংশ আয়নীয় বা সমযোজী বম্বনের অস্তিত্ব একটি আদর্শ অবস্থাকে প্রকাশ করে। বাস্তবে এমন কোন যৌগ বা বস্বন নেই যা সম্পূর্ণরূপে আয়নীয় বা সমযোজী। এমনকি দুটি হাইড্রোজেন পরমাণুর মধ্যে গঠিত সমযোজী বন্ধনেও কিছুটা আয়নীয় চরিত্র থাকে।

দুটি একই পরমাণু দ্বারা যখন সমযোজী বন্ধন গঠিত হয়, উদাহরণ স্বরূপ H₂, O₂, Cl₂, N₂ বা F₂ তখন ভাগীদারী ইলেকট্রনের (shared

pair of electrons) ওপর দুটি পরমাণুর সমান আকর্ষণ থাকে। ফলস্বরূপ, ইলেকট্রন যুগল, দুটি পরমাণুর নিউক্রিয়াসগুলো থেকে ঠিক মধ্যবর্তী স্থানে অবস্থান করে। এইভাবে উৎপন্ন বন্ধনকে অধুবীয় সমযোজী বন্ধন বলে। বিপরীতে ভিন্নধর্মী নিউক্রিয়াস যুক্ত অণু যেমন HF এর ক্ষেত্রে, দুটি পরমাণুর ভাগীদারি ইলেকট্রনের সরণ অধিকভাবে ফ্লোরিনের দিকে হয় যেহেতু ফ্লোরিনের তড়িৎ ঋণাত্মকতা (অধ্যায়-3) হাইড্রোজেন অপেক্ষা অনেক বেশি। প্রাপ্ত সমযোজী বন্ধনটি ধ্রুবীয় সমযোজী বন্ধন হয়।ধ্রুবায়নের ফলে অণুটি **দ্বিমেরু ভ্রামকের** অধিকারী হয় (নীচে বর্ণির্ত আছে) যাকে সংজ্ঞায়িত করা যায়, ধনাত্মক ও ঋণাত্মক আধানের কেন্দ্রের মধ্যে দূরত্ব এবং আধানের মানের গুণফল দ্বারা। একে সাধারণত গ্রিকবর্ণ 'μ' দ্বারা সুচিত করা হয়। এর গাণিতিক রুপটি নিম্নরূপ—

দ্বিমেরু ভ্রামক (µ) = আধান (Q) × আধানগুলির কেন্দ্রের মধ্যে দুরত্ব (r)

দ্বিমেরু ভ্রামককে সাধারণত ডিবাই (D) একক দ্বারা প্রকাশ করা হয়। রূপান্তর গুণকটি হল, 1 D = 3.33564 × 10⁻³⁰ Cm যেখানে 'C' হল কুলম্ব এবং m হল মিটার। আরও একটি গুরুত্বপূর্ণ তথ্য হল, দ্বিমেরু ভ্রামক একটি ভেক্টর রাশি এবং প্রচলিত রীতি অনুযায়ী একে ছোটো তির চিহ্ন দ্বারা দেখানো হয় যেখানে চিহ্নের শেষভাগটি নেগেটিভ কেন্দ্রের দিকে এবং সামনের অংশটি পজিটিভ কেন্দ্রের দিকে থাকে। কিন্তু রসায়নে, অণুর লুইস গঠনে দ্বিমেরু ভ্রামকের উপস্থিতি প্রকাশ করা হয় (ক্রস)/পার্শ্ব তির চিহ্ন (+->) দ্বারা। (ক্রস)/পার্শ্ব অংশটি থাকে ধনাত্মক প্রান্তের দিকে এবং তিরের মাথাটি থাকে ঋণাত্মক প্রান্তের দিকে। উদাহরণ স্বরূপ, HF এর দ্বিমেরু ভ্রামকরি নিন্নলিখিতভাবে উপস্থাপন করা যায় :

এই তির চিহ্নটি অণু মধ্যস্থ ইলেকট্রন ঘনত্বের (electron density) স্থানান্তরের দিক নির্দেশ করে। লক্ষ করো যে, প্রচলিত রীতি অনুযায়ী ক্রস/পার্শ্ব তির চিহ্নের দিক নির্দেশকটি ভেক্টর দ্বিমেরু ভ্রামকের দিক্ নির্দেশকের বিপরীত।

ড্যানিশ রসায়নবিদ্ পিটার ডিবাই X-রশ্মি বিচ্ছুরণ এবং দ্বিমেরু ভ্রামকের উপর সফল কাজের জন্য 1936 খ্রিঃ নোবেল পুরস্কার পান। উনার সম্মানার্থে দ্বিমেরু ভ্রামকের মান ডিবাই একক দ্বারা প্রকাশ করা হয়। বহু পরমাণু সমন্বিত অণুর ক্ষেত্রে দ্বিমেরু ভ্রামক শুধুমাত্র প্রতিটি বন্ধন ভ্রামকের উপর নির্ভর করে না, অণুর ত্রিমাত্রিক গঠন বিন্যাসের উপরও নির্ভর করে। এসব ক্ষেত্রে অণুর দ্বিমেরু ভ্রামক হবে বিভিন্ন বন্ধন ভ্রামকগুলোর ভেক্টরের যোগফল। উদাহরণ স্বরূপ, জলের অণু, যার গঠন বেণ্ট (Bent) গঠনাকৃতি তথা V আকৃতি বিশিষ্ট, যেখানে দুটি O–H বন্ধন 104.5° কোণে বিন্যস্ত থাকে। দুটি O–H বন্ধনের দ্বিমেরু ভ্রামকের লব্ধি হল মোট দ্বিমেরু ভ্রামক। যার মান হল

 6.17×10^{-30} C m (1D = 3.33564×10^{-30} C m)

=
$$1.85 \times 3.33564 \times 10^{-30}$$
 C m
= 6.17×10^{-30} C m

BeF₂ অণুটির দ্বিমেরু ভ্রামকের মান শূন্য। কারণ দুটি সমান দ্বিমেরু বন্ধন বিপরীত দিকে হওয়ায় একটির প্রভাব অপরটিকে প্রশমিত করে দেয়।

$$F \xrightarrow{} Be \xrightarrow{} F \qquad (\longleftarrow + + \longrightarrow)$$

BeF₂ অণুতে দিমেরু বন্ধন BeF₂ অণুতে মোট দিমেরু ভামক চার পরমাণু দ্বারা গঠিত অণু, যেমন BF₃ অণুর দিমেরু ভ্রামকের মান শূন্য। যদিও B – F বন্ধনগুলো একে অপরের সহিত 120° কোণে বিন্যস্ত থাকে। কিন্তু তিনটি বন্ধন ভ্রামকের মোট যোগফল শূন্য, কারণ যে-কোনো দুটি B – F বন্ধনের লব্ধি তৃতীয়টির সমান এবং বিপরীত হয়।

BF₃ (a) অণুর দ্বিমেরু বন্ধন

(b) মোট দ্বিমেরু ভ্রামকের

NH₃ এবং NF₃ অণুতে একটি মজাদার/আকর্ষণীয় ঘটনা অধ্যয়ন করা যাক্। উভয় অণুটিই পিরামিডাকৃতি যেখানে নাইট্রোজেন অণুতে নিঃসঙ্গা ইলেকট্রন যুগল বর্তমান। যদিও ফ্লোরিন নাইট্রোজেন থেকে বেশি তড়িৎ ঋণাত্মক তা সত্ত্বেও NH₃ অণুর লব্ধি দ্বিমেরু ভ্রামক $(4.90 \times 10^{-30} \text{ Cm})$ থেকে NF₃ लब्धि দ্বিমেরু ভ্রামক (0.8 $\times 10^{-30} \text{ Cm})$ বেশি হয়। কারণ, NH₃ অণুর ক্ষেত্রে নিঃসঞ্চা ইলেকট্রন যুগলের কক্ষকের দ্বিমেরু ভ্রামকের লব্ধি এবং তিনটি N – H বন্ধনের দ্বিমেরু ভ্রামকের লব্ধি ভ্রামক এর দিক্ একই দিকে হয়। যেখানে NF₃ অণুতে নিঃসঙ্চা ইলেকট্রন যুগলের কক্ষকের দ্বিমেরু ভ্রামকের এর লব্ধি এবং তিনটি N – F বন্ধনের বন্ধন ভ্রামকগুলির লব্ধি ভ্রামক বিপরীত হয়। নিঃসঙ্চা ইলেকট্রন যুগলের জন্য কক্ষকের দ্বিমেরু ভ্রামকরি দ্বিশ্ব র্লামকরি লব্ধি ভ্রামক হোস করে ৷ যার ফলস্বরূপ NF₃ এর দ্বিমেরু ভ্রামক কম হয়, যা নীচে দেখানো হল ৷

4.5 সারণিতে কিছু অণুর দ্বিমেরু ভ্রামকের মান লিপিবন্ধ করা হল। প্রত্যেক সমযোজী বন্ধনের যেমন আংশিক আয়নীয় চরিত্র থাকে, তেমনি আয়নীয় বন্ধনেও আংশিক সমযোজী চরিত্র থাকে। ফাজান (Fajan) নিম্নলিখিত নিয়ম অনুসারে তড়িৎযোজী বন্ধনের আংশিক সমযোজী চরিত্র বর্ণনা করে।

- তড়িৎযোজী বন্ধনে ক্যাটায়নের আকার ছোটো হলে এবং অ্যানায়নের আকার বড়ো হলে, সমযোজী চরিত্র বেশি হবে।
- তড়িৎযোজী বন্ধনে ক্যাটায়নের আধান বেশি হলে সমযোজী চরিত্র বেশি হবে।
- একই আকার ও সম আধান যুক্ত ক্যাটায়নের মধ্যে, (*n*-1)dⁿns^o ইলেকট্রনীয় গঠন কাঠামো যুক্ত আদর্শ সন্ধিগত ধাতুর ধ্রুবায়ন ক্ষমতা নিষ্ক্রিয় গ্যাসের গঠন কাঠামো *ns*² *np*⁶ইলেকট্রন বিন্যাস যুক্ত ক্ষার ধাতু এবং ক্ষারীয় মৃত্তিকা ধাতুর চেয়ে বেশি। ক্যাটায়ন ইলেকট্রনের আধানকে নিজের দিকে টেনে নিয়ে অ্যানায়নকে ধ্রুবায়িত করে এবং এইভাবে দুটি নিউক্লিয়াসের মধ্যে ইলেকট্রনের আধানের ঘনত্ব বুদ্ধি করে।

ঠিক এইভাবে সমযোজী বন্ধনে গড়ে ওঠে অর্থাৎ দুটি নিউক্লিয়াসের মধ্যে ইলেকট্রনের আধানের ঘনত্ব তৈরি করে। আয়নীয় বন্ধনে সমযোজী চরিত্রের শতকরা মাত্রা যে বিষয়গুলোর উপর নির্ভর করে সেগুলো হল ক্যাটায়নের ধ্রুবায়ন ক্ষমতা। অ্যানায়নের ধ্রুবায়িত হওয়ার প্রবণতা এবং অ্যানায়নের বিকৃতির (ধ্রুবায়িত হওয়ার) বিস্তুতির উপর।

4.4 যোজ্যতা কক্ষের ইলেকট্রন জোড়ের বিকর্ষণ তত্ত্ব (VSEPR) (The Valence Shell Electron Pair Repulsion Theory)

আগেই বলা হয়েছে, লুইসের ধারণাটি অণুর আকৃতি ব্যাখ্যা করতে সমর্থ হয়নি।এই তত্ত্বটি সমযোজী অণুর আকৃতির পূর্বাভাসের

00

অণুর বরণ	ভদাহরণ	াধ৻৸য়ৢ	5011410
		ভ্রামক, μ (D)	
অণু (AB)	HF	1.78	সরল রৈখিক
	HC1	1.07	সরল রৈখিক
	HBr	0.79	সরল রৈখিক
	HI	0.38	সরল রৈখিক
	H_2	0	সরল রৈখিক
অণু (AB ₂)	H_2O	1.85	কৌণিক
	H_2S	0.95	কৌণিক
	CO_2	0	সরল রৈখিক
অণু (AB ₃)	NH_3	1.47	পিরামিডীয়
	NF_3	0.23	পিরামিডীয়
	BF_3	0	ত্রিকোণীয় সমতলীয়
অণু (AB ₄)	CH_4	0	চতুস্থলকীয়
	CHCl ₃	1.04	চতুস্থলকীয়
	CCl_4	0	চতুস্থলকীয়

সারণীতে 4.5 নির্বাচিত অণুর দ্বিমেরু ভ্রামক

একটি **সহজ পম্বতি প্রদান করেন।** সিড্উইক এবং পাওয়েল 1940 খ্রিস্টাব্দে পরমাণুর যোজন কক্ষে অবস্থিত ইলেকট্রন যুগলের মধ্যে বিকর্ষণ জনিত ক্রিয়ার উপর ভিত্তি করে একটি সরল তত্ত্ব দেন। 1957 খ্রিস্টাব্দে বিজ্ঞানী গিলেসপি এবং নাইহল্ম এই তত্ত্বের উন্নতি সাধন করেন এবং পুনরায় সংজ্ঞায়িত করেন।

VSEPR তত্ত্বের প্রধান স্বীকার্যগুলি নিচে দেওয়া হল :

- কোনো অণুর আকৃতি ওই অণুটির কেন্দ্রীয় পরমাণুর যোজন কক্ষের মোট ইলেকট্রন জোড়ের সংখ্যা (যোজ্যতা কক্ষের বন্ধন ইলেকট্রন জোড় এবং নিঃসঙ্গা ইলেকট্রন জোড়)-এর উপর নির্ভর করে।
- ইলেকট্রন মেঘ ঋণাত্মক আধানগ্রস্ত হওয়ায় যোজন কক্ষের ইলেকট্রন জোড়গুলি একে অপরকে বিকর্ষণ করে।
- এই ইলেকট্রন জোড়গুলি শৃন্যে এমনভাবে বিন্যস্ত থাকে যাতে বিকর্ষণ বল সর্বনিন্ন হয় এবং সর্বাধিক দূরত্বে অবস্থান করে।
- যোজন কক্ষককে গোলক হিসেবে ধরলে, ইলেকট্রন জোড়গুলি গোলকের পৃষ্ঠতলে পরস্পর থেকে সর্বাধিক দূরত্বে অবস্থান করবে।
- বহু বন্ধনকে যদি একটি ইলেকট্রন যুগল হিসেবে বিবেচনা করা হয় তাহলে বহু বন্ধনের দুই বা তিনটি ইলেকট্রন জোড়কে একটি সুপার ইলেকট্রন জোড় হিসেবে ধরা হয়।
- একটি অণুকে যখন দুই বা ততোধিক রেজোনেন্স গঠন দ্বারা প্রকাশ করা হয় তখন যে কোনোও গঠনের জন্য VSEPR তত্ত্বটি প্রযোজ্য।

ইলেকট্র জোড়গুলির মধ্যে বিকর্ষণ বলের মিথস্ক্রিয়ার (Interaction) অধ্যক্রম হল—

নিঃসঙ্গ জোড়—নিঃসঙ্গ জোড় (lp – lp)

> নিঃসঞ্চা জোড়—বন্ধন জোড় (lp – bp)

> বন্ধন জোড়—বন্ধন জোড় (bp – bp)

1957 খ্রিস্টাব্দে নাইহম এবং গিলেসপি বন্ধন জোড় ইলেকট্রন এবং নিঃসঞ্চা ইলেকট্রন জোড়ের মধ্যে গুরুত্বপূর্ণ পার্থক্য ব্যাখ্যা করার জন্য VSEPR মডেলটিকে পরিমার্জন বা সংশোধন করেন। নিঃ সঙ্গা জোড় কেন্দ্রীয় পরমাণুতে অবস্থান করে এবং প্রত্যেক বন্ধন জোড় দুটি পরমাণুর মধ্যে বিস্তৃত থাকে। ফলস্বরূপ, অণুতে নিঃসঙ্গা ইলেকট্রন জোড় বন্ধন ইলেকট্রন জোড়ের তুলনায় অধিক স্থান দখল করে। যার ফলে নিঃসঙ্গা ইলেকট্রন জোড়ের মধ্যবর্তী বিকর্ষণ বল তুলনামূলকভাবে নিঃসঙ্গা জোড়— বন্ধন জোড় এবং বন্ধন জোড়— বন্ধন জোড়ের চেয়ে বেশি হয়। এই বিকর্ষণের প্রভাবে অণুর সুষম জ্যামিতিক আকৃতির সামান্য বিকৃতি ঘটে এবং অণুর বন্ধন কোণের পরিবর্তন হয়। VSEPR তত্ত্বের সাহায্য নিয়ে অণুর জ্যামিতিক আকৃতির পূর্বাভাসের জন্য অণুটিকে দুটি সুবিধাজনক ভাগে বিতন্তু করা দরকার।

 (i) যে সমস্ত অণুর কেন্দ্রীয় পরমাণুতে নিঃসঙ্গা ইলেকট্রন জোড় নেই।

 (ii) এক বা একাধিক নিঃসঙ্গা ইলেকট্রন বিশিষ্ট কেন্দ্রীয় পরমাণু যুক্ত অণু।

নিঃসঙ্গ ইলেক্ট্রন জোড়বিহীন কেন্দ্রীয় পরমাণু 'A'এর চারিপাশে ইলেকট্রন জোড়ের বিন্যাস এবং AB ধরনের কিছু অণু বা আয়নের জ্যামিতিক আকৃতি বা সারণি 4.6 এতে (পৃষ্ঠা-110) দেখানো হয়েছে।

সারণী 4.7 (পৃষ্ঠা-111) এ কিছু সরল অণু বা আয়নের আকৃতি উল্লেখ করা হয়েছে যেখানে কেন্দ্রীয় পরমাণুতে এক বা একাধিক নিঃসঞ্চা ইলেকট্রন জোড় বর্তমান।

সারণি 4.8 (পৃষ্ঠা-))এ অণুর জ্যামিতিক আকৃতির বিকৃতির কারণ ব্যাখ্যা করা হয়েছে।

AB₂, AB₃, AB₄, AB₅ এবং AB₆ যৌগগুলিতে কেন্দ্রীয় পরমাণু A এর চারিপাশে B পরমাণু এবং ইলেকট্রন জোড়ের বিন্যাস যথাক্রমে সরলরৈখিক, ত্রিকোণ সামতলিক, চতুঃস্তলকীয়, ত্রিকোণীয় দ্বিপিরামিডাকৃতি এবং অফ্টকতলীয় যাহা 4.6 সারণিতে বর্ণিত আছে।

এই ধরনের বিন্যাসযুক্ত অণুগুলো হল $BF_3(AB_3)$, $CH_4(AB_4)$ এবং $PCl_5(AB_5)$ যাহা নিচে বল এবং লাঠির দ্বারা চিত্রিত করা হয়েছে।

চিত্র 4.6 নিঃসঙ্গা ইলেকট্রন জোড়বিহীন কেন্দ্রীয় পরমাণুযুক্ত অণুর আকৃতি।

VSEPR তত্ত্বটি অধিক সংখ্যক অণুর জ্যামিতিক আকৃতির পূর্বাভাষ দিতে পারে, বিশেষ করে P ব্লক মৌলের যৌগসমূহের। সম্ভাব্য আকৃতিগুলোর মধ্যে শক্তির পার্থক্য কম হলেও খুব সফল ও যথাযথভাবেই জ্যামিতিক আকৃতি এই তত্ত্বের দ্বারা নির্ণয় করা যায়। আণবিক আকৃতিতে ইলেকট্রন যুগলের বিকর্ষণজনিত প্রভাব সম্পর্কিত VSEPR তত্ত্বের তাত্ত্বিক ভিত্তিটি স্পষ্ট নয় এবং এটি একটি বিতর্কের বিষয় হয়ে আছে।

ইলেক্ট্রন জোড়ের সংখ্যা	ইলেক্ট্রন জোড়ের বিন্যাস	আণবিক আকৃতি	উদাহরণ
2	180° :	B—A—B রৈখিক	BeCl_2 , HgCl_2
3	নিকাণীয় সামতলিক	র্ব্রিকোণীয় সামতলিক	BF_3
4	109.5°	B B B B B B B B B B B B B B B B B B B	$\mathrm{CH}_4,\mathrm{NH}_4^+$
5		B B B B B B B B B B B B B B B B B B B	PCl ₅
6	ত্রেকোণায় দ্বাপরাামডায় 90° এন্টেতলকীয়	ত্রেকোণায় দ্বাপরাামডায়	SF_6

সারণীতে 4.6 কেন্দ্রীয় পরমাণুতে নিঃসঙ্গা ইলেক্ট্রন জোড় বিহীন কয়েকটি অণুর জ্যামিতিক আকৃতি

অণুর ধরন	বন্ধন জোড় সংখ্যা	নিঃসঞ্চা ইলেকট্টন জোড় সংখ্যা	ইলেক্ট্রন জোড়ের বিন্যাস	আকৃতি	উদাহরণ
AB_2E	2	1	় ন চ ন ব্রিকোণীয় সামতলিক	কৌণিক	SO_2O_3
AB3E	3	1	র্ম র র র র র র র র র র র র র র র	ত্রিকোণীয় পিরামিডীয়	NH_3
AB_2E_2	2	2	়	কৌণিক	H ₂ O
AB₄E	4	1	:	See-saw বা ঢেকির ন্যায়	SF_4
AB_3E_2	3	2	B — A B — A B ভিকোণীয় দ্বি-পিরামিডীয়	T- আকৃতি বিশিষ্ট	ClF ₃
AB ₅ E	5	1	B B B B B B B B B B B B B B B B B B B	বর্গাকার পিরামিডীয় (Square pyramid)	BrF_5
AB_4E_2	4	2	B B B B B অন্টতলকীয়	সামতলিক পিরামিডীয় (Square planar)	XeF ₄

সারণীতে 4.7 কেন্দ্রীয় পরমাণু বা আয়ণে এক বা একাধিক ইলেক্ট্রন জোড় বিশিষ্ট কিছু সরল অণুর গঠন আকৃতি

অণুর প্রকার ভেদ	বন্ধন যুগলের সংখ্যা	নিঃসঞ্চা যুগলের সংখ্যা	ইলেকট্রনের সজ্জা	আকৃতি	অর্জিত আকৃতির কারণ
AB ₂ E	4	1	S 119.5° O: O	কৌণিক (Bent) ^{\$} 0	তাত্ত্বিকভাবে আকৃতিটি ত্রিকোণীয় সামতালিক হওয়ার কথা কিন্ডু প্রকৃতপক্ষে এটি কৌণিক বা V আকৃতির হয়। বন্ধন যুগল—বন্ধন যুগলের মধ্যকার বিকর্ষণ বল নিঃসঙ্গা যুগল—বন্ধন যুগলের চেয়ে কম হয় বলে এরকম হয়। তাই বন্ধন কোণ 120° থেকে হ্রাস পেয়ে 119.5° হয়।
AB ₃ E	3	1	H 107° H	ত্রিকোণীয় পিরামিডীয় (Trigonal pyramidal)	নিঃসঙ্গা যুগলের পরিবর্তে যদি বন্ধন যুগল থাকত তাহলে আকৃতিটি চতুঃস্তলকীয় হত, কিন্তু নিঃসঙ্গা যুগলের উপস্থিতির জন্য নিঃসঙ্গা যুগল—বন্ধন যুগলের মধ্যে বিকর্ষণ বলের জন্য (যার মান বন্ধন
			H	I	যুগল—বন্ধনযুগল অপেক্ষা বেশি) বন্ধন যুগলগুলোর মধ্যেকার কোণ 109.5° থেকে হ্রাস পেয়ে 107° হয়।
AB_2E_2	2	2	:O: н 104.5°	কোশিক (Bent) H	যাদ সবগুলে বন্ধন যুগল ২৩ তাংলে আকৃতিটি সুষম চতুঃস্তলকীয় ২ত কিন্তু দুটি নিঃসঞ্চা যুগলের উ পস্থিতির জন্য আকৃতিটি বিকৃত চতুঃস্তলকীয় বা কৌণিক হয়। এর কারণ হল নিঃসঞ্চা যুগল—নিঃ
			н) H	সঙ্গা যুগলের মধ্যকার ।বকষণ বল ।নঃসঙ্গা যুগল বন্ধন যুগল এবং বন্ধন যুগল—বন্ধন যুগলের মধ্যকার বিকর্ষণ বল থেকে বেশি হয়। এই কারণে বন্ধন কোণ 109.5° থেকে হ্রাস পেয়ে 104.5° হয়।
AB4E	4	1 _(a) 1	F F F F F F F F F F	দ টেকির ন্যায় F (See saw)	(a) চিত্রে নিঃসঙ্গা যুগলটি অক্ষীয় অবস্থানে আছে। তাই 90° কোণে তিনটি নিঃসঙ্গা যুগল—বন্ধন যুগলের মধ্যে—বিকর্ষণ বল কাজ করে। (b) চিত্রে নিঃসঙ্গা যুগলটি নিরক্ষীয় অবস্থানে আছে, দটি নিঃসঙ্গা
		(b)	\mathbf{F}_{F}	F F e stable)	যুগল—বন্ধন যুগলের মধ্যে বিকর্ষণ বল কাজ করে। এই কারণে b আকৃতিটি অধিক সুস্থিত। সেজন্য b আকৃতিটিকে একটি বিকৃত চতুঃস্তলক, ভাঁজ করা বর্গাকৃতি বা টেকিব মতো দেখায়।

সারণীতে 4.8 বন্ধন যুগল এবং নিঃসঙ্গা ইলেক্ট্রন যুগল বিশিষ্ট অণুসমূহের আকৃতি

4.5 যোজ্যতা বন্ধন তত্ত্ব (Valence Bond Theory)

আমরা জানি লুইস তত্ত্ব অণুর গঠন লিখতে সাহায্য করে, কিন্তু এটি রাসায়নিক বন্ধনের গঠন প্রণালী ব্যাখ্যা করতে পারে না। H₂ এবং F₂ অণুর মধ্যে এক জোড়া ইলেকট্রন সমানভাবে ভাগাভাগির মাধ্যমে গঠিত হওয়া সত্ত্বেও লুইস তত্ত্ব H₂ (435.8 KJ mol⁻¹, 74 PM) এবং F₂ (155 kJ mol⁻¹, 144 pm) অণুগুলোর বন্ধন বিভাজন শক্তি এবং বন্ধন দৈর্ঘ্যের পার্থক্যের কারণ ব্যাখ্যা করতে পারে না। এটি বহু পরমাণুক অণুর আকৃতি সম্পর্কে কোনো ধারণা দিতে পারে না।

অনুরূপে VSEPR তত্ত্ব সরল অণুর জ্যামিতিক আকৃতি সম্বন্থে ধারণা দেয় কিন্তু তাত্ত্বিকভাবে ব্যাখ্যা করতে পারে না এবং এর প্রয়োগও সীমাবন্ধ। এই সীমাবন্ধতাকে দূর করার জন্য কোয়ান্টাম বলবিদ্যার নীতির উপর ভিত্তি করে দুটি গুরুত্বপূর্ণ তত্ত্বের অবতারণা করা হয়েছে। এগুলি হল যোজ্যতা বন্ধন তত্ত্ব (Valence bond theory) এবং আণবিক কক্ষক তত্ত্ব (Molecular orbital theory)।

বিজ্ঞানী হেইটলার এবং লন্ডন (1927) প্রথমে যোজ্যতা বন্ধন তত্ত্বউপস্থাপন করেছিলেন এবং পরবর্তীতে বিজ্ঞানী পাউলিং এবং অন্যান্যরা এর আরও বিকাশ ঘটান। পারমাণবিক কক্ষক, মৌল সমূহের ইলেকট্রন বিন্যাস (অধ্যায়-২) পারমাণবিক কক্ষকগুলির অভিলেপনের শর্ত, পারমাণবিক কক্ষকগুলোর সংকরায়ণ ক্ষমতা এবং বৈচিত্র্য ও উপরিপত্তনের নীতির (principles of variation and superposition) জ্ঞানের উপর যোজ্যতা বন্ধন তত্ত্বের আলোচনা নির্ভর করে। এই সমস্ত বিষয়গুলির সাহায্যে যোজ্যতা বন্ধন তত্ত্বের ব্যাখ্যা আমাদের পাঠ্যসূচির অন্তর্গত নয়। সেজন্য আমাদের সুবিধার জন্য যোজ্যতা বন্ধন তত্ত্বেক গুণগতভাবে এবং গাণিতীক প্রয়োগ ছাড়াই আলোচনা করা হয়েছে। প্রথমে সব থেকে সরলতম অণু হাইড্রোজেন এর গঠন নিয়ে আলোচনা করা যাক।

ধরা যাক্ দুটি হাইড্রোজেন পরমাণু A এবং B পরস্পরের দিকে অগ্রসর হচ্ছে যাদের নিউক্রিয়াস দুটোকে N_A এবং N_B এবং ইলেকট্রনগুলোকে e_A এবং e_B দ্বারা চিহ্নিত করা হল। যখন দুটো পরমাণু পরস্পর থেকে অনেক দূরে থাকে তখন তাদের মধ্যে কোনো মিথস্ক্রিয়া (আকর্ষণ বা বিকর্ষণ) কাজ করে না। যখন দুটি পরমাণু পরস্পরের দিকে অগ্রসর হয় তখন নতুন করে আকর্ষণ এবং বিকর্ষণ বল ক্রিয়া করতে শুরু করে।

আকর্ষণ বলের উদ্ভব ঘটে :

(i) একটি পরমাণুর নিউক্লিয়াস এবং এর নিজের ইলেকট্রনের মধ্যে অর্থাৎ N_A – e_A এবং N_B– e_B। (ii) একটি পরমাণুর নিউক্রিয়াস এবং অপর পরমাণুর ইলেক্ট্রনের মধ্যে অর্থাৎ N_A – e_B এবং N_B– e_A।

অনুরূপে বিকর্ষণ বলের উদ্ভব হয়—

(i) দুটি পরমাণুর ইলেকট্রনগুলোর মধ্যে যেমন $e_{_{
m A}} - e_{_{
m B}},$

(ii) দুটি পরমাণুর নিউক্লিয়াস দুটোর মধ্যে যেমন $\rm N_{A}^{}-\rm N_{B}^{}$ ।

আকর্ষণ বলগুলি পরমাণু দুটোকে পরস্পরের কাছাকাছি আনতে সাহায্য করে, আর বিকর্ষণ বল পরমাণু দুটোকে দূরে ঠেলে দেয়। (চিত্র 4.7)

পরীক্ষামূলকভাবে দেখা গেছে নতুন আকর্ষণ বলের মান নতুন বিকর্ষণ বলের মান অপেক্ষা বেশি।ফলস্বরূপ দুটো পরমাণু পরস্পরের দিকে অগ্রসর হয় এবং স্থিতিশক্তির হ্রাস ঘটে। শেষ পর্যন্ত এমন এক অবস্থার সৃষ্টি হয় যেখানে মোট আকর্ষণ বল এবং মোট বিকর্ষণ বলের মধ্যে সমতার সৃষ্টি হয় এবং তন্ত্রটি (system) ন্যূনতম শক্তি অর্জন করে। এই অবস্থায় দুটি হাইড্রোজেন পরমাণু বন্ধন গঠন করে একটি সুস্থিত অণুর সৃষ্টি করে যার বন্ধন দৈর্ঘ্য 74 pm হয়।

দুটো হাইড্রোজেন পরমাণুর মধ্যে বন্ধন গঠনের সময় শস্তির নির্গমন ঘটে, সেজন্য মুক্ত হাইড্রোজেন পরমাণু অপেক্ষা হাইড্রোজেন অণু অধিক স্থিতিশীল হয়। যে শস্তি নির্গত হয় তাকে বন্ধন শক্তি বা বন্ধন এনথ্যালপি বলে, যেটি 4.8 লেখচিত্রে ন্যূনতম বিন্দু হিসেবে দেখানো হয়েছে।

বিপরীতভাবে এক মোল H₂ অণুকে বিয়োজিত করতে 435.8 kJ শক্তির প্রয়োজন।

 $H_2(g) + 435.8 \text{ kJ mol}^{-1} \rightarrow H(g) + H(g)$

4.5.1 কক্ষক অভিলেেপন তত্ত্ব (Orbital Overlap Concept)

হাইড্রোজেন অণু গঠনের সময় দুটো হাইড্রোজেন পরমাণু পরস্পরের এত কাছাকাছি চলে আসে যে তাদের পারমাণবিক কক্ষকগুলির আংশিক অন্তরভেদন (interpenetration) ঘটে এবং ন্যূনতম শক্তির অধিকারী হয়। এভাবে আংশিক মিশে যাওয়াকে পারমাণবিক কক্ষকের অভিলেপন বলে এবং এর ফলে ইলেকট্রন জোড় ঘটিত হয়। অভিলেপনের মাত্রার উপর নির্ভর করে সমযোজী বন্ধনের শক্তি নির্ধারিত হয়। সাধারণত দুটি পরমাণুর মধ্যে যত বেশি মাত্রায় অভিলেপন ঘটে তত বেশি শক্তিশালী বন্ধন গঠিত হয়। সেজন্য কক্ষক অভিলেপন তত্ত্ব অনুসারে দুটি পরমাণুর যোজ্যতা কক্ষের ইলেকট্রনগুলি বিপরীতমুখী ঘূর্ণন দ্বারা ইলেকট্রন জোড় গঠনের মাধ্যমে দুটি পরমাণুর মধ্যে সমযোজী বন্ধন গঠিত হয়।

4.5.2 বন্ধনের দিক নির্দেশক ধর্ম (Directional Properties of Bonds)

আমরা দেখেছি যে, পারমাণবিক কক্ষকের অভিলেপনের ফলে সমযোজী বন্ধন গঠিত হয়। দুটো হাইড্রোজেন পরমাণুর 1s কক্ষকগুলোর অভিলেপনের ফলে হাইড্রোজেন অণু গঠিত হয়।

বহু পরমাণুক অণু যেমন CH_4 , NH_3 এবং H_2O ইত্যাদির ক্ষেত্রে বন্ধন গঠনের পাশাপাশি অণুর জ্যামিতিক আকৃতিও একটি গুরুত্বপূর্ণ বিষয়। উদাহরণস্বরূপ CH_4 অণু চতুস্তলকীয় এবং H-C-H বন্ধন কোণের মান 109.5° কেন ? NH_3 অণুর আকৃতি পিরামিডাকৃতি-কেন ?

অভিলেপন এবং পারমাণবিক কক্ষকের সংকরায়ণের নিরিখে যোজ্যতা বন্ধন তত্ত্ব বহুপরমাণুক অণু যেমন CH₄, NH₃ এবং H₂O ইত্যাদির আকৃতি, গঠন এবং দিক্দর্শী ধর্ম ব্যাখ্যা করে।

4.5.3 পারমাণবিক কক্ষকের অভিলেপন (Overlapping of Atomic Orbitals)

বন্ধন গঠনের সময় দুটি পরমাণুর কক্ষকগুলি যখন কাছাকাছি আসে তখন শুন্যে প্রসারিত কক্ষকের তরজা অপেক্ষকের দশা (চিত্র 4.9) এবং বিস্তারের দিকের উপর নির্ভর করে তাদের অভিলেপন ধনাত্বক, ঋণাত্বক বা শূন্য হতে পারে। চিত্র 4.9 এ সীমানা পৃষ্ট চিত্রের ধনাত্মক এবং ঋণাত্মক চিহ্ন কক্ষকগুলোর তরজা অপেক্ষক এর দশা নির্দেশ করে এবং এগুলোর সাথে আধানের কোনোও সম্পর্ক নেই। বন্ধন গঠনকারী কক্ষকগুলোর দশা এবং শুন্যে বিন্যাস একইরকমের হতে হবে। একে **ধনাত্মক অভিলেপন বলে**। চিত্র 4.9 এ p কক্ষকের বিভিন্ন ধরনের অভিলেপন দেখানো হয়েছে।

দ্বিপরমাণুক বা বহুপরমাণুক অণুর স্বজাতি নিউক্লিয়াস (Homonuclear) বা ভিন্ন নিউক্লিয়াসের (Heteronuclear) মধ্যে সমযোজী বন্ধন গঠনের সময় অভিলেপনের শর্ত সুষমভাবে প্রযোজ্য হয়। যোজ্যতা বন্ধন তত্ত্ব বহু পরমাণু সমন্বিত অণু যেমন CH₄, NH₃ এবং H₂O এর গঠন বৈশিষ্ট্য সম্পর্কে ধারণা দিতে পারে। আমরা জানি যে, CH₄, NH₃ এবং H₂O অণুগুলোর গঠন যথাক্রমে চতুস্তলকীয়, পিরামিডের মত এবং কৌণিক (Bent) আকৃতির হয়। যোজ্যতা বন্ধন তত্ত্ব প্রয়োগ দ্বারা কক্ষক অভিলেপনের সাহায্যে জ্যামিতিক আকৃতির ব্যাখ্যা একটি আকর্ষণীয় বিষয়।

আমরা প্রথমে CH₄ অণুর জ্যামিতিক আকৃতি জানার চেন্টা করি। কার্বন পরমাণুর ভূমিস্তর অবস্থায় ইলেকট্রন বিন্যাস হল [He]2s² 2p² যেটি উত্তেজিত অবস্থায় [He] 2s¹ 2p_x¹ 2p_y¹ 2p_z¹ এ পরিবর্তিত হয়। উত্তেজিত হওয়ার জন্য প্রয়োজনীয় শক্তি হাইড্রোজেন এবং কার্বন এর কক্ষকগুলির অভিলেপনে নির্গত শক্তি থেকে গৃহীত হয়।

শূন্য অভিলেপন (বিপরীত ত্রিমাত্রিক বিন্যাস কক্ষকগুলোর অগ্রগমনের অভিমুখ এবং অবস্থানকারী তল যথাযথ না হওয়ায়)

[Zero overlap (out of phase due to different orientation direction of approach)]

চিত্র 4.9 S ও P কক্ষপথে ধনাত্মক, ঋণাত্মক এবং শূন্য অভিলেপন।

একটি করে অযুগ্ম ইলেকট্রন যুক্ত কার্বনের চারটি পারমাণবিক কক্ষক, 4টি হাইড্রোজেন পরমাণুর একটি করে অর্ধপূর্ণ 1s কক্ষকের সাথে অভিলেপন ঘটায়। যার ফলে 4টি C-H বন্ধন গঠিত হয়। যেহেতু কার্বনের তিনটি p কক্ষক পরস্পরের সাথে 90° কোণ করে অবস্থান করে সেজন্য H-C-H বন্ধন কোণের মান ও 90° হবে অর্থাৎ তিনটি C-H বন্ধন পরস্পরের সাথে 90° কোণ করে অবস্থান করে। কার্বনের 2s কক্ষক এবং হাইড্রোজেনের 1s কক্ষক গোলকীয় প্রতিসম, ফলে যে কোনও দিকে অভিলেপন ঘটতে পারে। সেই কারণে চতুর্থ C-H বন্ধনের দিক নিরূপন করা যায় না। এই ব্যাখ্যাটি চতুস্তলকীয় CH₄ এর H-C-H বন্ধন কোণের মান 109.5° এর সঙ্গো খাপ খায় না। এটি স্পন্ট যে পারমাণবিক কক্ষকের অভিলেপন দ্বারা CH₄ এর একই যুক্তিতে NH₃ এবং H₂O অণুর H-N-H এবং H-O-H বন্ধন কোণ 90° হওয়ার কথা। কিন্তু NH₃ এবং H₂O এর প্রকৃত বন্ধন কোণ যথাক্রমে 107° এবং 104.5° যা 90° থেকে ভিন্ন।

4.5.4 অভিলেপনের প্রকার ভেদ এবং সমযোজী বন্ধনের প্রকৃতি (Types of Overlapping and Nature of Covalent Bonds)

অভিলেপনের ধরনের উপর নির্ভর করে সমযোজী বন্ধনকে দুটি শ্রেণিতে ভাগ করা হয়েছে :

- (i) সিগমা (σ) বন্ধন, (ii) পাই (π) বন্ধন।
- (i) সিগমা (σ) বন্ধন : এই ধরনের সমযোজী বন্ধন গঠিত হয় বন্ধনে আবন্ধ কক্ষকগুলির অভ্যন্তরীণ অক্ষ বরাবর (মুখোমুখি) অভিলেপনের মাধ্যমে। একে বলা হয় অক্ষীয় অভিলেপন বা মুখোমুখী অভিলেপন। পারমাণবিক কক্ষকগুলোর সংযোজনের মাধ্যমে এই ধরনের গঠন নীচের যে-কোনো উপায়ে ঘটতে পারে।
- s-s অভিলেপন : এই ক্ষেত্রে দুটি অর্ধপূর্ণ s কক্ষকের মধ্যে অভ্যন্তরীণ অক্ষ বরাবর অভিলেপন ঘটে যা নীচে দেখানো হল।

 s-p অভিলেপন : একটি পরমাণুর অর্ধপূর্ণ s কক্ষক এবং অপর একটি পরমাণুর অর্ধপূর্ণ p কক্ষকের মধ্যে এই ধরনের অভিলেপন ঘটে।

p-p অভিলেপন : দুটি পরমাণুর অর্ধপূর্ণ p কক্ষকগুলোর মধ্যে এই ধরনের অভিলেপন ঘটে।

(ii) পাই (π) বন্ধন : π বন্ধন গঠনের সময় পারমাণবিক কক্ষকগুলো এভাবে অভিলেপিত হয় যাতে কক্ষক গুলো অক্ষের সমান্তরালভাবে থাকে এবং অভ্যন্তরীণ অক্ষের উপর লম্বভাবে থাকে। পার্শ্বীয় অভিলেপনে যে কক্ষক গঠিত হয়, তার আধানের মেঘ অংশগ্রহণকারী পরমাণুগুলোর নিউক্রিয়াস যেতলে অবস্থান করে তার উপরে ও নীচে প্লেট বা ডিশের মতো ঘনীভূত থাকে।

4.5.5 সিগমা ও পাই বন্ধনের শক্তি (Strength of Sigma and pi Bonds)

প্রাথমিকভাবে বন্ধনের শস্ত্তি অভিলেপনের বিস্তারের উপর নির্ভর করে। সিগমা বন্ধনের ক্ষেত্রে কক্ষকগুলোর অভিলিপ্ত ক্ষেত্রের বিস্তার বেশি হয়। ফলে সিগমা বন্ধনের বন্ধন শস্ত্তি পাই বন্ধনের তুলনায় বেশি, কারণ পাই বন্ধনে কক্ষকগুলোর অভিলেপনের বিস্তার কম হয়। আরও একটি গুরুত্বপূর্ণ তথ্য হল, একটি অণুর দুটি পরমাণুর মধ্যে একাধিক বন্ধন গঠিত হলে একটি সিগমা বন্ধনের পাশাপাশি π বন্ধনও গঠিত হবে।

4.6 সংকরায়ণ (Hybridisation)

বহু পরমাণু সমন্বিত অণু যেমন CH₄, NH₃ এবং H₂O ইত্যাদির বৈশিষ্ট্যগত জ্যামিতিক আকৃতি ব্যাখ্যা করতে গিয়ে পাউলিং সংকরায়ণের ধারণা দেন। তাঁর মতানুসারে পারমানবিক কক্ষক সমূহ মিলিত হয়ে নতুন সমতুল্য কতকগুলো কক্ষকের সৃষ্টি করে যা সংকরায়িত কক্ষক নামে পরিচিত। বিশুদ্ধ কক্ষকের পরিবর্তে সংকরায়িত কক্ষক নামে পরিচিত। বিশুদ্ধ কক্ষকের পরিবর্তে সংকরায়িত কক্ষক নামে পরিচিত। বিশুদ্ধ কক্ষকের পরিবর্তে সংকরায়িত কক্ষক গুলো বন্ধন তৈরিতে ব্যবহৃত হয়। শক্তির কম পার্থক্য বিশিষ্ট কক্ষকগুলোর আন্তঃ মিশ্রণের ফলে শন্তির পুনর্বন্টন হয়ে সমশন্তি এবং সম আকৃতি বিশিষ্ট কক্ষকের সৃষ্টি হওয়ার প্রক্রিয়াকে সংকরায়ণ বলে। যেমন কার্বনের একটি 2s এবং তিনটি 2p কক্ষকের সংকরায়ণের ফলে নতুন sp³ সংকরায়িত কক্ষকের সৃষ্টি হয়।

সংকরায়ণের উল্লেখযোগ্য বৈশিষ্ট্য (Salient features of hybridisation): সংকরায়ণের উল্লেখযোগ্য বৈশিষ্ট্যগুলো নীচে আলোচনা করা হল।

- সংকরায়ণে সংকরায়িত কক্ষকের সংখ্যা পারমাণবিক কক্ষকের সংখ্যার সমান হয়।
- সংকরায়িত কক্ষকগুলো সমশস্তি সম্পন্ন এবং সম আকৃতি বিশিষ্ট হয়।

- সুম্থিত বন্ধন তৈরিতে বিশুম্ব পারমাণবিক কক্ষকের চেয়ে সংকরায়িত কক্ষক অনেক বেশি কার্যকরী।
- এই সংকরায়িত কক্ষকগুলোর দিক, শৃন্যে এইভাবে নির্দেশিত থাকে যাতে ইলেকট্রন যুগলের মধ্যে ন্যূনতম বিকর্ষণ হয়, ফলে সুস্থিত বিন্যাস পাওয়া যায়। সুতরাং সংকরায়ণের প্রকৃতি অণুর জ্যামিতিক গঠন নির্দেশ করে।

সংকরায়ণের গুরুত্বপূর্ণ শর্তাবলি (Important conditions for hybridisation) :

- (i) পরমাণুর যোজন কক্ষে উপস্থিত কক্ষকগুলো সংকরায়িত হয়।
- (ii) প্রায় সমশক্তি সম্পন্ন কক্ষকগুলোর মধ্যে সংকরায়ণ ঘটে।
- (iii) এমন কোনো আবশ্যিক শর্ত নেই যে, সংকরায়ণের সময়
 ইলেকট্রনগুলোকে উচ্চশক্তি স্তরে স্থানান্তরিত হতে হবে।
- (iv) কেবলমাত্র অর্ধপূর্ণ কক্ষকগুলোই সংকরায়ণে অংশগ্রহণ গ্রহণ করবে এটি সর্বদা সত্য নয়। কিছু কিছু ক্ষেত্রে যোজন কক্ষের পূর্ণ কক্ষকগুলোও সংকরায়ণে অংশগ্রহণ করে।

4.6.1 সংকরায়ণের প্রকারভেদ (Types of Hybridisation)

s,p ও d কক্ষকগুলোর সমন্বয়ে বিভিন্ন ধরনের সংকরায়ণ হয়। নীচে বিভিন্ন ধরনের সংকরায়ণ দেওয়া হল।

(I) sp সংকরায়ণ : এই ধরনের সংকরায়ণে একটি s কক্ষক এবং একটি p কক্ষকের মিলনের ফলে দুটি সমশস্তি সম্পন্ন sp সংকরায়িত কক্ষকের সৃষ্টি হয়। যদি সংকরায়িত কক্ষকগুলো z অক্ষ বরাবর থাকে তখন sp সংকরায়ণে উপযোগী কক্ষকগুলো হল s এবং p_z। প্রত্যেক sp সংকরায়িত কক্ষকে 's' চরিত্র 50% এবং p চরিত্র 50%। যেসব অণুতে কেন্দ্রীয় পরমাণু sp সংকরায়িত এবং sp সংকরায়িত পরমাণুর সঙ্গে অপর দুটি কেন্দ্রীয় পরমাণু সরাসরি যুক্ত থাকলে অণুটি সরলরৈথিক হয়। এই ধরনের সংকরায়ণ কর্ণ (Diagonal) সংকরায়ণ নামেও পরিচিত।

sp সংকরায়িত কক্ষকে z অক্ষ বরাবর প্রসারিত ধনাত্মক লোব এবং খুব ছোটো ঋণাত্মক লোব বিপরীত দিকে অভিক্ষিপ্ত থেকে অধিক কার্যকরী অভিলেপন ঘটায়, ফলে শক্তিশালী বন্ধন গঠিত হয়।

sp সংকরায়িত কিছু অণুর উদাহরণ (Example of molecule having *sp* hybridisation)

BeCl₂: Be এর ভূমিস্তর ইলেকট্রন বিন্যাস হল 1*s*²2*s*². উত্তেজিত অবস্থায় Be এর একটি 2*s* ইলেকট্রন খালি 2p কক্ষকে উন্নীত হয়, যার জন্য এটি দ্বিযোজী হয়। একটি 2s এবং একটি 2p কক্ষক সংকরায়ণে অংশগ্রহণ করে দুটি sp সংকরায়িত কক্ষকের সৃষ্টি করে। sp সংকরায়িত কক্ষকগুলো বিপরীত দিকে বিন্যস্ত থেকে l80° কোণের সৃষ্টি করে। sp সংকরায়িত কক্ষকগুলোর প্রত্যেকটি 'Cl' পরমাণুর 2p কক্ষকের সঞ্চো অক্ষ বরাবর অভিলিপ্ত হয়ে দুটি Be-Cl σ (সিগমা) বন্ধন গঠন করে। চিত্র 4.10 এ দেখানো হয়েছে।

(II) sp² সংকরায়ণ : এই ধরনের সংকরায়ণে একটি 's' কক্ষক ও 2টি p কক্ষক মিলিত হয়ে তিনটি সমশক্তি সম্পন্ন sp² সংকরায়িত কক্ষকের সৃষ্টি করে। উদাহরণ স্বরূপ BCl, অণু। বোরনের ভূমিস্তর ইলেকট্রন বিন্যাস হল 1s²2s²2p¹। উত্তেজিত অবস্থায় 2s কক্ষক থেকে একটি ইলেকট্রন 2p কক্ষকে উনিত হয়— ফলে বোরনের তিনটি অযুগ্ম ইলেকট্রন হয়।

চিত্র 4.11 sp² সংকরায়িত কক্ষকের গঠন প্রণালী এবং BCl, অণু।

একটি '2s' কক্ষক এবং 2টি '2p' কক্ষক মিলিত হয়ে তিনটি sp² সংকরায়িত কক্ষকের সৃষ্টি করে। এইভাবে উৎপন্ন তিনটি সংকরায়িত কক্ষক বিন্যস্ত হয়ে ত্রিকোণীয় সামতলিক গঠন তৈরি করে এবং ক্লোরিনের 2p কক্ষক বোরনের sp² সংকরায়িত কক্ষকের প্রতিটির সঙ্গো অভিলেপিত হয়ে তিনটি B-Cl সিগমা বন্ধন গঠন করে। সুতরাং BCl₃ অণুটির জ্যামিতিক আকৃতি ত্রিকোণীয় সামতলিক হয় এবং Cl-B-Cl বন্ধন কোণটি 120° হয় (চিত্র 4.11)।

(III) sp³ সংকরায়ণ : এই ধরনের সংকরায়ণ ব্যাখ্যা করার জন্য উদাহরণ হিসেবে CH₄ অণু নেওয়া যায়, যেখানে 'C' এর যোজন কক্ষের তিনটি p কক্ষক ও একটি 's' কক্ষক মিলিত হয়ে সমশস্তি ও সম আকৃতি বিশিষ্ট চারটি sp³ সংকরায়িত কক্ষকের সৃষ্টি করে। প্রত্যেক sp³ সংকরায়িত কক্ষকে s চরিত্র 25% এবং p চরিত্র 75%। sp³ সংকরায়িত কক্ষকগুলোর চারটি কক্ষক একটি সুষম চতুংস্তলকের চারটি শীর্ষ বিন্দুর দিকে অভিক্ষিপ্ত থাকে। sp³ সংকরায়িত কক্ষকগুলোর মধ্যে বন্ধন কোণের পরিমাণ 109°28' যা নীচে 4.12 চিত্রে দেখানো হল।

চিত্র **4.12** কার্বনের s , $p_{_x}$, $p_{_y}$ এবং $p_{_z}$ পারমাণবিক কক্ষকের সমন্বয়ে গঠিত s p^3 সংকরায়িত কক্ষক এবং CH $_4$ অণুর গঠন।

NH₃ এবং H₂O অণুর গঠনও *sp*³ সংকরায়ণ দ্বারা ব্যাখ্যা করা যায়। NH₃ অণুতে নাইট্রোজেন পরমাণুর ভূমিস্তরের ইলেকট্রন বিন্যাস হল 2s²2p¹_x2p¹_y2p¹_z। এক্ষেত্রে *sp*³ সংকরায়িত চারটি কক্ষকের মধ্যে তিনটিতে তিনটি অযুগ্ম ইলেকট্রন থাকে যেখানে চতুর্থ কক্ষকটিতে একটি নিঃসঞ্চা ইলেকট্রন যুগল থাকে। তিনটি হাইড্রোজেন রসায়ন

পরমাণুর 1s কক্ষকগুলো sp³সংকরায়িত চারটি কক্ষকের তিনটি অযুগ্ম ইলেকট্রনের সঙ্গো অভিলেপিত হয়ে তিনটি N–H সিগমা বন্ধন গঠন করে। আমরা জানি যে, নিঃসঙ্গা ইলেকট্রন যুগল—বন্ধন ইলেকট্রন যুগলের মধ্যেকার বিকর্ষণ বল, বন্ধন ইলেকট্রন যুগল—বন্ধন ইলেকট্রন যুগলের চেয়ে বেশি হয়। এর জন্য অণুটির আকৃতিগত কিছুটা পরিবর্তন হয় অর্থাৎ বিকৃতি হয় এবং বন্ধন কোণের মান 109.5° থেকে কমে 107° হয় (চিত্র 4.13)।

এই ধরনের অণুর জ্যামিতিক আকৃতি পিরামিডের মতো হয়।

H₂O অণুতে অক্সিজেন পরমাণুর একটি 2s ও তিনটি 2p কক্ষকের sp³ সংকরায়ণের ফলে চারটি sp³ সংকরায়িত কক্ষকের সৃষ্টি হয় যেখানে চারটি কক্ষকের দুটিতে একটি করে ইলেকট্রন থাকে এবং অপর দুটিতে দুটি ইলেকট্রন যুগল থাকে। চারটি sp³ সংকরায়িত কক্ষকগুলো এইভাবে চতুঃস্তলকীয় জ্যামিতিক আকৃতি বিশিষ্ট হয় এবং এই চতুস্থলকীয় জ্যামিতির আকৃতির দুটি কোনায় ২টি হাইড্রোজেন পরমাণু থাকে এবং অপর দুটিতে ২টি নিঃসঙ্গ ইলেকট্রন যুগল থাকে। এইক্ষেত্রে বন্ধন কোণ 109.5° থেকে কমে 105° হয় (চিত্র 4.14) এবং অণুটি V আকৃতি বিশিষ্ট বা কৌণিক জ্যামিতিক আকৃতি বিশিষ্ট হয়।

চিত্র 4.14 জল অণুর গঠন।

4.6.2 sp³, sp² এবং sp সংকরায়নের অন্যান্য উদাহরণসমূহ (Other Examples of sp³, sp² and sp Hybridisation)

 C_2H_6 অণুতে sp^3 সংকরায়ণ : C_2H_6 অণুতে উভয় কার্বণ পরমাণুই sp^3 সংকরায়িত অবস্থায় আছে। চারটি sp^3 সংকরায়িত কক্ষকের একটি কক্ষক অপর পরমাণুর অনরূপ কক্ষকের সহিত অক্ষ বরাবর অভিলেপিত হয়ে sp^3-sp^3 সিগমা বন্ধন গঠন করে এবং প্রত্যেকটি কার্বন পরমাণুর অপর তিনটি সংকরায়িত কক্ষক হাইড্রোজেন পরমাণুর সহিত sp^3-s সিগমা বন্ধন গঠন করে যা 4.6.1 (iii) অণুচ্ছেদে বর্ণনা করা হয়েছে। সুতরাং ইথেন অণুতে C–C বন্ধন দৈর্ঘ্য হয় 154 pm এবং প্রত্যেক C-H বন্ধন দৈর্ঘ্য হয় 109 pm ।

C₂H₄ অণুতে sp³ সংকরায়ণ : C₂H₄ অণু তৈরির সময়, কার্বন পরমাণুর sp² সংকরায়িত কক্ষকণুলোর একটি কক্ষক অপর কার্বন পরমাণুর sp² সংকরায়িত কক্ষকের একটি কক্ষক অক্ষ বরাবর অভিলেপিত হয়ে C–C সিগমা বন্ধন তৈরি করে এবং প্রতিটি কার্বন পরমাণুর *sp*² সংকরায়িত কক্ষকের অপর দুটি কক্ষক দুটি হাইড্রোজেন পরমাণুর সহিত *sp*²–*s* সিগমা বন্ধন গঠন করে। একটি কার্বন পরমাণুর অসংকরায়িত কক্ষক (unhybridised orbital) (2*p*_x or 2*p*_y) অপর কার্বন পরমাণুর কক্ষক পাশাপাশি অভিলেপিত হয়ে দুর্বল π বন্ধনের সৃষ্টি করে এবং কার্বন ও হাইড্রোজেন যে তলে থাকে তার উপরে এবং নিচে দুটি সমগাঢ়ত্ব বিশিষ্ট ইলেকট্রন মেঘের সৃষ্টি করে।

এইভাবে ইথিন অণুতে কার্বন কার্বন বন্ধনে একটি $sp^2 - sp^2$ সিগমা বন্ধন হয় এবং যে p কক্ষকগুলি সংকরায়ণে অংশগ্রহণ করে না এগুলো আণবিক কক্ষকের তলের উপরে লম্বভাবে থেকে π বন্ধন গঠন করে; এবং কার্বন-কার্বন বন্ধন দৈর্ঘ্য 134 pm হয়। $sp^2 - s$ সংকরায়িত C-H σ (সিগমা) বন্ধনটির বন্ধন দৈর্ঘ্য 108 pm. H-C-H বন্ধন কোণের মান হয় 117.6° যেখানে H-C-H বন্ধন কোণের মান হয় 121°. চিত্র 4.15এ ইথিন অণুতে সিগমা এবং পাই বন্ধন তৈরির গঠন প্রণালী দেওয়া হল।

চিত্র 4.15 ইথিন অণুতে সিগমা ও *ম* বন্ধন গঠন প্রণালী।

 C_2H_2 অণুর sp সংকরায়ণ : উভয় কার্বন পরমাণুগুলোর sp সংকরায়নের ফলে ইথাইন অণুটি গঠিত হয়, যেখানে দুটি অসংকরায়িত কক্ষক থাকে, এইগুলো হল 2pv এবং 2px ।

একটি কার্বন পরমাণুর *sp* সংকরায়িত কক্ষকের একটি কক্ষক, অপর কার্বন পরমাণুর *sp* সংকরায়িত অপর একটি কক্ষক, অক্ষ বরাবর অভিলেপিত হয়ে C–C সিগমা বন্ধন গঠন করে। যেখানে প্রত্যেক কার্বন পরমাণুর অপর সংকরায়িত কক্ষকগুলোর সহিত হাইড্রোজেন পরমাণুর অর্ধপূর্ণ*'s*' কক্ষকের অক্ষবরাবর অভিলেপনের ফলে দুটি ত বন্ধন গঠিত হয়।

উভয় কার্বন পরমাণুর দুটি অসংকরায়িত (unhybridised) *p* কক্ষকগুলোর প্রতিটির পাশাপাশি অভিলেপনের ফলে কার্বন পরমাণুগুলোর মধ্যে দুটি π বন্ধন গঠিত হয়। এইভাবে দুটি কার্বন পরমাণুর মধ্যে একটি সিগমা এবং দুটি পাই বন্ধন গঠনের ফলে

চিত্র 4.16 ইথাইন অণুতে সিগমা এবং পাই বন্ধন তৈরির চিত্র।

তিনটি বন্ধন তৈরি হয় যা 4.16 চিত্রে দেখানো হয়েছে।

4.6.3 মৌলসমূহের সংকরায়নে d কক্ষকের অন্তর্ভুক্তি (Hybridisation of Elements involving *d*-Orbitals)

তৃতীয় পর্যায়ের মৌলগুলোতে s ও p কক্ষকের সহিত d কক্ষকও উপস্থিত থাকে। 3d কক্ষক সমূহের শক্তি 3s ও 3p কক্ষকসমূহের শক্তির তুলনীয় প্রায় সমান। 3d কক্ষক সমূহের শক্তি 4s এবং 4p কক্ষক সমূহের শক্তির সহিতও তুলনীয়। কিন্ডু 3p এবং 4s কক্ষকগুলোর মধ্যে তাৎপর্যপূর্ণ শক্তির পার্থক্য হওয়ায় 3p, 3d এবং 4s কক্ষকগুলোর মধ্যে সংকরায়ণ সম্ভব নয়।

s, p ও d কক্ষকগুলোর সমন্বয়ে উৎপন্ন গুরুত্বপূর্ণ সংকরায়ণগুলোর সারাংশ নীচে দেওয়া হল।

অণু/আয়নের আকৃতি	সংকরায়ণের প্রকৃতি	পারমাণবিক কক্ষকসমূহ	উদাহরণ
সামতলিক বর্গাকার	dsp^2	d+s+p(2)	$[Ni(CN)_4]^{2-},$ $[Pt(Cl)_4]^{2-}$
ত্রিকোণীয় দ্বিপিরামিডীয়	sp ³ d	<i>s</i> + <i>p</i> (3)+ <i>d</i>	PF ₅ , PCl ₅
বর্গাকার পিরামিডীয়	sp^3d^2	s + p(3) + d(2)	BrF ₅
অস্টকতলীয়	sp^3d^2 d^2sp^3	s+p(3)+d(2) d(2)+s+p(3)	$SF_{6}, [CrF_{6}]^{3-}$ $[Co(NH_{3})_{6}]^{3+}$

(i) PCl₅ এর গঠন প্রণালী (sp³d সংকরায়ণ) : p(Z=15) এর ভূমিস্তর এবং উত্তেজিত অবস্থার বহিঃস্থ ইলেকট্রন বিন্যাস নীচে দেওয়া হল।

এখন, একটি s, তিনটি p এবং 1টি d এই পাঁচটি কক্ষক সংকরায়ণে অংশগ্রহণ করে পাঁচটি সমতুল্য সংকরায়িত sp³d কক্ষকের সৃষ্টি করে, যেখানে কক্ষকগুলো ত্রিকোণীয় দ্বিপিরামিডের পাঁচটি শীর্ষবিন্দুর দিকে বিস্তৃত থাকে যা 4.17 চিত্রে দেখানো হয়েছে।

এটি উল্লেখ করা উচিত যে, ত্রিকোণীয় দ্বিপিরামিড বিশিষ্ট জ্যামিতিক কাঠামোতে বন্ধন কোণগুলো সমতুল্য নয়। PCl₅ অণুতে 'p' এর 5টি sp³d কক্ষকের সহিত Cl এর 1টি ইলেকট্রন অধিকৃত p কক্ষকগুলো অভিলেপিত হয়ে 5টি P-Cl সিগমা বন্ধন তৈরি করে। তিনটি P-Cl বন্ধন পরস্পরেরর সহিত 120° কোণ তৈরি করে একই তলে অবস্থান করে এবং এই বন্ধনগুলোকে নিরক্ষীয় বন্ধন বলা হয়। অবশিষ্ট দুটি P-Cl বন্ধন নিরক্ষীয় তলের সঙ্গো উপরে ও নিচে 90° কোণ তৈরি করে। এই বন্ধনগুলোকে বলা হয় অক্ষীয় বন্ধন। যেহেতু অক্ষীয় বন্ধন যুগলগুলো নিরক্ষীয় বন্ধন যুগলগুলো থেকে বেশি বিকর্ষণ বল অনুভব করে, তাই অক্ষীয় বন্ধনগুলোর দৈর্ঘ্য বেশি হয় এবং নিরক্ষীয় বন্ধনগুলো থেকে অক্ষীয় বন্ধনগুলো তুলনামূলকভাবে দুর্বল হয়। ফলে PCl₅ অণুটি খুব সক্রিয় হয়।

(ii) SF₆ অণুর গঠন প্রণালী (sp³d² সংকরায়ণ) : SF₆ অণুতে কেন্দ্রীয় পরমাণু সালফারের ভূমিস্তর ইলেকট্রন বিন্যাস হল 3s²3p⁴। উত্তেজিত অবস্থায় ছয়টি কক্ষক সহজেই পাওয়া যায়, তাদের মধ্যে একটি s, তিনটি p ও 2টি d কক্ষক প্রত্যেকটিতে একটি করে ইলেকট্রন থাকে।

এই কক্ষকগুলো সংকরায়ণে অংশ গ্রহণ করে নতুন ছয়টি sp³d² সংকরায়িত কক্ষকের সৃষ্টি করে এবং কক্ষকগুলো SF₆ অণুর সুষম অক্টাহেড্রনের বা অস্টতলকীয় জ্যামিতির ছয়টিশীর্যবিন্দু বিস্তৃত থাকে। এই ছয়টি sp^3d^2 সংকরায়িত কক্ষকগুলো ফ্লোরিন পরমাণুর একটি ইলেকট্রন যুক্ত কক্ষকের সহিত অভিলেপনের ফলে ছয়টি S-F সিগমা বন্ধন তৈরি করে।

এইভাবে SF₆ অণুটি সুষম অন্টতলীয় আকৃতির হয় যা চিত্র 4.18 এ দেখানো হল।

sp³d² সংকরায়ণ (hybridisation)

চিত্র 4.18 SF₆ অণুর অফতলকীয় আকৃতি।

4.7 আগবিক কক্ষক তত্ত্ব (MOLECULAR ORBITAL THEORY)

1932 খ্রিস্টাব্দে বিজ্ঞানী এফ. হুন্ড (F. Hund) এবং আর.এস. মুলিকান (R.S. Mulliken) আণবিক কক্ষক তত্ত্বটি প্রকাশ করেন। এই তত্ত্বের লক্ষ্যণীয় বৈশিষ্ট্যগুলো হল বা মূল প্রতিপাদ্য বিষয়গুলো হল—

- পরমাণুর ইলেকট্রনগুলো যেমন বিভিন্ন পারমাণবিক কক্ষকে থাকে তেমনি অণুর ইলেকট্রনগুলো বিভিন্ন আণবিক কক্ষকে থাকে।
- (ii) প্রতিসম এবং সমশস্তি বিশিষ্ট পারমাণবিক কক্ষকগুলোর মিলনের ফলে আণবিক কক্ষক গঠিত হয়।
- (iii) যেখানে পারমাণবিক কক্ষকের একটি ইলেকট্রন একটি নিউক্লিয়াস দ্বারা প্রভাবিত হয় সেখানে আণবিক কক্ষকে এটি অণুতে উপস্থিত দুই বা ততোধিক পরমাণুর নিউক্লিয়াস দ্বারা

প্রভাবিত হয়। তাই একটি পারমাণবিক কক্ষক, এক কেন্দ্রিক হয় যেখানে আণবিক কক্ষক বহুকেন্দ্রিক হয়।

- (iv) সংযোজিত পারমাণবিক কক্ষকের সংখ্যা এবং গঠিত আণবিক কক্ষকের সংখ্যা সমান হয়। দুটি পারমাণবিক কক্ষকের মিলনের ফলে দুটি আণবিক কক্ষক গঠিত হয়। তাদের একটি হল অণুবন্ধী আণবিক কক্ষক (Bonding M.O) যেখানে অন্যটি হল অনণুবন্ধী আণবিক (Antibonding M.O) কক্ষক।
- ৩মনণুবন্ধী আণবিক কক্ষকের (Antibonding molecular orbital) চেয়ে অণুবন্ধী আণবিক কক্ষকের (Bonding molecular orbital) শক্তিকম এবং তার ফলে অধিক সুস্থিত হয়।
- (vi) ঠিক যেমন একটি পরমাণুর নিউক্লিয়াসের চারদিকে ইলেকট্রনের সম্ভাব্য বিতরণ একটি পারমাণবিক কক্ষক দ্বারা বোঝানো হয় তেমনি অণুর ক্ষেত্রে নিউক্লিয়াসগুলোর চারদিকে ইলেকট্রনের সম্ভাব্য বিতরণ একটি আণবিক কক্ষক দ্বারা বোঝানো হয়।
- (vii) আণবিক কক্ষকগুলো পারমাণবিক কক্ষকের মতো অফবাউ নীতি, পাউলির অপবর্জন নীতি এবং হুন্ডের সূত্রানুসারে ইলেকট্রন দ্বারা পূর্ণ হয়।

4.7.1 পারমাণবিক কক্ষকসমূহের রৈখিক সমন্বয়-এর দ্বারা আণবিক কক্ষক গঠন (Formation of Molecular Orbitals Linear Combination of Atomic Orbitals [LCAO]) :

তরঙ্গা বলবিদ্যায় পারমাণবিক কক্ষকগুলোকে তরঙ্গা অপেক্ষক (ψ 's) দ্বারা প্রকাশ করা হয় যাহা ইলেকট্রন তরঙ্গোর বিস্তারকে প্রকাশ করে। স্রোভিঞ্জারের তরঙ্গা সমীকরণ সমাধান করে এই তরঙ্গা অপেক্ষকগুলোর মান পাওয়া যায়। তরঙ্গা সমীকরণটি এতই জটিল প্রকৃতির যে একের অধিক ইলেকট্রন যুক্ত তন্ত্রের (system) জন্য সমাধান করা সম্ভব নয়। তেমনি আণবিক কক্ষকের তরঙ্গা অপেক্ষক ও তরঙ্গা সমীকরণ সমাধান করে পাওয়া সম্ভব নয়। এই সমস্যাকে অতিক্রম করার জন্য একটি বিকল্প আনুমানিক পম্থতি গ্রহণ করা হয়েছে যাহা পারমাণবিক কক্ষক সমূহের রৈখিক সমন্বয় (LCAO) পদ্ধতি নামে পরিচিত।

চলো, আমরা দ্বিপরমাণুক হাইড্রোজেন অণুর স্বজাতি নিউক্লিয়াস দ্বয়ের (Homonuclear) ক্ষেত্রে এই পম্বতি প্রয়োগ করি। ধরো হাইড্রোজেন অণুতে A এবং B দুটি পরমাণু আছে। ভূমিস্তরে প্রত্যেক হাইড্রোজেন পরমাণুর 1s কক্ষকে একটি ইলেকট্রন থাকে। এই পরমাণুগুলোর পারমাণবিক কক্ষকগুলোকে তরঞ্চা অপেক্ষক ψ_{A} এবং $\psi_{\rm B}$ দ্বারা প্রকাশ করা হয়। পারমাণবিক কক্ষকগুলোর রৈখিক সমন্বয় দুভাবে অর্থাৎ পারমাণবিক কক্ষকগুলোর তরজ্ঞা অপেক্ষক যোগ করে এবং পারমাণবিক কক্ষকগুলোর তরজ্ঞা অপেক্ষক বিয়োগ করে আণবিক কক্ষক পাওয়া যায়।

$$\psi_{_{
m MO}} = \psi_{_{
m A}} \pm \psi_{_{
m B}}$$
দুটি আণবিক কক্ষক σ এবং σ* গঠিত হয়।
σ = $\psi_{_{
m A}} + \psi_{_{
m B}}$
σ* = $\psi_{_{
m A}} - \psi_{_{
m B}}$

পারমাণবিক কক্ষকগুলো তরঙ্গা অপেক্ষক যোগ করে যে σ আণবিক কক্ষক গঠিত হয় তাকে **অনুবন্থী আণবিক কক্ষক** (Bonding molecular orbital) বলে এবং পারমাণবিক কক্ষকগুলোর তরঙ্গা অপেক্ষক বিয়োগ করে যে σ* আণবিক কক্ষক গঠিত হয় তাকে **অননুবন্ধী আণবিক কক্ষক** (Antibonding molecular orbital) বলে, যাহা 4.19 চিত্রে দেখানো হল।

গুণগতভাবে বোঝা যায় সংযোজিত পরমাণুগুলোর ইলেকট্রন তরঙ্গের গঠনমূলক বা ধ্বংসাত্মক মিলনের ভিত্তিতে আণবিক কক্ষক গঠিত হয়। বন্ধনে আবদ্ধ পরমাণু দুটির ইলেকট্রনের একই দশা বিশিষ্ট তরঙ্গাগুলোর গঠনমূলক মিলনের ফলে একে অপরের সহিত শক্তিশালী অণুবন্ধী আণবিক কক্ষক গঠিত হয় যেখানে ইলেকট্রনের ভিন্ন দশা বিশিষ্ট তরঙ্গাগুলোর ধ্বংসাত্মক মিলনের ফলে **অনণুবন্ধী** আণবিক কক্ষক গঠিত হয় এবং এই ধ্বংসাত্মক মিলনের সময় তরঙ্গা

দুটি একে অপরকে প্রশমিত করে। ফলস্বরূপ অনুবন্ধী আণবিক কক্ষকে বন্ধনী পরমাণুগুলোর নিউক্লিয়াস দুটির মধ্যে ইলেকট্রনের গাঢ়ত্ব বেশি হয় বলে নিউক্লিয়াস দ্বয়ের মধ্যে বিকর্ষণ বল খুব কম হয়, যেখানে অনণুবন্ধী আণবিক কক্ষকে ইলেকট্রনের গাঢ়ত্ব নিউক্লিয়াস দুটি মধ্যবর্তী স্থান থেকে দুরে হয়। ফলে, দুটি নিউক্লিয়াসের মধ্যে একটি নিঃস্পন্দ তল (nodal plane) [যেখানে ইলেকট্রনের গাঢ়ত্ব শূন্য] পাওয়া যায় এবং নিউক্লিয়াস দুটি মধ্যে বিকর্ষণ বল সর্বোচ্চ হয়। অণুবন্ধী আণবিক কক্ষকে উপস্থিত ইলেকট্রনের গাঢ়ত্ব শূন্য] পাওয়া বায় এবং নিউক্লিয়াস দুটি মধ্যে বিকর্ষণ বল সর্বোচ্চ হয়। অণুবন্ধী আণবিক কক্ষকে উপস্থিত ইলেকট্রনগুলো নিউক্লিয়াসদ্বয়কে ধরে রাখে এবং সংশ্লিন্ট অণুটিকে স্থিতিশীল করে। ফলে যে যে পারমাণবিক কক্ষকের মিলনের ফলে অণুবন্ধী আণবিক কক্ষক গঠিত হয় তার শক্তি, পারমাণবিক কক্ষকের চেয়ে নিম্নতর শক্তি সম্পন্ন হয়।বিপরীতে অনণুবন্ধী আণবিক কক্ষকের হৈলেকট্রন সংশ্লিন্ট অণুটিকে দুঃস্থিত করে। এই কারণে এই আণবিক কক্ষকে ইলেকট্রনের পারস্পরিক বিকর্ষণ ইলেকট্রন এবং নিউক্লিয়াসের মধ্যে আকর্ষণের চেয়েও বেশি হয়, ফলে মোট শক্তি বেড়ে যায়।

এটি উল্লেখযোগ্য যে অনণুবন্ধী কক্ষকের শক্তি বন্ধনে অংশ গ্রহণকারী মূল পারমাণবিক কক্ষকগুলো থেকে বেড়ে যায় এবং অনুবন্ধী কক্ষকের শক্তি বন্ধনে অংশ গ্রহণকারী মূল পারমাণবিক কক্ষকগুলো থেকে কমে যায়। তবে দুটি আণবিক কক্ষকের মোট শক্তি দুটি মূল পারমাণবিক কক্ষকের শক্তির সমান হয়।

4.7.2 পারমাণবিক কক্ষকসমূহের সমন্বয়ের শর্তাবলি (Conditions for the Combination of Atomic Orbitals)

পারমাণবিক কক্ষকসমূহের রৈখিক সমন্বয়ে আণবিক কক্ষক গঠিত হবে যদি নিম্নলিখিত শর্তাবলি সিদ্ধ হয়।

 সংযোজিত পারমাণবিক কক্ষকগুলোর শক্তি সমান বা প্রায় সমান হতে হবে। এর দ্বারা বোঝায় 1s কক্ষক, কেবলমাত্র আরেকটি 1s কক্ষকের সহিত মিলিত হবে কিন্তু 2s কক্ষকের সহিত হবে না, কারণ 2s কক্ষকের শক্তি 1s কক্ষকের চেয়ে বেশি। ভিন্ন পরমাণুর ক্ষেত্রে এটি সত্য নয়।

2. সংযোজিত পারমাণবিক কক্ষকগুলো আণবিক অক্ষ বরাবর অবশ্যই প্রতিসম হতে হবে। প্রচলিত রীতি অনুযায়ী z অক্ষকে আণবিক অক্ষরূপে ধরা হয়। একটি গুরুত্বপূর্ণ তথ্য হল প্রতিসম না হলে, সমশস্তি বা প্রায় সমশস্তি সম্পন্ন কক্ষকগুলোর মধ্যে মিলন সম্ভব নয়। উদাহরণ স্বরূপ একটি পরমাণুর 2p_কক্ষক অপর একটি পরমাণুর $2p_z$ কক্ষকের সাথেই মিলিত হবে। কিন্তু ভিন্ন প্রতিসম বিশিষ্ট কক্ষক $2p_x$ বা $2p_y$ কক্ষকের সাথে মিলিত হবে না।

 সংযোজিত পারমাণবিক কক্ষকগুলো অবশ্যই বেশি মাত্রায় অভিলেপিত হবে। অভিলেপনের মাত্রা যত বেশি হবে একটি আণবিক কক্ষকের নিউক্লিয়াসগুলোর মধ্যে ইলেকট্রনের ঘনত্ব তত বেশি হবে।

4.7.3 আণবিক কক্ষকের প্রকারভেদ (Types of Molecular Orbitals)

দ্বিপরমাণুক অণুর আণবিক কক্ষক সমূহকে σ (sigma), π (pi), δ (delta) ইত্যাদি সাংকেতিক চিহ্ন দ্বারা প্রকাশ করা হয়।

এই নামকরণ অনুসারে বা **এই সাংকেতিক চিহ্ন অনুসারে ত** আণবিক কক্ষকণুলো বন্ধন অক্ষের চারদিকে প্রতিসম হয় যেখানে π আণবিক কক্ষকণুলো প্রতিসম হয় না। উদাহরণস্বরূপ 1sকক্ষকণুলোর দুটি কেন্দ্রের মধ্যে রৈখিক সমন্বয়ের ফলে দুটি আণবিক কক্ষক গঠিত হয় যা বন্ধন অক্ষের চারিদিকে প্রতিসম হয়। এই ধরনের আণবিক কক্ষকণুলো σ (সিগমা) প্রকারের হয় এবং σIs ও $\sigma^* Is$ [চিত্র 4.20(a)] দ্বারা প্রকাশ করা হয়।

যদি z অক্ষকে আন্তঃ নিউক্লিয় অক্ষ হিসেবে ধরা হয় তাহলে দুটি পরমাণুর $2p_z$ কক্ষকগুলোর রৈখিক সমন্বয়ে দুটি আণবিক কক্ষক গঠিত হয়, যাদের $\sigma 2p_z$ এবং $\sigma * 2p_z$ দ্বারা প্রকাশ করা হয়। [চিত্র 4.20(b)]

 $2p_x$ এবং $2p_y$ পারমাণবিক কক্ষকগুলো থেকে গঠিত আণবিক কক্ষকগুলো বন্ধন অক্ষের চারদিকে প্রতিসম হয় না কারণ আণবিক অক্ষের উপরে ও নিচে ধনাত্মক এবং ঋণাত্মক লোব্ (lobe) গুলো উপস্থিত থাকে। এই আণবিক কক্ষকগুলোকে π এবং π* [চিত্র 4.20(c)] দ্বারা চিহ্নিত করা হয়। একটি π অণুবন্ধী আণবিক কক্ষকের (π MO) ইলেকট্রন ঘনত্ব আন্তঃ নিউক্লিয়ার অক্ষের উপরে ও নীচে বেশি হয়। π* অনণুবন্ধী আণবিক কক্ষকের (Antibonding MO) ক্ষেত্রে দুটি নিউক্লিয়াসের মধ্যে একটি নোড্ (নিঃস্পন্দ) বর্তমান থাকে।

4.7.4 আণবিক কক্ষকগুলোর মধ্যে শক্তিস্তরের চিত্র (Energy Level Diagram for Molecular Orbitals)

আমরা দেখতে পেয়েছি দুটি আণবিক কক্ষক ত1s এবং ত*1s গঠিত হয়েছে দুটি পরমাণুর 1s পারমাণবিক কক্ষকের অভিলেপনের মাধ্যমে। একই উপায়ে দুটি পরমাণুর 2s এবং 2p এর আটটি পরমাণবিক কক্ষক আটটি আণবিক কক্ষক তৈরি করে যা নীচে দেখানো হল।

চিত্র 4.20 (a) পারমাণবিক কক্ষক (b) 2p ু পারমাণবিক কক্ষক (c) 2p ু পারমাণবিক কক্ষকগুলোর দ্বারা গঠিত অণুবন্ধী এবং অনণুবন্ধী আণবিক কক্ষক সমূহের শক্তিস্তর এবং এদের শক্তিক্রমের রেখাচিত্র।

অনণুবন্ধী (Antibonding) আণবিক কক্ষকসমূহ— $\sigma * 2s \ \sigma * 2p, \ \pi * 2p_x \ \pi * 2p_y$ অণুবন্ধী (Bonding) আণবিক কক্ষক সমূহ— $\sigma 2s \ \sigma 2p, \ \pi 2p_x \ \pi 2p_y$. পর্যায় সারণির দ্বিতীয় পর্যায়ের মৌলগুলো দ্বারা গঠিত একই নিউক্লিয়াস যুক্ত দ্বি-পারমাণুক অণুর আণবিক কক্ষকগুলোর শক্তিস্তরের ক্রম পরীক্ষালব্ধভাবে স্পেকট্রোস্কপিক তথ্য থেকে নির্ণয় করা হয়েছে। O₂ এবং F₂ অণুর বিভিন্ন আণবিক

কক্ষকগুলোর শক্তিস্তরের ঊর্ধ্বক্রম নীচে দেওয়া হল—

$$\begin{split} \sigma ls &< \sigma^* \, ls < \sigma 2s < \sigma^* 2s < \sigma 2 \, p_z < (\pi \ 2 \, p_x = \pi \ 2 \, p_y) \\ &< (\pi^* 2 \, p_x = \pi^* 2 \, p_y) < \sigma^* 2 \, p_z \end{split}$$

তবে অবশিষ্ট Li₂, Be₂, B₂, C₂, N₂ অণুগুলোর জন্য আণবিক কক্ষকসমূহের এই শক্তিস্তরের ক্রম ঠিক নয়। উদাহরণস্বরূপ পরীক্ষামূলকভাবে পর্যবেক্ষণ করে দেখা গেছে যে B₂, C₂, N₂ ইত্যাদি অণুগুলোর ক্ষেত্রে বিভিন্ন আণবিক কক্ষকগুলোর শক্তিস্তরের উধ্বর্ক্রম হল—

$$\begin{split} \sigma ls &< \sigma^* ls < \sigma 2s < \sigma^* 2s < (\pi \ 2p_x = \pi \ 2p_y) \\ &< \sigma 2p_z < (\pi^* 2p_x = \pi^* 2p_y) < \sigma^* 2p_z \end{split}$$

এই ক্রমের গুরুত্বপূর্ণ চারিত্রিক বৈশিষ্ট্য হল যে $σ2p_z$ আণবিক কক্ষকের শক্তিমাত্রা π $2p_x$ এবং π $2p_y$ এর আণবিক কক্ষকের শক্তিমাত্রার চেয়ে বেশি।

4.7.5 আণবিক আচরণ এবং ইলেকট্টন বিন্যাস (Electronic Configuration and Molecular Behaviour)

বিভিন্ন আণবিক কক্ষকগুলোর মধ্যে ইলেকট্রনের বিতরণকেই বলা হয় অণুর ইলেকট্রন বিন্যাস। অণুসম্পর্কিত গুরুত্বপূর্ণ তথ্য অণুর ইলেকট্রন বিন্যাস থেকে পাওয়া যায়, যা নীচে আলোচনা করা হল।

অণুর স্থায়িত্ব বা অণুর সুস্থিরতা (Stability of Molecules) : অনুবন্থী কক্ষকগুলোর ইলেকট্রন সংখ্যাকে N_b দ্বারা এবং অনণুবন্থী কক্ষকগুলোর ইলেকট্রন সংখ্যাকে N_a দ্বারা প্রকাশ করা হয় তবে

(i) অণুটি সুস্থিত হবে যদি $\rm N_{\rm b}$ এর মান $\rm N_{\rm a}$ থেকে বেশি হয়।

(ii) অণু দুঃস্থিত হবে। যদি N_b এর মান N_a এর থেকে কম হয়। প্রথম ক্ষেত্রে অধিগৃহীত অণুবন্ধী কক্ষকের সংখ্যা বেশি হলে বন্ধনটি শক্তিশালী হবে এবং ফলস্বরূপ সুস্থিত অণু পাওয়া যাবে। দ্বিতীয় ক্ষেত্রে অনণুবন্ধী প্রভাব শক্তিশালী হওয়ায় অণুটি দুঃস্থিত হয়।

বন্ধন ক্রম (Bond order) : অণুবন্ধী এবং অনণুবন্ধী কক্ষকগুলোর মধ্যে উপস্থিত ইলেকট্রন সংখ্যার পার্থক্যের অধিকাংশকেই বলা হয় বন্ধন ক্রম।

বন্ধন ক্রম (B.O.) = ½ (N_b-N_a)

অণুর স্থায়িত্ব সংক্রান্ত উপরে বর্ণিত নিয়মগুলো বন্ধন ক্রম অনুযায়ী নিম্নলিখিতভাবে নতুন করে বলা যেতে পারে। ধনাত্মক বন্ধন ক্রম হলে (অর্থাৎ N_b > N_a) অণুটি স্থায়ী হয় যেখানে ঋণাত্মক (অর্থাৎ N_b<N_a) বা শূন্য (অর্থাৎ N_b = N_a) বন্ধন ক্রম হলে অণুটি দুঃস্থিত হয়।

বন্ধনের প্রকৃতি (Nature of the bond) : সনাতন ধারণা অনুযায়ী অখণ্ড বন্ধন ক্রম 1, 2 বা 3 যথাক্রমে এক বন্ধন, দ্বিবন্ধন ও ত্রিবন্ধনকে বোঝায়।

বন্ধন দৈর্ঘ্য (Bond-length) : একটি অণুর দুটি পরমাণুর মধ্যকার বন্ধন ক্রম থেকে বন্ধন দৈর্ঘ্যের আণুমানিক পরিমাপ পাওয়া যেতে পারে। বন্ধন ক্রম বৃদ্ধি পেলে বন্ধন দৈর্ঘ্য হ্রাস পায়।

টেম্বক প্রকৃতি (Magnetic nature) : একটি অণুর সবগুলো আণবিক কক্ষক যদি দুটি করে ইলেকট্রন দ্বারা অধিকৃত থাকে তাহলে অণুটি তিরশ্চুম্বকীয় (চৌম্বক ক্ষেত্র দ্বারা বিকর্ষিত হয়) হবে। তবে এক বা একাদিক আণবিক কক্ষক যদি একটি ইলেকট্রন দ্বারা অধিকৃত থাকে তাহলে অণুটি পরাশ্চুম্বকীয় (চৌম্বক ক্ষেত্র দ্বারা আকর্ষিত হয়) হবে। উদাহরণ হল O, অণু।

4.8 কিছু দ্বিপরমাণুক অণুর স্বজাতি নিউক্লিয়াসের মধ্যেকার বন্থন (BONDING IN SOME HOMONUCLEAR DIATOMIC MOLECULES)

এই অনুচ্ছেদে আমরা কিছু স্বজাতি নিউক্লিয়াসযুক্ত দ্বিপরমাণুক অণুতে উপস্থিত বন্ধন নিয়ে আলোচনা করব।

 হাইড্রোজেন অণু (H₂): দুটি হাইড্রোজেন পরমাণু মিলিত হয়ে এটি গঠিত হয় । প্রত্যেক হাইড্রোজেন পরমাণুর 1s কক্ষকে একটি করে ইলেকট্রন আছে । সুতরাং হাইড্রোজেন অণুতে সর্বমোট দুটি ইলেকট্রন আছে যা 61s আণবিক কক্ষকে উপস্থিত । অতএব হাইড্রোজেন অণুর ইলেকট্রন বিন্যাসটি হল—

$$H_2$$
: $(\sigma ls)^2$

H₂অণুর বন্ধনক্রম নিম্নলিখিতভাবে গণনা করা যায়।

বন্ধন ক্রম =
$$\frac{N_b - N_a}{2} = \frac{2 - 0}{2} = 1$$

এর দ্বারা বোঝা যায় দুটি হাইড্রোজেন পরমাণু সমযোজী এক বন্ধন দ্বারা পরস্পরের সঙ্গে যুক্ত থাকে। দেখা গেছে হাইড্রোজেন অণুর বন্ধন বিয়োজন শক্তির মান 438 kJ mol এবং বন্ধন দৈর্ঘ্যে 74 pm এর সমান। যেহেতু হাইড্রোজেন অণুতে কোনো অযুগ্ম ইলেকট্রন নেই, তাই এটি তিরশ্চুম্বকীয় হয়।

2. হিলিয়াম অণু (He₂) : হিলিয়াম পরমাণুর ইলেকট্রন বিন্যাস হল 1s² । প্রত্যেক হিলিয়াম পরমাণুতে 2টি করে ইলেকট্রন আছে । সুতরাং He₂ অণুতে 4টি ইলেকট্রন আছে । এই ইলেকট্রনগুলোকে ত1s এবং ত*1s আণবিক কক্ষকে স্থান দেওয়ার ফলে ইলেকট্রন বিন্যাস হয়—

 He_2 : $(\sigma ls)^2 (\sigma^* ls)^2$

 He_2 অণুটির বন্ধনক্রম হল = $\frac{1}{2}(2-2) = 0$

সুতরাং He₂অণুটি দুঃস্থিত এবং এর অস্তিত্ব নেই। অনুরূপে, Be₂ অণুর ইলেকট্রন বিন্যাস হল ($\sigma 1s$)² ($\sigma * 1s$)² ($\sigma 2s$)² ($\sigma * 2s$)², সুতরাং Be₂ অণুটিরও কোনো অস্তিত্ব নেই।

 লিথিয়াম অণু (Li₂) : লিথিয়াম পরমাণুর ইলেকট্রন বিন্যাস হল 1s²2s¹Li₂অণুতে ছয়টি ইলেকট্রন আছে। সুতরাং Li₂অণুর ইলেকট্রন বিন্যাস হল—

 Li_2 : $(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma 2s)^2$

উপরের ইলেকট্রন বিন্যাসটিকে KK(ত2s)² রুপেও লেখা যায় যেখানে বদ্ধ K কক্ষের গঠন ত1s² ত*1s² কে KK দ্বারা প্রকাশ করা হয়।

Li₂ অণুর ইলেকট্রন বিন্যাস থেকে এটি স্পষ্ট যে, অণুববন্ধী আণবিক কক্ষকে চারটি ইলেকট্রন এবং অনণুবন্ধী আণবিক কক্ষকে দুইটি ইলেকট্রন বর্তমান। সুতরাং এর বন্ধনক্রম হল ½ (4 – 2) = 1. এর থেকে বোঝা যায় Li₂ অণুটি সুস্থিত এবং কোনো অযুগ্ম ইলেকট্রন না থাকার ফলে অণুটি **তিরশ্চুম্বকীয় হয়**। প্রকৃতপক্ষে Li₂ অণুটি তিরশ্চুম্বকীয় হলেও বাষ্পীয় দশায় এর অস্তিত্ব আছে। 4. কার্বন অণু (C₂) : কার্বন পরমাণুর ইলেকট্রন বিন্যাস হল *Is*² $2s^2 2p^2$, সুতরাং C₂ অণুতে মোট 12 ইলেকট্রন আছে। অতএব C₂ অণুর ইলেকট্রন বিন্যাস হল—

C₂: $(\sigma 1s)^2 (\sigma * 1s)^2 (\sigma * 2s)^2 (\sigma 2s)^2 (\pi 2 p_x^2 = \pi 2 p_y^2)$ or $KK(\sigma 2s)^2 (\sigma * 2s)^2 (\pi 2 p_x^2 = \pi 2 p_y^2)$

C₂ অণুর বন্ধন ক্রম হল ½ (8 − 4) = 2 এবং C₂ অণুটি তির*চুম্বকীয় হওয়া উচিত, প্রকৃতপক্ষে তির*চুম্বকীয় কার্বন

অণুগুলোকে বাষ্পীয় দশায় শনাক্ত করা হয়ছে। একটি গুরুত্বপূর্ণ দ্রন্টব্য হল যে C_2 অণুর দুটি π আণবিক কক্ষকে 4টি ইলেকট্রন থাকে, ফলে C_2 অণুর বন্ধন দুটি উভয়েই π বন্ধন হয়। বেশিরভাগ অন্যান্য অণুর ক্ষেত্রে একটি σ (সিগমা) বন্ধন ও একটি π (পাই) বন্ধন দ্বারা একটি দ্বিবন্ধন গঠিত হয়। N₂ অণুর বন্ধন এভাবে আলোচনা করা যায়।

5. অক্সিজেন অণু (O₂) : অক্সিজেন পরমাণুর ইলেকট্রন বিন্যাস হল 1s² 2s² 2p⁴। প্রত্যেক অক্সিজেন পরমাণুতে ৪টি ইলেকট্রন আছে, ফলে O₂ অণুতে 16টি ইলেকট্রন আছে। সুতরাং O₂ অণুর ইলেকট্রন বিন্যাস হল—

$$O_{2}: (\sigma 1s)^{2} (\sigma * 1s)^{2} (\sigma 2s)^{2} (\sigma * 2s)^{2} (\sigma 2p_{z})^{2} \left(\pi 2p_{x}^{2} = \pi 2p_{y}^{2}\right) (\pi * 2p_{x}^{1} = \pi * 2p_{y}^{1})$$

$$O_{2}: \begin{bmatrix} KK \ (\sigma 2s)^{2} (\sigma * 2s)^{2} (\sigma 2p_{z})^{2} \\ (\pi 2p_{x}^{2} = \pi 2p_{y}^{2}), (\pi * 2p_{x}^{1} = \pi * 2p_{y}^{1}) \end{bmatrix}$$

O2 অণুর ইলেট্রন বিন্যাস থেকে স্পষ্ট যে অণুবন্ধী আণবিক কক্ষকে আছে দর্শাটি ইলেকট্রন এবং অনণুবন্ধী আণবিক কক্ষকে আছে ছয়টি ইলেকট্রন। সুতরাং এর বন্ধনক্রম হল,

কংখন ক্রম =
$$\frac{1}{2} [N_b - N_a] = \frac{1}{2} [10 - 6] = 2$$

তাই অক্সিজেন অণুতে পরমাণুগুলো দ্বিবম্বন দ্বারা যুক্ত থাকে। আরো বলা যায় যে $\pi * 2p_x$ এবং $\pi * 2p_y$ আণবিক কক্ষকে দুটি অযুগ্ম ইলেকট্রন থাকায় O_2 অণুটি পরাশ্চুম্বকীয় হওয়া উচিত বলে ধারণা করা হয়েছিল। পরীক্ষালব্ধ ফলাফল এই ধারণার সঙ্গো সঙ্গাতিপূর্ণ।

এইভাবে, এই তত্ত্বটি অক্সিজেনের পরাশ্চুম্বকীয় প্রকৃতি সফলভাবে ব্যাখ্যা করে।

অনুরূপে, পর্যায় সারণির দ্বিতীয় পর্যায়ের অন্যান্য স্বজাতি নিউক্রিয়াস যুক্ত (Homonuclear) দ্বিপরমাণুক অণুর ইলেকট্রন বিন্যাস লেখা যায়।চিত্র 4.21এ বোরন (B₂) থেকে নিয়ন (Ne₂) অণুগুলোর আণবিক কক্ষকের অধিগ্রহণ এবং এদের আণবিক বৈশিষ্ট্য দেওয়া হল।আণবিক কক্ষক এবং তাদের মধ্যে ইলেকট্রন সংখ্যার ক্রম দেখানো হল। আণবিক কক্ষক শক্তিমাত্রার চিত্রের মাধ্যমে বন্ধন শক্তি, বন্ধন দৈর্ঘ্য, বন্ধন ক্রম, চৌম্বক ধর্মাবলি এবং যোজন কক্ষের ইলেকট্রন বিন্যাস নীচে দেওয়া হল।

চিত্র 4.21 B2 থেকে Ne2 এর আণবিক কক্ষকের অধিগ্রহণ এবং আণবিক ধর্মাবলী।

4.9 হাইড্রোজেন বন্ধন (HYDROGEN BONDING):

নাইট্রোজেন, অক্সিজেন এবং ফ্লোরিন মৌলগুলো হল তীব্র তড়িৎ ঋণাত্মক মৌল। এই মৌলগুলো যখন হাইড্রোজেন পরমাণুর সঙ্গে যুক্ত হয়ে সমযোজী বন্ধন গঠন করে তখন সমযোজী বন্ধনের ইলেক্ট্রনগুলোর স্থানান্তর তীব্র তড়িৎ ঋণাত্মক পরমাণুর দিকে ঘটে। ফলে আংশিক ধনাত্মক আধানগ্রস্ত হাইড্রোজেন পরমাণু, একটি তীব্র তড়িৎ ঋণাত্মক পরমাণুর সঙ্গে বন্ধন তৈরি করে। এই বন্ধনটি হাইড্রোজেন বন্ধন নামে পরিচিত এবং এটি সমযোজী বন্ধন থেকে দুর্বল বন্ধন। উদাহরণ স্বরূপ, HF অণুতে একটি HF অণুর হাইড্রোজেন পরমাণু অপর একটি HF অণুর ফ্লোরিণ পরমাণুর সঙ্গে হাইড্রোজেন বন্ধন গঠন করে যা নীচে চিত্রের মাধ্যমে দেখানো হল।

 $---H^{\delta_+}$ $F^{\delta_-}---H^{\delta_+}$ $F^{\delta_-}---H^{\delta_+}$ F^{δ_-}

এখানে হাইড্রোজেন বন্ধন দুটি অণুর মধ্যে সেতুরূপে কাজ করে। যা সমযোজী বন্ধনের মাধ্যমে একটি পরমাণুকে এবং হাইড্রোজেন বন্ধনের মাধ্যমে অন্য একটি পরমাণুকে ধরে রাখে। হাইড্রোজেন বন্ধনকে উপস্থাপন করা হয় ভগ্ন রেখার সাহায্যে যেখানে অখণ্ড রেখা সমযোজী বন্ধনকে বোঝায়। যে আকর্ষণ বল একটি অণুর হাইড্রোজেন পরমাণু এবং অপর অণুর তীব্র তড়িৎ ঋণাত্মক পরমাণুকে (F, O অথবা N) বেঁধে রাখতে সক্ষম, তাকেই বন্ধন H-বলে।

4.9.1 হাইড্রোজেন বন্ধন গঠনের কারণ (Cause of Formation of Hydrogen Bond)

হাইড্রোজেন যখন তীব্র তড়িৎ ঋণাত্মক মৌল 'X' এর সহিত বন্ধনের মাধ্যমে যুক্ত থাকে তখন দুটি পরমাণুর ভাগীদারি ইলেকট্রন হাইড্রোজেন পরমাণু থেকে দূরে সরে যায়। ফলে অপর পরমাণু 'X' এর তুলনায় হাইড্রোজেন পরমাণুটি উচ্চ তড়িৎ ধনাত্মক হয়। ইলেকট্রনগুলোর সরণ 'X' এর দিকে হওয়ায় হাইড্রোজেন আংশিকভাবে (δ^+) ধনাত্মক আধানগ্রস্ত হয় যেখানে 'X' আংশিক (৪-) ঋণাত্মক আধানগ্রস্ত হয়। এর ফলস্বরূপ ধ্রুবীয় অণুর মধ্যে তড়িৎ চুম্বকীয় আকর্ষণ বল কাজ করে, যা নীচে দেখানো হল—

$$H^{\delta_+}-X^{\delta_-}---H^{\delta_+}-X^{\delta_-}---H^{\delta_+}-X^{\delta_-}$$

যৌগের ভৌত অবস্থার উপর H-বন্ধনের মাত্রা নির্ভর করে। কঠিন অবস্থায় তা সর্বোচ্চ হয় এবং গ্যাসীয় অবস্থায় সর্বনিম্ন হয়। যৌগের ধর্মাবলী এবং গঠনের উপর হাইড্রোজেন বন্ধনের শক্তিশালী প্রভাব রয়েছে।

4.9.2 H-বন্ধনের ধরন (Types of H-Bonds)

H-বন্ধন দুই ধরনের—

- (i) আন্তঃ আণবিক হাইড্রোজেন বন্ধন (Intermolecular hydrogen bond)
- (ii) আন্তঃ আণবিক হাইড্রোজেন বন্ধন (Intramolecular hydrogen bond)

(1) আন্তঃ আণবিক হাইড্রোজেন বন্ধন (Intermolecular hydrogen bond): দুটি একই বা ভিন্ন যৌগের মধ্যে এই ধরনের বন্ধন গঠিত হয়। উদাহরণস্বরূপ HF অণু, অ্যালকোহল বা জল অণু ইত্যাদির মধ্যে H-বন্ধন।

(2) অন্তঃ আণবিক হাইড্রোজেন বন্ধন (Intramolecular hydrogen bond): একই অণুর H-পরমাণুটি দুটি তীব্র তড়িৎ ঋণাত্মক পরমাণু (F, O, N) মধ্যে থেকে এই ধরনের বন্ধন গঠিত হয়। উদাহরণস্বরূপ অর্থো-নাইট্রোফেনলে দুটি অক্সিজেন পরমাণুর মধ্যে হাইড্রোজেনের অবস্থান

চিত্র 4.22 অর্থো নাইট্রোফেনলে অন্তঃ আণবিক হাইড্রোজেন বন্ধন।

সারাংশ

কোসেলের প্রথম সূক্ষ্মদৃষ্টি অনুযায়ী তড়িৎ ধনাত্মক এবং তড়িৎ ঋণাত্মক আয়ণ গঠনের ক্রিয়া কৌশল, সংশ্লিষ্ট আয়নগুলোর নিষ্ক্রিয় গ্যাসের কাঠামো লাভের প্রক্রিয়ার সাথে সম্পর্কিত। আয়নগুলোর স্থায়িত্বের কারণ হল তাদের মধ্যে স্থির তড়িৎ চুম্বকীয় আকর্ষণ বল। এটিই তড়িৎ যোজ্যতার ধারণা দেয়।

লুইস প্রথমে পরমাণুগুলোর মধ্যে ইলেকট্রন জোড় ভাগাভাগির মাধ্যমে সমযোজী বন্ধনের ব্যাখ্যা দেন এবং বিক্রিয়ক পরমাণুগুলো ইলেকট্রন জোড় ভাগাভাগির মাধ্যমেই নিষ্ক্রিয় গ্যাসের কাঠামো লাভ করে। লুইস ডট্ সাংকেতিক চিহ্ন একটি নির্দিষ্ট মৌলের পরমাণুর যোজন ইলেকট্রন সংখ্যা দেখায় এবং লুইস ডট্ গঠনটি হল অণুর বন্ধনের সচিত্র উপস্থাপন।

আয়নীয় যৌগ গঠনকারী ক্যাটায়ন এবং অ্যানায়নগুলো পরস্পর যুক্ত হয়ে যে সুনির্দিন্ট ত্রিমাত্রিক গঠন বিশিষ্ট কঠিন পদার্থের সৃষ্টি করে তাকে বলে **কেলাস জালক** বা crystal lattice। কেলাসিত কঠিনে ধণাত্মক আয়ণের আধান ঋণাত্মক আয়নের আধানকে প্রশমিত করে দেয়। জালক (Lattice) গঠনে শক্তি নির্গমনের মাধ্যমেই কেলাস জালকটি সুস্থিত হয়। দুটি পরমাণুর মধ্যে একজোড়া ইলেকট্রনের ভাগাভাগির (sharing) ফলে একটি সমযোজী বন্ধন তৈরি হয়, যেখানে দুই জোড়া বা তিন জোড়া ইলেকট্রনের ভাগাভাগির (sharing) ফলে বহু বন্ধন তৈরি হয়। বন্ধনে আবন্ধ কিছু পরমাণুতে অতিরিক্ত ইলেকট্রন যুগল থাকে সেগুলো বন্ধনে অংশগ্রহণ করে না। এইগুলোকে বলা হয় **নিঃসঞ্চা ইলেকট্রন যুগল**।

একটি লুইস ডট্ গঠন একটি অণুর প্রতিটি পরমাণুর নিঃসঙ্গা ইলেকট্রন জোড় ও বন্ধনী ইলেকট্রন জোড়ের বিন্যাস প্রকাশ করে। রাসায়নিক বন্ধনে সম্পর্কযুক্ত গুরুত্বপূর্ণ স্থিতিমাপগুলো (Parameter) হল— বন্ধন দৈর্ঘ্য, বন্ধন ক্রম এবং বন্ধন ধ্রুবীয়তা, যাদের উপর যৌগের ধর্মের তাৎপর্যপূর্ণ প্রভাব রয়েছে।

একাধিক অণু এবং বহু পরমাণু সমন্বিত আয়নকে একটি মাত্র লুইস গঠন দ্বারা নির্ভুলভাবে বর্ণনা করা যায় না এবং একই কাঠামোর উপর ভিত্তি করে অনেকগুলো গঠন আঁকা যায় এবং এই গঠনগুলো একসাথে অণু বা আয়নটিকে প্রকাশ করে। এটি একটি খুব গুরুত্বপূর্ণ এবং বহুলভাবে ব্যবহৃত প্রয়োজনীয় ধারণা যাকে **রেজোন্যান্স** বা **সংস্পন্দন** বলা হয়। অবদানকারী কাঠামো বা ক্যানোনিকেল রূপগুলো একসঙ্গো মিলে রেজোন্যান্স হাইব্রিড গঠন করে যা অণু বা আয়নটিকে উপস্থাপন করে। ইলেকট্রন জোড় পরস্পরকে বিকর্ষণ করে এবং যতটা সম্ভব দূরে থাকতে চায় এই ধারণার উপর নির্ভর করেই VSEPR তত্ত্বটি গঠিত হয়েছে। যেটি অণুর জ্যামিতিক আকৃতি সম্পর্কে ধারণা দিতে ব্যবহৃত হয়। এই তত্ত্ব অনুসারে নিঃসঞ্জা যুগল-নিঃসঞ্চা যুগল, নিঃসঞ্চা যুগল-বন্ধন যুগল এবং বন্ধন যুগল-বন্ধন যুগল ইলেকট্রনগুলোর মধ্যে বিকর্ষণ দ্বারা অণুর জ্যামিতিক আকৃতি নির্ধারিত হয়। এইগুলোর মধ্যে বিকর্ষণের ক্রম হল— নিঃসঞ্চা যুগল-নিঃসঞ্চা যুগল > নিঃসঞ্চা যুগল বন্ধন যুগল এবং বন্ধন হে ত্ব আকৃতি নির্ধারিত হয়। এই গুরু অনুসারে বির্বাদ জ্যামিতিক আকৃতি সম্পর্কে ধারণা দিতে ব্যবহৃত হয়। এই তত্ত্ব অনুসারে নিঃসঞ্চা যুগল এবং বন্ধন যুগল বন্ধন যুগল ইলেকট্রনগুলোর মধ্যে বিকর্ষণ দ্বারা অণুর জ্যামিতিক আকৃতি নির্ধারিত হয়। এইগুলোর মধ্যে বিকর্ষণের ক্রম হল— নিঃসঞ্চা যুগল-নিঃসঙ্গা যুগল > নিঃসঙ্গা যুগল বন্ধন যুগল স্বণ্ণল > চ্বন্ধন যুগল বন্ধন যুগল ভার্বান্ডা মির্দা জান্ব জ্যামিতিক আকৃতি নির্ধারিত হয়। এইগুলোর মধ্যে বিকর্ষণের ক্রম হল— নিঃসঙ্গা যুগল-নিঃসঙ্গা যুগল > নিঃসঙ্গা যুগল বন্ধন যুগল ত্ব জ্যামিতিক আকৃতি নির্ধার্ণ বন্ধন যুগল ভার্বান্ডা বন্ধন যুগল > বন্ধন যুগল স্বণ্ণ - বন্ধন যুগল তা চার্বা ডাক্তা যুগল স্বাণ্ডা ব্য বন্ধন যুগল স্বাণ্ডা বের্দের জ্যামিতি হয়। এইগুলোর মধ্যে বিকর্ষণের ক্রম হল স্বাণ্ডা যুগল নিঃসঙ্গা যুগল স্ব জান্য যুগল স্বাণ্ডা বান্ধন যুগল স্বাণ্ডা বাণ্ডা যুগল স্বাণ্ডা যুগল স্বাণ্ডা যুগল স্বাণ্ডা বাণ্ডা ন্য বাল স্বাণ্ডা বাণ্ডা বাণ্ডা

যোজ্যতা বন্ধন (valence bond) তত্ত্ব মূলক সমযোজী বন্ধন গঠনের ক্ষেত্রে শক্তির বন্টন নিয়ে আলোকপাত করে যেখানে লুইস এবং VSEPR মডেল এ বিষয়ে নীরব ভূমিকা পালন করে। মূলত যোজ্যতা বন্ধন তত্ত্বকক্ষকগুলোর অভিলেপনের দ্বারা বন্ধন গঠনের প্রক্রিয়ার বর্ণনা দেয়। উদাহরণস্বরূপ দুটি হাইড্রোজেন পরমাণুর একটি ইলেকট্রন দ্বারা অধিকৃত 1s কক্ষকগুলোর অভিলেপনের ফলে হাইড্রোজেন অণু গঠিত হয়। দেখা যায় যে হাইড্রোজেন পরমাণুগুলো যখন একে অপরের কাছাকাছি আসে তখন তন্ত্রটির স্থিতিশক্তি হ্রাস পায়। সাম্যাবস্থায় আন্তঃ নিউক্রিয়ার দূরত্বে (বন্ধন দূরত্ব) শক্তি সবচেয়ে কম হয়। নিউক্রিয়াস দুটিকে আরও কাছে আনতে গেলে শক্তি হঠাৎ বেড়ে যায় এবং অণুটিকে অস্থায়ী করে দেয়। কক্ষকের অভিলেপনের ফলে নিউক্রিয়াস দুটির মধ্যে ইলেকট্রন গাঢ়ত্ব বেড়ে যায় যা পরমাণু দুটিকে কাছাকাছি নিয়ে আসে।

যদিও লক্ষ করা গেছে যে সঠিকভাবে বন্ধন শক্তি এবং বন্ধন দৈর্ঘ্য নির্ণয়ের ক্ষেত্রে কেবলমাত্র অভিলেপনই একমাত্র চলরাশি নয়, অন্যান্য চলরাশিগুলোকেও গণনায় আনতে হবে। বহু পরমাণুক অণুর বিশেষ আকৃতি ব্যাখ্যা করার জন্য পাউলিং পারমাণবিক কক্ষক সমূহের সংকরায়ণের ধারণা নথিভুক্ত করেন। BeCl₂, BCl₃, CH₄, NH₃ এবং H₂O অণুর গঠন প্রণালী এবং জ্যামিতিক আকৃতি ব্যাখ্যা করার জন্য Be, B,C, N এবং O পরমাণুর পারমাণবিক কক্ষকগুলির *sp,sp*², *sp*³ সংকরায়ণ ব্যবহার করেন। *sp,sp*² সংকরায়ণের সাহায্যে C₂H₂ এবং C₂H₄ অণুগুলোর বহু বন্ধন গঠনের ব্যাখ্যা দেওয়া যায়।

আণবিক কক্ষক (MO) তত্ত্ব, পারমাণবিক কক্ষকগুলোর বিন্যাস এবং সংযোজনের মাধ্যমে আণবিক কক্ষক গঠন এবং সার্বিকভাবে অণুতে উপস্থিত বন্ধনের ব্যাখ্যা দেয়। আণবিক কক্ষকের সংখ্যা গঠনকারী পারমাণবিক কক্ষকের সংখ্যার সমান হয়। অণুবন্থী আণবিক কক্ষক (Bonding molecular orbitals) নিউক্লিয়াসগুলোর মধ্যে ইলেকট্রনের গাঢ়ত্ব বৃদ্ধি করে এবং স্বতন্ত্র পারমাণবিক কক্ষকগুলোর থেকেও কম শক্তির অধিকারী হয়। অনণুবন্থী আণবিক কক্ষক (Antibonding molecular orbitals) নিউক্লিয়াসগুলোর মধ্যে শূন্য ইলেকট্রন গাঢ়ত্বের একটি অঞ্চল তৈরি করে এবং স্বতন্ত্র পারমাণবিক কক্ষকগুলো থেকেও বেশি শক্তির অধিকারী হয়। আণবিক কক্ষকসমূহের শক্তিস্তরের উধ্বর্ক্রম অনুযায়ী অণুর ইলেকট্রন বিন্যাস লেখা হয়। পরমাণুর মত, আনবিক কক্ষকগুলো ইলেকট্রন দ্বারা পূর্তির ক্ষেত্রেও পাউলির অপবর্জন নীতি এবং **হুন্ডের সূত্র প্রযোজ্য**। একটি অণু সুস্থিত হবে যদি অনুবন্থী আণবিক কক্ষকের ইলেকট্রন সংখ্যা অনণুবন্থী আণবিক কক্ষকের ইলেকট্রন সংখ্যার চেয়ে বেশি হয়।

দুটি তীব্র তড়িৎ ঋণাত্মক পরমাণু যেমন F, O এবং N এর মধ্যে যখন হাইড্রোজেন থাকবে তখনই হাইড্রোজেন বন্ধন গঠিত হবে। এটি আন্তঃ আণবিক (দুটি বা তার বেশি একই ধরনের অণু বা ভিন্ন ধরনের অণুর মধ্যে সংঘটিত হয়) বা আন্তঃ আণবিক (একই অণুর মধ্যে বর্তমান) উভয়ই হতে পারে। অনেক যৌগের ধর্মাবলি এবং গঠনে হাইড্রোজেন বন্ধনের প্রভাব অনস্বীকার্য।

অণুশীলনী

- 4.1 রাসায়নিক বন্ধন গঠনের ব্যাখ্যা দাও।
- 4.2 নিম্নলিখিত মৌলসমূহের পরমাণুগুলোর লুইস ডট্ চিহ্ন লেখো : Mg, Na, B, O, N, Br.
- 4.3 নিম্নলিখিত পরমাণু এবং আয়নগুলোর লুইস চিহ্ন লেখো : S এবং S²⁻, Al এবং Al³⁺, H এবং H⁻
- 4.4
 নিম্নলিখিত অণু এবং আয়নগুলোর লুইস গঠন আঁকো :

 H₂S, SiCl₄, BeF₂, CO²⁻, HCOOH

- অফটক সুত্রের সংজ্ঞা দাও। এর তাৎপর্য এবং সীমাবন্ধতা লেখো। 4.5
- আয়নিক বন্ধন তথা তড়িৎযোজী বন্ধন তৈরির উপযোগী শর্তগুলো লেখো। 4.6
- 4.7

- VSEPR মডেল ব্যবহার করে নিম্নলিখিত অণুগুলোর আকৃতি আলোচনা করো:

- BeCl₂, BCl₃, SiCl₄, AsF₅, H₂S, PH₃ NH, এবং H, O অণুর জ্যামিতিক গঠন বিকৃত চতুঃস্তলকীয় হওয়া সত্ত্বেও, জল অণুর বন্ধন কোনো অ্যামোনিয়া 4.8 থেকে কম। আলোচনা করো।
- বন্ধন ব্রমের ধারণা থেকে বন্ধন শক্তি কীভাবে প্রকাশ করবে। 4.9
- বন্ধন দৈর্ঘ্যের সংজ্ঞা দাও। 4.10
- CO₃²⁻ আয়নের সাপেক্ষে সংস্পন্দন (Resonance) এর গুরুত্বপূর্ণ দিকগুলো আলোচনা করো। 4.11
- নিচে H,PO, এর গঠন 1 ও 2 দ্বারা প্রকাশ করা হল। এই দুটি গঠনকে H,PO, এর রেজোন্যান্স হাইব্রিডের 4.12 ক্যানোনিকেল গঠন হিসেবে গ্রহণ করা যায় কি ? যদি না হয়, তার স্বপক্ষে কারণ দর্শাও।

Н	
Н:О:Р:О:Н	H:O:P:O:H
:0:	:0: H
(1)	(2)

- SO3, NO2 এবং NO3 এর সংস্পন্দন (Resonance) গঠনগুলো আঁকো। 4.13
- লুইস সাংক্রেতিক চিহ্ন ব্যবহার করে নিম্নলিখিত পরমাণুগুলোর মধ্যে ইলেকট্রন স্থানান্তরের মাধ্যমে ক্যাটায়ন ও 4.14 অ্যানায়ন গঠন দেখাও : (a) K এবং S (b) Ca এবং O (c) Al এবং N.
- CO, এবং H,O উভয়েই ত্রিপরমাণুক অণু হওয়া সত্ত্বেও জল অণুর আকৃতি bent (বাঁকা) কিন্তু CO, অণুটি 4.15 সরলরৈখিক। দ্বিমের ভ্রামকের সাহায্যে এর ব্যাখ্যা দাও।
- দ্বিমেরু ভ্রামকের তাৎপর্য/প্রয়োগ লেখো। 4.16
- তড়িৎ ঋণাত্মকতার সংজ্ঞা দাও। ইহা ইলেকট্রন আসন্তি (electron gain enthalpy) থেকে কীভাবে ভিন্ন ? 4.17
- উপযুক্ত উদাহরণ দ্বারা ধ্রুবীয় সমযোজী বন্ধনের ব্যাখ্যা দাও। 4.18
- LiF, K₂O, N₂, SO₂ এবং ClF₃ অণুগুলোর বন্ধনকে আয়নীয় চরিত্রের ঊর্ধ্বক্রম অমুসারে সাজাও। 4.19
- CH,COOH এর গঠন কাঠামোটি নীচে দেওয়া হল কিন্তু কিছু বন্ধন ভুল দেখানো হয়েছে। অ্যাসিটিক অ্যাসিডের 4.20 সঠিক লুইস গঠনটি লেখো।

- চতুস্তলকীয় গঠন ছাড়াও CH_4 এর সমতলীয় বর্গাকার গঠন সম্ভব সেখানে 4টি H পরমাণু বর্গাকৃতির শীর্ষ বিন্দুতে 4.21 এবং C পরমাণুটি কেন্দ্রে থাকবে। কিন্তু CH, সমতলীয় বর্গাকার নয় কেন ?
- যদিও Be–H বন্ধনগুলো ধ্রুবীয় তথাপি BeH, অণুটির দ্বিমেরু ভ্রামক শূন্য হয় কেন ? 4.22
- NH, এবং NF, অণুর মধ্যে কোন্টির দ্বিমেরু ভ্রামকের মান বেশি এবং কেন ? 4.23
- পারমাণবিক কক্ষকের সংকরায়ণ বলতে কী বোঝ ? sp, sp² এবং sp³ সংকরায়িত কক্ষকগুলোর আকৃতি বর্ণনা করো। 4.24
- নিম্নলিখিত বিক্রিয়ায় Al পরমাণুর সংকরায়ণের পরিবর্তন (যদি হয়ে থাকে) বর্ণনা করো। 4.25

 $AlCl_3 + Cl^- \rightarrow AlCl_4^-$

134

রাসায়নিক বন্ধন এবং আণবিক গঠন

- 4.26 নিম্নলিখিত রাাসায়নিক বিক্রিয়ায় B ও N পরমাণুর সংকরায়ণের কোনোও পরিবর্তন হয়েছে কি ?
 BF₃ + NH₃ → F₃B.NH₃
 4.27 C H এবং C H অগতে কার্বন প্রমাণগলোর মধ্যে যে দ্বিবন্ধন এবং নিবন্ধন গঠিত হয় তা চিনের মা
- 4.27 C₂H₄ এবং C₂H₂ অণুতে কার্বন পরমাণুগুলোর মধ্যে যে দ্বিবম্বন এবং ত্রিবন্ধন গঠিত হয় তা চিত্রের মাধ্যমে দেখাও।
- 4.28
 নিম্নলিখিত অণুগুলোর মধ্যে সিগমা ও পাই বন্ধনের মোট সংখ্যা কত ?

 (a) C,H, (b) C,H₄
- 4.29 x অক্ষকে আন্তঃ নিউক্লিয়ার অক্ষ রূপে বিবেচনা করে বের করো, নিম্নলিখিত কোন ক্ষেত্রে সিগমা বন্ধন গঠন সম্ভব নয় এবং কেন ?

(a) 1s এবং 1s (b) 1s এবং 2p_x (c) 2p_y এবং 2p_y (d) 1s এবং 2s.

- 4.30
 নিম্নলিখিত অণুগুলোতে কার্বন পরমাণুগুলোর সংকর ব্যবহৃত কক্ষকগুলো উল্লেখ করো।

 (a) CH,-CH, (b) CH,-CH=CH, (c) CH,-CH,-OH (d) CH,-CHO (e) CH,COOH
- 4.31
 ইলেকট্রন বন্ধন ইলেকট্রন যুগল এবং নিঃসঙ্গা ইলেকট্রন যুগল বলতে কী বোঝায় ? প্রতিক্ষেত্রে একটি করে

 উদাহরণ দ্বারা বিবৃত করো।
- 4.32
 সিগমা ও পাই বন্ধনের মধ্যে পার্থক্য নির্দেশ করো।
- 4.33 যোজ্যতা বন্ধন তত্ত্ব (Valence bond theory) অনুসারে H₂ অণুর গঠন ব্যাখ্যা করো।
- 4.34 পারমাণবিক কক্ষকগুলোর রৈখিক সমন্বয়ের ফলে যে আণবিক কক্ষক গঠিত হয় তার জন্য প্রয়োজনীয় শর্তগুলো লেখো।
- 4.35 আণবিক কক্ষক তত্ত্ব ব্যবহার করে ব্যাখ্যা করো। কেন Be, অণুটির কোনো অস্তিত্ব নেই।
- 4.36 নিম্নলিখিত পদার্থ (Species) গুলোর আপেক্ষিক স্থায়িত্ব এবং চৌম্বক ধর্ম ব্যাখ্যা করো।
 O₂,O⁺₂,O⁻₂ (সুপার অক্সাইড) O²₂ (পারঅক্সাইড)
- 4.37 কক্ষকের উপস্থাপনায় যে ধনাত্মক (+) এবং ঋণাত্মক (-) চিহ্ন দেওয়া হয় তার তাৎপর্য লেখো।
- 4.38 PCl₅ অণুটির সংকরায়ণ বর্ণনা করো। নিরক্ষীয় বন্ধন (equatorial bonds) গুলো থেকে অক্ষীয় বন্ধন (axial bonds) গুলো দীর্ঘ হয় কেন?
- 4.39 হাইড্রোজেন বন্ধনের সংজ্ঞা দাও। ভ্যান্ডারওয়াল বল থেকে এটি দুর্বল না শক্তিশালী ?
- 4.40 বন্ধন ক্রম বলতে কী বোঝা ? N₂, O₂, O⁺₂ এবং O⁻₂ এদের বন্ধন ক্রম গণনা করো।

পঞ্জম অধ্যায় (UNIT 5)

পদার্থের অবস্থা (STATES OF MATTER)

উদ্দেশ্য :

এই অধ্যায়টি পর তোমরা সক্ষম হবে—

- পদার্থের কণাগুলোর মধ্যে উপস্থিত আন্তরাণবিক আকর্ষণ বল এবং তাপশন্তির ভারসাম্যের উপর ভিন্তি করে পদার্থের বিভিন্ন অবস্থাগুলোর অস্তিত্ব ব্যাখ্যা করতে।
- আদর্শ গ্যাসের আচরণ নিয়ন্ত্রণকারী সূত্রগুলোকে
 ব্যাখা করতে।
- গ্যাসের সূত্রগুলোকে বাস্তব জীবনে বিভিন্ন পরিস্থিতিতে প্রয়োগ করতে।
- বাস্তব গ্যাসের আচরণ ব্যাখ্যা করতে।
- গ্যাসের তরলীকরণের জন্য প্রয়োজনীয়
 শর্তগুলো ব্যাখ্যা করতে।
- গ্যাসীয় অবস্থা এবং তরল অবস্থার মধ্যে যে
 নিরবচ্ছিন্নতা বর্তমান তা বুঝতে।
- গ্যাসীয় অবস্থা এবং বাম্পের মধ্যে পার্থক্য করতে।
- আন্তরাণবিক আকর্ষণ বল অনুসারে তরলের ধর্মগুলো ব্যাখ্যা করতে।

The snowflake falls, yet lays not long Its feath'ry grasp on Mother Earth Ere Sun returns it to the vapors Whence it came, Or to waters tumbling down the rocky slope.

Rod O' Connor

ভূমিকা (INTRODUCTION)

পূর্ববর্তী অধ্যায়ে আমরা পদার্থের একক কণার সাথে সম্পর্কিত ধর্মসমূহ যেমন পারমাণবিক আকার, আয়নায়ন এনথালপি, ইলেকট্রনীয় আধান ঘনত্ব, আণবিক আকৃতি এবং ধ্রুবীয়তা ইত্যাদি সম্পর্কে জেনেছি। রাসায়নিক (তন্ত্রের) বেশিরভাগ পর্যবেক্ষণীয় বৈশিষ্ট্য যেগুলোর সাথে আমরা পরিচিত, সাধারণত পদার্থের **সামগ্রিক** (Bulk) ধর্ম অর্থাৎ যে সকল ধর্ম বিশাল সংখ্যক পরমাণু, আয়ন বা অণু সমষ্টির সাথে সম্পর্কযুক্ত— তা প্রকাশ করে। উদাহরণস্বরূপ বলা যায় তরলের একটি অণুর পৃথক স্ফুটন হয় না বরং **সমগ্র তরলেরই স্ফুটন** ঘটে। জলের অণুসমষ্টির **ধর্ম হল আর্দ্র** করা। একটি পৃথক জলের অণু আর্দ্র করে না। জল কঠিন অবস্থায় বরফ হিসাবে থাকতে পারে। এটি তরল অবস্থায়ও থাকে বা গ্যাসীয় অবস্থা, যেমন জলীয় বাষ্প বা **স্টাম** হিসাবেও থাকতে পারে। বরফ, জল এবং বাম্পের ভৌতধর্মগুলো আলাদা হয়। জলের তিনটি অবস্থাতেই এর রাসায়নিক সংযুতি একই অর্থাৎ H₂O। জলের এই তিনটি অবস্থার বৈশিষ্ট্যগুলো জলের অণুগুলোর শক্ত্তি এবং যেভাবে জলের অণুগুলো একত্রিত হয় তার উপর নির্ভর করে। এই বিয়াটি অন্যান্য পদার্থেরে ক্ষেত্রেও একইভাবে সত্যে।

ভৌত অবস্থার পরিবর্তনের সাথে পদার্থের রাসায়নিক ধর্ম সমূহের কোনো পরিবর্তন হয় না। কিন্ডু রাসায়নিক বিক্রিয়ার হার পদার্থের ভৌত অবস্থার উপর নির্ভরশীল। অনেক সময় কোনো পরীক্ষায় প্রাপ্ত ফলাফল গণনার সময় আমাদের পদার্থের অবস্থা সম্পর্কে জানার প্রয়োজন হয়। সেজন্য কোনো রসায়নবিদের জন্য বিভিন্ন অবস্থায় পদার্থের আচরণ নিয়ন্ত্রণকারী ভৌত সূত্রগুলো সম্পর্কে জানা প্রয়োজনীয়।

এই অধ্যায়ে আমরা পদার্থের তিনটি ভৌত অবস্থার মধ্যে বিশেষ করে তরল ও গ্যাসীয় অবস্থা সম্পর্কে বিশদভাবে জানতে চেম্টা করব। অধ্যায়টি শুরু করার পূর্বে পদার্থের কণাগুলোর আন্তরাণবিক বলের প্রকৃতি, আণবিক ক্রিয়া-প্র**তিক্রিয়া** এবং কণাগুলোর গতির উপর তাপীয় শক্তির প্রভাব সম্পর্কে জানা প্রয়োজন। কারণ এই সমস্ত বিষয়ের পারস্পরিক ভারসাম্যের উপর পদার্থের অবস্থা নির্ভর করে।

5.1 আন্তরাণবিক বল সমূহ (INTERMOLECULAR FORCES)

পরস্পর ক্রিয়াশীল কণাসমূহের (অণু ও পরমাণু) মধ্যে উপস্থিত আকর্ষণ ও বিকর্ষণ বলকে আন্তরাণবিক বল বলে। এই পরিভাষা বিপরীতধর্মী আয়নের মধ্যে উপস্থিত স্থির তড়িৎ বল এবং সমযোজী বন্ধন যা অণুমধ্যস্থ পরমাণুগুলোকে একসাথে ধরে রাখে, এই পরিভাষাতে সেগুলো সংযোজিত হয়নি।

আন্তরাণবিক আকর্ষণ বলকে ডাচ বিজ্ঞানী জোহেন্স ভ্যানডার ওয়াল (1837 খ্রি. - 1923 খ্রি.) এর সম্মানার্থে ভ্যানডার ওয়ালস্ বল বলা হয়। ভ্যানডার ওয়াল বাস্তব গ্যাসের আদর্শ আচরণ থেকে বিচ্যুতির কারণগুলোকে এই সমস্তবলের সাহায্যে ব্যাখ্যা করেছিলেন। এই বিযয়টি আমরা এই অনুচ্ছেদের পরবর্তী অংশে জানব। ভ্যানডার ওয়াল বলগুলোর মানে অনেক পার্থক্য থাকে এবং ডিসপারশান বল (Dispersion forces) বা লন্ডন বল (London forces), দ্বিমেরু -দ্বিমেরু বল (Dipole-Dipole forces) এবং দ্বিমেরু আবেশিত-দ্বিমেরু বল (Dipole-Dipole forces) এবং দ্বিমেরু আবেশিত-দ্বিমেরু বলগুলোও (Dipole induced-Dipole forces) এর অন্তর্গত। শক্তিশালী দ্বিমেরু-দ্বিমেরু ক্রিয়ার একটি বিশেষ উদাহরণ হল— হাইড্রোজেন বন্থন। কেবলমাত্র কিছু মৌলই হাইড্রোজেন বন্থন গঠনে অংশগ্রহণ করতে পারে। সেজন্য একে পৃথকভাবে আলোচনা করা হয়েছে। চতুর্থ অধ্যায়ে এই বিষয়ে আমরা আগেই জেনেছি।

এখানে এটি উল্লেখযোগ্য যে একটি আয়ন এবং একটি দ্বিমেরু এর মধ্যে আকর্ষণ বল আয়ন দ্বিমেরু বল নামে পরিচিত যা ভ্যানডার ওয়াল বল নয়। আমরা এবার বিভিন্ন প্রকার ভ্যানডার ওয়াল বল সম্পর্কে জানব।

5.1.1 ডিসপারশান বল বা লন্ডন বল (Dispersion Forces or London Forces)

পরমাণু এবং অধ্রুবীয় অণুগুলো তড়িৎ প্রতিসম (electrically symmetrical) হয় এবং তাদের কোনো দ্বিমেরু ভ্রামক (dipole moment) থাকে না। কারণ, তড়িৎ আধানের মেঘ (electronic charge cloud)টি সুষমভাবে বিন্যস্ত থাকে। কিন্তু তাৎক্ষাণিকভাবে এই অণু এবং পরমাণুতে দ্বিমেরুর উৎপত্তি হতে পারে। এই বিষয়টি নিন্নলিখিতভাবে বোঝা যেতে পারে। মনে করি, দুটি পরমাণু A ও B পরস্পরের খুব কাছাকাছি অবস্থিত [চিত্র 5.1(a)]। এমন হতে পারে যে দুটি পরমাণুর যে-কোনো একটিতে, ধরি A-তে তাৎক্ষণিকভাবে বৈদ্যুতিক আধানের বিন্যাস অপ্রতিসম হয় অর্থাৎ আধান মেঘ (charge cloud) এক পাশের তুলনায় অন্যপাশে বেশি হয় [চিত্র 5.1(b) এবং (c)]। এর ফলে A পরমাণুতে তাৎক্ষণিকভাবে উৎপন্ন তাৎক্ষণিক দ্বিমেরু অতিনিকটে উপস্থিত পরমাণু B-এর ইলেকট্রন ঘনত্বকে বিকৃত করে এবং ফলস্বরূপ B পরমাণুতে একটি দ্বিমেরু আহিত হয়।

A এবং B পরমাণুতে উৎপন্ন এই অস্থায়ী দ্বিমেরুদ্বয় পরস্পরকে আকর্ষণ করে।একইভাবে অন্য অণুগুলোতেও অস্থায়ী দ্বিমেরু সৃষ্টিহয়।এই ধরনের আকর্ষণ বল সর্বপ্রথম জার্মান পদার্থবিদ ফ্রিজ লন্ডন প্রস্তাব করেছিলেন বলে তাৎক্ষণিকভাবে সৃষ্ট দুটি ডাইপোলের মধ্যে এই আকর্ষণ বলকে **লন্ডন বল** বলে।এই বলের

138

অন্য নাম ডিসপারশান (Dispersion) বল। এই বলগুলো সর্বদা আকর্ষণধর্মী বল হয় এবং এই আন্তক্রিয়াজনিত শক্তির মান দুটি ক্রিয়াশীল কণার মধ্যবর্তী দূরত্বের ষষ্ঠঘাতের সঙ্গে ব্যাস্তানুপাতিক হয় (অর্থাৎ $\frac{1}{r^6}$ যেখানে r হল দুটি কণার মধ্যবর্তী দূরত্ব)। এই বলগুলো খুব কম দূরত্ব (~500 pm) পর্যন্তই কার্যকরী এবং এগুলোর মান কণার ধ্রুবীয়তার উপর নির্ভর করে।

5.1.2 দ্বিমেরু-দ্বিমেরু বল (Dipole - Dipole Forces)

যে সমস্ত অণুগুলোর মধ্যে স্থায়ী দ্বিমেরু (Dipole) বর্তমান তাদের মধ্যে দ্বিমেরু-দ্বিমেরু বল (Dipole-Dipole forces) ক্রিয়া করে। দ্বিমেরুর দুটি প্রান্তে 'আংশিক আধান' থাকে এবং এই আধানগুলোকে গ্রিক (Greek) শব্দ ডেল্টা (ঠ) দ্বারা প্রদর্শন করা হয়। আংশিক আধান সর্বদা একক ইলেকট্রনীয় আধান (1.6×10⁻¹⁹C) থেকে কম হয়। ধ্রুবীয় অণুগুলো পার্শ্ববর্তী অণুগুলোর সাথে ক্রিয়া করে। চিত্র 5.2 (a) হাইড্রোজেন ক্লোরাইডের দ্বিমেরুতে ইলেকট্রন মেঘের বন্টন দেখানো হয়েছে এবং চিত্র 5.2 (b)-এ হাইড্রোজেন ক্লোরাইডের দুটি অণুর মধ্যে দ্বিমেরু -দ্বিমেরু ক্রিয়া (Dipole-Dipole interaction)কে দেখানো হয়েছে। এই ক্রিয়ার মান লন্ডন বল অপেক্ষা শক্তিশালী কিন্তু আয়ন-আয়ন ক্রিয়ার মান অপেক্ষা দুর্বল, কারণ এতে শুধুমাত্র আংশিক আধান ক্রিয়াশীল থাকে। এই আকর্ষণ বল দ্বিমেরুর মধ্যবর্তী দূরত্ব বৃন্ধির সাথে সাথে হ্রাস পায়। উপরের মতো এক্ষেত্রেও ক্রিয়াশীল শক্তি দুটি ধ্রুবীয় অণুর দূরত্বের সঙ্গে ব্যস্তানুপাতি হয়। দ্বিমেরু-দ্বিমেরু ক্রিয়ার শক্তি স্থায়ী ধ্রবীয়তা বিশিষ্ট অণুগুলোর

(কঠিনের ন্যায়) মধ্যে $rac{1}{r^3}$ এর সমানুপাতিক এবং ঘূর্ণনশীল ধ্রুবীয়

চিত্র 5.2 (a) ধ্রুবীয় HCl অণুতে ইলেকট্রন মেঘের বণ্টন,(b) দুটি HCl অণুর মধ্যে দ্বিমেরু-দ্বিমেরু ক্রিয়া (Dipole-dipole interaction)।

অণুগুলোর মধ্যে $\frac{1}{r^6}$ এর সমানুপাতিক হয়, যেখানে *r* হল ধ্রবীয় অণুগুলোর মধ্যবর্তী দূরত্ব। দ্বিমেরু-দ্বিমেরু ক্রিয়ার পাশাপাশি ধ্রুবীয় অণুগুলো লন্ডন বলের দ্বারাও ক্রিয়া করতে পারে। তাই এই সামগ্রিক প্রভাবের ফলে ধ্রুবীয় অণুগুলোর মধ্যে আন্তরাণবিক বলের মান বৃদ্ধি পায়।

5.1.3 দ্বিমেরু-আবিষ্ট দ্বিমেরু বল (Dipole–Induced Dipole Forces)

এই ধরনের আকর্ষণ বল স্থায়ী দ্বিমেরু সম্পন্ন ধ্রুবীয় অণু এবং স্থায়ী দ্বিমেরু বিহীন অণুর মধ্যে কাজ করে। ধ্রুবীয় অণুর স্থায়ী দ্বিমেরুটি নিস্তড়িৎ অণুর ইলেকট্রন মেঘকে বিকৃত করে দ্বিমেরুকে ইহাতে আবেশিত করে (চিত্র 5.3)। ফলস্বরূপ অন্য অণুতে একটি আবিফ্ট দ্বিমেরুর উদ্ভব হয়। এক্ষেত্রেও আন্তরাণবিক ক্রিয়ার শক্তি $\frac{1}{r^6}$ এর সমানুপাতিক। যেখানে r দুটি অণুর মধ্যে দূরত্বকে প্রকাশ করে। আবেশিত দ্বিমেরু ল্রামক, স্থির দ্বিমেরু সম্পন্ন অণুতে উপস্থিত দ্বিমেরু ল্রামক এবং নিস্তড়িৎ অণুর ধ্রুবীয় হওয়ার ক্ষমতার (polarisability) উপর নির্ভর করে। আমরা চতুর্থ অধ্যায়ে আগেই জেনেছি যে বৃহৎ অণুগুলোকে সহজেই ধ্রুবীয় করা যায়। উচ্চধ্রুবীয়তা আকর্ষণ ক্রিয়ার শক্ত্তিকে বুম্বি করে।

এই ক্ষেত্রেও ডিসপারশান বল এবং দ্বিমেরু আবেশিত দ্বিমেরু বলের সামগ্রিক ফলাফলের প্রভাব বর্তমান।

5.1.4 হাইড্রোজেন বন্ধন (Hydrogen bond)

অনুচ্ছেদ (5.1)-এ আগেই উল্লেখ করা হয়েছিল যে এটি দ্বিমেরু-দ্বিমেরু ক্রিয়ার একটি বিশেষ উদাহরণ। আমরা চতুর্থ অধ্যায়ে আগেই এ সম্পর্কে জেনেছি। যে সমস্ত অণুতে উচ্চ ধ্রুবীয় N–H, পদার্থের অবস্থা

O–H বা H–F বন্ধন বর্তমান, সেক্ষেত্রে এটি দেখা যায়। যদিও হাইড্রোজেন বন্ধনকে N, O এবং F-এ সীমাবন্ধ বলে মনে করা হয় কিন্তু Cl এর মতো পরমাণু ও হাইড্রোজেন বন্ধনে অংশগ্রহণ করতে পারে। হাইড্রোজেন বন্ধনের শক্তি 10 থেকে 100 kJ mol⁻¹ এর মধ্যবর্তী হয়। এটি একট তাৎপর্যপূর্ণ মাত্রার শক্তি। সেজন্য অনেক যৌগ যেমন প্রোটিন এবং নিউক্লিক অ্যাসিডের গঠন এবং ধর্মাবলি নির্ধারণে হাইড্রোজেন বন্ধন একটি শক্তিশালী বল রূপে কাজ করে। একটি অণুর তড়িৎ ঋণাত্মক পরমাণুর নিঃসঙ্গ ইলেকট্টন যুগলের সঙ্গে অন্য অণুর হাইড্রোজেন পরমাণুর, কুলম্বীয় ক্রিয়ার দ্বারা হাইড্রোজেন বন্ধনের শক্তি নির্ণয় করা হয়। নীচের চিত্রটি হাইড্রোজেন বন্ধনের গঠন প্রদর্শন করছে।

$\stackrel{\delta_{+}}{H-}\stackrel{\delta_{-}}{F}.....\stackrel{\delta_{+}}{H-}\stackrel{\delta_{-}}{F}$

যতগুলো আন্তরাণবিক বল আলোচিত হল সবগুলোই আকর্ষণজনিত বল। **অণুগুলো একে অপরকে বিকর্ষণও করে**। যখন দুটিঅণু পরস্পরের খুব নিকটে আসে তখন দুটি অণুর ইলেকট্রন মেঘের মধ্যে এবং দুটি অণুর নিউক্লিয়াসগুলোর মধ্যে বিকর্ষণ বল কাজ করে। দুটি অণুর মধ্যে দূরত্ব যত কমতে থাকে বিকর্ষণ বলের মান তত দ্রুত বৃদ্ধি পায়। এই কারণেই তরল এবং কঠিন পদার্থকে সহজে সংকুচিত করা যায় না। এই অবস্থাগুলোতে অণুগুলো এমনিতেই খুব নিকটে অবস্থান করে। সেজন্য এগুলো পুনঃ সংকোচনকে বাধা দেয় কারণ এতে বিকর্ষণ ক্রিয়া বৃদ্ধি পায়।

5.2 তাপীয় শক্তি (Thermal Energy)

অণু বা পরমাণুর গতির ফলেই বস্তুতে তাপীয় শস্তির উদ্ভব হয়। এটি বস্তুর উস্নতার সঙ্গে সমাণুপাতিক। এটি পদার্থের কণাগুলোর গড় গতিশস্তির পরিমাপ এবং সেই কারণে এটি কণাগুলোর গতির জন্য দায়ী। কণাগুলোর এই চলাচলকে তাপীয় গতি বলে।

5.3 আন্তরাণবিক বল বনাম তাপীয় ক্রিয়া (Intermolecular Forces vs Thermal Interactions)

আমরা আগেই জেনেছি যে আন্তরাণবিক আকর্ষণ বল অণুগুলোকে একত্রে রাখতে চেস্টা করে। কিন্তু তাপীয় শক্তি অণুগুলোকে দুরে সরিয়ে রাখতে চেস্টা করে। পদার্থের তিনটি অবস্থা অণুগুলোর মধ্যে উপস্থিত আন্তরাণবিক আকর্ষণ বল এবং তাপীয় শক্তির পারস্পরিক ভারসাম্যের ফল। যখন আন্তরাণবিক আকর্ষণ বল খুব দুর্বল হয় তখন উন্নতা হ্রাস করে তাপীয় শক্তির মান হ্রাস না করলে অণুগুলো একত্রিত হয়ে তরল বা কঠিন অবস্থা সৃষ্টি করে না। গ্যাসকে শুধুমাত্র চাপ প্রয়োগে তরলে পরিণত করা যায় না, যদিও এতে অণুগুলো পরস্পরের খুব কাছাকাছি চলে আসে এবং আন্তরাণবিক আকর্ষণ বলও সব থেকে বেশি হয়। অধিকন্তু যখন উন্নতা হ্রাস করে অণুগুলোর তাপীয় শক্তিকে হ্রাস করা হয় তখন গ্যাসকে সহজে তরলে পরিণত করা যায়। কোনো পদার্থের তিন অবস্থায় অণুগুলোর মধ্যে উপস্থিত তাপীয় শক্তি ও আন্তরাণবিক বলের প্রাধান্যতার চিত্র নীচে দেখানো হল।

আমরা আগেই পদার্থের তিন অবস্থার উপস্থিতির কারণগুলো জেনেছি। এখন আমরা গ্যাসীয় ও তরল অবস্থা এবং পদার্থের এই অবস্থাগুলোর আচরণ নিয়ন্ত্রণকারী সূত্রাবলি সম্পর্কে বিশদভাবে জানব। দ্বাদশ শ্রেণিতে আমরা পদার্থের কঠিন অবস্থা সম্পর্কে জানব।

5.4 গ্যাসীয় অবস্থা (The Gaseous State)

এটি পদার্থের সরলতম অবস্থা। সারাজীবন ধরে আমরা বায়ুর সমুদ্রে ডুবে থাকি যেটি বিভিন্ন গ্যাসের একটি মিশ্রণ। ট্রপোস্ফিয়ার নামে পরিচিত বায়ুমণ্ডলের সব থেকে নীচের স্তর, যেটি অভিকর্ষজ বলের প্রভাবে ভূ-পৃষ্ঠের সব থেকে কাছে থাকে, সেখানে আমরা আমাদের জীবন অতিবাহিত করি। বায়ুমণ্ডলের এই পাতলা স্তরটি আমাদের জীবনের জন্য গুরুত্বপূর্ণ। এটি আমাদের ক্ষতিকারক বিকিরণ থেকে রক্ষা করে এবং এতে ডাই অক্সিজেন, ডাই নাইট্রোজেন, কার্বন ডাই অক্সাইড, জলীয় বাষ্প ইত্যাদি থাকে। চল, এখন আমরা সাধারণ উন্নতা ও চাপে যে সমস্ত পদার্থ গ্যাসীয় অবস্থায় থাকে তাদের আচরণ নিয়ে আলোকপাত করি।

পর্যায় সারণি লক্ষ্য করলে আমরা দেখতে পাব যে কেবলমাত্র 11টি মৌলই সাধারণ শর্তে গ্যাসীয় অবস্থায় বর্তমান থাকে (চিত্র 5.4)।

নিম্নলিখিত ভৌতধর্মগুলো গ্যাসীয় অবস্থায় বৈশিষ্ট্যসূচক ধর্ম।

- গ্যাসগুলো খুবই সংকোচনশীল।
- গ্যাস সবদিকে সমপরিমাণ চাপ প্রয়োগ করে।
- কঠিন এবং তরলের তুলনায় গ্যাসের ঘনত্ব খুবই কম হয়।
- গ্যাসের আয়তন এবং আকার নির্দিষ্ট নয়। যে পাত্রে রাখা হয় এরা সেই পাত্রের আয়তন ও আকার ধারণ করে।
- গ্যাসগুলো কোনো যান্ত্রিক সহযোগিতা ছাড়াই যে-কোনো অনুপাতে, সমভাবে এবং সম্পূর্ণরূপে মিশ্রিত হয়।

গ্যাসের সরল আচরণের কারণ হল, গ্যাসের অণুগুলোর মধ্যে আন্তঃক্রিয়াজনিত বল নগন্য হয়। গ্যাসের আচরণ যে সকল সূত্রগুলো দ্বারা নিয়ন্ত্রিত হয় সেগুলোকে গ্যাসের উপর বিভিন্ন পরীক্ষা নিরীক্ষার মাধ্যমে আবিষ্কার করা হয়েছে। এই সূত্রগুলো গ্যাসের পরিমাপযোগ্য রাশিগুলোর মধ্যে সম্পর্ক প্রকাশ করে। কিছু কিছু রাশি যেমন চাপ, আয়তন, তাপমাত্রা এবং ভর খুবই গুরুত্বপূর্ণ কারণ এই সমস্ত রাশিগুলোর মধ্যে আন্তঃসম্পর্কই কোনো গ্যাসের অবস্থা বর্ণনা করে। এই রাশিগুলোর আন্তঃনির্ভরশীলতার সম্পর্ক হতেই গ্যাসের সূত্রাবলি গঠন করা হয়েছে। পরবর্তী পরিচ্ছেদে আমরা গ্যাসের সূত্রাবলি সম্পর্কে জানব।

5.5 গ্যাসীয় সূত্রাবলি (The Gas Laws)

গ্যাসের ভৌত ধর্মের উপর কয়েক শতকের গবেষণার ফলস্বরূপ প্রাপ্ত সূত্রগুলোকে আমরা এবার অধ্যয়ন করব। অ্যাঙ্গালো-আইরিশ (Anglo-Irish) বিজ্ঞানী রবার্ট বয়েল (Robert Boyle) সর্বপ্রথম 1662 খ্রিস্টাব্দে গ্যাসের ধর্মের উপর সঠিকভাবে পরীক্ষানিরীক্ষা করেন। তিনি যে সূত্রটি প্রতিপাদন করেন সেটি বয়েসের সূত্র বলে পরিচিত। পরবর্তী সময়ে উত্তপ্ত বায়ুপূর্ণ বেলুনের (hot air balloon) সাহায্যে আকশে উড়ার প্রচেন্টা বিজ্ঞানী জেকস্ চারলস্ (Jaccques Charles) এবং জোসেফ লুইস গে লুসাক (Joseph Lewis Gay Lussac)কে গ্যাসের অন্যান্য সূত্রগুলো আবিষ্কারে উদ্বুদ্ধ করে। অ্যাভোগাড্রো এবং অন্যান্য বিজ্ঞানীদের গবেষণার ফলে গ্যাসীয় অবস্থা সম্পর্কে অনেক তথ্য পাওয়া যায়।

5.5.1 বয়েলের সূত্র (চাপ-আয়তন সম্পর্ক) Boyle's Law (Pressure - Volume Relationship)

রবার্ট বয়েল তার পরীক্ষার উপর ভিত্তি করে এই সিম্বান্তে উপনীত হল যে, 'স্থির উন্ধতায়, একটি নির্দিষ্ট পরিমাণ (অর্থাৎ মোল সংখ্যা n) গ্যাসের চাপ, ওই গ্যাসের আয়তনের সঙ্গো ব্যস্তানুপাতিক'। এটি বয়েলের সূত্র নামে পরিচিত। গাণিতিকভাবে এটিকে নিম্নলিখিতভাবে প্রকাশ করা যায়—

$$p \propto \frac{1}{V}$$
 (যেখানে T এবং n স্থির) ...(5.1)
 $\Rightarrow p = k_1 \frac{1}{V}$...(5.2)

যেখানে k₁ হল সমানুপাতিক ধ্রুবক। k₁ ধ্রুবকের মান গ্যাসের পরিমাণ, উন্নতা এবং যে এককে p ও V কে প্রকাশ করা হয়, তার উপর নির্ভর করে।

সমীকরণ (5.2)কে পূর্ণবিন্যাস করলে আমরা পাই

$$pV = k_1 \qquad \dots (5.3)$$

এর অর্থ হল স্থির উন্নতায় কোনো নির্দিষ্ট পরিমাণ গ্যাসের চাপ ও আয়তনের গুণফল ধ্রুবক।

যদি কোনো নির্দিষ্ট পরিমাণ গ্যাস, কোনো স্থির উস্নতা *T* তে p_1 চাপে V_1 আয়তন দখল করে এবং পরে এমনভাবে প্রসারিত হয় যে চাপ p_2 এবং আয়তন V_2 তে পরিবর্তিত হয় তবে বয়েলের সূত্রানুসারে

$$p_1 V_1 = p_2 V_2 =$$
 ধ্বক ...(5.4)

$$\Rightarrow \frac{p_1}{p_2} = \frac{V_2}{V_1} \qquad \dots (5.5)$$

চিত্র 5.5 : (a) বিভিন্ন উন্নতায় গ্যাসের চাপ (p) বনাম আয়তন (V) লেখচিত্র।

চিত্র 5.5 বয়েলের সূত্রকে লেখচিত্রে সাহায্যে প্রকাশ করার দুটি প্রচলিত পম্বতি প্রকাশ রয়েছে। চিত্র 5.5(a) বিভিন্ন উয়তায় সমীকরণ (5.3)-এর লেখচিত্র প্রদর্শন করছে। প্রতিটি বক্ররেখার ক্ষেত্রে k₁ এর মান বিভিন্ন কারণ একটি নির্দিষ্ট ভরের গ্যাসের ক্ষেত্রে, এটি কেবলমাত্র উয়তার সঙ্গে পরিবর্তিত হয়। প্রত্যেকটি বক্ররেখা বিভিন্ন স্থির উয়তার সাথে সম্পর্কিত এবং এরা **সমোঘ্ন বক্র** (স্থির উয়তালেখ) নামে পরিচিত। উচ্চ বক্রগুলো উচ্চ উয়তার সঙ্গে সম্পর্কিত। এটা লক্ষ করতে হবে যে যদি চাপকে অর্ধেক করা হয় তখন আয়তন দ্বিগুণ হয়। সারণি 5.1-এ 300 K উয়্বতায় 0.09 মৌল CO₂ গ্যাসের আয়তনের উপর চাপের প্রভাব প্রকাশ করছে।

চিত্র 5.5 (b), p বনাম $\frac{1}{V}$ লেখচিত্রকে প্রদর্শন করছে।

এটি একটি মূলবিন্দুগামী সরলরেখা। যদিও উচ্চচাপে গ্যাস বয়েলের সূত্র থেকে বিচ্যুত হয় এবং ঐ শর্তে লেখচিত্রটি সরলরখিক হয় না। বয়েলের সূত্রের উপর পরিমাণগতভাবে পরীক্ষানিরীক্ষায় প্রমাণিত হয়েছে যে গ্যাস অতি সংকোচনশীল কারণ যখন একটি প্রদত্ত ভরের গ্যাসকে সংকুচিত করা হয় তখন একই সংখ্যক অণু অপেক্ষাকৃত স্বল্প স্থান দখল করে। অর্থাৎ উচ্চচাপে গ্যাসের ঘনত্ব বৃদ্ধি পায়। বয়েলের সূত্র ব্যবহার করে গ্যাসের ঘনত্ব এবং চাপের মধ্যে একটি সম্পর্ক স্থাপন করা যায়। সংজ্ঞানুসারে, ঘনত্ব 'd' নিম্নের সম্পর্কের মাধ্যমে ভর 'm' এবং আয়তন 'V'-এর সর্জো

সম্পর্কিত — $d = \frac{m}{V}$ । যদি আমরা এই সমীকরণে বয়েলের সূত্রের সমীকরণ হতে প্রাপ্ত 'V'-এর মান বসাই তবে এই সম্পর্কটি আমরা পাই—

চাপ/10 ⁴ Pa	আয়তন/10 ⁻³ m ³	$(1/V)/m^{-3}$	<i>pV</i> /10 ² Pa m ³
2.0	112.0	8.90	22.40
2.5	89.2	11.2	22.30
3.5	64.2	15.6	22.47
4.0	56.3	17.7	22.50
6.0	37.4	26.7	22.44
8.0	28.1	35.6	22.48
10.0	22.4	44.6	22.40

সারণি 5.1:300 K উন্নতায় 0.09 মোল CO₂ গ্যাসের আয়তনের উপর চাপের প্রভাব।

রসায়ন

$$d = \left(\frac{m}{k_1}\right)p = \mathbf{k}'p$$

অর্থাৎ একটি নির্দিশ্ট উন্নতায় একটি নির্দিশ্ট ভরের গ্যাসের চাপ ঘনত্বের সঙ্গে সমানুপাতিক।

সমস্যা 5.1

ঘরের উয়তায় একটি বেলুন হাইড্রোজেন গ্যাস দ্বারা পূর্ণ। চাপ 0.2 bar-এর বেশি হলে বেলুনটি ফেটে যাবে। যদি 1 bar চাপে গ্যাস 2.27 L আয়তন দখল করে তবে বেলুনটিকে কত আয়তন পর্যন্ত প্রসারিত করা যাবে ?

সমাধান

বয়েলের সূত্রানুসারে,
$$p_1V_1 = p_2V_2$$

যদি $p_1 = 1$ bar হয়, তবে $V_1 = 2.27$ L হবে

যদি
$$p_2 = 0.2$$
 bar হয়, তখন $V_2 = \frac{p_1 V_2}{p_2}$

$$\Rightarrow V_2 = \frac{1bar \times 2.27 L}{0.2bar} = 11.35 L$$

যেহেতু বেলুনটি 0.2 bar চাপে ফেটে যায়, সেজন্য বেলুনের আয়তন 11.35 L এর কম হবে

5.5.2 চালর্সের সূত্র (উন্নতা-আয়তন সম্পর্ক) [Charles' Law (Temperature - Volume Relationship)]

চার্লস এবং গে-লুসাক উন্ন বায়ুপূর্ণ বেলুন (hot air balloon) প্রযুক্তির উন্নতির জন্য গ্যাসের উপর স্বাধীনভাবে বিভিন্ন পরীক্ষা করেন। তাদের গবেষণার ফলে জানা যায় যে, নির্দিষ্ট চাপে একটি নির্দিষ্ট ভরের গ্যাসের ক্ষেত্রে উন্নতা বৃদ্ধির সঙ্গে সঙ্গে আয়তন বৃদ্ধি পায় এবং উন্নতা হ্রাসের সঙ্গে সঙ্গে আয়তন হ্রাস পায়। তারা লক্ষ্য করলেন যে প্রতিডিগ্রি উন্নতা বৃদ্ধিতে গ্যাসের আয়তন 0 °C

উম্নতার যে আয়তন ছিল তার $\frac{1}{273.15}$ ভাগ বৃদ্ধি পায়। এভাবে, যদি 0 °C এবং t °C উম্নতায় কোনো নির্দিষ্ট ভরের গ্যাসের আয়তন যথাক্রমে V_0 এবং V_1 হয় তবে—

$$V_t = V_0 + \frac{t}{273.15} V_0$$
$$\Rightarrow V_t = V_0 \left(1 + \frac{t}{273.15}\right)$$

$$\Rightarrow V_t = V_0 \left(\frac{273.15 + t}{273.15}\right) \qquad \dots (5.6)$$

এই অবস্থায়, আমরা উস্নতার একটি নতুন স্কেল নির্ধারিত করি যেখানে t[°]C কে নতুন স্কেলে *T* = 273.15 + t এবং 0[°]C কে *T*₀ = 273.15 হিসাবে প্রকাশ করা হয়। উন্নতার এই নতুন স্কেলটিকে কেলভিন উন্নতা স্কেল বা পরম উন্নতা স্কেল বলে।

এভাবে সেলসিয়াস স্কেলের 0 °C পরম স্কেলের 273.15 K-এর সমান হয়। লক্ষ করো, পরম উয়তার স্কেলে বা কেলভিন স্কেলে ডিগ্রি চিহ্নটি ব্যবহার করা হয় না। উয়তার কেলভিন স্কেলকে উয়তার **তাপগতীয় স্কেলও** বলা হয় এবং সমস্ত বৈজ্ঞানিক গণনায় এটি ব্যবহৃত হয়।

এভাবে, আমরা সেলসিয়াস স্কেলের উম্নতার পাঠের সঙ্গে 273 (সঠিকভাবে 273.15) যোগ করে কেলভিন স্কেলের উম্নতা পাই। যদি আমরা $T_t = 273.15 + t$ এবং $T_0 = 273.15$ লেখি। তবে সমীকরণ (5.6) থেকে নিম্নের সম্পর্কটি পাই,

$$V_{t} = V_{0} \left(\frac{T_{t}}{T_{0}} \right)$$
$$\Rightarrow \frac{V_{t}}{V_{0}} = \frac{T_{t}}{T_{0}} \qquad \dots (5.7)$$

এভাবে আমরা একটি সাধারণ সমীকরণ লেখতে পারি।

$$\frac{V_2}{V_1} = \frac{I_2}{T_1} \qquad \dots (5.8)$$

$$\Rightarrow \frac{V_1}{T_1} = \frac{V_2}{T_2}$$

$$\Rightarrow \frac{V}{T} =$$
ধ্বক = $k_2 \qquad \dots (5.9)$
অর্থাৎ $V = k_2 T \qquad \dots (5.10)$

ধ্রুবক $k_{_2}$ এর মান গ্যাসের চাপ, এর পরিমাণ এবং গ্যাসের আয়তন *(V),* যে এককে প্রকাশ করা হয়েছে তার সাহায্যে নির্ণয় করা হয়।

সমীকরণ (5.10) চালর্সের সূত্রের গাণিতিক রূপ, যেটি নিম্নলিখিতভাবে বিবৃত করা যায়— স্থির চাপে কোনো নির্দিষ্ট ভরের গ্যাসের আয়তন গ্যাসটির পরম উন্নতার সাথে সমানুপাতিক। বিজ্ঞানী চার্লস দেখতে পেলেন সকল গ্যাসের ক্ষেত্রে, যে কোনো প্রদন্ত চাপে, আয়তন বনাম উন্নতা (সেলসিয়াস স্কেলে) লেখচিত্র একটি সরলরৈখিক হয় এবং সেটিকে শূন্য আয়তনের দিকে বর্ধিত করলে, প্রতিটি সরলরেখা – 273.15 °C উন্নতায়, উন্নতা অক্ষকে ছেদ করে। বিভিন্ন চাপে সরলরেখাগুলোর গতি বিভিন্ন হলেও শূন্য আয়তনে প্রত্যেকটি রেখা উন্নতা অক্ষকে – 273.15 °C (চিত্র 5.6) উন্নতায় ছেদ করে।

আয়তন বনাম উন্নতা লেখচিত্রের প্রতিটি রেখাকে সমচাপীয় লেখ (isobar) বলে।

চিত্র 5.6 : আয়তন বনাম উন্নতার (°C) লেখচিত্র।

সমীকরণ (5.6)-এ t-এর মান – 273.15 °C বসিয়ে বিজ্ঞানী চালর্সের পর্যবেক্ষণকে ব্যাখ্যা করা যাবে। আমরা দেখতে পাই – 273.15 °C উস্নতায় গ্যাসের আয়তন শূন্য হয়। অর্থাৎ – 273.15 °C উস্নতায় গ্যাসের কোনো অস্তিত্ব থাকবে না। প্রকৃতপক্ষে সকল গ্যাসই এই উন্নতাতে পৌঁছার আগেই তরলে পরিণত হয়ে যায়। নিম্নতম যে কাল্পনিক বা প্রকল্পিত উন্নতায় গ্যাসের আয়তন শূন্য হয়, তাকে পরমশূন্য উন্নতা বলে।

সকল গ্যাস অতিনিম্নচাপ এবং উচ্চ উন্নতায় চালর্সের সূত্র মেনে চলে।

সমস্যা 5.2

প্রশান্ত মহাসাগরে অবস্থানরত কোনো জাহাজে যেখানে উন্নতা 23.4°C, একটি বেলুনে 2 L বায়ু ভর্তি আছে। জাহাজটি যখন ভারত মহাসাগরে পৌঁছাবে সেখানে উন্নতা 26.1°C তখন ঐ বেলুনটির আয়তন কত হবে ?

সমাধান $V_1 = 2 L$ $T_2 = (26.1 + 273) K$ $T_1 = (23.4 + 273) K$ = 299.1 K = 296.4 Kচালসেঁর সূত্র হতে,

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

$$\Rightarrow V_2 = \frac{V_1 T_2}{T_1}$$

$$\Rightarrow V_2 = \frac{2L \times 299.1K}{296.4K}$$

$$= 2L \times 1.009$$

$$= 2.018 L$$

5.5.3 গে লুসাকের সূত্র (চাপ-উন্নতা সম্পর্ক) [Gay Lussac's Law (Pressure- Temperature Relationship)]

সঠিকভাবে স্ফিত যানবাহনের টায়ারের চাপ প্রায় নির্দিষ্ট থাকে। কিন্তু তপ্ত গরমের দিনে এটি বৃদ্ধি পায় এবং যদি চাপকে সঠিকভাবে নিয়ন্ত্রণ না করা হয় তবে সেটি ফেটেও যেতে পারে। শীতকালের শীতল সকালবেলায় যানবাহনের টায়ারের চাপ তুলনামূলকভাবে কম হয়। চাপ এবং উয়্বতার গাণিতিক সম্পর্ক বিজ্ঞানী জোসেফ গে-লুসাক (Joseph Gay Lussac) প্রতিপাদন করেছিলেন এবং সেটি গে লুসাকের সূত্র নামে পরিচিত। এই সূত্রানুসারে, স্থির আয়তনে একটি নির্দিষ্ট পরিমাণ গ্যাসের চাপ উয়্বতার সঞ্চো সমানুপাতিক। গাণিতিক ভাবে লেখা যায়—

$$p \propto T$$
 $\Rightarrow \frac{p}{T} =$ ধ্বক = k_3

এই সম্পর্কটি বয়েল এবং চার্লসের সূত্র থেকেও প্রতিষ্ঠা করা যায়।স্থির মোলার আয়তনে চাপ বনাম উয়্বতা (কেলভিন) লেখচিত্র চিত্র 5.7 এ দেখানো হয়েছে। এই লেখচিত্রের প্রতিটি রেখাকে সমমোলার আয়তন লেখ বলে।

সঙ্গে সমানুপাতিক; প্রমাণ চাপ ও উন্নতায় (STP)* এক মোল পরিমাণ প্রতিটি গ্যাসের আয়তন সমান। প্রমাণ চাপ ও উন্নতা (STP) বলতে বুঝায় 273.15 K (0°C) উন্নতা এবং 1 bar (সঠিকভাবে 10⁵ pascal) চাপ। এই মানগুলো জলের কঠিনীভবনের উন্নতা এবং সমুদ্রপৃষ্ঠে বায়ুর চাপের মানের প্রায় সমান। STP তে কোনো একটি আদর্শ গ্যাসের বা আদর্শ গ্যাসগুলোর সংমিশ্রণের মোট মোলার আয়তনের মান 22.71098 L mol⁻¹। কয়েকটি গ্যাসের মোলার আয়তন সারণি 5.2-এ দেওয়া আছে।

সারণি 5.2 : 273.15 K উন্নতা এবং 1 bar চাপে (STP) প্রতিমোল গ্যাসের লিটার এককে প্রকাশিত মোলার আয়তন।

আর্গন	22.37
কাৰ্বন ডাইঅক্সাইড	22.54
ডাই নাইট্রোজেন	22.69
ডাই অক্সিজেন	22.69
ডাই হাইড্রোজেন	22.72
আদর্শ গ্যাস	22.71

গ্যাসের মোল সংখ্যা নিম্নলিখিতভাবে গণনা করা যায় :

$$n = \frac{m}{M} \qquad \dots (5.12)$$

যেখানে m = পরীক্ষাধীন গ্যাসের ভর

M = মোলার ভর

সুতরাং,

$$V = k_4 \frac{m}{M} \qquad \dots \tag{5.13}$$

সমীকরণ (5.13) কে নিম্নলিখিতভাবে পুনর্বিন্যাস করা যায় :

$$M = k_4 \frac{m}{V} = k_4 d$$
 (5.14)

...(5.11)

5.5.4 অ্যাভোগাড্রো সূত্র (আয়তন-পরিমাণ সম্পর্ক) [Avogadro Law (Volume - Amount Relationship)]
1811 সালে ইতালীয় বিজ্ঞানী অ্যামডিও অ্যাভোগাড্রো, ডালটনের পরমাণুবাদ এবং গে লুসাকের গ্যাস আয়তন সূত্রের (প্রথম অধ্যায়)
সমন্বয় সাধান করার চেন্টা করেন, যেটি বর্তমানে অ্যাভোগাড্রো সূত্র নামে পরিচিত। এই সূত্রানুসারে, একই চাপ ও উন্নতায় সমআয়তন

সকল গ্যাসে সমসংখ্যক অণু বর্তমান। অর্থাৎ স্থির উন্নতা ও চাপে গ্যাসের আয়তন গ্যাসের অণুসংখ্যা বা অন্যভাবে বলতে গেলে গ্যাসের পরিমাণের উপর নির্ভর করে। গাণিতিকভাবে আমরা লেখতে

 $V \propto n$, যেখানে *n* হল গ্যাসের মোল সংখ্যা।

এক মোল গ্যাসে 6.022 ×1023 সংখ্যক অণ নির্ণীত করা

হয়েছে, যেটি অ্যাভোগাড্রো ধ্রুবক নামে পরিচিত। তোমরা লক্ষ করবে যে এটি সেই সংখ্যা যাকে আমরা 'মোলের' সংজ্ঞা আলোচনা করার সময় পেয়েছি (প্রথম অধ্যায়)। যেহেতু গ্যাসের আয়তন মোল সংখ্যার

পারি—

 $\Rightarrow V = k_{4} n$

প্রমাণ পারিপার্শ্বিক উন্নতা এবং চাপ (Standard ambient temperature and pressure) (SATP) এর শর্তগুলো বলতে কিছু বৈজ্ঞানিক কাজেও ব্যবহৃত হয়। SATP-এর শর্তগুলো বলতে বৃঝায় 298.15 K উন্নতা এবং 1 bar (অর্থাৎ সঠিকভাবে 10⁵ Pa) চাপ। SATP-তে (1 bar এবং 298.15 K) আদর্শ গ্যাসের মোলার আয়তন 24.789 L mol⁻¹.

এখানে 'd' হল গ্যাসের ঘনত্ব। আমরা সমীকরণ (5.14) থেকে সিম্ধান্ত নিতে পারি যে গ্যাসের ঘনত্ব তার মোলার ভরের সমানুপাতিক।

যে গ্যাস বয়েলের সূত্র, চালর্সের সূত্র এবং অ্যাভোগাড্রোর সূত্র যথাযথভাবে মেনে চলে তাকে **আদর্শ গ্যাস** বলে।

এমন ধরনের গ্যাস প্রকৃতপক্ষে কাল্পনিক। এটি ধারণা করা হয় যে, আদর্শ গ্যাসের অণুগুলোর মধ্যে কোনো আন্তরাণবিক আকর্ষণ বল থাকে না। যখন আন্তরাণবিক আকর্ষণ বল বাস্তবে খুবই নগণ্য হয়, তখন বাস্তবগ্যাস কেবলমাত্র কয়েকটি বিশেষ শর্তে বিশেষ মুহূর্তে এই সূত্রগুলো মেনে চলে। অন্যান্য সকল পরিস্থিতিতে এরা আদর্শ আচরণ থেকে বিচ্যুত হয়। পরবর্তী এককে তোমরা এই বিচ্যুতি সম্পর্কে জানবে।

5.6 আদর্শ গ্যাস সমীকরণ (IDEAL GAS EQUATION)

আমরা এখন পর্যন্ত যে তিনটি সূত্র সম্পর্কে জেনেছি, সেগুলোকে সংযুক্ত করে যে একটি মাত্র সমীকরণের মাধ্যমে প্রকাশ করা যায় তাকে **আদর্শ গ্যাস সমীকর**ণ বলে।

যখন T এবং n স্থির; $V \propto \frac{1}{p}$ [বয়েলের সূত্র] যখন p এবং n স্থির; $V \propto T$ [চালর্সের সূত্র] যখন p এবং T স্থির; $V \propto n$ [অ্যাভোগাড্রো সূত্র]

সুতরাং
$$V \propto \frac{nT}{p}$$
 (5.15)

$$\Rightarrow V = R \frac{nT}{p}$$
(5.16)

যেখানে R হল সমানুপাতিক ধ্রুবক। সমীকরণ (5.16)কে পুনঃবিন্যাস করলে আমরা পাই,

 $pV = n \ \mathrm{R}T \tag{5.17}$

$$\Rightarrow R = \frac{pV}{nT} \tag{5.18}$$

R কে গ্যাস ধ্রুবক বলা হয়। সকল গ্যাসের জন্য এর মান সমান হয়। সেই জন্য এটিকে সার্বজনীন গ্যাস ধ্রুবকও বলে। সমীকরণ (5.17) কে আদর্শ গ্যাস সমীকরণ বলে।

সমীকরণ (5.18) থেকে বোঝা যায় R এর মান p, V এবং

T যে এককে পরিমাপ করা হয় তার উপর নির্ভর করে। যদি সমীকরণের তিনটি চলকের মান জানা থাকে তবে চতুর্থ চলকের মান গণনা করা যায়। এই সমীকরণ হতে আমরা দেখতে পাই, স্থির উন্নতা এবং চাপে *n* মোল যে-কোনো গ্যাসের আয়তন সমান

হবে, কারণ $V = \frac{nRT}{p}$ এবং n, R, T এবং p হল ধ্রুবক। যে সমস্ত শর্তে কোনো গ্যাসের আচরণ আদর্শ গ্যাসের মতো হয় তখন এই সমীকরণটি ঐ গ্যাসের ক্ষেত্রে প্রযোজ্য হবে। 1 মোল আদর্শ গ্যাসের আয়তন STP শর্তে (273.15 K উন্নতা এবং 1 bar চাপ) 22.710981 L mol⁻¹। 1 মোল আদর্শ গ্যাসের ক্ষেত্রে R এর মান এই সকল শর্তে নিম্নলিখিতভাবে গণনা করা যাবে:

$$R = \frac{(10^5 Pa)(22.71 \times 10^{-3} m^3)}{(1mol)(273.15K)}$$

$$= 8.314 \text{ Pa m}^3 \text{ K}^{-1} \text{ mol}^{-1}$$

- = 8.314 \times 10⁻² bar L $\mathrm{K^{-1}}~\mathrm{mol^{-1}}$
- $= 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

পূর্বে ব্যবহৃত STP শর্তে (0 °C উন্নতা এবং 1 atm চাপে), R এর মান 8.20578 × 10⁻² L atm K⁻¹ mol⁻¹।

আদর্শ গ্যাস সমীকরণটি হল চারটি চলকের পারস্পরিক সম্পর্ক এবং এটি গ্যাসের অবস্থাকে বর্ণনা করে। সেজন্য একে অবস্থা সমকীরণও বলে।

আদর্শ গ্যাস সমীকরণটিতে চল আমরা ফিরে যাই। এটি চলকগুলোর যুগপৎ পরিবর্তনের সঙ্গে সম্পর্কযুক্ত। যদি একটি নির্দিষ্ট পরিমাণ গ্যাসের উন্নতা, আয়তন এবং চাপ T_1, V_1, p_1 থেকে পরিবর্তিত হয়ে T_2, V_2 এবং p_2 হলে আমরা লিখতে পারি,

$$\frac{p_1 V_1}{T_1} = nR \text{ and } \frac{p_2 V_2}{T_2} = nR$$

$$\Rightarrow \frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2} \tag{5.19}$$

সমীকরণ (5.19) একটি খুবই উপযোগী সমীকরণ। সমীকরণ (5.19) এর ছয়টি চলকের মধ্যে যদি পাঁচটি চলকের মান জানা থাকে তবে অজ্ঞাত চলকটির মান গণনা করা যায়। এই সমীকরণটি গ্যাসের সংযোগ সূত্র নামেও পরিচিত।

সমস্যা 5.3

25°C উম্বতা এবং 760 mm Hg চাপে একটি গ্যাস 600 mL আয়তন দখল করে। এমন উচ্চতায় যেখানে গ্যাসটির উম্বতা 10°C এবং আয়তন 640 mL, সেখানে গ্যাসটির চাপ কত হবে?

সমাধান

 $p_1 = 760 \text{ mm Hg}, V_1 = 600 \text{ mL}$ $T_1 = (25 + 273)\text{K} = 298 \text{ K}$ $V_2 = 640 \text{ mL}$ এবং $T_2 = (10 + 273)\text{K} = 283 \text{ K}$ গ্যাসের সংযোগ সূত্রানুসারে

$$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$$

$$\Rightarrow p_2 = \frac{p_1 V_1 T_2}{T_1 V_2}$$

$$\Rightarrow p_2 = \frac{(760 \, mm \, Hg) \times (600 \, mL) \times (283 \, K)}{(640 \, mL) \times (298 \, K)}$$

$$= 676.6 \, mm \, Hg$$

5.6.1 গ্যাসীয় পদার্থে ঘনত্ব এবং মোলার ওজন (Density and Molar Mass of a Gaseous Substance)

আদর্শ গ্যাস সমীকরণকে নিম্নলিখতভাবে পুনর্বিন্যাস করা যায়—

$$\frac{n}{V} = \frac{p}{RT}$$
 $n \,
m{cr} \, \frac{m}{M}$ দিয়ে প্রতিস্থাপিত করে পাই,
 $\frac{m}{M V} = \frac{p}{RT}$
(5.20)

$$\frac{d}{M} = \frac{p}{RT} \quad (যেখানে d হল ঘনত্ব) \tag{5.21}$$

সমীকরণ (5.21)কে পুনর্বিন্যাস করে আমরা গ্যাসের মোলার ওজন গণনা করার সম্পর্কটি পাই,

$$M = \frac{d\,RT}{p} \tag{5.22}$$

5.6.2 ডালটনের অংশ চাপ সূত্র (Dalton's Law of Partial Pressures)

1801 খ্রিস্টাব্দে জন ডালটন এই সুত্রটি প্রতিপাদন করেন। এই

সূত্রানুসারে, নিজেদের মধ্যে বিক্রিয়া করে না এরকম গ্যাস মিশ্রলের মোট চাপ উপাদান গ্যাসগুলোর প্রতিটির অংশ চাপের যোগফলের সমান হয় অর্থাৎ প্রত্যেকটি গ্যাসকে পৃথকভাবে একই আয়তনে এবং একই উন্নতায় রাখলে যে চাপ প্রয়োগ করে তার যোগফলের সমান হয়। গ্যাস মিশ্রলে উপস্থিত উপাদান গ্যাসের নিজস্ব চাপকে **অংশ চাপ** বলে। গণিতিকভাবে,

$$p_{\text{(মাট}} = p_1 + p_2 + p_3 + \dots$$
 (যখন T, V স্থির) (5.23)

যেখানে $p_{_{(\rm XII)}}$ হল গ্যাস মিশ্রণের মোট চাপ এবং $p_{_1}, p_{_2}, \; p_{_3}$ ইত্যাদি হল উপাদান গ্যাসগুলোর অংশ চাপ।

গ্যাসগুলোকে সাধারণত জলের উপর সংগ্রহ করা হয় এবং সেজন্য এরা আর্দ্র থাকে। জলীয় বাষ্প মিশ্রিত আদ্র গ্যাসের মোট চাপ থেকে জলের বাষ্পচাপকে বিয়োগ করে শুষ্ক গ্যাসের চাপ গণনা করা যায়। সম্পৃক্ত জলীয় বাষ্প যে চাপ প্রয়োগ করে তাকে **জলীয়** টান (Aqueous tension) বলে। বিভিন্ন উস্নতায় জলীয় টান এর সারণি 5.3 এ দেওয়া আছে।

$$p_{_{\mathrm{MB}},_{\mathrm{MB}}} = p_{_{\mathrm{(MID}}} - \mathrm{জলীয় টান}$$
 (5.24)

সারণি 5.3 : উন্নতা অপেক্ষক রূপে জলের জলীয় টান (বাষ্প চাপ)

উন্নতা/K	চাপ/bar	উন্নতা/K	চাপ/bar
273.15	0.0060	295.15	0.0260
283.15	0.0121	297.15	0.0295
288.15	0.0186	299.15	0.0331
291.15	0.0204	301.15	0.0372
293.15	0.0230	303.15	0.0418

মোল ভগ্নাংশ অনুসারে আংশিক চাপ (Partial pressure in terms of mole fraction)

মনে করি, T উন্নতায় / আয়তনে আবম্ধ তিনটি গ্যাসের অংশ চাপ যথাক্রমে p_1, p_2 এবং p_3 । তাহলে—

$$p_1 = \frac{n_1 RT}{V} \tag{5.25}$$

$$p_2 = \frac{n_2 RT}{V} \tag{5.26}$$

পদার্থের অবস্থা

$$p_3 = \frac{n_3 RT}{V} \tag{5.27}$$

যেখানে $n_1 n_2$ এবং n_3 হল গ্যাসগুলোর মোল সংখ্যা। এভাবে মোট চাপকে প্রকাশ করলে হবে

$$p_{\text{CNID}} = p_1 + p_2 + p_3$$

= $n_1 \frac{RT}{V} + n_2 \frac{RT}{V} + n_3 \frac{RT}{V}$
= $(n_1 + n_2 + n_3) \frac{RT}{V}$ (5.28)

 p_1 কে p_{cmin} দ্বারা ভাগ করলে আমরা পাই,

$$\frac{p_1}{p_{\text{GNID}}} = \left(\frac{n_1}{n_1 + n_2 + n_3}\right) \frac{RTV}{RTV}$$
$$= \frac{n_1}{n_1 + n_2 + n_3} = \frac{n_1}{n} = x_1$$

যেখানে $n = n_1 + n_2 + n_3$,

x, হল প্রথম গ্যাসটির মোল ভগ্নাংশ।

সুতরাং, $p_1 = x_1 p_{x | \overline{b}}$ একইভাবে অন্য দুটি গ্যাসের ক্ষেত্রেও আমরা লেখতে পারি

 $p_2 = x_2 \, p_{_{({
m All}{
m b}}}$ এবং $p_3 = x_3 \, p_{_{({
m All}{
m b}}}$ এভাবে একটি সাধারণ সমীকরণ লেখা যেতে পারে

 $p_{i} = x_{i} p_{\text{crib}}$ (5.29)

যেখানে p_i এবং x_i হল i নং গ্যাসটির যথাক্রমে অংশ চাপ এবং মোল ভগ্নাংশ। যদি গ্যাস মিশ্রণের মোট চাপ জানা থাকে তাহলে (5.29) সমীকরণের সাহায্যে প্রত্যেকটি গ্যাসের নিজস্ব চাপ নির্ণয় করা যাবে।

সমস্যা 5.4

নিয়ন ও ডাই অক্সিজেন গ্যাসের একটি মিশ্রণে 70.6 g ডাই অক্সিজেন এবং 167.5 g নিয়ন গ্যাস আছে। যদি সিলিন্ডারে উপস্থিত গ্যাস মিশ্রনটির চাপ 25 bar হয় তবে মিশ্রণে ডাই অক্সিজেন ও নিয়ন গ্যাসের অংশ চাপ কত হবে ?

সমাধান

ডাই অক্সিজেনের মোল সংখ্যা

$$=\frac{70.0 \text{ g}}{32 \text{ g mol}^{-1}}$$

= 2.21 mol

 $=\frac{167.5\,g}{20\,g\,mol^{-1}}$ নিয়নের মোল সংখ্যা = 8.375 mol2.21 ডাই অক্সিজেনের মোল ভগাংশ 2.21+8.375 2.21 $=\frac{1}{10.585}$ =0.21 $\frac{8.375}{2.21 + 8.375}$ নিয়নের মোল ভগ্নাংশ = 0.79অন্যভাবে নিয়নের মোল ভগ্নাংশ = 1-0.21 = 0.79 কোনো গ্যাসের অংশ চাপ = মোল ভগ্নাংশ × মোট চাপ ⇒ ডাইঅক্সিজেনের অংশ চাপ = 0.21 × (25 bar) = 5.25 bar ⇒ নিয়নের অংশ চাপ $= 0.79 \times (25 \text{ bar})$ = 19.75 bar

5.7 গতিশস্তি এবং অণুর বেগ (KINETIC ENERGY AND MOLECULAR SPEEDS)

গ্যাসের অণুগুলো সর্বদা গতিশীল অবস্থায় থাকে। গতিশীল অবস্থায় গ্যাসের অণুগুলো নিজেদের মধ্যে এবং পাত্রের দেওয়ালের সাথে সংঘর্ষে লিপ্ত হয়। এর ফলে অণুগুলোর বেগের পরিবর্তন হয় এবং শক্তির পুনরবন্টন ঘটে। তাই সমস্ত অণুগুলোর বেগে এবং শক্তি কোনো সময়ই সমান হয় না। অর্থাৎ অণুগুলোর বেগের যে মান আমরা পাই তা প্রকৃত পক্ষে এদের গড় মান। কোনো গ্যাসের নমুনা যদি n সংখ্যক অণু থাকে এবং এদের নিজস্ব বেগ যদি u_1, u_2, \ldots, u_n হয়, তবে অণুগুলোর গড় বেগ $(u_{\eta y})$ নীচের সমীকরণের সাহায্যে গণনা করা যায়:

$$u_{n = \frac{u_1 + u_2 + \dots \dots u_n}{n}$$

ম্যাক্সওয়েল এবং বোলৎজম্যান প্রদর্শিত মতানুসারে গ্যাসের অণুগুলোর বেগের প্রকৃত বন্টন গ্যাসের উয়তা এবং আণবিক ভরের ওপর নির্ভরশীল। একটি নির্দিষ্ট বেগসম্পন্ন অণুর সংখ্যা নির্ণয়ের

রসায়ন

জন্য ম্যাক্সওয়েল একটি সূত্র প্রতিষ্ঠা করেন। চিত্র A(1) -এ দুটি ভিন্ন উন্নতা T₁ এবং T₂ (T₂ এর মান T₁ থেকে বেশি) তে অণুসংখ্যা বনাম আণবিক বেগের রূপরেখা লেখ দেখানো হয়েছে। লেখটিতে বেগ বন্টনের যে চিত্র দেখানো হয়েছে, তাকেই ম্যাক্সওয়েল বোলৎজম্যান বেগ বন্টন বলা হয়।

চিত্র A(1) ম্যাক্সওয়েল বোলৎজম্যান বেগ বন্টন

লেখচিত্রটি দেখে বোঝা যাচ্ছে খুব উচ্চ বেগসম্পন্ন এবং খুব নিম্নবেগ সম্পন্ন অণুর সংখ্যা খুবই কম থাকে। অধিকাংশ সমবেগসম্পন্ন অণুর সংখ্যাকে বক্ররেখাটির সর্বোচ্চ বিন্দুটি দ্বারা দেখানো হয়েছে। এই বেগকেই সম্ভাব্যতম বেগ, u_{সভাবতম} বলা হয়। যার মান অণুগুলোর গড় বেগের খুব কাছাকাছি হয়। উন্নতা বৃষ্ণি করলে অণুগুলোর সম্ভাব্যতম বেগ বৃষ্ণি পায়। এছাড়াও উচ্চ তাপমাত্রায় বেগবন্টনের বক্ররেখাটি প্রশস্ত হয়ে পড়ে। বক্ররেখাটির প্রশস্ত হওয়া থেকে এটা বোঝা যায় যে অধিক বেগে গতিশীল অণুর সংখ্যা বৃষ্ণি পেয়েছে। অণুগুলোর ভরের উপরও বেগবন্টন নির্ভর করে। স্থির উন্নতায় অধিক ভরযুক্ত গ্যাসের অণুর বেগ নিম্নভরযুক্ত গ্যাসের অণুর বেগ থেকে কম হয়। উদাহরণস্বরূপ সমউন্নতায় ভারী ক্লোরিন অণু থেকে হাল্ধা নাইট্রোজেন অণুর বেগ বেশি হবে। তাই যে কোনো উন্নতায় নাইট্রোজেন গ্যাসের অণুর সম্ভাব্যতম বেগ ক্লোরিন গ্যাসের অণু থেকে বেশি হবে।

চিত্র A (2) -এর নাইট্রোজেন এবং ক্লোরিনের আণবিক বেগ বন্টনের বক্ররেখাগুলোর দিকে লক্ষ্য করো। একটি নির্দিস্ট উয়্নতায় যদিও কোনো একটি অণুর নিজস্ব বেগের পরিবর্তন হয়, কিন্তু বেগের বন্টন একই থাকে।

চিত্র A (2): 300 K উস্নতায় ক্লোরিন এবং নাইট্রোজেনের আণবিক বেগের বন্টন

আমরা জানি কোনো কণার গতিশস্তিি নিম্নলিখিত রাশিমালার সাহায্য প্রকাশ করা যায় :

গতিশন্তি =
$$\frac{1}{2}mu^2$$

অর্থাৎ সরলরেখার গতিশীল কোনো গ্যাসীয় কণার চলনের জন্য গড় গতিশক্তি ($\frac{1}{2}m\overline{u^2}$) এর মান জানতে হলে আমাদের সমস্ত কণার গড় বর্গবেগের মান জানতে হবে। এর গাণিতিক রূপটি হল :

$$\overline{u^2} = \frac{u_1^2 + u_2^2 + \dots + u_n^2}{n}$$

ণ্যাসের অণুর গড় গতিশস্তির সরাসরি পরিমাপই হল গড় বর্গবেগ। এখন আমরা যদি বর্গবেগের গড় মানের বর্গ করি তাহলে বেগের এমন একটা মান পাওয়া যায় যা সম্ভাব্যতম বেগ এবং গড় বেগ থেকে আলাদা হয়। বেগের এই মানকেই গড় বর্গবেগের বর্গমূল বলে এবং এর গাণিতিক রূপটি হল:

$$\mathbf{u}_{dn}$$
বর্গবেগের বর্গমূল = $\sqrt{u^2}$

গড় বর্গবেগের বর্গমূল, গড়বেগ এবং সম্ভাব্যতম বেগের মধ্যে সম্পর্কটি হল :

u_{বর্গবেগের বর্গমূল}> u_{গড়}> u_{সম্ভাব্যতম} এই তিনধরনের বেগের অনুপাতটি হল : u_{সম্ভাব্যতম}: u_{গড়}: u_{বর্গবেগের বর্গমূল} = 1 : 1.128 : 1.224 পদার্থের অবস্থা

5.8 গ্যাসের গতীয়তত্ত্ব (Kinetic Molecular Theory of Gases)

এখন পর্যন্ত যে সূত্রগুলো (যেমন বয়েলের সূত্র, চার্লসের সূত্র ইত্যাদি) আমরা জেনেছি সেগুলো বৈজ্ঞানিকগণের পরীক্ষাগারে বিভিন্ন পরীক্ষা নিরীক্ষায় প্রাপ্ত ফলাফলের সংক্ষিপ্ত বর্ণনা মাত্র। বৈজ্ঞানীক পদ্ধতির একটি গুরুত্বপূর্ণ দিক হল সতর্কভাবে পরীক্ষানিরীক্ষা করা এবং বিভিন্ন শর্তে একটি নির্দিন্ট তন্ত্র (System) কীরূপ আচরণ করে সে সম্পর্ক স্পন্ট ধারণা দেওয়া। যখন পরীক্ষা লব্ধ তথ্যগুলো একবার প্রতিষ্ঠিত হয় তখন একজন বিজ্ঞানী জানতে আগ্রহী হন কেন তন্ত্রটি এইরূপ আচরণ করে। উদাহরণস্বরূপ গ্যাসের সূত্রাবলির সাহায্যে আমরা আগে থেকেই বলতে পারি যে যখন গ্যাসকে সংকুচিত করা হয় তখন গ্যাসের চাপ বৃদ্ধি পায়। কিন্তু আমরা জানতে চাই গ্যাসকে সংকুচিত করা হলে আণবিক স্তরে কী ঘটনা ঘটে ? এই প্রশ্নগুলোর উত্তর দেওয়ার জন্যই একটি তত্ত্ব গঠন করা হয়। একটি তত্ত্ব একটি মডেল (অর্থাৎ একটি মানসিক চিত্র) যেটি আমাদের পর্যবেক্ষণগুলোকে ভালোভাবে বুঝতে সাহায্য করে। যে তত্ত্ব গ্যাসের গতীয় তত্ত্বেবলে।

গ্যাসের অণুর গতীয় তত্ত্বের ধারণা বা স্বীকার্য বিষয়গুলো নীচে দেওয়া হয়েছে। এই স্বীকার্যগুলো পরমাণু ও অণু যেগুলোকে দেখা যায় না এদের সঙ্গে সম্পর্কিত, সেজন্য এটি গ্যাসের একটি আণুবীক্ষণিক মডেল হিসাবে গণ্য করা হয়।

- গ্যাস সমূহ একই প্রকারের বিশাল সংখ্যক কণা (অণু ও পরমাণু)
 নিয়ে গঠিত। এই কণাগুলো এতই ক্ষুদ্র এবং এদের গড় দূরত্ব এতই বেশি যে এদের মধ্যবর্তী ফাঁকা স্থানের তুলনায় অণুগুলোর প্রকৃত আয়তন নগন্য হয়। গ্যাসের অণুগুলোকে বিন্দুভর হিসাবে ধরা হয়। এই স্বীকার্যটি গ্যাসের অতি সংকোচনশীলতাকে ব্যাখ্যা করে।
- সাধারণ উন্নতা ও চাপে গ্যাসের কণাগুলোর মধ্যে কোনো আকর্ষণ বল থাকে না। এই স্বীকার্যটির স্বপক্ষে বলা যায় যে, গ্যাসগুলো প্রসারিত হয় এবং পাত্রের সমগ্র আসর দখল করে।
- গ্যাসের কণাগুলো অবিরাম এবং বিশৃঙ্খলভাবে গতিশীল । যদি কণাগুলো নিশ্চল থাকত এবং নির্দিষ্ট স্থান দখল করত তখন গ্যাসের নির্দিষ্ট আকার থাকত, যেটি লক্ষ করা যায় না ।
- গ্যাসের কণাগুলো সবদিকে সরলরেখায় গতিশীল থাকে ৷ এভাবে

বিশৃঙ্খলভাবে গতিশীল থাকার ফলে কণাগুলো নিজেদের সঙ্গে এবং পাত্রের দেওয়ালের সঙ্গে ধাক্বা খায়। পাত্রের দেওয়ালের সঙ্গে কণাগুলোর এই সংঘর্ষের ফলেই গ্যাসের চাপ সৃষ্টি হয়।

- গ্যাসের অণুগুলোর এই সংঘর্ষ সম্পূর্ণভাবে স্থিতিস্থাপক অর্থাৎ সংঘর্ষের আগে এবং পরে অণুগুলোর মোট শক্তি একই থাকে । সংঘর্ষকারী অণুগুলোর মধ্যে শক্তির আদানপ্রদান হতে পারে, এদের নিজস্ব শক্তি পরিবর্তিত হতে পারে কিন্তু এদের মোট শক্তি স্থির থাকে । গতিশক্তি হারিয়ে ফেললে অণুগুলোর গতি থেমে যাবে এবং গ্যাসের অণুগুলো থিতিয়ে পড়বে কিন্তু বাস্তবে আমরা যা লক্ষ করি তা এর থেকে ভিন্ন ।
- যে-কোনো মুহূর্তে গ্যাসের বিভিন্ন কণায় বেগ বিভিন্ন হয় এবং সেজন্য গতিশক্তিও বিভিন্ন হয় । এই স্বীকার্যটি যুক্তিযুক্ত বলে মনে হয় । কারণ যদি কণাসমূহের সংঘর্ষ হয়, তখন আমরা মনে করি কণাসমূহের বেগ পরিবর্তিত হয় । যদি কণাগুলোর প্রাথমিক বেগ সমান বলে ধরে নেওয়া হয় তখনও আণবিক সংঘর্ষ এই অভিনতাকে তছনছ করে দেয় । ফলস্বরূপ কণাগুলোর বেগ পরক্ষণেই আলাদা হয়ে যায় এবং এই পরিবর্তন চলতেই থাকে । এটি দেখানো যায় যে যদিও কণাগুলোর নিজস্ব বেগ পরিবর্তিত হতে থাকে কিন্তু একটি নির্দিন্ট উন্নতায় বেগের বন্টন স্থির থাকে ।
- যদি একটি অণুর গতিবেগ বিভিন্ন মুহূর্তে বিভিন্ন হয় তখন এর গতিশক্তিও বিভিন্ন হবে । এই পরিপ্রেক্ষিতে আমরা কেবলমাত্র গড় গতিশক্তির কথাই চিন্তা করতে পারি । গ্যাসের গতীয় তত্ত্ব অনুসারে গ্যাসের অণুগুলোর গড় গতিশক্তি পরম উন্নতার সঙ্গে সমানুপাতিক । এটা লক্ষ করা গেছে স্থির আয়তনে কোনো গ্যাসকে উত্তপ্ত করলে চাপ বৃদ্ধি পায় । গ্যাসকে উত্তপ্ত করলে কণাগুলোর গতিশক্তি বৃদ্ধি পায় এবং কণাগুলো পাত্রের দেওয়ালের উপর আরও বেশি সংখ্যায় বারংবার আঘাত করে ফলে আরও বেশি চাপ প্রয়োগ করে ।

গ্যাসের গতীয়তত্ত্ব পূর্বের অনুচ্ছেদে আলোচিত গ্যাসের সূত্রাবলিগুলোকে তাত্ত্বীকভাবে উপস্থাপিত করতে সাহায্য করে। গ্যাসের গতীয় তত্ত্বের উপর নির্ভর করে যে গণনা এবং ভবিষ্যতবাণী করা হয় সেগুলো পরীক্ষামূলক তথ্যগুলোর সঙ্গে ভালোভাবে মিলে যায় এবং এই মডেলটির গ্রহণযোগ্যতাকে প্রতিষ্ঠিত করে।

5.9 বাস্তব গ্যাসের আচরণ : আদর্শ গ্যাসের আচরণ থেকে বিচ্যুতি (Behaviour of real gases: Deviation from ideal gas behaviour)

গ্যাসের গতীয়তত্ত্বের তাত্ত্বিক মডেলটি পরীক্ষালব্ধ পর্যবেক্ষণগুলোর সঙ্গো সম্পূর্ণভাবে সঞ্চাতিপূর্ণ। সমস্যা তখনই দেখা দেয়, যখন আমরা জানতে চেম্টা করি যে কতদূর পর্যন্ত pV = nRT সমীকরণটি সঠিকভাবে গ্যাসের চাপ-আয়তন-তাপমাত্রার সম্পর্কের সঙ্গো সংগতিপূর্ণ। এই বিষয়টিকে পরীক্ষা করতে আমরা গ্যাসের pVবনাম p লেখচিত্রটি অঞ্চন করি। কারণ স্থির উন্নতায় pVধ্রুবক (বয়েলের সূত্র) হবে এবং pV বনাম p লেখটি সকল চাপে x অক্ষের সমান্তরাল সরলরেখা হবে। চিত্র 5.10 -এ 273 K উন্নতার বিভিন্ন গ্যাসের প্রকৃত তথ্য থেকে প্রাপ্ত লেখচিত্রটি প্রকাশ করা হয়েছে।

লেখচিত্র থেকে সহজে বোঝা যায় স্থির উম্নতায় বাস্তব গ্যাসের ক্ষেত্রে pVবনাম p লেখটি সরলরৈখিক নয়। যেখানে আদর্শ

চিত্র 5.10 বাস্তব গ্যাস এবং আদর্শ গ্যাসের pV বনাম p লেখচিত্র।

গ্যাসের আচরণ থেকে উল্লেখযোগ্য বিচ্যুতি দেখা যায়। দুই ধরনের রেখা দেখা যায়, হাইড্রোজেন এবং হিলিয়াম গ্যাসের ক্ষেত্রে চাপ বৃদ্ধির সঙ্গে *pV* এর মানও বৃদ্ধি পায়। দ্বিতীয় ধরনের রেখা কার্বন মনোক্সাইড এবং মিথেনের মতো অন্যান্য গ্যাসগুলোকে প্রকাশ করছে। এই ধরনের রেখায় প্রথমদিকে আদর্শ গ্যাসের আচরণের ঋণাত্মক বিচ্যুতি দেখায়, চাপ বৃদ্ধির সঙ্গো *pV* এর মান হ্রাস পায় এবং একটি নির্দিষ্ট গ্যাসের ক্ষেত্রে সর্বনিম্ন মানে পৌঁছায়। এরপর *pV* এর মান বৃদ্ধি পায়। এরপর রেখাটি আদর্শ গ্যাসের সরলরেখাকে অতিক্রম করে ক্রমাগত ধনাত্মক বিচ্যুতি দেখায়। এর থেকে বোঝা যায় যে বাস্তব গ্যাস সমূহ সকল অবস্থায় সঠিকভাবে আদর্শ গ্যাস সমীকরণটি মেনে চলে না।

আদর্শ গ্যাস থেকে এই বিচ্যুতি চাপ বনাম আয়তন লেখচিত্রেও পরিষ্কারভাবে বোঝা যায়। বাস্তব গ্যাসের উপর পরীক্ষালব্ধ তথ্য এবং বয়েলের সূত্রের সাহায্যে তাল্পীক গণনা থেকে প্রাপ্ত তথ্যগুলোর সাহায্যে যে চাপ বনাম আয়তনলেখ পাওয়া যায় সেগুলো সমাপতিত হওয়ার কথা। চিত্র 5.11-এ এই ধরনের লেখচিত্র দেখানো হয়েছে। লেখচিত্র থেকে পরিষ্কার যে খুবই উচ্চচাপে নির্ণীত আয়তন, গণনায় প্রাপ্ত আয়তন থেকে বেশি। নিম্নচাপে নির্ণীত আয়তন এবং গণনায় প্রাপ্ত আয়তন পরস্পরের কাছাকাছি হয়।

চিত্র 5.11 : বাস্তব গ্যাস এবং আদর্শ গ্যাসের চাপ বনাম আয়তন লেখচিত্র।

দেখা গেছে যে বাস্তব গ্যাস সকল অবস্থায় সম্পূর্ণভাবে বয়েলের সূত্র, চালর্সে সূত্র এবং অ্যাভোগাড্রো সূত্র মেনে চলে না। এখন দুটি প্রশ্ন উদ্ভূত হয়—

- (i) গ্যাসগুলো কেন আদর্শ গ্যাসের আচরণ থেকে বিচ্যুত
 হয় ?
- (ii) কী কী শর্তে গ্যাসগুলো আদর্শ আচরণ থেকে বিচ্যুত হয় ?

যদি গ্যাসের গতিতত্ত্বের স্বীকার্যগুলো পুনরায় একবার লক্ষ করি তাহলে আমরা প্রথম প্রশ্নের উত্তর পেয়ে যাব। আমরা দেখতে পায় গ্যাসের গতীয় তত্ত্বের দুটি স্বীকার্য সঠিক নয়। সেগুলি হল—

- (a) গ্যাসের অণুগুলোর মধ্যে কোনো আকর্ষণ বল নেই।
- (b) গ্যাস যে পরিমাণ আয়তন দখল করে তার তুলনায় গ্যাসের অণুগুলোর আয়তন খুবই নগন্য।

যদি (a) স্বীকার্যটি সঠিক হয়, তবে গ্যাসকে কখনও তরলে পরিণত করা যাবে না। অধিকন্তু আমরা দেখতে পাই গ্যাসকে ঠান্ডা ও সংকুচিত করে তরলে পরিণত করা যায়। উৎপন্ন তরল সমূহকে সংকুচিত করা খুবই কন্টসাধ্য। এর অর্থ হচ্ছে কম আয়তনে বিকর্ষণ বলগুলোর মান যথেন্ট শক্তিশালী হয় এবং অনুগুলোর পুনঃসংকোচনে বাধা দেয়। যদি স্বীকার্য (b) সঠিক হত তবে পরীক্ষালব্দ তথ্য (বাস্তব গ্যাসের ক্ষেত্রে) এবং বয়েলের সূত্র হতে তাত্ত্বিক গণনায় প্রাপ্ত তথ্য (আদর্শ গ্যাসের ক্ষেত্রে) থেকে যে চাপ বনাম আয়তন লেখচিত্র পাওয়া যায় সেগুলো সমাপতিত হত।

বাস্তব গ্যাসগুলো আর্দশ গ্যাস সূত্র থেকে বিচ্যুতি দেখায় কারণ অণুগুলো পরস্পর ক্রিয়া করে। উচ্চচাপে গ্যাসের অণুগুলো পরস্পরের খুব কাছাকাছি থাকে। তখন আণবিক বলসমূহ ক্রিয়া করতে শুরু করে। উচ্চচাপে অণুগুলো সম্পূর্ণ শক্তি নিয়ে পাত্রের দেওয়ালের উপর আঘাত করতে পারে না কারণ অন্যান্য অণুর আণবিক আকর্ষণ বল তাদের পেছন দিকে ধরে রাখতে চেম্টা করে এবং পাত্রের দেওয়ালের উপর গ্যাসের অণুগুলো দ্বারা প্রযুক্ত চাপের উপর প্রভাব বিস্তার করে। এই কারণে বাস্তব গ্যাস যে চাপ প্রয়োগ করে তা আদর্শ গ্যাস থেকে কম হয়।

$$p_{(\text{winn})} = p_{(\text{alise})} + \frac{an^2}{V^2}$$
 (5.30)

প্রকৃত চাপ সংশোধিত পদ

এখানে a হল একটি ধ্রুবক। এই অবস্থায় বিকর্ষণ বলও গুরুত্বপূর্ণ হয়ে ওঠে। বিকর্ষণ ক্রিয়া খুব কম দূরত্বের মধ্যে সক্রিয় হয় এবং এটি তাৎপর্যপূর্ণ হয় যখন অণুগুলো প্রায় সংস্পর্শে চলে আসে। উচ্চচাপে এই অবস্থার সৃষ্টি হয়। বিকর্ষণ বল জনিত কারণে অণুগুলো ক্ষুদ্র কিন্তু অভেদ্য গোলক হিসাবে আচরণ করে। অণুগুলোর দ্বারা অধিকৃত আয়তনকে এখন আর অগ্রাহ্য করা যায় না কারণ এখন অণুগুলো / আয়তন এর বদলে (V-nb) আয়তনে ছোটাছুটি করতে বাধ্য হয়। যেখানে nb হল অণুগুলোর দ্বারা অধিকৃত মোট আয়তন। এখানে b হল একটিধ্রুবক। চাপ এবং আয়তনের সংশোধনকে গ্রহণ করে আমরা (5.17) সমীকরণটি পুনরায় নিম্নলিতিভাবে লেখতে পারি—

$$\left(p + \frac{an^2}{V^2}\right)(V - nb) = nRT$$
(5.31)

সমীকরণ (5.31)কে ভেনডার ওয়ালস্ (vander Waals) সমীকরণ বলে। এই সমীকরণে *n* হল গ্যাসের মোল সংখ্যা। ধ্রুবক a এবং b কে **ভেনডার ওয়াল** ধ্রুবক বলে যাদের মান গ্যাসের প্রকৃতির উপর নির্ভর করে। ধ্রুবক a এর মান গ্যাসের আন্তরাণবিক আকর্ষণ বলের মাত্রাকে প্রকাশ করে, এটি চাপ ও উয়ুতার উপর নির্ভরশীল নয়।

খুবই নিম্ন উন্নতায় আন্তরাণবিক বলগুলো তাৎপর্যপূর্ণ হয়। যেহেতু অণুগুলো নিম্ন গড় গতিবেগ নিয়ে চলাচল করে, তাই একে অপরের আকর্ষণ বল দ্বারা আকর্ষিত হয়। বাস্তব গ্যাসগুলো তখনই আদর্শ গ্যাসের মতো আচরণ করে যখন চাপ ও উন্নতা এমন হয় যে আন্তরাণবিক বলগুলো সাধারণত নগন্য হয়। যখন চাপ এর মান শূন্য এর কাছাকাছি আসে তখন বাস্তব গ্যাস আদর্শ গ্যাসের মতো আচরণ করে।

আদর্শ গ্যাসের আচরণ থেকে এই বিচ্যুতিকে **সংকোচনশীলতা** গুণক Z এর সাহায্যে গণনা করা যায়, যেটি *pV* এবং *n*RT-র অনুপাত এর সাহায্যে প্রকাশ করা হয়। গাণিতিকভাবে,

$$Z = \frac{pV}{nRT}$$
(5.32)

আদর্শ গ্যাসের ক্ষেত্রে সকল উন্নতায় ও চাপে Z = 1, কারণ $pV = n \operatorname{R} T \mid Z$ বনাম p এর লেখ একটি সরলরেখা হবে যা চাপ অক্ষের (চিত্র 5.12) সমান্তরাল । যে গ্যাসগুলো আদর্শ আচরণ থেকে বিচ্যুত হয় তাদের ক্ষেত্রে Z এর মান 1 থেকে বিচ্যুত হয় । খুবই নিম্নচাপে সমস্ত গ্যাসগুলো Z ≈1 দেখায় এবং তারা আদর্শ গ্যাসের মতো আচরণ করে ।

উচ্চচাপে সকল গ্যাসের ক্ষেত্রে Z > 1 হয়। এই গ্যাসগুলোকে সংকুচিত করা খুবই কঠিন। মাঝামাঝি চাপে বেশির ভাগ গ্যাসের ক্ষেত্রে Z < 1 সুতরাং গ্যাসগুলো তখনই আদর্শ আচরণ করে যখন গ্যাসের আয়তন এতই বেশি হয় যে অণুগুলোর আয়তন এই আয়তনের তুলনায় উপেক্ষিত করা যায়। অন্যভাবে বললে গ্যাসের আচরণ আদর্শ গ্যাসের মতো তখনই হয় যখন চাপ খুবই কম হয়। গ্যাস কতটুকু চাপ পর্যস্ত আদর্শ গ্যাসের সমীকরণকে মেনে চলবে

চিত্র 5.12 : কিছু কিছু গ্যাসের সংকোচনশীলতা গুণকের পরিবর্তন।

সেটি নির্ভর করে গ্যাসের প্রকৃতি এবং উষ্ণতার উপর। যে উষ্ণতায় একটি বাস্তব গ্যাস চাপের একটি নির্দিন্ট সীমা পর্যন্ত আদর্শ গ্যাসের সূত্র মেনে চলে তাকে **বয়েল উন্নতা** বা **বয়েল বিন্দু** বলে। কোনো গ্যাসের বয়েল বিন্দু গ্যাসটির প্রকৃতির উপর নির্ভর করে। বয়েল বিন্দুর উধ্বে বাস্তব গ্যাস আদর্শ আচরণ থেকে ধনাত্মক বিচ্যুতি দেখায় এবং Z এর মান 1 থেকে বেশি হয়। অণুগুলোর মধ্যে আকর্ষণ বলের মান খুবই দুর্বল হয়। বয়েল উন্নতার নীচে বাস্তব গ্যাস প্রথমদিকে চাপ বৃদ্ধির সাথে সাথে Z এর মানের অবনমন দেখায় এবং একটি ন্যূনতম মানে পৌঁছায়। পরবর্তীতে চাপ আরও বৃদ্ধি করলে Z এর মান ক্রমাগত বৃদ্ধি পেতে থাকে। উপরের ব্যাখ্যা থেকে এটা বোঝা যায় যে নিন্নচাপে এবং উচ্চ উন্নতায় গ্যাসগুলো আদর্শ গ্যাসের মতো আচরণ করে। এই শর্তগুলো বিভিন্ন গ্যাসের ক্ষেত্রে বিভিন্ন হয়।

নীচের সমীকরণটি সূক্ষ্ম দৃষ্টিতে লক্ষ করলে আমরা 'Z' এর তাৎপর্য সম্পর্কে আরও অধিক বুঝতে পারি—

$$Z = \frac{pV_{\text{algag}}}{nRT} \tag{5.33}$$

যদি গ্যাস আদর্শ আচরণ করে তখন— $V_{\text{winf}} = \frac{nRT}{p}$ সমীকরণে

$$\frac{nRT}{p}$$
 এর মান বসিয়ে পাই $Z = \frac{V_{\text{start}}}{V_{\text{start}}}$ (5.34)

সমীকরণ (5.34) থেকে এটি স্পস্ট যে সংকোচনশীলতা গুণক কোনো গ্যাসের প্রকৃত মোলার আয়তন এবং একই তাপমাত্রা এবং চাপে ঐ গ্যাসটি যদি আদর্শ আচরণ করে তবে তার মোলার আয়তনের অনুপাত।

নীচের পরিচ্ছেদে আমরা দেখতে পাব যে প্রকৃত পক্ষে গ্যাসীয় অবস্থা এবং তরল অবস্থার মধ্যে পার্থক্য করা সম্ভব নয় এবং তরলকে কম আয়তনে সীমাবন্দ্ব এবং উচ্চ আণবিক আকর্ষণ বিশিষ্ট গ্যাসীয় দশারই ধারাবাহিকতা হিসাবে মনে করা যায়। আমরা আরও দেখব কীভাবে কোনো গ্যাসের সমোম্ব লেখকে ব্যবহার করে ঐ গ্যাসের তরলীকরণের শর্তগুলো সম্পর্কে ধারণা করা যায়।

5.10 গ্যাসের তরলীকরণ (Liquifaction of Gases)

বিজ্ঞানী থমাস অ্যান্ড্রিয়োজ (Thomas Andrews) সর্ব প্রথম কার্বন ডাইঅক্সাইড এর উপর পরীক্ষার ভিত্তিতে কোনো পদার্থের গ্যাসীয় ও তরল উভয় দশায় চাপ-আয়তন এবং তাপমাত্রার সম্পর্ক সম্বন্ধিত তথ্য উপস্থাপন করেছিলেন। তিনি বিভিন্ন উন্নতায় কার্বন ডাই অক্সাইডের সমোম্বলেখ অঙ্কন করেছিলেন (চিত্র 5.13)। পরবর্তী সময়ে দেখা গিয়েছিল যে বাস্তব গ্যাসগুলো কার্বন ডাইঅক্সাইডের মতোই আচরণ করে। অ্যান্ড্রিয়োজ লক্ষ করেন উচ্চ উন্নতায় সমোম্ব লেখগুলো আদর্শ গ্যাসের মতো দেখতে হয় এবং গ্যাসকে অতি উচ্চ চাপেও তরলে পরিণত করা যায় না। এবার উন্নতা কমালে লেখচিত্রটির আকৃতি পরিবর্তিত হয়ে যায় এবং প্রাপ্ত তথ্যে আদর্শ আচরণ থেকে উল্লেখযোগ্য বিচ্যুতি পরিলক্ষিত হয়।

30.98°C উন্নতায় কার্বন ডাইঅক্সাইড 73 অ্যাটমস্ফিয়ার চাপ পর্যন্ত গ্যাস হিসাবে থাকে। (চিত্র 5.13 -এ E বিন্দু)। 73 অ্যাটমস্ফিয়ার চাপে কার্বন ডাইঅক্সাইডকে প্রথমত তরল অবস্থায় দেখা যায়। 30.98°C উন্নতাকে কার্বন ডাইঅক্সাইডের সংকট উন্নতা (T_c) বলে। এটি হল সর্বোচ্চ উন্নতা, যে উন্নতায় তরল কার্বন ডাইঅক্সাইড দেখা যায়। এই উন্নতার উধ্বে এটি গ্যাস হিসাবে থাকে। সংকট উন্নতায় 1 মোল গ্যাসের আয়তনকে সংকট আয়তন (V_c) এবং চাপকে সংকট চাপ (p_c) বলে। সংকট উন্নতা, সংকট চাপ এবং সংকট আয়তনকে সংকট ধ্রুবক বলে। এরপর চাপ বৃদ্ধি করলে তরল কার্বন ডাইঅক্সাইড আরও সংকুচিত হয় এবং লেখচিত্রটি তরলের সংকোচনশীলতাকে প্রকাশ করে। খাড়ালেখটি তরলের সমোন্ন লেখকে প্রকাশ করে। খানিকটা সংকোচনে, চাপের অত্যধিক বৃদ্ধি ঘটায় যা তরলের নিম্ন সংকোচনশীলতাকে নির্দেশ করে। 30.90°C

চিত্র 5.13 : বিভিন্ন তাপমাত্রায় কার্বন ডাইঅক্সাইডের সমোয়ু লেখ।

এর নীচে গ্যাসের উপর সংকোচনের প্রভাব প্রায় ভিন্ন। 21.5 °C উন্নতায় কাৰ্বন ডাইঅক্সাইড B বিন্দু পৰ্যন্ত গ্যাস হিসাবেই থাকে। B বিন্দুতে নির্দিষ্ট আয়তন বিশিষ্ট তরলের আবির্ভাব ঘটে। আরও সংকুচিত করলে চাপের কোনো পরিবর্তন হয় না। তরল এবং গ্যাসীয় কার্বন ডাই অক্সাইড একসাথে অবস্থান করে এবং এই অবস্থায় চাপ আরও বৃদ্ধি করলে গ্যাস আরও ঘনীভূত হতে থাকে যতক্ষণ না পর্যন্ত C বিন্দুতে পৌঁছায়। C বিন্দুতে সমস্ত গ্যাস ঘনীভূত হয়ে যায় এবং চাপ আরও বৃদ্ধি করলে তরলের সামান্য সংকোচন ঘটে যেটা খাড়া রেখায় প্রদর্শিত হয়েছে। V_2 আয়তন থেকে V_3 আয়তনে খানিকটা সংকোচনের ফলে চাপ বৃদ্ধি পেয়ে p_2 থেকে p_3 তে পৌঁছায় (চিত্র 5.13)। 30.98 °C (সংকট উন্নতা) এর নীচে প্রত্যেকটি লেখ একই প্রবণতা দেখায়। নিম্ন উয়্বতায় শুধু অনুভূমিক রেখার দৈর্ঘ্য বৃদ্ধি পায়। সংকট বিন্দুতে সমোষ্ন রেখার অনুভূমিক অংশটি একটি বিন্দুতে মিলিত হয়। এভাবে আমরা দেখতে পাই যে, চিত্র 5.13-এ A বিন্দু গ্যাসীয় অবস্থাকে প্রকাশ করে। D বিন্দু তরল অবস্থাকে বোঝায় এবং গম্বুজ আকৃতির অংশটি তরল এবং গ্যাসীয় কার্বন

ডাইঅক্সাইডের সাম্যাবস্থাকে প্রকাশ করে। স্থির উন্নতায় সকল গ্যাসই সংকোচনে (সমোন্ন সংকোচন) কার্বন ডাইঅক্সাইডের মতো আচরণ করে। উপরের আলোচনা থেকে বোঝা যায় গ্যাসকে তরলে পরিণত করতে হলে সংকট উন্নতার নীচে শীতল করতে হবে। সংকট উন্নতা হল সর্বোচ্চ উন্নতা যে উন্নতায় গ্যাস প্রথমে তরলে পরিণত হতে শুরু করে। তথাকথিত স্থায়ী গ্যাসগুলোকে (অর্থাৎ যে গ্যাসগুলো নিরবিচ্ছিন্নভাবে Z-এর মানে ধনাত্মক বিচ্যুতি দেখায়) তরলে পরিণত করতে হলে শীতল করার সাথে সাথে তালোতাবে সংকুচিতও করতে হবে। সংকুচিত করার ফলে অণুগুলো খুব কাছাকাছি চলে আসে এবং শীতলতার ফলে অণুগুলোর গতিশক্তি হ্রাস পায়। ফলস্বরূপ আন্তরাণবিক ক্রিয়া এই ধীর গতিশীল ও পরস্পরের খুব কাছাকাছি থাকা অণুগুলোকে এক সাথে আবন্ধ করে এবং গ্যাস তরলে পরিণত হতে শুরু করে।

কোনো পম্বতিতে গ্যাসকে তরলে পরিণত করা বা তরলকে গ্যাসে পরিণত করা তখনই সম্ভব হয় যখন সর্বদা একদশা বর্তমান। উদাহরণস্বরূপ চিত্র 5.13-এ, আমরা উম্লতা বৃদ্বি করে A বিন্দু থেকে F বিন্দুতে উলস্বভাবে যেতে পারি। তারপর স্থির উন্নতায় (31.1°C-এ সমোম্ন) গ্যাসকে সংকুচিত করে আমরা G বিন্দু পর্যন্ত অগ্রসর হতে পারি। এর ফলে চাপ বৃদ্বি পাবে। এখন আমরা উন্নতা হ্রাস করে উল্লস্বভাবে নীচে D-এর দিকে নামতে পারি। যেই মাত্র আমরা সংকট সমোম্ন রেখার H বিন্দুকে অতিক্রম করি আমরা তরল অবস্থা পাই। এই পরিবর্তনের ধারায় আমরা কখনও লেখচিত্রে দ্বি-দশা যুক্ত অঞ্চল পাই না। যদি সংকট উন্নতায় এই প্রক্রিয়াটি সম্পন্ন করা হয় তখন পদার্থ সর্বদা একই দশায় থাকে।

এইভাবে গ্যাসীয় অবস্থা এবং তরল অবস্থার মধ্যে একটি নিরবচ্ছিন্নতা বর্তমান। প্রবাহী শব্দটি তরল বা গ্যাসের ক্ষেত্রে এই নিরবিচ্ছিন্নতাকে প্রকাশ করতেই ব্যবহৃত হয়। সুতরাং একটি তরলকে খুবই গাঢ় গ্যাস হিসাবে দেখা যেতে পারে। তরল ও গ্যাসকে তখনই পৃথক করা যায় যখন উন্নতা সংকট উন্নতার নীচে হয় এবং তার চাপ ও আয়তন গম্বুজের নীচে থাকে। কারণ ঐ অবস্থায় তরল ও গ্যাস সাম্যাবস্থায় থাকে এবং দুটি দশাকে পৃথক করে এমন একটি তল দেখা যায়। এই পৃথককারী তলের অনুপস্থিতিতে দুটি অবস্থার মধ্যে পার্থক্য করার কোনো মৌলিক পদ্ধতি নেই। সংকট উন্নতাতে তরল অবস্থা গ্যাসীয় অবস্থাতে অদৃশ্যরুপে এবং নিরবচ্ছিন্নভাবে পরিবর্তিত হতে শুরু করে এবং এই অবস্থায় দুটি দশার পৃথককারী তল বিলুপ্ত হয়ে যায় (অনুচ্ছেদ 5.11.1) একটি গ্যাসকে সংকট উন্নতার নীচে চাপ প্রয়োগে তরলে পরিণত করা যায় এবং একে ঐ গ্যাসের বাষ্প বলে। কার্বন ডাইঅক্সাইড গ্যাসটির উন্নতা যখন এর সংকট উন্নতার কম হয় তখন একে কার্বন ডাই অক্সাইড বাষ্প বলে। কিছু কিছু পদার্থের সংকট ধ্রুবকের মান সারণি 5.4-এ দেওয়া হল।

5.11 তরল অবস্থা (Liquid State)

তরল অবস্থায় আন্তরাণবিকতা বল গ্যাসীয় অবস্থার তুলনায় বেশি থাকে। তরলের ক্ষেত্রে অণুগুলো এতই কাছাকাছি থাকে যে এদের মধ্যে ফাঁকা স্থান খুবই কম এবং সাধারণ অবস্থায় তরল গ্যাসের থেকে অধিক ঘন হয়।

পদার্থ	T _c /K	p _c /bar	$V_{ m c}/{ m dm^3mol^{-1}}$
H_2	33.2	12.97	0.0650
Не	5.3	2.29	0.0577
N_2	126.	33.9	0.0900
O ₂	154.3	50.4	0.0744
CO_2	304.10	73.9	0.0956
H_2O	647.1	220.6	0.0450
NH ₃	405.5	113.0	0.0723

সারণি 5.4 : কিছু কিছু পদার্থের সংকট ধ্রুবকসমূহ

সমস্যা 5.5

কোনো গ্যাসের কণাগুলোর মধ্যে উপস্থিত আন্তরাণবিক বলের মাত্রার উপর নির্ভর করে গ্যাসের বৈশিষ্ট্যমূলক সংকট উয়তা থাকে। অ্যামোনিয়া এবং কার্বন ডাইঅক্সাইডের সংকট উয়তা যথাক্রমে 405.5 K এবং 304.10 K। 500 K থেকে তাদের সংকট উয়তা পর্যন্ত শীতল করতে থাকলে কোনো গ্যাসটি প্রথমে তরলে পরিণত হবে ?

সমাধান

অ্যামোনিয়া প্রথমে তরলে পরিণত হবে কারণ এর সংকট উম্বতা শীতল করার প্রক্রিয়াতে প্রথমে আসবে। CO₂ -এর তরলীকরণে অধিক শীতলতার প্রয়োজন হবে।

আন্তরাণবিক আকর্ষণ বল তরল পদার্থের অণুগুলোকে এক সাথে ধরে রাখে। তরলের নির্দিষ্ট আয়তন থাকে কারণ অণুগুলো একে অপরের থেকে আলাদা থাকে না। যদিও তরলের অণুগুলো স্বাধীনভাবে একে অপরকে অতিক্রম করে গড়াতে পারে ফলে তরল প্রবাহিত হয়, ঢালা যায় এবং যে পাত্রে রাখা হয় সেই পাত্রের আকার ধারণ করে। এই অনুচ্ছেদে আমরা তরলের কিছু ভৌত ধর্ম যেমন বাষ্পচাপ, পৃষ্ঠটান এবং সাম্ত্রতা নিয়ে আলোচনা করব।

5.11.1 বাষ্ণ চাপ (Vapour Pressure)

যদি কোনো খালি পাত্রে কিছুটা তরল নেওয়া হয় তবে ঐ তরলের কিছুটা অংশ বাম্পীভূত হয়ে পাত্রের অবশিষ্ট জায়গা ভরাট করে ফেলে। প্রথমদিকে তরল বাম্পীভূত হয় এবং পাত্রের দেওয়ালের উপর চাপ (বাম্পের চাপ) বৃদ্ধি পায়। কিছু সময় পর এটি স্থির হয়ে যায় এবং তরল দশা ও বাম্পদশার মধ্যে একটি সাম্যাবস্থা তৈরি হয়। এই অবস্থায় বাম্প চাপকে **সাম্যাবস্থার বাম্পচাপ** বা সম্পৃ**ন্ত বাম্প চাপ** বলে। যেহেতু বাম্পীভবনের প্রক্রিয়াটি উন্নতা নির্ভর সেহেতু কোনো তরলের বাম্পচাপ উল্লেখের সময় উন্নতা অবশ্যই উল্লেখ করতে হবে।

যখন কোনো তরলকে খোলা পাত্রে রেখে উত্তপ্ত করা হয় তখন তরলের পৃষ্ঠতল থেকে বাষ্পীভবন ঘটে। যে উন্নতায় তরলের বাষ্পচাপ বাহ্যিক চাপের সমান হয় তখন তরলের সমগ্র অংশ থেকে বাষ্পীভবন হতে পারে এবং বাষ্প স্বাধীনভাবে চারিপাশে ছড়িয়ে পড়ে। তরলের সমগ্র অংশ থেকে মুক্ত বাষ্পীভবনকে স্ফুটন বলে। যে উন্নতায় তরলের বাষ্পচাপ বাহ্যিক চাপের সমান হয় তাকে ঐ চাপে ঐ তরলের স্ফুটনাঙ্ক বলে। বিভিন্ন উন্নতায় কিছু সাধারণ তরলের বাষ্পচাপকে চিত্র 5.14-এ দেওয়া হয়েছে। 1 অ্যাটমস্ফিয়ার চাপে স্ফুটনাঙ্ককে সাধারণ স্ফুটনাঙ্ক বলে। যদি চাপ 1 বার হয় তখন স্ফুটনাঙ্ককে তরলের প্রমাণ স্ফুটনাঙ্ক বলে। তরলের প্রমাণ স্ফুটনাঙ্ককে সাধারণ স্ফুটনাঙ্ক বলে। বিভিন্ন উন্নতায় কিছু সাধারণ চাপে স্ফুটনাঙ্ককে তরলের প্রমাণ স্ফুটনাঙ্ক বলে। বাদি চাপ 1 বার হয় তখন স্ফুটনাঙ্ককে তরলের প্রমাণ স্ফুটনাঙ্ক বলে। তরলের প্রমাণ স্ফুটনাঙ্ক সাধারণ স্ফুটনাঙ্ক থেকে খানিকটা কম হয় কারণ 1 বার চাপ।অ্যাটমস্ফিয়ার চাপ অপেক্ষা কিছুটা কম।জলের সাধারণ স্ফুটনাঙ্ক 100 °C (373 K), এবং প্রমাণ স্ফুটনাঙ্ক 99.6 °C (372.6 K)।

উঁচুস্থানে বায়ুমণ্ডলীয় চাপ কম হয়। সেজন্য উঁচুস্থানে তরল, সমুদ্র পৃষ্ঠের তুলনায় কম উয়্বতায় ফোঁটে। যেহেতু পাহাড়ে জল কম উয়্বতায় ফোঁটে সেজন্য প্রেসার কুকার ব্যবহার করে রান্না করা হয়। পদার্থের অবস্থা

চিত্র 5.14 : কিছু সাধারণ তরলের বাষ্পচাপ বনাম উন্নতা লেখ।

হাসপাতালে অস্রোপচারে ব্যবহৃত যন্ত্রপাতিকে অটোক্লেভ যন্ত্রে জীবাণুমুক্ত করা হয়। যেখানে ভেন্ট এর উপর ওজন চাপিয়ে ভিতরের বাম্পের চাপকে বায়ুমণ্ডলীয় চাপের উর্ধ্বে নিয়ে গিয়ে জলের স্ফুটনাঙ্ক বুন্দি করা হয়।

বন্ধপাত্রে তরলকে উত্তপ্ত করলে স্ফুটন হয় না। ক্রমাগত উত্তপ্ত করতে থাকলে বাম্প চাপ বৃদ্ধি পায়। প্রথম অবস্থায় তরল দশা এবং বাম্প দশার মধ্যে পরিষ্কার সীমা দেখা যায় কারণ তরল বাম্প অপেক্ষা অধিক গাঢ় হয়। উন্নতা বৃদ্ধির সাথে সাথে অধিক সংখ্যক অণুগুলো বাম্পদশায় চলে যায় এবং বাস্পের গাঢ়ত্ব বৃদ্ধি পায়। একই সময়ে তরলের গাঢ়ত্ব কমতে থাকে। অণুগুলো চলাচল করার ফলে এটি প্রসারিত হয়। যখন তরল এবং বাস্পের গাঢ়ত্ব একই হয় তখন তরল এবং বাস্পের মধ্যে যে স্পন্ট সীমারেখা ছিল সেটি অদৃশ্য হয়। এই উন্নতাকে সংকট উন্নতা বলে যার সম্বন্ধে আমরা আগেই 5.10 অনুচ্ছেদে আলোচনা করেছি।

5.11.2 পৃষ্ঠটান (Surface Tension)

এটি সকলের জানা তরল যে পাত্রে রাখা হয় তার আকার ধারণ করে। তাহলে মার্কারির ছোটো ছোটো ফোঁটা কোনা পৃষ্ঠতলে না ছড়িয়ে গিয়ে গোলাকার বিন্দুরূপে অবস্থান করে কেন ? নদীর তলায় মাটির কণাগুলো পৃথকভাবে থাকে কিন্ডু উপরে তুলে আনলে এক সাথে লেগে থাকে কেন ? যখনই কোনো কৌশিক নল তরলের পৃষ্ঠতল স্পর্শ করে তখন তরল নল বেয়ে খানিকটা উপরে ওঠে যায় বা নেমে যায় কেন ? এই সকল ঘটনাগুলোর কারণ হল তরলের একটি বিশেষ ধর্ম থাকে যাকে পৃষ্ঠটান বলে। তরলের মধ্যে অবস্থিত কেনো অণু সবদিক থেকে সমান আন্তরাণবিক আকর্ষণ বল অনুভব করে। সে জন্য ঐ অত্ম কোনো লব্দি বল অনুভব করে না। কিন্ডু তরলের পৃষ্ঠতলে অবস্থিত কোনো অণু এর নীচের দিকে অবস্থিত অণুগুলোর জন্য তরলের ভেতরের দিকে একটি লব্দি আকর্ষণ বল অনুভব করে (চিত্র 5.15), যেহেতু ঐ অণুর উপরের দিকে কোনো অণু থাকে না।

তরল তার পৃষ্ঠতলের ক্ষেত্র ফলকে হ্রাস করতে চেস্টা করে। পৃষ্ঠতলে অবস্থিত অণুগুলো নীচের দিকে লব্দি বল অনুভব করে এবং এদের শক্তিও তরলের ভিতরের অণুগুলো থেকে বেশি হয় কারণ, তরলের ভিতরের অণুগুলোর উপর কোনো লব্দি বল কাজ করে না। সেজন্য তরল তার পৃষ্ঠতলে ন্যূনতম সংখ্যক অণু রাখতে চেম্টা করে। যদি তরলের ভিতর থেকে কোনো অণুকে টেনে উপরের তলে এনে পৃষ্ঠতলের ক্ষেত্রফল বৃদ্ধি করতে চেম্টা করা হয় তবে এই আকর্ষণ বলকে অতিক্রম করতে হবে। এর জন্য শস্তি খরচের প্রয়োজন হবে। তরলের পৃষ্ঠতলের ক্ষেত্রফল এক একক বৃদ্ধি করতে যে শস্তির প্রয়োজন তাকে **পৃষ্ঠতলীয় শন্তি** বলে।

চিত্র 5.15 : তরলের পৃষ্ঠতলে এবং ভিতরে অবস্থিত কোনো অণুর উপর ক্রিয়াশীল বল।

হয়, তখন স্থায়ী পৃষ্ঠতলের ঠিক সংস্পর্শে থাকা তরলের অণুগুলো স্থায়ী হয়ে যায়। স্থায়ীতল থেকে দূরত্ব যত বেশি হয় উপরের স্তরগুলোর গতিবেগও ততবেশি হয়। এই ধরনের প্রবাহ যেখানে একটি স্তর থেকে পরবর্তী স্তরে গতিবেগের ধারাবাহিক বৃদ্ধি ঘটে তাকে **স্তরীয় প্রবাহ (laminar flow**) বলে। যদি চিত্র 5.16 এর ন্যায় কোনো প্রবাহিত তরলের একটি স্তরকে ধরি তবে এই স্তরের উপরের স্তরটি এই স্তরের গতিকে ত্বরাম্বিত করে এবং এই স্তরের নীচের স্তরটি এই গতিকে বাধা দেয়।

যদি dz দূরত্বে অবস্থিত কোনো স্তরের গতিবেগ du মান

দ্বারা পরিবর্তিত করা হয় তখন গতিবেগের নতিমাত্রাকে $rac{du}{d au}$ দ্বারা

চিত্র 5.16 : স্তরীয় প্রবাহে নতিবেগের উন্নয়ন

প্রকাশ করা যায়। স্তরগুলোর এই প্রবাহকে বজায় রাখার জন্য একটি বলের প্রয়োজন। এই বল, তরলের স্পর্শ তলের ক্ষেত্রফল এবং নতিবেগের গতিমাত্রার সঙ্গে সমানুপাতিক, অর্থাৎ—

 $F \propto A \; (A \; \text{ee} \; \text{oser} \; \text{oser} \; \text{set} \; \text{fbs} \; \text{set} \; \text{oser} \; \text{set} \; \text{ee} \; \text{set} \; \text{se$

 $F \propto A. rac{du}{dz}$ (যেখানে $rac{du}{dz}$ হল স্তরগুলোর গতিবেগের

নতিমাত্রা, যা দূরত্বের সাথে গতিবেগের পরিবর্তন বোঝায়)

$$F \propto A \cdot \frac{du}{dz}$$
$$\Rightarrow F = \eta A \frac{du}{dz}$$

η হল সমানুপাতিক ধ্রুবক। একে সান্দ্রতা গুণাঙ্ক (coefficient of viscosity) বলে। সান্দ্রতা গুণাঙ্ক হল সেই

এর মাত্রা J m⁻² । তরলের পৃষ্ঠ বরাবর অঞ্চিত রেখার লম্ব বরাবর প্রতি একক দৈর্ঘ্যে যে বল কাজ করে তাকে তরলের পৃষ্ঠটান বলে । একে গ্রিক অক্ষর γ (Gamma) দ্বারা প্রকাশ করা হয় । এর মাত্রা হল kg s⁻² এবং SI এককে N m⁻¹ এ প্রকাশ করা হয় । যখন তরলের পৃষ্ঠতলের ক্ষেত্রফল ন্যূনতম হয় তখন এর শস্তিও ন্যূনতম হয় । গোলকাকৃতি এই শর্তকে পূরণ করে । সেজন্যই পারদের ফোঁটাগুলো গোলাকার আকৃতির হয় । এই কারণে কাঁচের ধারালো ধারগুলোকে উত্তাপ দিয়ে মসৃণ করা হয় । উত্তাপে কাচ গলে যায় এবং তরলের পৃষ্ঠতল ধার বরাবর গোলাকার আকৃতি ধারণ করে । যার ফলে ধারগুলো মসৃণ হয় । একে কাঁচের আগুন পালিশ বলে (Fire polishing) ।

পৃষ্ঠটানের জন্যই কৌশিক নলে তরল উপরের দিকে উঠতে (বা নীচের দিকে নামতে) চেস্টা করে। তরল কোনো বস্তুকে আর্দ্র করে কারণ তরল ঐ বস্তুর সংস্পর্শে এলে তার পৃষ্ঠতল বরাবর ছড়িয়ে পড়ে এবং একটি পাতলা আস্তরণ তৈরি করে। ভিজা মাটির কণাগুলো একসাথে লেগে থাকে কারণ ঐ অবস্থায় জলের পাতলা পৃষ্ঠতলের ক্ষেত্রফলটি কমে যায়। পৃষ্ঠটানই হল তরলের পৃষ্ঠতলের প্রসারণ ধর্মের কারণ। সমতলে রাখা তরলের বিন্দুগুলো অভিকর্ষজ বলের প্রভাবে কিছুটা চেপ্টা হয়ে যায়, কিন্ডু অভিকর্ষজ বলের প্রতাবমুক্ত পরিবেশে বিন্দুগুলো সম্পর্ণরূপে গোলাকার হয়।

কোনো তরলের পৃষ্ঠটানের মান অণুগুলোর মধ্যেকার আকর্ষণ বলের উপর নির্ভর করে। যখন আকর্ষণ বল বেশি হয় তখন পৃষ্ঠটানও বেশি হয়। উন্নতা বৃদ্ধিতে অণুগুলোর গতিশক্তি বৃদ্ধি পায় এবং কার্যকরী আন্তরাণবিক আকর্ষণ বল হ্রাস পায়। সেজন্য উন্নতা বৃদ্ধিতে পৃষ্ঠটান হ্রাস পায়।

5.11.3 সান্দ্রতা (Viscosity)

এটি তরলের একটি বিশেষ বৈশিষ্ট্য। যখন তরল প্রবাহিত হয়, তখন পরস্পরে পাশ দিয়ে গড়িয়ে যাবার সময় তরলের দুটি স্তরের মধ্যে ঘর্ষণের ফলে প্রবাহের বিরুদ্ধে যে বাধার সৃষ্টি হয় সান্দ্রতা তারই পরিমাপ। অণুগুলোর মধ্যেকার শক্তিশালী আন্তরাণবিক বল অণুগুলোকে একসাথে ধরে রাখে এবং একটি স্তরের উপর দিয়ে অন্য স্তরের গড়িয়ে যাওয়াকে বাধা দেয়।

যখন কোনো স্থায়ী পৃষ্ঠতলের উপর দিয়ে তরল প্রবাহিত

বল যখন দুটি গতিবেগের গতিমাত্রা 1 এবং স্পর্শতলের ক্ষেত্রফল একক হয়। অর্থাৎ η হল সান্দ্রতার পরিমাপ। সান্দ্রতা গুণাঙ্কের SI একক হল নিউটন সেকেন্ড প্রতি বর্গমিটার (N s m⁻²) বা পাস্কাল সেকেন্ড (Pa s = 1kg m⁻¹s⁻¹)। cgs সিস্টেমে সান্দ্রতা গুণাঙ্কের একক হল পয়েস (poise) (বিখ্যাত বিজ্ঞানী জিন লুইস পয়সুলির নামানুসারে)

1 poise = 1 g cm⁻¹s⁻¹ = 10^{-1} kg m⁻¹s⁻¹

সান্দ্রতা যত বেশি হয় তরল তত ধীরে প্রবাহীত হয়। উচ্চ সান্দ্রতা সৃটির জন্য হাইড্রোজেন বন্ধন এবং ভেনডার ওয়াল বল যথেন্ট শক্তিশালী হয়। কাচ হল একটি অতি সান্দ্র তরল। এটি এতই সান্দ্রতাযুক্ত যে কাচের ধর্ম কঠিনের সঙ্গো মিলে যায়। পুরানো বিল্ডিং এর জানালার কাচের বেধ পরিমাপ করে কাচের প্রবাহী ধর্মকে বোঝা যায় উপরের দিকের তুলনায় নীচের দিকের কাচের বেধ বেশি মোটা হয়।

উম্বতা বৃদ্ধির সাথে সাথে তরলের সান্দ্রতা হ্রাস পায় কারণ উচ্চ উম্বতায় অণুগুলো উচ্চ গতিশক্তি সম্পন্ন হয় এবং আন্তরাণবিক আকর্ষণ বলকে অতিক্রম করে একটি স্তর অপরটির উপর দিয়ে গড়িয়ে চলে।

সারাংশ

আন্তরাণবিক বল পদার্থের কণাগুলোর মধ্যে ক্রিয়াশীল থাকে। এই বলগুলো দুটি বিপরীত ধর্মী আধানের মধ্যে বর্তমান বিশুম্ব স্থির তড়িৎ বলের থেকে ভিন্ন হয়। আবার যে বলগুলো সমযোজী বন্ধনের মাধ্যমে সমযোজী অণুর পরমাণুগুলোকে একত্রে ধরে রাখে, সেগুলো এখানে সংযোজিত হয়নি। তাপীয় শক্তি এবং আন্তরাণবিক ক্রিয়ার পারস্পরিক প্রতিযোগিতার উপর পদার্থের অবস্থা নির্ধারিত হয়। পদার্থের গঠনকারী কণাগুলোর শক্তি এবং তাদের মধ্যে ক্রিয়ার পারস্পরিক প্রতিযোগিতার উপর উপর নির্ভর করে পদার্থের সার্বিক ধর্মবলি যেমন গ্যাসের আচরণ, কঠিন ও তরলের ধর্মসমূহ এবং অবস্থার পরিবর্তনে। পদার্থের রাসায়নিক ধর্ম অবস্থা পরিবর্তনের সঙ্গে পরিবর্তিত হয় না, কিন্ডু সক্রিয়তা পদার্থের ভৌত অবস্থার উপর নির্ভর করে।

গ্যাসীয় অণুগুলোর মধ্যে আন্তঃআণবিক আকর্ষণ বলের মান নগন্য এবং এটি এদের রাসায়নিক প্রকৃতির উপর নির্ভরশীল নয়। কিন্তু কিছু লক্ষ্যণীয় ধর্মের পারস্পরিক নির্ভরশীলতা যেমন চাপ, আয়তন, উন্নতা এবং ভর ইত্যাদি গ্যাসের উপর পরীক্ষা নিরীক্ষা করে প্রাপ্ত গ্যাসীয় সূত্রগুলো গঠনের সাহায্য করেছে। **বয়েলের** সূত্রানুসারে সম উন্নতায় কোনো নির্দিষ্ট পরিমাণ গ্যাসের চাপ তার আয়তনের সঙ্গে ব্যাস্তানুপাতীক। **চালর্সের সূত্র** হল সম চাপে গ্যাসের আয়তন এবং পরম উন্নতার সম্পর্ক। এই সূত্রানুসারে স্থির চাপে কোনো নির্দিষ্ট পরিমাণ গ্যাসের আয়তন তার পরম উন্নতার সমানুপাতীক (V \propto T)। যদি গ্যাসের অবস্থাকে p_1 , V_1 এবং T_1 দিয়ে প্রকাশ করা হয় এবং এটি p_2 , V_2 এবং T_2 অবস্থাতে পরিবর্তিত হয় তবে দুটি অবস্থার মধ্যে

সম্পর্ক গ্যাসের সংযোগ সূত্র দ্বারা প্রকাশ করা যায়, যেখানে $\frac{p_1V_1}{T_1} = \frac{p_2V_2}{T_2}$ । অন্য পাঁচটি চলকের মান জানা থাকলে অজ্ঞাত চলকটির মান নির্ণয় করা যায়। **অ্যাভোগাড্রোর** সূত্রানুসারে একই চাপ এবং উস্নতায় সম আয়তন সকল গ্যাসে সমান সংখ্যক অণু বর্তমান। ডালটনের অংশ চাপ সূত্রানুসারে পরস্পর বিক্রিয়া করে না এমন গ্যাস মিশ্রণের মোট চাপ উপাদান গ্যাসসমূহের প্রত্যেকের অংশ চাপের যোগ ফলের সমান, অর্থাৎ $p = p_1 + p_2 + p_3 + ...$ । গ্যাসের চাপ, আয়তন, উস্নতা এবং মোল সংখ্যার মধ্যে সম্পর্ক ঐ গ্যাসের অবস্থা বর্ণনা করে এবং তাকে গ্যাসের অবস্থা সমীকরণ বলে। আদর্শ গ্যাসের অবস্থা সমীকরণটি হল pV=nRT, যেখানে R হল গ্যাস ধ্রুবক এবং তার মান চাপ, আয়তন এবং উন্নতার গৃহীত এককের উপর নির্ভর করে।

উচ্চ চাপ এবং নিম্ন উয়তায় পদার্থের অণুগুলোর মধ্যে উপস্থিত আন্তঃআণবিক বল শক্তিশালী হয়ে উঠে কারণ গ্যাসের অণুগুলো পরস্পরের খুব কছাকাছি চলে আসে। উপযুক্ত উয়তা এবং চাপে গ্যাসকে তরলে পরিণত করা যায়। তরলকে খুব কম আয়তন এবং অতি শক্তিশালী আন্তাণবিক আকর্ষণ বল সমন্বিত গ্যাসীয় দশারই বিস্তৃতি যুক্ত অঞ্জল হিসাবে ধরা যায়। তরলের কিছু কিছু ধর্ম যেমন পৃষ্ঠটান এবং সান্দ্রতা শক্তিশালী আন্তরাণবিক আকর্ষণ বলের কারণে উৎপন্ন হয়।

রসায়ন

অনুশীলনী

- 5.1 30°C উন্নতায় 500 dm³ আয়তন এবং 1 bar চাপে সংরক্ষিত বায়ুকে 200 dm³ আয়তনে সংকুচিত করতে ন্যূনতম চাপের পরিমাণ কত হবে ?
- 5.2 35 °C উন্নতা এবং 1.2 bar চাপে 120 ml আয়তনের একটি পাত্রে কিছু পরিমাণ গ্যাস আছে। এই গ্যাসকে 35 °C উন্নতায় 180 ml আয়তনের অন্য একটি পাত্রে স্থানান্তরিত করা হল। গ্যাসটির চাপ কত হবে ?
- 5.3 PV=nRT অবস্থা সমীকরণ ব্যবহার করে দেখাও একটি নির্দিষ্ট উন্নতায় কোনো গ্যাসের ঘনত্ব গ্যাসের চাপ P-এর সমানুপাতিক।
- 5.4 0°C উন্নতা এবং 2 bar চাপে কোনো গ্যাসের অক্সাইডের ঘনত্ব 5 bar চাপে ডাই নাইট্রোজেনের ঘনত্বের সমান। অক্সাইডটির আণবিক ভর কত ?
- 5.5 27 °C উন্নতায় 1 g পরিমাণ কোনো গ্যাস A-এর চাপ 2 bar। একই উন্নতায় যখন 2 g পরিমাণ অন্য কোনো আদর্শ গ্যাস B কে ঐ পাত্রে মিশ্রিত করানো হল তখন চাপ বেড়ে 3 bar হল। গ্যাস দুটির আণবিক ভরের মধ্যে সম্পর্ক নির্ণয় করো।
- 5.6 ড্রেন পরিষ্কার করার ড্রেনেক্সে সূক্ষ্মমাত্রায় অ্যালুমিনিয়াম থাকে যেটি কস্টিক সোডা দ্রবণের সঞ্চো বিক্রিয়া করে ডাই হাইড্রোজেন উৎপন্ন করে। যদি 0.15g অ্যালুমিনিয়াম বিক্রিয়া করে তবে 20 °C উম্বতায় এবং 1 bar চাপে কত আয়তনের ডাই অক্সিজেন গ্যাস নির্গত হবে।
- 5.7 27 °C উন্নতায় 9 dm³ আয়তনের ফ্লাক্সে রক্ষিত 3.2 g মিথেন এবং 4.4 g কার্বন ডাইঅক্সাইডের মিশ্রণের মোট চাপ কত হবে ?
- 5.8 যদি 0.8 বার চাপে 0.5 L ডাই হাইড্রোজেন এবং 0.7 বার (Bar) চাপে 2.0 L ডাই অক্সিজেনের মিশ্রণ যদি 27°C উন্নতায় 1 L পাত্রে রাখা হয় তবে ঐ মিশ্রণের চাপ কত হবে ?
- 5.9 27 °C উন্নতায় 2 bar চাপে কোনো গ্যাসের ঘনত্ব 5.46 g/dm³, STPতে ঐ গ্যাসের ঘনত্ব কত হবে?
- 5.10 546 °C উম্নতায় এবং 0.1 bar চাপে 34.05 ml ফসফরাস বাষ্পের ভর 0.0625 g। ফসফরাসের আণব ভর কত ?
- 5.11 কোনো ছাত্র 27 °C উন্নতায় একটি গোলতল ফ্লাক্সে বিক্রিয়ক মিশ্রণ রাখতে ভুলে গিয়ে ফ্লাক্সটিকে সরাসরি শিখার উপরে রেখে দেয়। কিছু সময় পর, সে তার ভুল বুঝতে পারে এবং একটি পাইরোমিটার দিয়ে পরীক্ষা করে দেখতে পায় যে ফ্লাক্সের উন্নতা 477 °C হয়ে গেছে। তাহলে ফ্লাক্স থেকে কত ভগ্নাংশ বায়ু নির্গত হয়ে গেল ?
- 5.12 4.0 mol কোনো গ্যাস 3.32 bar চাপে 5 dm³ আয়তন দখল করে। গ্যাসটির উন্নতা গণনা করো। (R = 0.083 bar dm³ K⁻¹ mol⁻¹).
- 5.13 1.4 g ডাই নাইট্রোজেন গ্যাসে ইলেকট্রন সংখ্যা গণনা করো।
- 5.14 যদি প্রতি সেকেন্ডে 10¹⁰টি গমের দানা বন্টন করা হয় তবে এক অ্যাভোগাড্রো সংখ্যক গমের দানাকে বন্টন করতে কত সময় লাগবে ?
- 5.15 8 g ডাই অক্সিজেন এবং 4 g ডাই হাইড্রোজেনকে যদি 27°C উস্নতায় 1 dm³ আয়তনের পাত্রে রাখা হয় তবে ঐ মিশ্রণের মোট চাপ গণনা করো। (R = 0.083 bar dm³ K⁻¹ mol⁻¹)
- 5.16 বেলুনের ভর এবং প্রতিস্থাপিত বায়ুর ভরের পার্থক্যকে পে-লোড (Pay load) বলা হয়। যখন 10 m ব্যাসার্ধযুক্ত 100 kg ভরের একটি বেলুনকে 27°C উন্নতায় 1.66 bar চাপে হিলিয়াম গ্যাস দ্বারা পূর্ণ করা হয় তবে পে লোড (Pay load) গণনা করো। (বায়ুর ঘনত্ব 1.2 kg m⁻³ এবং R = 0.083 bar dm³ K⁻¹ mol⁻¹).

158

পদার্থের অবস্থা

- 5.17
 31.1°C উন্নতা এবং 1 bar চাপে 8.8 g CO2 গ্যাস কত আয়তন স্থান দখল করে তা গণনা করো (R = 0.083 bar L K⁻¹ mol⁻¹)

 5.18
 একই চাপে 95 °C উন্নতায় 2.9 g কোনো গ্যাস 17 °C উন্নতায় 0.184 g ডাইহাইড্রোজেন এর সমান আয়তন দখল করে।

 5.19
 ডাই হাইড্রোজেন এবং ডাই অক্সিজেনের একটি মিশ্রণে 1 bar চাপে ওজন হিসাবে 20% ডাই হাইড্রোজেন আছে। ডাই হাইড্রোজেনের অংশ চাপ গণনা করো।

 5.20
 রাশি *pV* ²*T*²/*n*-এর SI একক কী হবে?

 5.21
 -273 °C উন্নতা কেন ন্যূনতম সম্ভাব্য উন্নতা, যেটি চালর্সের সৃত্রের সাহায্যে ব্যাখ্যা করো।

 5.22
 কার্বন ডাইঅক্সাইড এবং মিথেনের সংকট উন্নতা যথাক্রমে 31.1 °C এবং -81.9 °C। এক্ষেত্রে কোনোটির আন্তরাণবিক বল শক্তিশালী এবং কেন ?
- 5.23 ভেনডার ওয়াল প্যারামিটার (ধ্রুবক) গুলোর ভৌত তাৎপর্য্য ব্যাখ্যা করো।

ষষ্ঠ অধ্যায় (UNIT - 6)

তাপগতিবিদ্যা (THERMODYNAMICS)

উদ্দেশ্য

এই অধ্যায়টি অধ্যয়নের পর তোমরা নিম্নলিখিত বিষয়গুলো জানতে সমর্থ হবে—

- সিস্টেম এবং পারিপার্ম্বিক এই পরিভাষাগুলো ব্যাখ্যা করতে।
- বন্দ্ধ সিস্টেম (Close System), মুক্ত সিস্টেম (Open System) এবং নিঃসঙ্গা সিস্টেমের (Isolated System) মধ্যে পার্থক্য নিরুপন করতে।
- আন্তরশন্তি, কার্য এবং তাপ ব্যাখ্যা করতে।
- তাপগতিবিদ্যার প্রথম সূত্র বিবৃত করতে এবং একে গাণিতিক ভাবে ব্যক্ত করতে,
- রাসায়নিক সিস্টেমে কার্যরূপে শক্তির রূপান্তর এবং তাপের অবদান গণনা করতে,
- অবস্থার অপেক্ষক U, H কে ব্যাখ্যা করতে।
- △U এবং △H এর মধ্যে সম্পর্ক নিরুপন করতে।
- পরীক্ষামূলকভাবে ∆U এবং ∆H এর পরিমাপ করতে,
- △H-এর প্রমাণ অবস্থাগুলোকে সংজ্ঞায়িত করতে।
- বিভিন্ন ধরনের বিক্রিয়ার এনথ্যালপির পরিবর্তন গণনা করতে।
- স্থিরতাপসমষ্টি সম্পর্কিত হেসের সৃত্রের বর্ণনা এবং প্রয়োগ করতে,
- পরিমাণগত ধর্ম এবং অবস্থাগত ধর্মের মধ্যে পার্থক্য নিরুপন করতে,
- স্বতঃস্ফুর্ত এবং অস্বতঃস্ফুর্ত প্রক্রিয়াকে সংজায়িত করতে,
- এনট্রপিকে তাপগতীয় অবস্থা অপেক্ষক হিসাব ব্যাখ্যা করতে এবং স্বতঃস্ফুর্তার জন্য এর প্রয়োগ করতে।
- গিবস মুক্ত শক্তির পরিবর্তনের ব্যাখ্যা (∆G) করতে।
- △G ও স্বতঃস্ফুর্ততা এবং △G ও সাম্যধ্রবকের মধ্যে সম্পর্ক প্রতিষ্ঠা করতে।

It is the only physical theory of universal content concerning which I am convinced that, within the framework of the applicability of its basic concepts, it will never be overthrown.

Albert Einstein

মিথেন, রান্নার গ্যাস অথবা কয়লার মতো জ্বালানীকে বায়ুতে পোড়ালে তাপ নির্গত হয় অর্থাৎ রাসায়নিক বিক্রিয়ার সময় অনুকর্তৃক সঞ্চিত রাসায়নিক শক্তি তাপ হিসাবে নির্গত হতে পারে। যখন কোনো ইঞ্জিনে একটি জ্বালানীকে পোড়ানো হয় অথবা গ্যালভানিক কোষের মতো নির্জল কোষের মাধ্যমে তড়িৎশক্তি সরবরাহ করা হয় তখন যান্ত্রিক কার্যের জন্য রাসায়নিক শক্তিকে ব্যবহার করা হয়। নির্দিষ্ট শর্তের অধীনে শক্তির বিভিন্ন রূপগুলো পারস্পরিক সম্পর্কযুক্ত এবং এগুলো একরূপ থেকে অন্যরূপে রূপান্তরিত করা যায়। শক্তির রপান্তর নিয়ে এই অধ্যয়নই তাপগতি বিদ্যার বিষয়বস্তু গঠন করে। তাপগতিবিদ্যার সূত্রগুলোতে কম সংখ্যক অনু সমন্বিত মাইক্রোস্কোপিক সিস্টেমের তুলনায় বহু সংখ্যক অনু সমন্ধিত ম্যাক্রাস্কোস্কোপিক সিস্টেমে শক্তির পরবর্তন সম্পর্কিত আলোচনা করা হয়। শক্তির রপান্তর কীভাবে এবং কী হারে ঘটে তাপগতিবিদ্যা তার সাথে সম্পর্কিত নয় বরং পরিবর্তনশীল সিস্টেমটির প্রাথমিক এবং অন্তিম অবস্থার ওপর নির্ভর করে। কোনো সিস্টেম যখন সাম্যাবস্থায় থাকে অথবা এক সাম্যবস্থা থেকে অন্য সাম্যাবস্থায় রপান্তরিত হয় তখনই কেবল তাপগতিবিদ্যার সুত্রগুলোর প্রয়োগ করা যায়। সাম্যবস্থায় কোনো সিস্টেমের ম্যাক্রাস্কোপিক ধর্ম যেমন চাপ এবং উন্নতা সময়ের সঙ্গে অপরিবর্তিত থাকে। এই অধ্যায়টিতে আমরা তাপগতিবিদ্যার মাধ্যমে কতগুলো গুরুত্বপূর্ণ প্রশ্নের উত্তর দিতে চাই। যেমন—

রাসায়নিক বিক্রিয়া সংঘটিত হওয়ার সময় শক্তির পরিবর্তন কিভাবে নির্ণয় করবো ? বিক্রিয়াটি আদৌ সংঘটিত হবে, কি হবে না ?

রাসায়নিক বিক্রিয়ার চালক শক্তি কি ? রাসায়নিক বিক্রিয়া কতদূর পর্যন্ত সংঘটিত হবে ?

6.1 তাপগতীয় পরিভাষা (THERMODYNAMIC TERMS)

আমরা রাসায়নিক বিক্রিয়া এবং এগুলোর সঙ্গে যুক্ত শস্তির পরিবর্তন নিয়ে আগ্রহী। তারজন্য তাপগতিবিদ্যার কিছু পরিভাষা আমাদের জানা দরকার। এইগুলো নীচে আলোচনা করা হলো।

6.1.1 সিস্টেম এবং পারিপার্শ্বিক (The System and the Surroundings)

তাপগতিবিদ্যায় সিস্টেম বলতে বোঝায় বিশ্বের যে অংশটি পরীক্ষাধীন এবং সিস্টেমের বাইরে যে অংশটি থাকে তা হলো পারিপার্শ্বিক। সিস্টেমকে বাদ দিয়ে বিশ্বের বাকী সবকিছুই পারিপার্শ্বিকের অন্তর্ভুক্ত। সিস্টেম এবং পারিপার্শ্বিক একসঞ্চো মিলে বিশ্বব্রত্নান্ড গঠন করে।

বিশ্ব ব্রহ্মাণ্ড = সিস্টেম + পারিপার্শ্বিক

সিস্টেমে কোনো পরিবর্তন সংঘটিত হলে, সিস্টেম ব্যতীত বাকী অংশ প্রভাবিতহয়না।অতএব, সবব্যবহারিক উদ্দেশ্যে, পারিপার্শ্বিক হলো বাকী বিশ্বব্রত্নান্ডের ঐ অংশ যার সঙ্গে সিস্টেমের মিথস্ক্রিয়া হয়। সাধারণত, সিস্টেমের আশপাশ এলাকার অংশ নিয়ে এর পারিপার্শ্বিক গঠিত হয়।

উদাহরণস্বরূপ, আমরা যদি একটি বিকারে রক্ষিত দুটি পদার্থ A এবং B -এর মধ্যে সংঘটিত বিক্রিয়া অধ্যয়ন করি, বিক্রিয়া মিশ্রন ধারণকারী বিকারটি হলো সিস্টেম এবং যে কক্ষে বিক্রিয়াটি রাখা আছে সেই কক্ষটি হলো পারিপার্শ্বিক। (চিত্র: 6.1)

মনে রাখতে হবে, সিস্টেমকে সংজ্ঞায়িত করা হয় ভৌতিক পরিসীমাদ্বারা, যেমন—বিকার অথবা পরীক্ষানল, অথবা সিস্টেমকে

চিত্র : 6.1 সিস্টেম এবং পারিপার্শ্বিক

কার্টেসিয়ান স্থানাজ্জের একটি সেট দিয়ে একটি নির্দিষ্ট আয়তনের স্থান উল্লেখ করে সহজেই সংজ্ঞায়িত করা যেতে পারে। এটা জানা প্রয়োজন যে, সিস্টেমকে তার পারিপার্শ্বিক থেকে যে সীমারেখা দিয়ে আলাদা করা হয়, সেটি বাস্তব বা কাল্পনিক দুইই হতে পারে। যে দেওয়ালটি সিস্টেমকে পারিপার্শ্বিক থেকে আলাদা করে রাখে, তাকে সীমানা (boundary) বলে। এটি সিস্টেম থেকে পারিপার্শ্বিক বা বিপরীত ভাবে পদার্থ এবং শক্তির আদান প্রদান চিহ্নিত করতে এবং নিয়ন্ত্রণ করতে গঠন করা হয়।

6.1.2 সিস্টেমের প্রদারভেদ (Types of the System)

সিস্টেম ও তার পারিপার্শ্বিকের মধ্যে পদার্থ (matter) এবং শক্তির (energy) আদান প্রদানের ওপর নির্ভর করে সিস্টেমকে পুনরায় শ্রেণিভুক্ত করতে পার।

1. মুক্ত সিস্টেম (Open System)

মুক্ত সিস্টেমের ক্ষেত্রে সিস্টেম এবং পারিপার্শ্বিকের মধ্যে শক্তি ও পদার্থের আদান প্রদান ঘটে। [চিত্র 6.2(a)] একটি খোলা বিকারে বিক্রিয়কের উপস্থিতি হল একটি মুক্ত সিস্টেমের উদাহরণ। এখানে সীমা হলো একটি কাল্পনিক পৃষ্ঠতল যা বিকার ও বিকারককে ঘেরাও করে রাখে।

চিত্র : 6.2 মুক্ত, বদ্ধ এবং নিঃসঙ্গ সিস্টেম

2. বন্ধ সিস্টেম (Closed System)

বন্দ্ধ সিস্টেমের ক্ষেত্রে সিস্টেম ও পারিপার্শ্বিকের মধ্যে পদার্থের কোনোরূপ আদান প্রদান হতে পারে না। কিন্তু শক্তির আদান প্রদান হয় [চিত্র 6.2 (b)]। পরিবাহী পদার্থ যেমন তামা এবং স্টাল দিয়ে তৈরী একটি বন্ধ আধারে বিক্রিয়কের উপস্থিতি হল একটি বন্দ্ধ সিস্টেমের উদাহরণ।

* আমরা বিক্রিয়ক পদার্থকেই শুধুমাত্র সিস্টেম হিসাবে গন্য করতে পারি, সেক্ষেত্রে বিকারের দেওয়ালটি সীমানা হিসাবে কাজ করে।

3. নিঃসগ্গ সিস্টেম (Isolated System)

নিঃসঙ্গা সিস্টেমের ক্ষেত্রে সিস্টেম এবং পারিপার্শ্বিকের মধ্যে শক্তি ও পদার্থ কোনোটিরই আদান প্রদান হয় না [চিত্র 6.2 (c)].। থার্মোফ্লাক্স অথবা বদ্ধ অন্তরিত পাত্রে রক্ষিত বিকারক হলো নিঃ সঙ্গা সিস্টেমের উদাহরণ।

6.1.3 সিস্টেমের অবস্থা (The State of the System) :

কোনোও ব্যবহারিক গণনার ক্ষেত্রে অবশ্যই সিস্টেমের সঙ্গে সম্পর্কিত ধর্ম যেমন চাপ (p), আয়তন (V) ও উন্নতা (T) এবং সিস্টেমের সংযুতিকেও পরিমাণগতভাবে উল্লেখ করতে হবে। পরিবর্তনের আগে এবং পরে নির্দিষ্ট করে সিস্টেমটি বর্ণনা করা প্রয়োজন। তুমি তোমার পদার্থবিদ্যার পাঠ্যসূচী থেকে স্মরণ করে দেখো যে বলবিদ্যায় একটি সিস্টেমের অবস্থা কোনও নিদিষ্ঠ মুহূর্তে সিস্টেমের প্রতিটি ভরবিন্দুর অবস্থান এবং বেগের সাহায্যে সম্পূর্ণরূপে নিদিষ্ট করে বর্ণনা করা হয়েছে। তাপগতিবিদ্যায় একটি সিস্টেমের অবস্থা সম্বন্ধে একটি স্বতন্ত্রে এবং সহজতর ধারণা প্রবর্তন করা হয়েছে। এক্ষেত্রে প্রতিটি কণার গতির বিস্তারিত জ্ঞান প্রয়োজন হয় না কারণ এখানে সিস্টেমের পরিমাপযোগ্য ধর্মগুলির গড় নিয়ে কাজ করা হয়। কোনো সিস্টেমের অবস্থাকে আমরা অবস্থাগত অপেক্ষক বা অবস্থাগত চলরাশি বা অবস্থার অপেক্ষক দ্বারা উল্লেখ করি।

কোনো সিস্টেমের পরিমাপযোগ্য বা ম্যাক্রোস্কোপিক (বিশাল পরিমাণ অনুসমষ্টি সম্পর্কিত) ধর্ম দ্বারা তাপগতীয় সিস্টেমের অবস্থাকে বর্ণনা করা হয়। কোন গ্যাসীয় পদার্থের অবস্থাকে আমরা চাপ (p), আয়তন (V), উষ্লতা (T), পরিমাণ (n) ইত্যাদি দ্বারা প্রকাশ করতে পারি। P, V, T এর মতো এই চলরাশিগুলিকেই অবস্থা চলরাশি বা অবস্থার অপেক্ষক বলে। কারণ এদের মান কেবলমাত্র সিস্টেমের অবস্থার ওপর নির্ভর করে কিন্তু সিস্টেমটি কীভাবে এই অবস্থায় পৌঁছাল তার ওপর নির্ভর করে কিন্তু সিস্টেমের সমস্ত ধর্মকে সংজ্ঞায়িত করা আবশ্যক নয়, কারন কেবলমাত্র নির্দিন্ট কিছু ধর্মই স্বাধীনভাবে পরিবর্তিত হতে পারে। স্বাধীনভাবে পরিবর্তনশীল ধর্মের সংখ্যা সিস্টেমটির প্রকৃতির ওপর নির্ভর করে। একবার যদি এই ক্ষুদ্র সংখ্যাক মাক্রোম্বিক ধর্মগুলোকে নির্ধারিত (fixed) করা যায়, তবে অন্যধর্মগুলি স্বয়ংক্রিয়ভাবে নির্দিন্ট মান অর্জন করে।

পারিপার্শ্বিকের অবস্থা কখনোই সম্পূর্ণভাবে নির্দিষ্ট করা যায় না; সৌভাগ্যবশত: তাপগতি বিদ্যায় এটা করার প্রয়োজনও হয় না। 6.1.4 অবস্থার অপেক্ষক হিসাবে আন্তরশক্তি (The Internal

6.1.4 অবস্থার অংশক্ষর হেবাবে আগুরশান্ত (The Internal Energy as a State Function)

কোনো রাসায়নিক সিস্টেমে শক্তির গ্রহণ বা শক্তির বর্জন সম্বন্থে

আলোচনা করার জন্য আমাদের একটি পরিমাপযোগ্য রাশির প্রবর্তন করা প্রয়োজন যা সিস্টেমের মোট শক্তিকে প্রকাশ করে। এই শক্তি রাসায়নিক, বৈদ্যুতিক, যান্ত্রিক বা অন্য যে কোনো ধরণের হতে পারে। এইসব শক্তির সমর্ফিই হল সিস্টেমের মোট শক্তি। তাপগতি বিদ্যায় একে আমরা সিস্টেমের আন্তর শক্তি (U) বলি, যা পরিবর্তিত হতে পারে, যেমন—

- তাপ সিস্টেম অভিমুখী অথবা সিস্টেম থেকে বহির্মুখী হয়,
- সিস্টেমের উপর বা সিস্টেমের দ্বারা কার্যসম্পন্ন হয়,
- পদার্থ সিস্টেমে প্রবেশ করে অথবা সিস্টেম থেকে বাইরে নির্গত হয়। এই সিস্টেমগুলিকে অনুচ্ছেদ 6.1.2. এর মতো করে শ্রেনী বিভাগ করা হয় যা তোমরা ইতিমধ্যেই পড়েছো।

(a) কার্য (Work)

এখন চলো আমরা প্রথমে সিস্টেমের উপর কৃত কার্যের মাধ্যমে অভ্যন্তরীন শক্তির পরিবর্তন পরীক্ষা করি। আমরা একটি সিস্টেম নিলাম যেখানে একটি থার্মোফ্লাক্স অথবা একটি অন্তরিত বিকারে কিছু পরিমাণ জল রাখা আছে। এটি সিস্টেম এবং পারিপার্শ্বিকের মধ্যে সিস্টেমের সীমারেখা দিয়ে তাপের আদান প্রদান ঘটতে দেয় না এবং এই ধরণের সিস্টেমকে আমরা রুম্বতাপীয় সিস্টেম বলি। যে প্রক্রিয়াতে এই ধরনের কোনো সিস্টেমের অবস্থাকে পরিবর্তিত করা যায় তাকে রুম্বতাপীয় প্রক্রিয়া বলে। রুম্বতাপীয় প্রক্রিয়া হল এমন একটি প্রক্রিয়া যাতে সিস্টেম এবং পারিপার্শ্বিকের মধ্যে তাপের কোনো আদান প্রদান হয় না। এখানে যে প্রাচীরটি সিস্টেমকে পারিপার্শ্বিক থেকে পৃথক করে তাকে রুম্বতাপীয় প্রাচীর বলে (চিত্র : 6.3)।

চিত্র : 6.3 একটি রুম্বতাপীয় সিস্টেম যা সীমারেখা বরাবর তাপের আদান প্রদানে বাধা সৃষ্টি করে।

চলো আমরা কোনো একটি সিস্টেমের ওপর কিছু পরিমাণ কার্য সম্পন্ন করে সিস্টেমের আন্তর শক্তির পরিবর্তন করি। ধরি আমাদের সিস্টেমটির প্রাথমিক অবস্থা A এবং উন্নতা হলো T_A। ধরি, A অবস্থায় সিস্টেমটির আন্তর শক্তি হলো $U_{\rm A}$ । আমরা সিস্টেমের অবস্থাকে দুটি পৃথক পদ্ধতিতে পরিবর্তন করতে পারি।

প্রথম পম্ধতি ঃ চলো আমরা এক সেট ছোট প্যান্ডেলকে ঘূর্ণন করে 1 কিলোজুল পরিমাণ যান্ত্রিক কার্য করি এবং এর দ্বারা জলকে আলোড়িত করি। ধরি নতুন অবস্থাটি হলো B এবং এর উয়ুতা হলো $T_{\rm B}$ । দেখা যায় $T_{\rm B} > T_{\rm A}$ হয় এবং উয়ুতার পরিবর্তন হলো $\Delta T = T_{\rm B} - T_{\rm A}$ । ধরি B অবস্থার আন্তরশক্তি হলো $U_{\rm B}$ এবং আন্তর শক্তির পরিবর্তন হলো, $\Delta U = U_{\rm B} - U_{\rm A}$.

দ্বিতীয় পম্ধতি ঃ আমরা এখন সমপরিমাণ (অর্থাৎ 1 কিলোজুল) বৈদ্যুতিক কাজ একটি ইমারশান রডের সাহায্যে সম্পন্ন করি এবং উন্নতার পরিবর্তন লিপিবদ্ধ করি। আমরা লক্ষ্য করলাম যে, উন্নতার পরিবর্তন প্রথম বারের মত অর্থাৎ $T_{\rm B} - T_{\rm A}$ ।

প্রকৃতপক্ষে, উপরের পম্বতিতে পরীক্ষাটি জে.পি.জুল 1840– 50 সাল মধ্যে সম্পন্ন করেছিলেন এবং তিনি প্রমাণ করতে সমর্থ হন যে, সিস্টেমের উপর একটি নির্দিষ্ট পরিমাণ কার্য্য করা হলে, যে পদ্বতিতেই কার্য্যটি করা হোক না কেন (পথ নিরপেক্ষ) অবস্থার পরিবর্তন সমান হয়, যা সিস্টেমের উন্নতার পরিবর্তনের মাধ্যমে পরিমাপ করা হয়েছিল।

তাই আন্তরশস্তি (U) নামক একটি রাশিকে সংজ্ঞায়িত করার যথার্থতা রয়েছে যার মান কোনো সিস্টেমের অবস্থার বৈশিফ্টসূচক হয়। আবার অবস্থা পরিবর্তনের জন্য প্রয়োজনীয় রুদ্ধতাপীয় কার্য (W_{ad}) পরিবর্তনের আগে এবং পরের অবস্থার আন্তরশস্তি (U) -এর মানের পার্থক্যের অর্থাৎ ΔU -এর সমান হয়।

$$\Delta U = U_2 - U_1 = w_{ad}$$

একারণেই কোনো সিস্টেমের আন্তর শক্তি *U* একটি অবস্থার অপেক্ষক হয়।

ধনাত্মক চিহ্নু প্রকাশ করে যে w_{ad} এর মান ধনাত্মক অর্থাৎ সিস্টেমের ওপর কার্য করা হয়েছে। একইভাবে যদি সিস্টেম কর্তৃক কার্য সম্পাদিত হয়, w_{ad} ঋণাত্মক মানের হবে।

তুমি কি অন্য কোনো পরিচিত অবস্থার অপেক্ষকের নাম বলতে পার ? অন্যান্য কয়েকটি পরিচিত অবস্থার অপেক্ষক হলো *V, P* এবং *T* । উদাহরণ স্বরূপ কোনো সিস্টেমের উয়্বতার পরিবর্তন করে যদি 25°C থেকে 35°C করা হয় তবে উয়্বতার পরিবর্তন হবে 35°C–25°C = +10°C । আমরা সরাসরি 35°C উয়্বতায় পৌঁছালেও তাই হবে, আবার সিস্টেমটিকে কয়েক ডিগ্রী ঠান্ডা করার পর সিস্টেমটিকে অন্তিম উয়্বতায় নিয়ে আসলেও তাই হবে । একারণেই উয়্বতা হলো একটি অবস্থার অপেক্ষক এবং উয়্বতার পরিবর্তন পথের ওপর নির্ভর করে না। একইভাবে একটি পুকুরের জলের আয়তনও একটি অবস্থার অপেক্ষক, কারণ জলের আয়তন পরিবর্তন তাতে জলভর্তি করার পথের ওপর নির্ভর করে না। পুকুরটিকে বৃষ্টির জল দ্বারা বা নলকুপের জল দ্বারা বা উভয়ের সাহায্যে যেভাবেই ভর্তি করা হউক না কেন, জলের আয়তন পরিবর্তন একই হয়।

(b) **히**প (Heat)

কোনো কার্য সম্পন্ন না করে, কোনো সিস্টেম ও পরিবেশের মধ্যে তাপের আদান প্রদানের মাধ্যমে সিস্টেমের আন্তরশস্তির পরিবর্তন করা যায়। শস্তির এই বিনিময়, যা তাপমাত্রার পার্থক্যের একটি ফল, তাকে তাপ q বলা হয়। চলো, আমরা এমন একটি সিস্টেম বিবেচনা করি, যাতে তাপমাত্রার পরিবর্তন অনুচ্ছেদ 6.1.4 (a) তে বর্ণিত সিস্টেমের মতো একই রকম হয়। যাতে সিস্টেমের প্রাথমিক ও চূড়ান্ত অবস্থা এক হলেও রূম্বতাপীয় প্রাচীরের পরিবর্তে তাপপরিবাহী প্রাচীর নেয়া হয়। তাপের আদান প্রদান প্রাচীরের মাধ্যমে হয়।

চিত্র : 6.4 একটি সিস্টেম যার প্রাচীরের মধ্য দিয়ে তাপ স্থানান্তরিত হয়।

আমরা, তাপপরিবাহী প্রাচীরযুক্ত তামার পাত্রে $T_{\rm A}$ তাপমাত্রার জল নিই এবং পাত্রটিকে $T_{\rm B}$ তাপমাত্রার একটি বিশাল তাপভান্ডারে রাখি। সিস্টেম (জল) দ্বারা গৃহীত তাপ q, সিস্টেমের তাপমাত্রার পার্থক্য $T_{\rm B} - T_{\rm A}$ -এর পরিমাপের সাহায্যে নির্ণয় করা যায়। এক্ষেত্রে সিস্টেমের আন্তরশক্তির পরিবর্তন $\Delta U=q$ যেহেতু স্থির আয়তনে সিস্টেমের উপর কোনো কার্য করা হয় না।

পরিবেশ থেকে সিস্টেমের তাপশক্তির স্থানান্তর হলে q এর মান ধনাত্মক এবং সিস্টেম থেকে পরিবেশে তাপশক্তি স্থানান্তরিত হলে q -এর মান ঋণাত্মক হয়।

* পূর্বে, সিস্টেমের উপর কার্য সম্পন্ন হলে ঋণাত্মক চিহ্ন এবং সিস্টেম কর্তৃক কার্য সম্পন্ন হয়ে ধনাত্মক চিহ্ন ব্যবহার করা হত। এটি পদার্থবিদ্যার পাঠ্যপুস্তকে এখনও অনুসরণ করা হয়, যদিও IUPAC নতুন চিহ্নের পম্বতিকেই সুপারিশ করে। চল আমরা এমন সাধারণ ঘটনা বিবেচনা করি যেখানে অবস্থার পরিবর্তন, কার্য এবং তাপের স্থানান্তর উভয় উপায়েই সম্পাদন করা হয়। এই ক্ষেত্রে আন্তরশন্তির পরিবর্তনকে এভাবে লিখি :

$$\Delta U = q + w \tag{6.1}$$

কোনো একটি অবস্থার পরিবর্তনের জন্য q এবং w এর মান নির্ভর করে পরিবর্তনটি কিভাবে সংঘটিত হয় তার উপর। যদিও আন্তরশন্তির পরিবর্তন ΔU = q + w এর মান শুধুমাত্র সিস্টেমের প্রাথমিক ও অন্তিম অবস্থার উপর নির্ভরশীল। পরিবর্তনটি কিভাবে সংঘটিত হয়েছে তার উপর নির্ভর করে না। যদি তাপ অথবা কার্য হিসাবে শন্তির কোনো স্থানান্তর না হয় (যেমন নি:সঙ্গা সিস্টেমে) অর্থাৎ যদি w = 0 এবং q = 0 হয়, তখন Δ U = 0.

6.1 সমীকরণটি, অর্থাৎ ΔU = q + w হল তাপগতিবিদ্যার প্রথম সূত্রের গাণিতিক রূপ। এই সূত্রানুসারে, একটি নি:সঙ্গা সিস্টেমের মোট শক্তির পরিমাণ হল ধ্রুবক। একে সাধারণভাবে শক্তির সংরক্ষণ সূত্র হিসাবে বিবৃত করা হয়। অর্থাৎ শক্তি সৃষ্টি বা ধ্বংস করা যায় না।

দ্রুষ্টব্য : তাপগতীয় ধর্ম শক্তি এবং এর যান্ত্রিক ধর্ম, আয়তনের মধ্যে যথেন্ট পার্থক্য রয়েছে। নির্দিষ্ট অবস্থাতে, কোনো একটি সিস্টেমের আয়তনের মানকে স্পষ্টকরে (পরমমান হিসেবে) উল্লেখ করা যায়, কিন্ডু আন্তর শক্তির মানকে নির্দিষ্ট করে উল্লেখ করা যায় না। তবে, সিস্টেমের আন্তর শক্তির পরিবর্তনের মানকে পরিমাপ করা যায়।

সমস্যা : 6.1

কোনো সিস্টেমের আন্তর শক্তির পরিবর্তন ব্যাখ্যা করো যখন

- সিস্টেম পারিপার্শ্বিক থেকে কোনো তাপ শোষণ করে না, কিন্ডু সিস্টেমের উপর কার্য করা হয়। সিস্টেমে কি ধরণের প্রাচীর আছে?
- (ii) সিস্টেমের উপর কোনো কার্য করা হল না, কিন্তু q পরিমাণ তাপ সিস্টেম থেকে অপসারণ করা হল এবং পারিপার্শ্বিকে প্রদান করা হল। সিস্টেমে কোনো ধরনের প্রাচীর আছে?
- (iii) সিস্টেম কর্তৃক w পরিমাণ কার্য সম্পন্ন করা হয় এবং
 q পরিমাণ তাপ সিস্টেমে সরবরাহ করা হয়। এটি
 কোন্ ধরণের সিস্টেম হবে ?

সমাধান :

(i)	$\Delta U = \mathrm{w}_{\mathrm{ad}},$ প্রাচীরটি রুম্বতাপীয়
(ii)	$\Delta U\!=\!-q,$ প্রাচীরটি তাপপরিবাহী
(iii)	$\Delta U = q - w$, বন্ধ সিস্টেম।

6.2 প্ররোগ (Applications)

বহু রাসায়নিক বিক্রিয়া গ্যাস উৎপাদনে সক্ষম, যার সাহায্যে যান্ত্রিক কার্য করা যায়। আবার অনেক রাসায়নিক বিক্রিয়া তাপ উৎপাদনে সক্ষম।এই পরিবর্তনগুলোর পরিমাণ নির্ধারণ করা এবং এর আন্তর শন্তির পরিবর্তনের সঙ্গো সম্পর্ক স্থাপন করা গুরুত্বপূর্ণ। চলো দেখি কীভাবে আমরা এগুলো করতে পারি।

6.2.1 কার্য (Work)

প্রথমত, একটি সিস্টেম কি ধরনের কার্য করতে পারবে তার উপর আমরা মনোনিবেশ করবো। আমরা কেবলমাত্র যান্ত্রিক কার্য বা চাপ-আয়তনের কার্য বিবেচনা করি।

চাপ-আয়তন কার্য অনুধাবন করার জন্য একটি ঘর্ষণহীন পিন্টন যুক্ত সিলিন্ডারে এক মোল আদর্শগ্যাস নেই। আদর্শ গ্যাসের মোট আয়তন হল V_i এবং সিলিন্ডারের অভ্যন্তরে গ্যাসের চাপ হল p যদি বাহ্যিক চাপ p_{ex} হয় যা p-এর তুলনায় বেশী, তখন পিন্টনটি ভিতরের দিকে সরানো হল যতক্ষণ না পর্যন্ত ভিতরের চাপ বার্হ্যিক চাপ p_{ex} এর সমান হয়।

চিত্র : 6.5(a) সিলিন্ডারে রক্ষিত একটি আদর্শ গ্যাসকে স্থির বাহ্যিকচাপ, p_{ex} (একটি ধাপে) দ্বারা সংকুচিত করার ফলে সিস্টেমের ওপর সংঘটিত কার্যের পরিমাণ ছায়াময় অঞ্চলের সমান হয়।

তাপগতিবিদ্যা

মনে করি, এই পরিবর্তন একটিমাত্র ধাপে সম্পন্ন করা যায় এবং অন্তিম আয়তন হল V_f , এই সংকোচনের সময়, মনে করি পিন্টনিটি *l* দূরত্ব অতিক্রম করে এবং পিন্টনের প্রস্থচ্ছেদের ক্ষেত্রফল হল A [চিত্র: 6.5(a)].

তাহলে আয়তনের পরিবর্তন $l \times A = \Delta V = (V_f - V_i)$

সুতরাং পিন্টনের উপর প্রযুক্ত বল $= p_{ex}$. A

যদি পিন্টনের চলাচলের ফলে সিস্টেমের উপর w কার্য করা হয় তাহলে,

$$w = \overline{\operatorname{der}} \times \overline{y} \operatorname{des} = p_{ex} \cdot A \cdot l$$
$$= p_{ex} \cdot (-\Delta V) = -p_{ex} \Delta V = -p_{ex} (V_f - V_i) \quad (6.2)$$

এই অভিব্যক্তির ঋণাত্মক চিহ্নটি *W* এর প্রচালিত চিহ্ন বের করতে প্রয়োজন হবে যা ধনাত্মক হবে। এটি নির্দেশ করে যে সংকোচনের ক্ষেত্রে সিস্টেমের উপর কার্য করা হয়। এখানে ($V_f - V_i$) ঋণাত্মক হবে এবং ঋণাত্বককে ঋণাত্বক দিয়ে গুণ করলে এটি ধনাত্মক হবে। অতএব কার্যের জন্য প্রাপ্ত প্রতীক ধনাত্মক হবে।

সংকোচনের প্রতিটি পর্যায়ে যদি চাপ নির্দিষ্ট না থাকে কিন্তু নির্দিষ্ট সংখ্যক ধাপে পরিবর্তন সম্পন্ন হয় তবে গ্যাসের উপর কৃত কার্য সমস্ত ধাপগুলোতে কৃতকার্যের সমষ্টির সমান হবে এবং তা হবে

$-\sum p\Delta V$ এর সমান [চিত্র:6.5 (b)]

চিত্র: **6.5(b)** pV-লেখচিত্র, যখন প্রাথমিক আয়তন V_i হতে সংকোচনের ফলে অন্তিম আয়তন V_f তে পরিবর্তিত হওয়ার সময় চাপ স্থির থাকে না এবং নির্দিন্ট সংখ্যক ধাপে পরিবর্তন সম্পন্ন হয়। গ্যাসের উপর কৃতকার্য ছায়াযুক্ত অঞ্চল দ্বারা দেখানো হয়েছে।

যদি চাপ নির্দিন্ট না থাকে কিন্তু প্রক্রিয়াটি চলাকালীন সময়ে এমনভাবে সুক্ষ সুক্ষ ধাপে পরিবর্তিত হয় যেন বাহ্যিক চাপ সর্বদা গ্যাসের চাপ থেকে সুক্ষ্ম পরিমাণে বেশী থাকে তখন সংকোচনের প্রতিটি পর্যায়ে গ্যাসের আয়তন খুবই সুক্ষ্ম পরিমাণ, dv করে হ্রাস পায়।

এই ধরনের ক্ষেত্রে আমরা গ্যাসের উপর কৃতকার্য গণনা করতে নিচের সম্পর্কটি ব্যবহার করি,

$$\mathbf{w} = -\int_{V_i}^{V_f} p_{ex} dV \tag{6.3}$$

এই ক্ষেত্রে সংকোচনের প্রতিটি পর্যায়ে $p_{ex}(p_{in} + dp)$ এর সমান [চিত্র 6.5(c)]।অনুরূপভাবে একই শর্তে সম্প্রসারণ প্রক্রিয়ার ক্ষেত্রে, বাহ্যিক চাপ সিস্টেমের অন্তর চাপের তুলনায় কম অর্থাৎ $p_{ex}(p_{in} - dp)$ প্রচলিত নিয়ম অনুযায়ী একে লেখা হয়,

 $p_{_{ex}}$ = $(p_{_{in}}\pm dp).$ এই প্রক্রিয়াকে পরাবর্ত প্রক্রিয়া বলে।

যখন কোনো পরিবর্তন বা প্রক্রিয়া এমনভাবে সংঘটিত করা হয় যাতে করে ক্ষুদ্রাতিক্ষুদ্র পরিবর্তন দ্বারাই যে কোনো মুহূর্তে প্রক্রিয়াটি বিপরীত অভিমুখে চালিত করা যায়, তখন সেই প্রক্রিয়া বা পরিবর্তনটিকে পরাবর্ত প্রক্রিয়া বলা হয়। পরাবর্ত প্রক্রিয়া অতি মন্থর গতিতে এবং ধারাবাহিক ভাবে এমন কতগুলো সাম্যাবস্থার মাধ্যমে সংঘটিত হয়, যেখানে সিস্টেম এবং পারিপার্শ্বিক সর্বদা পরস্পরের সঞ্চো সাম্যাবস্থার কাছাকাছি থাকে। পরাবর্ত প্রক্রিয়াগুলো ছাড়া অন্যান্য প্রক্রিয়াগুলোকে অপরাবর্ত প্রক্রিয়া বলে।

চিত্র: 6.5(c) pV-লেখ যখন চাপ স্থির থাকে না এবং অসীম সংখ্যক ধাপে (পরাবর্ত শর্তে) সংঘটিত পরিবর্তন দ্বারা প্রাথমিক আয়তন V_i থেকে অন্তিম আয়তন V_f এ সংকোচন ঘটে। ছায়াযুক্ত অঞ্জল দ্বারা গ্যাসের ওপ র কৃতকার্যের পরিমাণ প্রদার্শিত হয়েছে।

রসায়নে আমরা যে সকল সমস্যার সম্মুখীন হই, যেগুলো সমাধান করা যায়, যদি আমরা কার্যনামক পদটিকে সিস্টেমের আভ্যন্তরীন চাপের সঙ্গো সম্পর্কযুক্ত করি। পরাবর্ত শর্তে কার্যকে সিস্টেমের আভ্যন্তরীণ চাপের সঙ্গো সম্পর্কযুক্ত করতে আমরা সমীকরণ 6.3 কে নীচের মতো করে লিখতে পারি।

$$\mathbf{w}_{rev} = -\int_{V_i}^{V_f} p_{ex} dV = -\int_{V_i}^{V_f} (p_{in} \pm dp) dV$$

যেহেতু dp imes dV অতিক্ষুদ্র, সেজন্য আমরা লিখতে পারি

$$\mathbf{w}_{rev} = -\int_{V_i}^{V_f} p_{in} dV \tag{6.4}$$

এখন, গ্যাসের চাপকে (p_{in} কে p হিসাবে লিখতে পারি) আয়তনের মাধ্যমে গ্যাসের সমীকরণের সাহায্যে প্রকাশ করতে পারি। n মোল আদর্শ গ্যাসের জন্য pV = nRT

$$\Rightarrow p = \frac{nRT}{V}$$

সুতরাং, স্থির উন্নতায় (সমতাপীয় প্রক্রিয়ায়)

$$\mathbf{w}_{\text{rev}} = -\int_{V_i}^{V_f} nRT \frac{dV}{V} = -nRT \ln \frac{V_f}{V_i}$$
$$= -2.303 \ nRT \log \frac{V_f}{V_i} \tag{6.5}$$

মুক্ত সম্প্রসারণ (Free Expansion) :

বায়ুশুন্য স্থানে ($p_{ex} = 0$) গ্যাসের সম্প্রসারণকে মুক্ত সম্প্রসারণ বলে। একটি আদর্শ গ্যাসের মুক্ত সম্প্রসারণের সময় কোনো কার্য সম্পন্ন হয় না, প্রক্রিয়াটি পরাবর্ত অথবা অপরাবর্ত যাই হোক না কেন (সমীকরণ 6.2 এবং 6.3)।

এখন আমরা 6.1 সমীকরণটিকে, প্রক্রিয়া কিভাবে সংঘটিত হয় তার উপর ভিত্তি করে একাধিক ভাবে লিখতে পারি।

এখন আমরা w = – $p_{ex}\Delta V$ (সমীকরণ 6.2) কে সমীকরণ 6.1 এর মধ্যে প্রতিস্থাপিত করে পাই,

 $\Delta U = q - P_{ex} \Delta V$

যদি প্রক্রিয়াটি স্থির আয়তনে $(\Delta V\!=\!0)$ সম্পন্ন করা হয়, তখন

$$\Delta U = q$$

q, তে সাবস্ক্রিপ্ট // বলতে বোঝায় যে স্থির আয়তনে তাপ প্রয়োগ করা হয়। আদর্শ গ্যাসের সমোয় এবং মুক্ত সম্প্রসারণ (Isothermal and free expansion of an ideal gas) একটি আদর্শ গ্যাসের বায়ু শূন্যস্থানে সমোয় (T =ধুবক) সম্প্রসারণের জন্য w = 0 যেহেতু $P_{ex} = 0$, জুল এছাড়াও পরীক্ষামূলকভাবে নির্ণয় করেন যে q = 0; সুতরাং $\Delta U = 0$

সমীকরণ 6.1, $\Delta U = \mathbf{q} + \mathbf{w}$ কে অমোষ্ন অপরাবর্ত ও পরাবর্ত পরিবর্তনের জন্য নিম্নলিখিত ভাবে প্রকাশ করা যায়।

1. সমোষ্ন অপরাবর্ত পরিবর্তনের জন্য

$$q = - {
m w} = p_{_{ex}}(V_{_{f}} - V_{_{i}})$$
সমোগ্ন পরাবর্ত পরিবর্তনের জন্য

$$q = -w = nRT \ln \frac{V_f}{V_i}$$
$$= 2.303 nRT \log \frac{V_f}{V_i}$$

3. রুদ্ধতাপীয় পরিবর্তনের জন্য q = 0,

 $\Delta U = W_{ad}$

সমস্যা : 6.2

2.

বায়মঙলীয় চাপ 10 atm -এ রক্ষিত 2 লিটার আয়তনের কোনো আদর্শ গ্যাসকে বায়ু শূন্যস্থানে সম্প্রসারিত হয়ে 10 লিটার আয়তন অর্জন করলো। এই পরিবর্তনে কি পরিমাণ তাপ শোষিত হয় এবং সম্প্রসারণে কৃতকার্যের পরিমাণ কত ?

সমাধান :

এক্ষেত্রে $q = -w = p_{ex} (10 - 2) = 0(8) = 0$ কোনো কার্য সম্পন্ন হয় না এবং কোনোতাপ শোষিত হয় না।

সমস্যা : 6.3

এবার স্থির বাহিক্য চাপ 1 atm -এর বিপরীতে একই প্রকার সম্প্রসারণকে বিবেচনা করো।

সমাধান :

আমরা জানি, $q = -w = p_{ex}(8) = 8$ litre-atm

সমস্যা : 6.4

এবার একই সম্প্রসারণকে বিবেচনা করো, যেখানে গ্যাসটি পরাবর্তভাবে প্রসারিত হয়ে আয়তন 10 লিটার হয়।

সমাধান :

আমরা জানি,
$$q = -w = 2.303 \log \frac{10}{2} = 16.1$$
 litre-atm
6.2.2 এনথ্যালপি (Enthalpy, H) (a) একটি উপযোগী নতুন অবস্থার অপেক্ষক (A Useful New State Function)

আমরা জানি যে, স্থির আয়তনে শোষিত তাপ হল সিস্টেমের আন্তর শক্তির পরিবর্তনের সমান অর্থাৎ $\Delta U = q_v$ । কিন্তু অধিকাংশ রাসায়নিক বিক্রিয়া স্থির আয়তনে সংগঠিত হয় না, কিন্তু ফ্লাস্কে অথবা পরীক্ষানলে স্থির বায়ুমন্ডলীয় চাপে সংগঠিত হয়। আমাদের অপর একটি অবস্থার অপেক্ষক সংজ্ঞায়িত করা প্রয়োজন যেটি এই শর্ত গুলোর জন্য উপযুক্ত।

আমরা স্থিরচাপে সমীকরণ (6.1) কে $\Delta U = q_p - p\Delta V$ হিসাবে লিখতে পারি যেখানে q_p হল সিস্টেম কর্তৃক শোষিত তাপ এবং $-p\Delta V$ হল সিস্টেম কর্তৃক সম্প্রসারণ কার্য।

আমরা প্রাথমিক অবস্থাকে সাবস্ক্রিপ্ট 1 এবং অন্তিম অবস্থাকে 2 দিয়ে চিহ্নিত করি। আমরা উপরের সমীকরণকে পুনরায় লিখতে পারি

$$U_2 - U_1 = q_p - p (V_2 - V_1)$$

পুনর্বিন্যাসের পর আমরা পাই,
 $q_p = (U_2 + pV_2) - (U_1 + pV_1)$ (6.6)

এখন আমরা এনথ্যালপি (H)[গ্রীক শব্দ এনথ্যালপিয়ন -এর অর্থ উত্তপ্তকরণ বা তাপাধেয়] নামক আরেকটি তাপগতীয় অপেক্ষক নির্ধারণ করতে পারি। এনথ্যালপিয়ন থেকে এনথ্যালপি শব্দটির উৎপত্তি। এনথ্যালপির গাণিতিক রুপ হল ঃ

$$H = U + pV \tag{6.7}$$

তাই সমীকরণ (6.6)-এর পরিবর্তিত রূপটি হল $q_{p}{=}\,H_{2}{-}\,H_{1}{=}\,\Delta H$

q-পথ নির্ভরশীল অপেক্ষক হলেও, H কিন্তু অবস্থার আপেক্ষক। কারণ এটি U, p এবং V -এর উপর নির্ভরশীল, যারা প্রত্যেকেই অবস্থার অপেক্ষক, তাই ΔH পথ নিরপেক্ষ অপেক্ষক। অর্থাৎ q, অপেক্ষকটিও পথ নিরপেক্ষ।

স্থির চাপে নির্দিষ্ট পরিবর্তনের জন্য আমরা সমীকরণ 6.7 কে নিম্নলিখিত ভাবে লিখতে পারি।

$$\Delta H = \Delta U + \Delta p V$$

q -ধ্রুবক হওয়ায়, উপরের সমীকরণটিকে নীচের মতো লেখা যায়। $\Delta H = \Delta U + p \Delta V \eqno(6.8)$

এটা উল্লেখ করা প্রয়োজনীয় যে, স্থিরচাপে কোনো সিস্টেম যখন তাপ শোষন করে, তখন বাস্তবে আমরা কিন্ডু সিস্টেমের এনথ্যালপির পরিবর্তনই পরিমাপ করি।

মনে রাখবে, স্থিরচাপে কোনো সিস্টেম দ্বারা শোষিত তাপ

যদি q_p হয়, তবে $\Delta H = q_p$ হবে।

যে সকল বিক্রিয়ায় তাপ নির্গত হয় অর্থাৎ তাপমোচী বিক্রিয়ার ক্ষেত্রে Δ*H*-এর মান ঋণাত্মক হয় এবং যে সকল বিক্রিয়ায় পরিবেশ থেকে তাপ শোষিত হয় অর্থাৎ তাপগ্রাহী বিক্রিয়ার ক্ষেত্রে Δ*H*-এর মান ধনাত্মক হয়।

তাই 6.8 সমীকরনটি নিম্নরূপ হয় $\Delta H = \Delta U = q_{_{U}}$

কোনো সিস্টেমের উপাদানগুলো কেবল কঠিন পদার্থ বা তরল পদার্থ হলে ΔH এবং ΔU -এর মধ্যে তাৎপর্যপূর্ণ ব্যবধান থাকে না। তাপপ্রয়োগে কঠিন বা তরলের আয়তনেরও কোনো তাৎপর্যপূর্ণ পরিবর্তন হয় না। কিন্তু গ্যাসীয় পদার্থের ক্ষেত্রে এই ব্যবধানগুলো খুবই তাৎপর্যপূর্ণ। মনে কর একটি বিক্রিয়া স্থির চাপে ও স্থির তাপমাত্রায় সংঘটিত হচ্ছে যার সমস্ত উপাদানগুলো গ্যাসীয় পদার্থ এবং V_A হল সমস্ত গ্যাসীয় বিক্রিয়কগুলোর মোট আয়তন, V_B হল সমস্ত গ্যাসীয় বিক্রিয়াজাত পদার্থের মোট আয়তন, n_A হল সমস্ত গ্যাসীয় বিক্রিয়াজাত পদার্থের মোট আয়তন, n_B হল সমস্ত গ্যাসীয় বিক্রিয়াজাত পেদার্থ্যে। তাহলে আদর্শ গ্যাসীয় বিক্রিয়াজাত পদার্থের মোট মোলসংখ্যা। তাহলে আদর্শ গ্যাস সমীকরণ অনুযায়ী আমরা লিখতে পারি,

$$pV_{A} = n_{A}RT \quad \text{uবং} \quad pV_{B} = n_{B}RT$$
সুতরাং
$$pV_{B} - pV_{A} = n_{B}RT - n_{A}RT = (n_{B} - n_{A})RT$$
বা,
$$p (V_{B} - V_{A}) = (n_{B} - n_{A})RT$$
বা,
$$p \Delta V = \Delta n_{g}RT$$
(6.9)

এখানে Δn_g হল বিক্রিয়াজাত গ্যাসীয় পদার্থের মোটমোলসংখ্যা এবং বিক্রিয়ক গ্যাসীয় পদার্থের মোট মোলসংখ্যার বিয়োগফল।

সমীকরণ 6.9 থেকে $p\Delta V$ -এর মান সমীকরণ 6.8 -এ বসালে 6.10 সমীকরণ পাওয়া যায়।

$$\Delta H = \Delta U + \Delta n_g RT \tag{6.10}$$

সমীকরণ 6.10-এর সাহায্যে ΔU -এর মান থেকে ΔH-এর মান অথবা ΔH-এর মান থেকে ΔU-এর মান সহজেই নির্ণয় করা যায়।

সমস্যা : 6.5

যদি জলীয় বাষ্পকে একটি আদর্শ গ্যাস হিসাবে কল্পনা করা হয় এবং 1(bar) চাপে ও 100°C উন্নতায় 1 (mol) জলের বাষ্পীভবনে মোলার এনথ্যালপির পরিবর্তন 41(kJ mol⁻¹) হয় তবে আন্তরশক্তির পরিবর্তন গণনা করো যখন—

- (i) 1 মোল জলকে 1 বার (bar) চাপ এবং 100°C
 তাপমাত্রায় বাষ্পীভূত করা হল।
- (ii) 1 মোল জলকে বরফে রূপান্তরিত করা হল।

সমাধান :

(i) এক্ষেত্রে পরিবর্তনটি হলো, $H_2O(l) \rightarrow H_2O(g)$ $\Delta H = \Delta U + \Delta n_g RT$ $\Delta U = \Delta H - \Delta n_g RT$ বা, প্রদত্ত মানগুলো বসিয়ে পাই, $\Delta U = 41.00 \ kJ \ mol^{-1} - 1$ $\times 8.3 J mol^{-1}K^{-1} \times 373 K$ $= 41.00 \ kJ \ mol^{-1} - 3.096 \ kJ \ mol^{-1}$ $= 37.904 \ kJ \ mol^{-1}$ (ii) এক্ষেত্রে পরিবর্তনটি হলো, $H_2O(l) \rightarrow H_2O(g)$ এক্ষেত্রে আয়তনের পরিবর্তন নগন্য হয়। সুতরাং, এই পরিবর্তনটির ক্ষেত্রে $p\Delta V = \Delta n_{
m g} RT pprox 0$ লেখা যায়। $\Delta H \cong \Delta U$ $\Delta U = 41.00 \ kJ \ mol^{-1}$ সুতরাং

(b) পরিমাণগত এবং অবস্থাগত ধর্ম সমূহ (Extensive and Intensive Properties)

তাপগতিবিদ্যায় পরিমাণগত ও অবস্থাগত ধর্মের মধ্যে পার্থক্য করা হয়।সিস্টেমের যেসব ধর্ম সিস্টেমে উপস্থিত পদার্থের পরিমাণ বা আকারের ওপর নির্ভর করে, তাদের বলা হয় পরিমাণগত বা ভরসাপেক্ষ ধর্ম। উদাহরণ স্বরূপ ভর, আয়তন, আন্তরশক্তি, এনথ্যালপি, তাপগ্রহীতা ইত্যাদি হল পরিমাণগত ধর্ম।

সিস্টেমের যেসব ধর্ম সিস্টেমে উপস্থিত পদার্থের পরিমাণ বা আকারের ওপর নির্ভর করে না, তাদের অবস্থাগত বা ভর নিরপেক্ষ ধর্ম বলে। উদাহরণ স্বরূপ তাপমাত্রা, ঘনত্ব, চাপ ইত্যাদি হলো অবস্থাগত ধর্ম। কোনো সিস্টেমে উপস্থিত 1 মোল পরিমাণ কোনো পদার্থের পরিমাণ গত ধর্ম (χ)-এর মানকে মোলার ধর্ম (χ_m) বলে। পদার্থের পরিমাণ n হলে, $\chi_m = \frac{\chi}{n}$ যেটি পদার্থের পরিমাণের ওপর নির্ভরশীল নয়। অন্যান্য উদাহরণগুলো হলো মোলার আয়তন V_m এবং মোলার তাপগ্রহীতা C_m । পরিমাণগত এবং অবস্থাগত ধর্মের পার্থক্য নিরুপন করার জন্য ধরে নাও একটি V আয়তনের আবদ্ধ পাত্রে T তাপমাত্রায় একটি গ্যাস রাখা আছে [চিত্র : 6.6(a)]। পাত্রটিকে দুটি সমান অংশে বিভক্ত করা হলো [চিত্র : 6.6 (b)] প্রত্যেক অংশের আয়তন এখন মূল পাত্রের আয়তনের অর্ধেক হবে

চিত্র: 6.6(a) আয়তনের V এবং T তাপমাত্রায় রাখা গ্যাস

চিত্র : 6.6 (b) বিভাজন, প্রতিটি অংশে মূল আয়তনের অর্ধেক পরিমাণ গ্যাস আছে।

থেকে স্পন্ট যে আয়তন হলো পরিমাণগত ধর্ম এবং তাপমাত্রা হলো অবস্থাগত ধর্ম।

(c) তাপগ্রাহীতা (Heat Capacity)

এই উপ-বিভাগটিতে (Sub-Section) চলো আমরা দেখে নিই কিভাবে কোনো সিস্টেমে তাপের অনুপ্রবেশ পরিমাপ করা যায়। কোনো সিস্টেম তাপ শোষণ করলে এই তাপ সিস্টেমের উম্নতা বৃদ্ধি রূপে প্রকাশিত হয়।

উন্নতার এই বৃদ্ধি সরবরাহকৃত তাপের সমানুপাতিক হয়।

$$q = coeff \times \Delta T$$

এই গুনাঙ্কটির (coefficient) মান সিস্টেমের আকার, সংযুতি এবং প্রকৃতির ওপর নির্ভরশীল। সমীকরণটিকে $q = C \Delta T$ রূপেও লেখা যায়। এই গুনাঙ্ক, C কে তাপগ্রাহীতা বলে।

এভাবে তাপগ্রাহীতার নাম জানা থাকলে উন্নতা বৃদ্ধি পর্যবেক্ষণ করে আমরা সরবরাহকৃত তাপের পরিমাণ পরিমাপ করতে পারি।

C -এর মান বড়ো হলে সরবরাহকৃত তাপ কম উয়তা বৃদ্ধি করে। জলের তাপগ্রাহীতার মান খুব বেশী অর্থাৎ জলের উয়তা বৃদ্ধির জন্য প্রচুর পরিমাণ তাপের প্রয়োজন হয়।

C, পদার্থের পরিমাণের সঙ্গে সমানুপাতিক। কোনো পদার্থের

মোলার তাপগ্রহীতা $C_m = \left(\frac{C}{n}\right)$ বলতে 1 মোল পরিমাণ ঐ পদার্থের তাপগ্রহীতাকে বোঝায়।

1 মোল কোনো পদার্থের উন্নতা 1°C (বা 1K) বৃদ্ধির জন্য যে পরিমাণ তাপের প্রয়োজন হয়, তাকে ঐ পদার্থের মোলার তাপগ্রাহীতা বলে। কোনো পদার্থের একক ভরের উন্নতা 1°C (বা 1K) বৃদ্ধির জন্য যে পরিমাণ তাপের প্রয়োজন হয়, তাকে ঐ পদার্থের আপেক্ষিক তাপ বা আপেক্ষিক তাপগ্রহীতা বলে। কোনো একটি পদার্থের উন্নতা বৃদ্ধির জন্য কি পরিমাণ তাপের (q) প্রয়োজন তা জানার জন্য আমরা পদার্থটির আপেক্ষিক তাপকে (c) পদার্থটির ভর (m) এবং উন্নতা পরিবর্তন (ΔT) দ্বারা গুণ করি। যেমন—

$$q = c \times m \times \Delta T = C \Delta T \tag{6.11}$$

(d) আদর্শ গ্যাসের ক্ষেত্রে (C_p) এবং (C_V) -এর মধ্যে সম্পর্ক (The Relationship between C_p and C_V for an Ideal Gas)

স্থির আয়তনে তাপগ্রহীতা (C) কে C_v দ্বারা প্রকাশ করা হয় এবং চাপ স্থির থাকলে C_p দ্বারা প্রকাশ করা হয়। চলো C_p এবং C_v -এর মধ্যে সম্পর্ক নিরুপন করি। আমরা স্থির আয়তনে প্রক্রিয়াটির তাপের (q) সমীকরণকে এভাবে লিখতে পারি, $q_v = C_v \Delta T = \Delta U$ এবং স্থির চাপে তাপের (q)সমীকরণকে এভাবে লিখতে পারি, $q_p = C_p \Delta T = \Delta H$.

আদর্শ গ্যাসের ক্ষেত্রে C_p এবং C_v -এর ব্যবধান নির্ণয় করা যায়।

I মোল আদর্শ গ্যাসের ক্ষেত্রে, $\Delta H = \Delta U + \Delta (pV)$ $= \Delta U + \Delta (RT)$ $= \Delta U + R\Delta T$ $\therefore \Delta H = \Delta U + R\Delta T$ (6.12) ΔH এবং ΔU -এর মান বসালে সমীকরণটি হয়

6.3 ক্যালোরিমিতির সাহায্যে ΔU এবং ΔH -এর পরিমাণ নির্ণয় (MEASUREMENT OF ΔU AND ΔH : CALORIMETRY)

ভৌত বা রাসায়নিক প্রক্রিয়াতে শক্তির পরিবর্তন যে পরীক্ষামূলক কৌশলের সাহায্যে পরিমাপ করি তাকে ক্যালোরিমিতি বলে। ক্যালোরিমিতিতে এই পরীক্ষাটি ক্যালরিমিটার নামক একটি আবন্ধ পাব্রে সংঘটিত করা হয় যেটি একটি স্থির আয়তনের তরলে সম্পূর্ণ নিমজ্জিত থাকে। যে তরলে ক্যালোরিমিটারটি নিমজ্জিত থাকে তার তাপগ্রাহীতা এবং ক্যালরিমিটারেরর তাপগ্রাহীতা জানা থাকলে উন্নতার পরিবর্তন পরিমাপ করে উদ্ভুত তাপের পরিমাণ নির্ণয় করা যায়। পরিমাপটি দুটি বিভিন্ন শর্তে সংঘটিত হতে থাকে।

i) স্থির আয়তনে, $q_{_{V}}$

ii) স্থির চাপে, q_n

a) ΔU পরিমাপ (Measurements)

রাসায়নিক বিক্রিয়ার ক্ষেত্রে স্থির আয়তনে শোষিত তাপের পরিমাপ বম্ব ক্যালোরিমিটার যন্ত্রের সাহায্যে করা হয় [চিত্র : 6.7]। যন্ত্রটিতে একটি স্টাল-এর আবন্ধ পাত্র (বম্ব) জল গাহে নিমজ্জিত অবস্থায় রাখা হয়। সমগ্র যন্ত্রটিকে বলা হয় ক্যালোরিমিটার। তাপ যাতে পরিপার্শ্বে ছড়িয়ে নন্ট হতে না পারে সেজন্যই স্টালের পাত্রটিকে জল নিমজ্জিত অবস্থায় রাখা হয়। স্টালের বম্বের মধ্যে রাখা দাহ্য পরীক্ষাধীন পদার্থকে বিশুন্ধ ডাই অক্সিজেনের (O₂) উপস্থিতিতে

চিত্র : 6.7 বম্ব ক্যালোরিমিটার

পোড়ানো হয়। দহনে উৎপন্ন তাপ বন্ধের চারপাশের জলে ছড়িয়ে পরে এবং জলের উন্নতা পর্যবেক্ষণ করা হয়। বম্ব ক্যালোরিমিটারটি আবম্ব হওয়ায় এর আয়তনের কোনো পরিবর্তন হয় না অর্থাৎ বিক্রিয়ার সাথে সংশ্লিস্ট শক্তির পরিবর্তন স্থির আয়তনে পরিমাপ করা হয়। বম্ব ক্যালোরিমিটারে বিক্রিয়াটি স্থির আয়তনে সংঘটিত হওয়ায় এক্ষেত্রে কোনো কার্য সম্পাদিত হয়নি।

এক্ষেত্রে সংশ্লিষ্ট পদার্থগুলো গ্যাসীয় হলেও কোনো কার্য সম্পাদিত হবে না কারণ $\Delta V = 0$ হয়। বিক্রিয়াশেষে ক্যালোরিমিটারের উম্নতা পরিবর্তন পরিমাপ করে এবং ক্যালোরিমিটারের তাপগ্রাহীতার জ্ঞাত মান থেকে সমীকরণ 6.11-এর সাহায্যে স্থির আয়তনে উদ্ভুত তাপের পরিমাণ q, নির্ণয় করা যায়।

(b) ΔH পরিমাপ (Measurements)

স্থির চাপে (সাধারণত বায়ুমন্ডলীয় চাপে) সংঘটিত কোনো বিক্রিয়ার তাপের পরিবর্তন চিত্র : 6.৪ -এ প্রদর্শিত ক্যালোরিমিটার যন্ত্রের সাহায্যে পরিমাপ করা যায়। আমরা জানি স্থির চাপে $\Delta H = q_p$ হয়। স্থিরচাপে উদ্ভুত বা শোষিত এই তাপকেই বিক্রিয়াতাপ বা বিক্রিয়ার এনথ্যালপি বলা হয় ($\Delta_r H$)। তাপমোচী বিক্রিয়ার ক্ষেত্রে সিস্টেম থেকে উদ্ভুম্থ তাপ পারিপার্শ্বে ছড়িয়ে নন্ট হয়। তাই q_p -এর মান ঋণাত্মক হয় এবং $\Delta_r H$ -এর মানও ঋণাত্মক হয়। অনুরূপে তাপগ্রাহী বিক্রিয়ার ক্ষেত্রে তাপ শোষিত হয় বলে q_p -এর মান ধনাত্মক হয় এবং $\Delta_r H$ -এর মানও ধনাত্মক হয়।

চিত্র : 6.8 স্থিরচাপে (বায়ুমন্ডলীয় চাপে) তাপ-পরিবর্তন নির্ণয়ের জন্য ব্যবহৃত ক্যালোরিমিটার।

সমস্যা : 6.2

298K তাপমাত্রায় এবং 1 বায়ুমন্ডলীয় চাপে 1 গ্রাম গ্রাফাইটকে নীচের সমীকরণ অনুযায়ী বন্ধ ক্যালোরিমিটার অতিরিক্ত অক্সিজেনের মধ্যে পোড়ানো হল।

C (গ্রাফাইট) + $O_2(g) \rightarrow CO_2(g)$

বিক্রিয়াটির ফলে ক্যালোরিমিটারের উম্বতা 298K থেকে বৃদ্ধি

পেয়ে 299K হল। যদি ক্যালোরিমিটারের তাপগ্রহীতার মান 20.7 kJ/K হয়, তবে 298K উস্লতায় 1 বায়ুমন্ডলীয় চাপে এনথ্যালপির পরিবর্তন কত হবে ?

সমাধান :

ধরি, বিক্রিয়া মিশ্রণ থেকে উৎপন্ন তাপের পরিমাণ q এবং ক্যালোরিমিটারের তাপগ্রাহীতার মান $C_{_{\!\!P}}$ ।সুতরাং ক্যালোরিমিটার দ্বারা শোষিত তাপের পরিমাণ।

$$q = C_{V} \times \Delta T$$

এক্ষেত্রে বিক্রিয়ার ফলে উৎপন্ন তাপের পরিমাণ, ক্যালোরিমিটার দ্বারা শোষিত তাপের সমান হয় বলে বিক্রিয়ার ফলে উৎপন্ন তাপের পরিমান q-এর সমান হবে, কিন্তু চিহ্ন হবে বিপরীত।

$$q = -C_V \times \Delta T = -20.7 \text{kJ} / \text{K} \times (299 - 298)\text{K}$$

= - 20.7 kJ

[এক্ষেত্রে ধনাত্মক চিহ্ন দ্বারা বিক্রিয়াটি যে তাপউৎপাদী বিক্রিয়া তা বোঝা যায়]

অর্থাৎ 1 গ্রাম গ্রাফাইটের দহনের জন্য ∆U-এর মান

$$= -20.7 \text{ kJK}^{-1}$$

সুতরাং, 1 মোল গ্রাফাইটের দহনের জন্য ∆U-এর মান

$$=\frac{12.0 \text{ g mol}^{-1} \times (-20.7 \text{ kJ})}{1 \text{ g}}$$

 $= -~2.48 \times 10^2 \rm \, kJ \ mol^{-1} \ \ \ cযহৈত <math display="inline">\Delta \ n_g = 0,$ সুতরাং, $\Delta \ H = \Delta \ U = -~2.48 \times 10^2 \rm \, kJ \ mol^{-1}$

6.4 রাসায়নিক বিক্রিয়ার এনথ্যালপি পরিবর্তন-বিক্রিয়া নম্বর (ENTHALPY CHANGE, Δ_r H OF A REACTION – REACTION ENTHALPY)

যে-কোনো রাসায়নিক বিক্রিয়ার বিক্রিয়ক পদার্থ রূপান্তরিত হয়ে বিক্রিয়াজাত পদার্থে পরিণত হয়।

বিক্রিয়ক পদার্থ → বিক্রিয়াজাত পদার্থ

কোনো বিক্রিয়ার ফলে এনথ্যালপির যে পরিবর্তন হয় তাকে বিক্রিয়া-এনথ্যালপি বলা হয়। রাসায়নিক বিক্রিয়ার ক্ষেত্রে এনথ্যালপির পরিবর্তনকে Δ, Η দ্বারা সুচিত করা হয়।

Δ_rH = (বিক্রিয়াজাত পদার্থের মোট এনথ্যালপি – বিক্রিয়ক পদার্থের মোট এনথ্যালপি)

$$=\sum_{i} a_{i}H_{\text{Fabric order}} -\sum_{i} b_{i}H_{\text{Fabric order}}$$
(6.14)

এক্ষেত্রে \sum (সিগমা) চিহ্নটি যোগফল বোঝানোর জন্য ব্যবহার করা হয়েছে এবং $a_i \in b_i$ হলো যথাক্রমে সমতাযুক্ত সমীকরণের বিক্রিয়াজাত ও বিক্রিয়ক পদার্থের স্টয়সিত্তমেট্রিক গুণাঙ্ক।

উদাহরণ স্বরুপ, নিম্নলিখিত বিক্রিয়াটির জন্য

$$CH_{4}(g) + 2O_{2}(g) \rightarrow CO_{2}(g) + 2H_{2}O(l)$$

$$\Delta_{r}H = \sum_{i} a_{i}H_{\text{folgentiatics of mark}} -\sum_{i} b_{i}H_{\text{folgentiations of mark}}$$

$$= [H_{m}(CO_{2},g) + 2H_{m}(H_{2}O,l)] - [H_{m}(CH_{4},g) + 2H_{m}(O_{2},g)]$$

এখানে $H_{
m m}$ হলো মোলার এনথ্যালপি।

এনথ্যালপি পরিবর্তন একটি গুরুত্বপূর্ণ রাশি। শিল্পক্ষেত্রে স্থির উন্নতার কোনো রাসায়নিক বিক্রিয়াকে নিয়ন্ত্রণ করার জন্য কতটুকু উত্তস্ত্রীকরণ বা শীতলিকরণের প্রয়োজন, তার পরিকল্পনা করার জন্য এনথ্যালপি পরিবর্তন সম্বন্ধে সম্যক ধারনা থাকা প্রয়োজন। উন্নতার ওপর সাম্যধুবকের নির্ভরশীলতা গণনা করার জন্যও এনথ্যালপির প্রয়োজন হয়।

(a) প্রমাণ বিক্রিয়া এনথ্যালপি (Standard enthalpy of reactions)

রাসায়নিক বিক্রিয়ার এনথ্যালপি বিক্রিয়াটি কী কী শর্তে সংঘটিত হচ্ছে তার ওপর নির্ভরশীল। এজন্য কিছু কিছু প্রামাণ্য শর্তের প্রয়োজন হয়। কোনো রাসায়নিক বিক্রিয়ায় অংশগ্রহণকারী সমস্ত পদার্থগুলো যখন তাদের প্রমাণ অবস্থায় থাকে, তখন বিক্রিয়াটিতে এনথ্যালপির যে পরিবর্তন হয়, তাকে প্রমাণ বিক্রিয়া এনথ্যালপি বলে।

নির্দিষ্ট উন্নতায় 1 বার (bar) চাপে কোনো পদার্থের প্রমাণ অবস্থাই হলো ঐ পদার্থের বিশুন্দ্ব রূপ। উদাহরণ স্বরূপ 298 K উন্নতায় 1 বার (bar) চাপে তরল ইথানলের প্রমাণ অবস্থাই হলো বিশুন্দ্ব তরল ইথানল। আবার 298 K উন্নতায় 1 বার (bar) চাপে কঠিন আয়রনের প্রমাণ অবস্থাই হলো বিশুন্দ্ব আয়রন।

 ΔH চিহ্নটিতে সুপারস্ক্রিপ্ট যোগ করে প্রমান অবস্থা নির্দেশ করা হয়। যেমন, $\Delta H^{ heta}$ ।

(b) দশা পরিবর্তনে এনথ্যালপির পরিবর্তন (Enthalph changes during phase transformations) দশা পরিবর্তনের বিভিন্ন প্রক্রিয়াগুলিতে শক্তির পরিবর্তন হয়। যেমন বরফ গলনের জন্য তাপের প্রয়োজন হয়। গলন সাধারণত স্থির চাপে (বায়ুমন্ডলীয় চাপে) সংঘটিত হয় এবং দশা পরিবর্তনের সময় উন্নতা স্থির (273 K) থাকে।

 $\mathrm{H_2O}(\mathrm{s}) \rightarrow \mathrm{H_2O}(l); \Delta_{\mathrm{fus}} H^{\theta} = 6.00 \text{ kJ moI}^{-1}$

 $\Delta_{fus}H^{ heta}$ হলো গলনের এনথ্যালপি। জল যখন বরফে পরিনত হয় তখন বিপরীত প্রক্রিয়াটি সংঘটিত হয় এবং সম পরিমাণ তাপ নির্গত হয়ে পারিপার্শ্বে ছড়িয়ে পড়ে।

স্থিরচাপে এক গ্রাম অনু পরিমাণ কোনো কঠিন পদার্থকে তার গলনাঙ্কে সম্পূর্ণরূপে তরল অবস্থায় রূপান্তর করতে যে পরিমাণ তাপের প্রয়োজন হয়, তাকে উক্ত পদার্থের গলনের এনথ্যালপি বা মোলার গলন এনথ্যালপি $\Delta_{in}H^{0}$ বলে।

গলন একটি তাপগ্রাহী প্রক্রিয়া, তাই সকল পদার্থের গলনের এনথ্যালপির মান ধনাত্মক হয়। জলের বাম্পীভবনের জন্য তাপের প্রয়োজন হয়। স্থির চাপ ও জলের স্ফুটনাঙ্কের (T_e) স্থির উন্নতায়,

 $\mathrm{H_2O}(l) \rightarrow \mathrm{H_2O}(g); \Delta_{vap} H^{\theta} = + 40.79 \text{ kJ mol}^{-1}$

স্থির চাপে (1 bar) একগ্রাম অনু পরিমাণ কোনো তরল পদার্থকে তার স্ফুটনাঙ্কে সম্পূর্ণরূপে বাস্পে রূপান্তরিত করতে যে পরিমাণ তাপের প্রয়োজন হয়, তাকে উক্ত পদার্থের প্রমাণ বাস্পীভবনের এনথ্যালপি বা মোলার বাস্পীভবন এনথ্যালপি $\Delta_{vm}H^{0}$ বলে।

কোনো কঠিন পদার্থের সরাসরি সম্পূর্ণরূপে বাস্পীয় দশায় রূপান্তরিত হওয়াকে উর্ধ্বপাতন বলে। কঠিন CO₂বা 'শুষ্ক বরফ' 195 K উন্নতায় উর্ধ্বপাতিত হয় এবং $\Delta_{sub}H^{\theta}=25.2 \text{ kJ mol}^{-1}$ হয়। ন্যাপথালিন ধীরে ধীরে উর্ধ্বপাতিত হয় এবং এর জন্যে $\Delta_{sub} H^{\theta}=73.0 \text{ kJ mol}^{-1}$ হয়।

স্থির চাপে 1 (bar) ও উস্নতায় একগ্রাম অনু পরিমাণ কোনো কঠিন পদার্থকে সরাসরি সম্পূর্ণরূপে বাষ্পীয়দশায় রূপান্তরিত করতে যে পরিমাণ তাপের প্রয়োজন হয়, তাকে উক্ত পদার্থের প্রমাণ উর্ধ্বপাতনের এনথ্যালপি $\Delta_{sub} H^{0}$ বলে।

যে পদার্থের দশা পরিবর্তন হচ্ছে সেটির আন্তরানবিক আকর্ষন বল কতটা শক্তিশালী, তার ওপর এনথ্যালপি পরিবর্তনের মান নির্ভর করে। উদাহরণ স্বরূপ, জলের অনুগুলো শক্তিশালী হাইড্রোজেন বন্ধন দ্বারা তরল দশায় একত্রিত থাকে। অ্যাসিটোনের মতো সমযোজী তরল পদার্থের অনুগুলোর মধ্যকার দ্বিমেরু—দ্বিমেরু আকর্ষন বল খুবই দূর্বল হয়।

পদার্থ	T _f /K	$\Delta_{fus} H^{\ominus} / (kJ mol^{-1})$	T _b /K	∆ _{vap} H [⊖] /(kJ mol ^{−1})
N_2	63.15	0.72	77.35	5.59
\mathbf{NH}_3	195.40	5.65	239.73	23.35
HC1	159.0	1.992	188.0	16.15
СО	68.0	6.836	82.0	6.04
$\mathrm{CH}_{\mathrm{3}}\mathrm{COCH}_{\mathrm{3}}$	177.8	5.72	329.4	29.1
CCl ₄ .	250.16	2.5	349.69	30.0
H_2O	273.15	6.01	373.15	40.79
NaCl	1081.0	28.8	1665.0	170.0
C_6H_6	278.65	9.83	353.25	30.8

সারণি 6.1 প্রমাণ গলন এবং বাষ্পীভবন এনথ্যালপির পরিবর্তন

 $(T_{f}$ এবং T_{h} হলো যথাক্রমে গলনাজ্ঞ্ব এবং স্ফুটনাজ্ক)

একারণে 1 মোল জলের তুলনায় 1 মোল অ্যাসিটোনকে সম্পূর্ণরূপে বাষ্পীয় দশায় রূপান্তরিত করতে অনেক কম পরিমাণ তাপ লাগে। 6.1 সারণিতে কিছু পদার্থের গলন এবং বাষ্পীভবনের জন্য প্রমাণ এনথ্যালপি পরিবর্তন এর মান দেওয়া হলো।

সমস্যা 6.7

সুইমিং পুল থেকে উঠে আসার সময় একজন সাতারুর সমস্ত শরীরে যে পরিমাণ জল লেগেছিল তার পরিমাণ 1.8 গ্রাম। 298 K উম্বতায় সমগ্র জল বাস্পে রূপান্তরিত করতে কি পরিমাণ তাপ সরবরাহ করতে হবে ? 100C⁰ উম্বতায় বাষ্পীভবনের জন্য আন্তরশক্তির পরিবর্তন কত হবে ?

দেওয়া আছে,

বাষ্পীভবনের প্রক্রিয়াটি হলো :

18g $H_2O(1)$ $\xrightarrow{q|pm]|ভবন}$ 18g $H_2O(g)$

1৪ গ্রাম জলের (l) মোল সংখ্যা = $=\frac{18g}{18g mol^{-1}}=1mol$

 $\Delta_{vap}U = \Delta_{vap}H^{\theta} - p\Delta V = \Delta_{vap}H^{\theta} - \Delta n_g RT$

(ধরে নেওয়া হলো জলীয় বাষ্প আদর্শ গ্যাসের মতো আচরণ করে) $\begin{aligned} \Delta_{\text{vap}} \mathbf{H}^{\Theta} &- \Delta n_g \ R \mathbf{T} = 40.66 \ \text{kJ} \ mol^{-1} \\ &- (1)(8.314 \ JK^{-1} mol^{-1})(373K)(10^{-3} \ \text{kJ} \ \text{J}^{-1}) \\ \Delta_{\text{vap}} \mathbf{U}^{\Theta} &= 40.66 \ \text{kJ} \ mol^{-1} - 3.10 \ \text{kJ} \ mol^{-1} \\ &= 37.56 \ \text{kJ} \ mol^{-1} \end{aligned}$

(c) প্রমাণ গঠন এনথ্যালপি (Standard enthalpy of farmating)

1 মোল পরিমাণ কোন যৌগে তার গঠনকারী সর্বাধিক স্থায়ী অবস্থার (যাকে রেফারেন্স স্টেট বলে) উপাদান মৌলগুলো থেকে সরাসরি গঠিত হলে যে পরিমাণ এনথ্যালপির পরিবর্তন ঘটে, তাকে যৌগটির প্রমাণ গঠন এনথ্যালপি বলে। কোন যৌগের প্রমান গঠন এনথ্যালপি বলে। কোন যৌগের প্রমান গঠন এনথ্যালপিক $\Delta_{f}H^{0}$ দ্বারা প্রকাশ করা হয়, যেখানে সাবস্ক্রিপ্ট 'f' নির্দেশ করে যে প্রমাণ অবস্থায় 1 মোল সংশ্লিষ্ট যৌগটি তার গঠনকারী সর্বাধিক স্থায়ী উপাদান মৌলগুলো থেকে গঠিত হয়েছে। কোন মৌলের রেফারেন্স স্টেট বলতে 25° C ও 1 বার (bar) চাপে মৌলটির সর্বাধিক স্থায়ী অবস্থা হলো H₂ গ্যাস এবং অক্সিজেন, কার্বন ও সালফারের ক্ষেত্রে সর্বাধিক স্থায়ী অবস্থা হলো H₂ গ্যাস এবং অক্সিজেন, কার্বন ও সালফারের ক্ষেত্র সর্বাধিক স্থায়ী অবস্থা হলো দা ব্যার্জ হেনা যথাক্রমে O_{2} গ্যাস, C_{গ্রাফাইট} ও S_{রম্বিক}। কয়েকটি বিক্রিয়ার প্রমাণ গঠন এনথ্যালপির মান নীচে দেওয়া হলো :

$$\begin{split} & \mathrm{H_2(g)} + \frac{1}{2}\mathrm{O_2(g)} \rightarrow \mathrm{H_2O(1)}; \\ & \Delta_{f}H^{\theta} = -285.8 \ \mathrm{kJ \ mol^{-1}} \\ & \mathrm{C} \ ($$
धोरकॉरेंफे, s) + 2 $\mathrm{H_2(g)} \rightarrow \mathrm{CH_4} \ \mathrm{(g)}; \\ & \Delta_{c}H^{\theta} = -74.81 \ \mathrm{kJ \ mol^{-1}} \end{split}$

পদার্থ	$\Delta_f \mathbf{H}^{\Theta}$ / (kJ mol ⁻¹)	Substance	$\Delta_f \mathbf{H}^{\circ} / (\mathbf{kJ mol^{-1}})$
Al ₂ O ₃ (s)	-1675.7	HI(g)	+26.48
BaCO ₃ (s)	-1216.3	KCl(s)	-436.75
Br ₂ (l)	0	KBr(s)	-393.8
Br ₂ (g)	+30.91	MgO(s)	-601.70
CaCO ₃ (s)	-1206.92	Mg(OH)2(s)	-924.54
C (diamond)	+1.89	NaF(s)	-573.65
C (graphite)	0	NaCl(s)	-411.15
CaO(s)	- 635.09	NaBr(s)	-361.06
CH4(g)	-74.81	NaI(s)	-287.78
C ₂ H ₄ (g)	52.26	NH3(g)	-46.11
CH₃OH(l)	-238.86	NO(g)	+ 90.25
C ₂ H ₅ OH(l)	-277.69	NO ₂ (g)	+33.18
C ₆ H ₆ (l)	+ 49.0	PCl ₃ (l)	-319.70
CO(g)	-110.53	PCl ₅ (s)	-443.5
CO ₂ (g)	-393.51	SiO ₂ (s) (quartz)	-910.94
$C_2H_6(g)$	-84.68	$SnCl_2(s)$	-325.1
$Cl_2(g)$	0	SnCl4(l)	-511.3
$C_3H_8(g)$	-103.85	$SO_2(g)$	-296.83
$n - C_4 H_{10}(g)$	-126.15	SO3(g)	-395.72
HgS(s) red	-58.2	SiH4(g)	+ 34
H ₂ (g)	0	SiCl4(g)	-657.0
$H_2O(g)$	-241.82	C(g)	+716.68
$H_2O(l)$	-285.83	H(g)	+217.97
HF(g)	-271.1	C1(g)	+121.68
HC1(g)	-92.31	$\mathrm{Fe}_{2}\mathrm{O}_{3}(\mathbf{s})$	-824.2
HBr(g)	-36.40		

	ς.	< A		200		<u> </u>		$-\langle -$			<u> </u>			1	_A .
সাবা	9 I	6.2		298	K	<u> </u>	কথেকাচ	নিব্যাচত	চপদাৰ্থেৰ	ৰ প্ৰমাণ ৰ	গ্যন	এনথ্যালাগ	শ মান	(Λ Η	(^v)
			•				1 0 11 1 1 1	1 1 1110 0			10 1				

2C (গ্রাফাইটট, s)+3H₂ (g)+ ${}^{1\!\!/}_{2}O_{2}(g) \rightarrow C_{2}H_{5}OH(1)$

 $\Delta_f H^{\Theta} = -277.7 \text{ kJ mol}^{-1}$

এটা জেনে রাখা প্রয়োজন যে প্রমাণ মোলার গঠন এনথ্যালপি, $\Delta_{J}H^{\theta}$ একটি বিশেষ ধরণের $\Delta_{J}H^{\theta}$, যখন 1 মোল পরিমাণ কোনো যৌগ তার উপাদান মৌলগুলো থেকে তৈরী হয়, যেমনটা উপরের তিনটি সমীকরণের মাধ্যমে দেখানো হয়েছে যেখানে 1 মোল পরিমাণ জল, মিথেন এবং ইথানল তৈরী হয়েছে। বিপরীতক্রমে তাপমোচী বিক্রিয়ার ক্ষেত্রে এনথ্যালপির পরিবর্তন ঃ

$$CaO(s) + CO_2(g) \rightarrow CaCO_3(s);$$

$$\Delta_r H^{\theta} = -178.3 \text{kJ mol}^{-1}$$

ক্যালশিয়াম কার্বনেটের গঠন এনথ্যালপির সমান হয় না, কারণ

ক্যালশিয়াম কার্বনেট নিজের উপাদান মৌল থেকে তৈরী না হয়ে এক্ষেত্রে অন্যান্য যৌগ থেকে তৈরী হয়েছে।

HBr(g) প্রস্তুতির নিম্নলিখিত বিক্রিয়াটির ক্ষেত্রেও এনথ্যালপির পরিবর্তন এবং প্রমাণ গঠন এনথ্যালপির মান সমান হয় না।

$$H_2(g) + Br_2(l) \rightarrow 2HBr(g);$$

 $\Delta_r H^{ heta} = -72.8 \text{ kJ mol}^{-1}$ চনে উপাদান মৌলগলো থেকে এক অনুব প্ৰবিব

এক্ষেত্রে উপাদান মৌলগুলো থেকে এক অনুর পরিবর্তে দুই অনু বিক্রিয়াজাত পদার্থ উৎপন্ন হয়েছে। অর্থাৎ

$$\Delta_r H^{\theta} = 2\Delta_f H^{\theta}$$

তাই সমতাযুক্ত সমীকরণটির প্রত্যেক সহগকে 2 দ্বারা ভাগ করে HBr(g) প্রস্তুতির গঠন এনথ্যালপি নির্ণয়ের সমীকরণটি লেখা যায়।

$$\frac{1}{2}H_2(g) + \frac{1}{2}Br_2(1) \rightarrow HBr(g);$$

 $\Delta_f H^{\theta} = -36.4 \text{ kJ mol}^{-1}$

কিছু কিছু পদার্থের প্রমাণ গঠন এনথ্যালপির মান 6.2 সারণিতে দেয়া হল।

প্রথা অনুযায়ী রেফারেন্স স্টেট-এ (অর্থাৎ সবচেয়ে স্থায়ী অবস্থাটিকে) কোনো মৌলের প্রমাণ গঠন এনথ্যালপির, Δ_fH^θ মানকে শূন্য (zero) ধরা হয়।

ধরে নাও তুমি একজন কেমিকেল ইঞ্জিনীয়র এবং জানতে চাইছ ক্যালশিয়াম কার্বনেটকে বিয়োজিত করে পোড়া চুন ও কার্বন-ড্রাই-অক্সাইড গ্যাসে পরিনত করতে কী পরিমাণ তাপের প্রয়োজন, যেখানে সমস্ত পদার্থ গুলো তাদের প্রমাণ অবস্থায় আছে।

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g); \Delta_r H^{\theta} = ?$$

প্রমাণ গঠন এনথ্যালপির মান ব্যবহার করে আমরা বিক্রিয়াটির এনথ্যালপির পরিবর্তনের মান গণনা করতে পারব। এনথ্যালপির পরিবর্তন গণনা করার জন্য নীচের সাধারণ সমীকরনটি ব্যবহার করা যেতে পারে।

 $\Delta_{r}H^{\theta} = \sum_{i} a_{i}\Delta_{f}H^{\theta}(\widehat{d}\widehat{a}) \widehat{a}_{i} \widehat{d}_{f} H^{\theta}(\widehat{d}\widehat{a}) \widehat{a}_{i} \widehat{d}_{f} H^{\theta}(\widehat{d}\widehat{a}) \widehat{a}_{i} \widehat{d}_{f} \widehat{d}) - \sum_{i} b_{i}\Delta_{f}H^{\theta}(\widehat{d}\widehat{a}) \widehat{a}_{i} \widehat{d}_{f} \widehat{d}) \widehat{d}_{i} \widehat{d}_{f} \widehat{d$

যেখানে a এবং b হলো যথাক্রমে সমতাযুক্ত সমীকরণে বিক্রিয়াজাত ও বিক্রিয়ক পদার্থগুলোর সহগ। ক্যালশিয়াম কার্বনেটের বিয়োজন বিক্রিয়াটির ক্ষেত্রে চলো আমরা উপরের সমীকরণটি প্রয়োগ করি। এক্ষেত্রে a ও b উভয়ের সহগ হচ্ছে 1.

সুতরাং,

$$\Delta_{f}H^{\theta} = \Delta_{f}H^{\theta} [CaO(s)] + \Delta_{f}H^{\theta}[CO_{2}(g)] - \Delta_{f}H^{\theta}[CaCO_{3}(s)]$$

=1 $(-635.1 \text{ kJ mol}^{-1}) + 1(-393.5 \text{ kJ mol}^{-1})$

-1(-1206.9 kJ mol⁻¹)

 $= 178.3 \text{ kJ mol}^{-1}$

অর্থাৎ CaCO₃(s)-এর বিয়োজন একটি তাপগ্রাহী বিক্রিয়া এবং উদ্দীষ্ট বিক্রিয়াজাত পদার্থ পেতে হলে তোমাকে CaCO₃(s) কে উত্তপ্ত করতে হবে।

(d) তাপ-রাসায়নিক সমীকরণ সমূহ (Thermochemical equations)

যে সকল রাসায়নিক বিক্রিয়ার সমীকরনে সমতাযুক্ত সমীকরণটির সঙ্গে ∆ূ*H* -এর মান দেয়া থাকে, তাদের তাপ রাসায়নিক সমীকরণ বলে। রাসায়নিক সমীকরণে উপাদানগুলোর ভৌত দশা (এমন কি রুপভেদের নামও) আমরা উল্লেখ করি। উদাহরণ স্বরুপ :

C₂H₅OH(*l*) + 3O₂(g) → 2CO₂(g) + 3H₂O(*l*);
$$\Delta_{z}H^{\theta} = -1367 \text{ kJ mol}^{-1}$$

ওপরেরর সমীকরণটি দেখে বোঝা যাচ্ছে তরল ইথানলের দহন নির্দিষ্ট উন্নতা ও চাপে সংঘটিত হয়েছে, এনথ্যালপি পরিবর্তনের ঋণাত্মক মানটি দেখে বোঝা যাচ্ছে যে বিক্রিয়াটি তাপদায়ী (Exothermic) বিক্রিয়া।

তাপ-রাসায়নিক সমীকরণ সম্পর্কিত নিন্নে উল্লেখিত প্রচলিত নিয়মগুলো জেনে রাখা দরকার।

 সমতাযুক্ত তাপ রাসায়নিক সমীকরণের সহগ গুলো বিক্রিয়ক ও বিক্রিয়াজাত পদার্থের মোল সংখ্যাকে প্রকাশ করে, অনু সংখ্যাকে নয়।

2. Δ_.H^θ -এর সংখ্যা মান (Numerical Value) দ্বারা উল্লেখিত সমীকরণের সংশ্লিষ্ট পদার্থগুলোর মোল সংখ্যাকে বোঝায়। প্রমাণ এনথ্যালপি পরিবর্তনের (Δ<u>.</u>H^θ) একক kJ mol⁻¹ হয়।

ধারণাটি ব্যাখ্যা করার জন্য চলো আমরা নীচের বিক্রিয়াটির বিক্রিয়া তাপ গণনা করি ঃ

 $Fe_2O_3(s) + 3H_2(g) \rightarrow 2Fe(s) + 3H_2O(l),$ 6.2 সরণিতে দেওয়া প্রমাণ গঠন এনথ্যালপির $(\Delta_r H^{\theta})$ মান থেকে

আমরা জানতে পারি, Δ_cH^θ (H,O,l) = -285.83 kJ mol⁻¹;

 $\Delta_{f} H^{\theta} (\text{Fe}_{2} \text{O}_{3}, \text{s}) = -824.2 \text{ kJ mol}^{-1};$

তাছাড়া প্রথাগত নিয়ম অনুযায়ী,

 $\Delta_{f}H^{\theta}$ (Fe, s) = 0 এবং

$$_{\mathcal{T}}H^{\theta}\left(\mathrm{H}_{2},\,\mathrm{g}\right)=0$$

সুতরাং,

$$\Delta_{H_1}^{\theta} = 3(-285.83 \text{ kJ mol}^{-1})$$

- 1(- 824.2 kJ mol⁻¹)

= (-857.5 + 824.2) kJ mol⁻¹ = -33.3 kJ mol⁻¹

লক্ষ্য কর গণনাটিতে যে সকল গুণাঙ্ক ব্যবহার করা হয়েছে, তারা সকলেই বিশুম্ব সংখ্যা এবং এদের মান তাদের স্টয়সিওমেট্রিক গুনাঙ্কের সমান। $\Delta_{\!_{P}} H^{\theta}$ এর একক kJ mol⁻¹ যার অর্থ প্রতি মোল-বিক্রিয়াতে উৎপন্ন তাপ উপরের বিক্রিয়াটির মতো কোনো

বিক্রিয়াকে যদি আমরা সমতাযুক্ত করি, তখন এটি দ্বারা বিক্রিয়ার মোল সংখ্যা বোঝায়। বিক্রিয়াটিকে অন্যভাবে সমতাযুক্ত করা যায়। যেমন—

$$\frac{1}{2}Fe_2O_3(s) + \frac{3}{2}H_2(g) \to Fe(s) + \frac{3}{2}H_2O(l)$$

এই পরিমাণ বিক্রিয়াই হলো 1 মোল-বিক্রিয়া এবং তখন $\Delta_r H^{ heta}$ এর মান হয়—

$$\Delta_r H_2^{\theta} = \frac{3}{2} (-285.83 \text{ kJ mol}^{-1})$$
$$- \frac{1}{2} (-824.2 \text{ kJ mol}^{-1})$$

 $= (-428.7 + 412.1) \text{ kJ mol}^{-1}$

$$= -16.6 \text{ kJ mol}^{-1} = \frac{1}{2} \Delta_r H_1^{\theta}$$

এর থেকে বোঝা যায় যে এনথ্যালপি একটি পরিমাণগত ধর্ম (Extensive Property)।

3. কোনো রাসায়নিক বিক্রিয়াকে উল্টোভাবে লিখলে Δ_, $H^{ heta}$ -এর মান ঠিক থাকলেও চিহ্ন পাল্টে যায়। উদাহরণ স্বরুপ-

 $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g);$ $\Delta H^{\theta} = -91.8 \text{ kJ. mol}^{-1}$

$$2\mathrm{NH}_{3}(\mathrm{g}) \rightarrow \mathrm{N}_{2}(\mathrm{g}) + 3\mathrm{H}_{2}(\mathrm{g});$$

$$\Delta_r H^{\theta} = +91.8 \text{ kJ mol}^{-1}$$

(e) হেসের তাপ-সমষ্টির নিত্যতা সূত্র (Hess's Law of Constant Heat Summation)

যেহেতু এনথ্যালপি একটি অবস্থার অপেক্ষক, তাই রাসায়নিক বিক্রিয়ার এনথ্যালপির পরিবর্তন প্রারম্ভিক অবস্থা (বিক্রিয়ক পদার্থ) থেকে অন্তিম অবস্থায় (বিক্রিয়াজাত পদার্থ) পৌঁছানোর পথের উপর নির্ভর করে না।অন্যভাবে বললে কোনো একটি রাসায়নিক বিক্রিয়া একটি ধাপে বা একাধিক ধাপে সংঘটিত হলেও উভয়ক্ষেত্রেই এনথ্যালপির পরিবর্তন সমান হবে।এ সম্পর্কিত হেসের সূত্রটি হলোঃ

নির্দিষ্ট উন্নতায় কোনো রাসায়নিক বিক্রিয়ার প্রারম্ভিক এবং অন্তিম অবস্থা অপরিবর্তিত থাকলে, বিক্রিয়াটি একটি ধাপে সম্পন্ন হলে যে পরিমাণ এনথ্যালপির পরিবর্তন হয়, যদি বিক্রিয়াটি একাধিক ধাপে সম্পন্ন করা হয় তবে মোট এনথ্যালপির পরিবর্তন পূর্বোক্ত এনথ্যালপি পরিবর্তনের সমান হবে।

চলো একটি উদাহরণের সাহায্যে সূত্রটির গুরুত্ব অনুধাবন করার চেস্টা

করি।

নীচের বিক্রিয়াটির এনথ্যালপির পরিবর্তনের কথাই ধরা যাক।

$$\mathrm{C}\;(\mathrm{APP}(\overline{zb}, \mathrm{s}) + \; \frac{1}{2} \operatorname{O}_2(\mathrm{g}) \to \mathrm{CO}\;(\mathrm{g}); \; \Delta_r H^{\theta} = ?$$

বিক্রিয়াটির মূখ্য ব্রিক্রিয়াজাত পদার্থ CO(g) কিন্তু কিছু পরিমাণ CO₂ গ্যাসও বিক্রিয়াটিতে উৎপন্ন হয়। তাই সরাসরি বিক্রিয়াটির এনথ্যালপি পরিবর্তন পরিমাপ করা যায় না। কিন্তু সংশ্লিম্ট বিকারকগুলো দ্বারা সংঘটিত হয়েছে এমন কিছু বিক্রিয়ার এনথ্যালপি পরিবর্তনের মান থেকে হেসের সূত্র প্রয়োগ করে ওপরের বিক্রিয়াটির এনথ্যালপি পরিবর্তনের মান গণনা করা যায়।

যেমন সংশ্লিষ্ট বিকারক গুলো দ্বারা সংঘটিত এমন দুটি বিক্রিয়া হলো:

$$C(\mathfrak{A} \mathfrak{P} \mathfrak{F} \mathfrak{F}, s) + O_2(g) \to CO_2(g); \qquad (i)$$

 $\Delta_r H^{\theta} = -393.5 \text{ kJ mol}^{-1}$

$$CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$$
 (ii)

 $\Delta_r H^{\theta} = -283.0 \text{ kJ mol}^{-1}$

এখন ব্রিক্রিয়াদুটিকে এমনভাবে একত্রিত করতে হবে, যাতে ওপরের উদ্দিন্ট বিক্রিয়াটি পাওয়া যায়। ডান দিকে 1 মোল CO(g) পেতে হলে আমাদের (ii) নং সমীকরণটিকে বিপরীতক্রমে লিখতে হবে এবং তখন বিক্রিয়াটিতে তাপের উদ্ভব না হয়ে তাপের শোষন ঘটবে। তাই বিক্রিয়াটির Δ<u>.</u>H⁰মান সমান থাকলেও চিহ্ন বিপরীত হবে,

$$CO_{2}(g) \to CO(g) + \frac{1}{2}O_{2}(g);$$
 (iii)

 $\Delta_r H^{\theta} = + 283.0 \text{ kJ mol}^{-1}$

 (i) ও (ii) সমীকরণ যোগ করলে আমরা উদ্দিন্ট সমীকরণটি পাবো এবং Δ_.H^θ এর মান নির্ণয় করতে পারব।

$$\Delta_r H^{\theta} = (-393.5 + 283.0) \text{ kJ mol}^{-1}$$

= - 110.5 kJ mol⁻¹

সাধারণভাবে বলতে গেলে A থেকে B সরাসরি উৎপন্ন করা হলে যদি এনথ্যালপির পরিবর্তন $\Delta_r H^{0}$ হয় এবং অন্যভাবে A থেকে C তৈরি করার পর, C থেকে D তৈরি করা হয় এবং এরপর D থেকে পুনরায় B তৈরি করা হয় এবং এই ভিন্ন ভিন্ন ধাপগুলোর এনথ্যালপির পরিবর্তন যথাক্রমে $\Delta_r H_1, \Delta_r H_2, \Delta_r H_3$ তবে হেসের সূত্রানুযায়ী $\Delta_r H = \Delta_r H_1 + \Delta_r H_2 + \Delta_r H_3$ (6.16) প্রক্রিয়াগুলোকে নীচের রেখাচিত্রের সাহায্যে দেখানো হলো

6.5 ভিন্ন ভিন্ন বিক্রিয়ার বিক্রিয়া-এনথ্যালপি (Enthalpies for Different Type of Reactions)

প্রচলিত ধারা অনুসারে বিক্রিয়ার ধরন অনুযায়ী এনথ্যালপির নামাকরণ করা হয়।

(a) প্রমাণ দহন-এনথ্যালপি (Standard Enthalpy of Combustion (চিহ্ন : $\Delta_{\mu} H^{\theta}$)

দহন একটি তাপদায়ী প্রক্রিয়া। শিল্পক্ষেত্রে, রকেট উৎক্ষেপনের কাজে এবং দৈনন্দিন জীবনের বিভিন্ন কাজে দহন প্রক্রিয়াটির গুরুত্ব অপরিসীম। নির্দিশ্ট উস্নতায় ও প্রমাণ অবস্থায় এক মোল (বা এক গ্রাম অনু) কোনো পদার্থের সম্পূর্ণ দহনে উৎপন্ন বিক্রিয়াজাত পদার্থগুলোও যদি ওই প্রমাণ অবস্থায় থাকে, তবে দহন বিক্রিয়াটিতে যে এনথ্যালপির পরিবর্তন ঘটে তাকে পদার্থটির প্রমাণ দহন এনথ্যালপি বলে।

রান্নার গ্যাসের সিলিন্ডার মূলতঃ বিউটেন (C_4H_{10}) গ্যাস থাকে। এক মোল বিউটেন গ্যাসের সম্পূর্ণ দহনে 2658 kJ তাপ নির্গত হয়।এই তাপ রাসায়নিক বিক্রিয়াটিকে নিম্নরুপে লেখা যায়।

$$C_4 H_{10}(g) + \frac{13}{2}O_2(g) \rightarrow 4CO_2(g) + 5H_2O(l);$$

 $\Delta_c H^{\theta} = -2658.0 \text{ kJ mol}$

অনুরূপ ভাবে গ্লুকোজের দহনে 2802.0 kJ mol⁻¹ তাপ নির্গত হয় এবং সামগ্রিক বিক্রিয়াটি হলো :

$$C_6 H_{12} O_6(g) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2 O(l);$$

 $\Delta_C H^{\theta} = -2802.0 \text{ kJ mol}^{-1}$

আমাদের দেহেও গ্লুকোজের সামগ্রিক জারণ বিক্রিয়ার মতো খাদ্যের জারণের ফলে শক্তি উৎপন্ন হয়, এক্ষেত্রে উৎসেচকের উপস্থিতিতে কতগুলো ধারাবাহিক জটিল জৈব-রাসায়নিক বিক্রিয়া সংঘটিত হওয়ার পর অন্তিম পদার্থটি পাওয়া যায়।

সমস্যা 6.8

1 অ্যাটমসফিয়ার চাপে 298 K তাপমাত্রায় 1 বেঞ্জিনকে দহন

করা হল। দহনের ফলে $\operatorname{CO}_2(g)$ এবং $\operatorname{H_2O}(l)$ উৎপন্ন হলো এবং সঙ্গে 3267.0 kJ mol⁻¹ তাপ নির্গত হলো। বেঞ্জিনের প্রমাণ গঠন তাপ $(\Delta_{\!_f} H^{\,\theta})$ গণনা করো। $CO_2(g)$ এবং $H_2O(l)$ - এর প্রমাণ গঠন তাপ যথাক্রমে –393.5 kJ mol⁻¹ এবং –285.83 kJ mol⁻¹।

সমাধান: 6.8 বেঞ্জিন গঠনের বিক্রিয়াটি হলো

6C (গ্রাফাইট) + $3H_2(g) \rightarrow C_6H_6(1);$

 $\Delta_f H^{\theta} = ? \dots (i)$

1 মোল বেঞ্জিনের দহন এনথ্যালপি হলো

$$C_6H_6(l) + \frac{15}{2}O_2 \rightarrow 6CO_2(g) + 3H_2O(l);$$

 $\Delta_2H^{\theta} = -3267 \text{ kJ mol}^{-1}...(ii)$

1 মোল $CO_2(g)$ এর দহন এনথ্যালপি হলো

C (धार्याहरुँ) + $O_2(g) \rightarrow CO_2(g);$

 $\Delta_f H^{\theta} = -393.5 \text{ kJ mol}^{-1}...$ (iii)

1 মোল $H_2O(l)$ এর গঠন এনথ্যালপি হলো : $H_2(g) + \frac{1}{2}O_2(g) \to H_2O(l);$

$$\Delta_{H^{\theta}} = -285.83 \text{ kJ mol}^{-1}... (iv)$$

 (iii) নং সমীকরণ 6 দ্বারা এবং (iv) নং সমীকরণকে 3 দ্বারা গুণ করা হলো :

 $6C (धार्शरें) + 6O_2 (g) \rightarrow 6CO_2 (g);$

$$\Delta_{f} H^{\theta} = -2361 \text{ kJ mol}^{-1}$$

$$3H_2(g) + \frac{3}{2}O_2(g) \rightarrow 3H_2O(1);$$

$$\Delta_f H^{\theta} = -857.49 \text{ kJ mol}^{\theta}$$

ওপরের সমীকরণ দুটিকে যোগ করা হলো :

6C(এফেইট)+3H₂(g)+
$$\frac{15}{2}O_2(g)$$
→ 6CO₂(g)+3H₂O(l);
 $\Delta_f H^{\theta} = -3218.49 \text{ kJ mol}^{-1}...$ (v)

(ii) নং সমীকরণকে বিপরীতক্রমে লেখা হলো :
 6CO₂ (g) + 3H₂O(l) → C₆H₆ (l) + ¹⁵/₂O₂;
 Δ_fH^θ = 3267.0 kJ mol⁻¹... (vi)
 (v) এবং (vi) নং সমীকরণকে যোগ করা হলো:
 (C) লেফটি + 2H₂(c) + CH₂(l)

6C (आफॉर्ट्रेंट) + $3H_2(g) \rightarrow C_6H_2(1);$ $\Delta_{f}H^{\theta} = 48.51 \text{ kJ mol}^{-1}... (iv)$

(b) অ্যাটমাইজেশন এনথ্যালপি (Enthalpy of atomization (চিহ্ন: ১ুH⁰)

হাইড্রোজেন অনু থেকে পরমানু গঠনের বিক্রিয়াটি হলো :

 $H_2(g) \rightarrow 2H(g); \Delta_a H^{\theta} = 435.0 \text{ kJ mol}^{-1}$

বিক্রিয়াটি দেখে বোঝা যাচ্ছে, হাইড্রোজেন অনুমধ্যস্থ H–H বন্ধনটি বিভাজিত হয়ে হাইড্রোজেন পরমানু উৎপন্ন হয়েছে। প্রক্রিয়াটি সংঘঠিত করতে যে পরিমাণ এনথ্যালপির হয় তাকেই অ্যাটিমাইজেশন এনথ্যালপি $\Delta_{\mu}H^{\theta}$ বলে।

গ্যাসীয় অবস্থায় এক মোল পরিমাণ বন্ধন সম্পূর্ণ বিভাজিত করে পরমাণু তৈরি করতে যে পরিমাণ এনথ্যালপির পরিবর্তন হয় তাকে অ্যাটমাইজেশন এনথ্যালপি বলে। হাইড্রোজেনের মতো (ওপরে প্রদর্শিত) দ্বিপরামাণুক অনুর ক্ষেত্রে অ্যাটমাইজেশন এনথ্যালপি এবং বন্ধন বিভাজন এনথ্যালপি একই হয়। অ্যাটমাইজেশন এনথ্যালপির অন্যান্য কয়েকটি উদাহরণ হলো,

 $CH_4(g) \rightarrow C(g) + 4H(g); \Delta_a H^{\theta} = 1665 \text{ kJ mol}^{-1}$

লক্ষ্য করো, এক্ষেত্রে গ্যাসীয় দশায় কার্বন এবং হাইড্রোজেন-এর কেবলমাত্র পরমানু উৎপন্ন হয়েছে। এখন নিচের বিক্রিয়াটি দেখ

Na(s) \rightarrow Na(g); $\Delta_{\sigma} H^{\theta} = 108.4 \text{ kJ mol}^{-1}$

এক্ষেত্রে অ্যাটমাইজেশন এনথ্যালপি এবং উর্ধ্বপাতন এনথ্যালপি একই হয়।

(c) বন্ধন এনথ্যালপি (Bond Enthalpy (চিহ্ন : $\Delta_{bond} H^{\theta}$)

বন্ধন বিভাজন এবং বন্ধন গঠনের মাধ্যমে রাসায়নিক বিক্রিয়া সংঘটিত হয়। বন্ধন বিভাজিত করার জন্য শক্তির প্রয়োজন হয় এবং বন্ধন তৈরি হওয়ার সময় শক্তি নির্গত হয়। রাসায়নিক বন্ধনের বিভাজন এবং গঠন প্রক্রিয়ায় যে শক্তির পরিবর্তন হয়, তাদের সঙ্গো বিক্রিয়া তাপের সম্পর্ক রয়েছে। তাপগতিবিদ্যায় রাসায়নিক বন্ধন-এর এনথ্যালপি পরিবর্তন সম্বন্ধীয় দুটিট ভিন্ন পরিভাষার ব্যবহার আছে। i) বম্বন বিভাজন এনথ্যালপি (Bond dissociation Enthalpy) ii) গড় বম্বন এনথ্যালপি (Mean Bond Enthalpy)

এই পরিভাষা গুলোর সম্বন্ধে আলোচনা করার জন্য আমরা দ্বিপরমাণুক এবং বহুপরমাণুক অনুর সাহায্য নেব।

দ্বিপরমাণুক অনু ঃধরা যাক, নিম্নলিখিত পদ্ধতিতে 1 মোল পরিমাণ হাইড্রোজেন (H₂) গ্যাসে উপস্থিত বন্ধনগুলোকে বিভাজিত করা হলো:

H₂(g) → 2H(g) ; Δ_{H-H}H^θ = 435.0 kJ mol⁻¹ বিক্রিয়াটিতে এনথ্যালপির যে পরিবর্তন হয়, তা H–H বম্বন বিভাজন এনথ্যালপির সমান হয় ৷ গ্যাসীয় অবস্থায় 1 মোল পরিমাণ কোন সমযোজী যৌগ মধ্যস্থ সমযোজী বন্ধনগুলোকে বিভাজিত করে গ্যাসীয় বিক্রিয়াজাত পদার্থ উৎপন্ন করার সময় এনথ্যালপির যে পরিবর্তন হয়, তাকে বন্ধন বিভাজন এনথ্যালপি বলে ৷

লক্ষ্য করো হাইড্রোজেন অনুর ক্ষেত্রে বন্ধন বিভাজন শস্তি এবং অ্যাটমাইজেশন এনথ্যালপির মান সমান হয়। সমস্ত দ্বিপারমানুক অণুর ক্ষেত্রেই এটি সঠিক। উদাহরণস্বরূপ,

 $Cl_2(g) \rightarrow 2Cl(g); \quad \Delta_{CI-CI}H^{\theta} = 242 \text{ kJ mol}^{-1}$

 $O_2(g) \rightarrow 2O(g)$; $\Delta_{O=0}H^{\theta} = 428 \text{ kJ mol}^{-1}$

বহু পরমাণুক অনুগুলোর ক্ষেত্রে অনুমধ্যস্থ বিভিন্ন বন্ধনগুলোর বন্ধন বিভাজন শক্তি বিভিন্ন হয়।

বহুপারমাণুক অনু ঃ মিথেনের মতো (CH₄) একটি বহুপারমাণুক অনুর কথা ভাবা যাক্। পরমাণু গঠন বিক্রিয়ার সামগ্রিক তাপ রাসায়নিক সমীকরণটি হলো :

 $CH_4(g) \rightarrow C(g) + 4H(g);$

 $\Delta_a H^{\theta} = 1665 \text{ kJ mol}^{-1}$

মিথেনের (CH₄) চারটি C – H বম্বনের বম্বনশস্তি এবং বম্বনদৈর্ঘ্য সমান। কিন্ডু ক্রমান্বয়ে একটি করে C – H বম্বনকে বিভাজিত করলে প্রতিটি C – H বম্বন বিভাজন শস্তি সমান হয় না,

$$CH_4(g) \rightarrow CH_3(g) + H(g); \Delta_{bond} H^{\theta} = +427 \text{ kJ mol}^{-1}$$

$$CH_3(g) \rightarrow CH_2(g) + H(g); \Delta_{bond} H^{\theta} = +439 \text{ kJ mol}^{-1}$$

$$CH_2(g) \rightarrow CH(g) + H(g); \Delta_{bond} H^{\theta} = +452 \text{ kJ mol}^{-1}$$

 $\mathrm{CH}(\mathrm{g}) \rightarrow \mathrm{C}(\mathrm{g}) + \mathrm{H}(\mathrm{g}); \Delta_{bond} H^{\theta} = +347 \mathrm{~kJ~mol^{-1}}$ সূতরাং,

CH₄(g) → C(g)+4H(g);Δ_aH^θ= 1665 kJ mol⁻¹ এধরণের প্রক্রিয়ার ক্ষেত্রে আমরা C – H বম্বনের গড় বন্ধন এনথ্যালপি ব্যবহার করি।

রসায়ন

(6.17)**

উদাহরণস্বরূপ CH_4 -এর ক্ষেত্রে $\Delta_{\operatorname{C-H}} H^ heta$ বন্ধন এনথ্যালপির মান নিম্নরূপে গণনা করা হয় :

$$\Delta_{C-H} H^{\theta} = \frac{1}{4} (\Delta_a H^{\theta}) = \frac{1}{4} (1665 \text{ kJ mol}^{-1})$$

= 416 kJ mol^{-1}

দেখা গেল মিথেনের গড় C–H বন্ধন এনথ্যালপির মান হল 416 kJ/mol । ভিন্ন ভিন্ন যৌগের ক্ষেত্রে এই গড় C–H বন্ধন এনথ্যালপির মানের মধ্যে কিছুটা তারতম্য থাকে। যেমন CH₃CH₂Cl,CH₃NO₂ ইত্যাদি যৌগে, যদিও এই তারতম্যের পরিমাণ বিশাল কিছু নয়। * হেসের সূত্র প্রয়োগ করে বন্ধন এনথ্যালপি গণনা করা যায়। 6.3 সারণিতে কয়েকটি একবন্ধন এবং বহুবন্ধন-এর বন্ধন এনথ্যালপির মান দেওয়া হলো। বিক্রিয়া এনথ্যালপি একটি গুরুত্বপূর্ণ রাশি কেননা পূর্বতন বন্ধন-এর বিভাজন এবং নতুন বন্ধনের তৈরি হওয়ার সামগ্রিক প্রক্রিয়ার সাথে এটি জড়িত। ভিন্ন ভিন্ন বন্ধন এনথ্যালপিগুলোর মান জানা থাকলে গ্যাসীয় দশায় সংঘটিত হয়েছে এমন বিক্রিয়ার এনথ্যালপি কত হতে পারে তার ধারণা পাওয়া যায়। প্রমাণ বিক্রিয়া এনথ্যালপি কত হের পারে তার ধারণা পাওয়া যায়। প্রমাণ বিক্রিয়া এনথ্যালপি কের্যান্ধ বার্যা ব্যায় এনথ্যালপি কের্যান্ধ ব্যার্যার এনথ্যালপি কের্যান্ধ ব্যার্যার প্রার্যার প্রার্যান্ধ ব্যার্যার দশায় সংঘটিত হয়েছে এমন বিক্রিয়ার এনথ্যালপি কত হতে পারে তার ধারণা পাওয়া যায়। প্রমাণ বিক্রিয়া এনথ্যালপি কের্যাল পাওয়া ব্যায়। প্রমাণ বিক্রিয়া

প্রয়োজনীয় গঠনতাপ $\Delta_{f}H^{\theta}$ -এর মান জানা নেই এমন বিক্রিয়ার এনথ্যালপি গণনার কাজে এই সম্পর্কটি খুবই উপকারী। কোন বিক্রিয়ার মোট এনথ্যালপি পরিবর্তন বলতে বিক্রিয়ক পদার্থের সমস্ত বম্বনগুলোকে ভাজার জন্য প্রয়োজনীয় মোট শক্তি থেকে বিক্রিয়াজাত পদার্থের সমস্ত বন্ধনগুলোকে ভাজার প্রয়োজনীয় মোট শক্তির বিয়োগফলকে বোঝায়। মনে রাখা দরকার এটি একটি আনুমানিক সম্পর্ক এবং সকল বিক্রিয়ক ও বিক্রিয়াজাত পদার্থগুলো গ্যাসীয় দশায় থাকলেই এই সম্পর্কটি প্রয়োগ করা যায়।

(d) দ্রবণ এনথ্যালপি (Enthalpy of Solution (চিহ্ন : Δ_{sol}H^θ)

 মোল পরিমাণ কোনো পদার্থকে একটি নির্দিষ্ট পরিমাণ দ্রাবকে দ্রবীভূত করতে যে পরিমাণ এনথ্যালপির পরিবর্তন হয়, সেটাই হলো এ পদার্থটির দ্রবণ এনথ্যালপি। পর্যাপ্ত দ্রাবকে কোন দ্রাব পদার্থকে

Н	С	Ν	0	F	Si	Р	S	Cl	Br	Ι		
435.8	414	389	464	569	293	318	339	431	368	297	Н	
	347	293	351	439	289	264	259	330	276	238	С	
		159	201	272	-	209	-	201	243	-	Ν	
			138	184	368	351	-	205	-	201	0	
				155	540	490	327	255	197	-	F	
					176	213	226	360	289	213	Si	
						213	230	331	272	213	Р	
							213	251	213	-	S	
								243	218	209	Cl	
									192	180	Br	
										151	Ι	

সারণি 6.3(a) 298 K উন্নতায় এবং kJ mol⁻¹ এককে কিছু একবন্ধনের গড় বন্ধন এনথ্যালপির মান

সারণি 6.3(a) 298 K এবং kJ mol⁻¹ এককে কয়েকটি বহু বন্ধনের গড় বন্ধন এনথ্যালপির মান

N = N	418	C = C	611	O = O 498
$N \equiv N$	946	$C \equiv C$	837	
C = N	615	C = O	741	
$C \equiv N$	891	C≡O	1070	

* লক্ষ করো বন্ধন বিভাজন এনথ্যালপি এবং গড় বন্ধন এনথ্যালপির জন্য একই চিহ্ন ব্যবহার করা হয়েছে।

** গ্যাসীয় পরমাণু থেকে 1 মোল পরিমাণ কোনো একটি নির্দিন্ট বম্থন তৈরী করতে এনথ্যালপির যে পরিবর্তন হয় অর্থাৎ বম্ধন গঠনের এনথ্যালপিকে

দ্রবীভূত করতে যে পরিমাণ এনথ্যালপির পরিবর্তন হয়, তাকে অসীম লঘুতার ঐ দ্রাব পদার্থের দ্রবণ এনথ্যালপি বলে। এক্ষেত্রে আয়নগুলোর (বা দ্রাব-অনুগুলোর) পরস্পরের উপর প্রভাব নগন্য ধরা হয়।

আয়নীর যৌগকে কোন দ্রাবকে দ্রবীভূত করলে কেলাস-জালকের নির্দিষ্ট সজ্জা থেকে আয়নগুলো সরে যায় এবং দ্রবণের মধ্যে আয়নগুলোর সচলতা বৃদ্ধি পায়। কিন্তু একই সাথে আয়নগুলোর দ্রাবকায়ন প্রক্রিয়া চলতে (দ্রাবক জল হলে জলযোজন প্রক্রিয়া) থাকে। AB(s) আয়নীর যৌগের ক্ষেত্রে এই ঘটনাটি নীচের নক্শার সাহায্যে দেখানো হলো:

জলের মধ্যে AB(s) যৌগটির দ্রবন এনথ্যালপি ($\Delta_{sol}H^{ heta}$)-এর মান নির্বাচিত আয়নগুলোর জালক এনথ্যালপি $\Delta_{lattice}H^{ heta}$ এবং জলযোজন এনথ্যালপি $\Delta_{lnvd}H^{ heta}$ মানের সাহায্যে গণনা করা যায়।

$$\Delta_{sol} H^{\theta} = \Delta_{lattice} H^{\theta} + \Delta_{hvd} H^{\theta}$$

বেশিরভাগ আয়নীয় যৌগের ক্ষেত্রে $\Delta_{sol}H^{\theta}$ -এর মান ধনাত্মক হয় এবং বিভাজন (dissociation) প্রক্রিয়াটি তাপগ্রাহী হয়। একারণেই উন্নতা বৃদ্ধির সঙ্গে সঙ্গে বেশিরভাগ লবণেরই জলে দ্রাব্যতা বৃদ্ধি পায়। জালক এনথ্যালপির মান বেশী হলে কোন যৌগকে দ্রবীভূত করা সম্ভব নাও হতে পারে। বেশীরভাগ ফ্লোরাইড যৌগগুলোর দ্রাব্যতা অনুরূপ (coresponding) ক্লোরাইড যৌগ থেকে কম হয় কেন ? বন্ধন শক্তি (এনথ্যালপি) এবং জালক শক্তি (এনথ্যালপি)-র সারণিবন্ধ মান থেকে কোন পদার্থকে দ্রবীভূত করেতে কী পরিমাণ এনথ্যালপি'র পরিবর্তন হবে, তার ধারণা পাওয়া যায়।

জালক এনথ্যালপি (Lattic Enthalpy)

এক মোল পরিমাণ কোনো আয়নীয় যৌগকে সম্পূর্ণরূপে পরস্পরের প্রভাব বর্জিত গ্যাসীয় সংগঠক আয়নে বিয়োজিত করতে যে পরিমাণ তাপের প্রয়োজন হয়, তাকে ওই আয়নীয় যৌগের ল্যাটিস এনথ্যালপি বা জালক এনথ্যালপি বলে।

$$Na^{+}Cl^{-}(s) \rightarrow Na^{+}(g) + Cl^{-}(g);$$
$$\Delta_{lattice}H^{\theta} = +788 \text{ kJ mol}^{-1}$$

জালক এনথ্যালপি সরাসরি নির্ণয় করার কোনো পদ্ধতি নেই বলে পরোক্ষভাবে এনথ্যালপি পরিবর্তনের একটি নক্শা তৈরী করে জালক এনথ্যালপি নির্ণয় করা হয়। এই নক্শাটিকে বর্ন -হেবার-চক্র (Born Haber Cycle) বলে। (চিত্র: 6.9)

এখন আমরা নিম্নলিখিত ধাপগুলোর সাহায্যে *Na⁺cl⁻*(s) আয়নীয় যৌগটির জালক এন্যথ্যালপি নির্ণয় করবো ঃ

- 1. $Na(s) \rightarrow Na(g)$, সোডিয়াম ধাতুর উর্ধ্বপাতন $\Delta_{a,t} H^{\theta} = 108.4 \text{ kJ mol}^{-1}$
- Na(g) → Na⁺(g) + e⁻¹(g), সোডিয়াম পরমাণুর আয়নীভবন, আয়নন এনথ্যালপি Δ_iH^θ = 496 kJ mol⁻¹
- 3. 1/2 Cl₂(g) → Cl(g), ক্লোরিন অণুর বিয়োজন, এক্ষেত্রে বিক্রিয়া এনথ্যালপি বন্খন বিভাজন এনথ্যালপির অর্ধেক হয়,

 $\frac{1}{2}\Delta_{bond}H^{\theta} = 121 \text{ kJ mol}^{-1}$

$$\frac{\operatorname{Na}^{*}(g) + \operatorname{Cl}(g)}{\operatorname{I}_{2}^{1} \operatorname{L}_{2}^{1} \operatorname{L}_{2}^{2} \operatorname{L}_{2}^{2}(g)} + \operatorname{I}_{2}^{1} \operatorname{Cl}_{2}^{2}(g)} + \operatorname{I}_{2}^{1}$$

চিত্র: 6.9 Nacl-এর জালক এনথ্যালপি নির্ণয়ের এনথ্যালপি নক্শা।

সংযোজন, ইলেকট্রন সংযোজন এনথ্যালপি,

 $\Delta_{eg}H^{\theta} = -348.6 \text{ kJ mol}^{-1}.$

আয়নন এনথ্যালপি এবং ইলেকট্রন গ্রহণ এনথ্যালপি সম্পর্কে তোমরা তৃতীয় অধ্যায়ে জেনেছো। প্রকৃত পক্ষে এই পরিভাষাগুলোকে তাপগতিবিদ্যা থেকে নেওয়া হয়েছে। পূর্বে এই পরিভাষাগুলোকে যথাক্রমে আয়নন শক্তি এবং ইলেকট্রন আসক্তিবলা হতো। নীচের আলোচনা থেকে তোমরা এর যথার্থতা যাচাই করতে পারবে।

আয়নন শক্তি এবং ইলেকট্রন আসক্তি

আয়নন শস্তি এবং ইলেকট্রন আসন্তির পরিমাপ পরম শৃণ্য উন্নতায় প্রকাশ করতে হবে। কেননা অন্য যে কোনো উন্নতায় পরিমাপ করলে বিক্রিয়ক এবং বিক্রিয়াজাত পদার্থের তাপ গ্রহীতার মান গণনায় রাখতে হবে।

 $M(g) \rightarrow M^+(g) + e^- (W)$ and M

M(g) + e⁻ → M⁻(g) (*ইলেক্ট্রন গ্রহণের জন্য)* ওপরের বিক্রিয়দুটির *T* উম্নতায় বিক্রিয়া এনথ্যালপি হলো ঃ

$$\Delta_{r}H^{\theta}(T) = \Delta_{r}H^{\theta}(0) + \int_{0}^{T} \Delta_{r}C_{p}^{\theta}dT$$

ওপরের বিক্রিয়াদুটির প্রতিটি পরমাণু এবং আয়নের জন্য C_p -এর মান হবে 5/2 R (C_V = 3/2R)

সুতরাং, $\Delta_r C_n^{\ \theta} = + 5/2 \text{ R}$ (আয়ননের জন্য)

 $\Delta_r C_p^{\ \theta} = -5/2 \text{ R} \left($ ইলেকট্রন গ্রহণের জন্য $\right)$

অর্থাৎ, $\Delta_r H^{\theta}$ (আয়ননের এনথ্যালপি)= E_0 (আয়নন শক্তি)+5/2 RT $\Delta_r H^{\theta}$ (ইলেক্ট্রন গ্রহণ এনথ্যালপি)= $-A_e$ (ইলেক্ট্রন আসক্তি)— 5/2 RT

5. $Na^+(g) + Cl^-(g) \rightarrow Na^+Cl^-(s)$

Na⁺CI⁻(s) গঠনের ধারবাহিক ধাপগুলোকে চিত্র 6.9-এ দেখানো হয়েছে এবং একেই বর্ণ-হেবার-চক্র বলে। বর্ণ-হেবার-চক্রের একটি গুরুত্বপূর্ণ দিক হলো যে এক্ষেত্রেও চক্রীয় পরিবর্তনে এনথ্যালপির মোট পরিবর্তনকে শূণ্য ধরা হয়।

হেসের সূত্র প্রয়োগ করে আমরা পাই,

$$\begin{split} &\Delta_{lattice} H^{\theta} = 411.2 + 108.4 + 121 + 496 - 348.6 \text{ kJmol}^{-1} \\ &\Delta_{lattice} H^{\theta} = + 788 \text{kJ} \\ &\text{NaCl(s)} \to \text{Na}^+(g) + \text{Cl}^-(g) \end{split}$$

বিক্রিয়াটির আন্তরশস্তি 2RT পরিমাণ কম হয় (কারণ এক্ষেত্রে $\Delta n_g = 2$) এবং এর মান হয় + 783 kJ mol⁻¹। জালক এনথ্যালপির মান ব্যবহার করে নীচের সম্পর্কটি থেকে এখন আমরা দ্রবণ এনথ্যালপির মান নির্ণয় করতে পারব।

$$\Delta_{sol}H^{\theta} = \Delta_{lattice}H^{\theta} + \Delta_{hyd}H^{\theta}$$

1 মোল NaCl(s)-এর জালক এনথ্যালপি= + 788 kJ mol⁻¹

এবং $\Delta_{hyd}H^{ heta}$ = $-784~{
m kJ~mol}^{-1}$ (দ্রাবকায়ন শক্তির সারণী থেকে)

$$\Delta_{sol} H^{\theta} = + 788 \text{ kJ mol}^{-1} - 784 \text{ kJ mol}^{-1}$$

= + 4 kJ mol^{-1}

অর্থাৎ কঠিন NaCl(s)-এর দ্রাবকায়নের সময় সামান্য পরিমাণ তাপের পরিবর্তন হয়।

6.6 স্বতঃস্ফুর্ততা (Spontaneity) ঃ

তাপগতিবিদ্যার প্রথম সূত্র থেকে সিস্টেম কর্তৃক শোষিত তাপ এবং সিস্টেম দ্বারা সম্পাদিত কার্য অথবা সিস্টেমের ওপর সম্পন্ন কার্যের মধ্যে সম্পর্কটি জানা যায়। কিন্তু তাপ কোন্ দিকে প্রবাহিত হবে, সে সম্পর্কে প্রথম সূত্রে কিছু বলা নেই। কিন্তু আমরা জানি তাপের প্রবাহ সবসময় একমুখী, উচ্চতর উন্নতা থেকে নিম্নতর উন্নতার দিকে প্রবাহিত হয়। বাস্তবে, প্রকৃতিতে সংঘটিত ভৌত বা রাসায়নিক প্রক্রিয়াগুলো স্বতঃস্ফূর্ত ভাবে সংঘটিত হয় এবং সর্বদা একমুখী হয়। উদাহরণস্বরূপ লভ্য (available) আয়তন পূর্ণ করার জন্য একটি গ্যাস প্রসারিত হয়, যেমন অক্সিজেনের মধ্যে কার্বনের দহনের ফলে কার্বন-ডাই-অক্সাইড উৎপন্ন হয়।

কিন্তু তাপ নিজ থেকে শীতল বস্তু থেকে উন্ন বস্তুতে প্রবাহিত হতে পারে না, পাত্রমধ্যস্থ কোনো গ্যাস স্বতঃস্ফৃর্তভাবে সংকুচিত হয়ে কোনো একটি কোনায় আবদ্ধ থাকতে পারে না বা কার্বন-ডাই-অক্সাইড থেকে স্বতঃস্ফৃর্তভাবে কার্বন ও অক্সিজেন উৎপন্ন হতে পারে না। এ ধরনের প্রক্রিয়াগুলোর মতো আরো অসংখ্য স্বতঃ স্ফূর্ত পরিবর্তন আছে যারা একমুখী। স্বভাবতই আমাদের মনে প্রশ্ন জাগে, কোনো চালক বলের দ্বারা স্বতঃস্ফৃত পরিবর্তনগুলো সংঘটিত হচ্ছে ? স্বতঃস্ফৃর্ত পরিবর্তন কোন্ দিকে সংঘটিত হবে তা কে নির্ণয় করে ? এই অংশটিতে এই প্রক্রিয়াগুলোর জন্য আমরা এমন কিছু শর্তের প্রয়োগ করব যাতে করে আমরা বুঝতে পারব প্রক্রিয়াগুলো আদৌ সংঘটিত হবে, নাকি হবে না।

চলো প্রথমে আমরা জেনে নিই স্বতঃস্ফূর্ত বিক্রিয়া বা পরিবর্তন বলতে কী বুঝি? তুমি তোমার নিজস্ব সাধারণ অভিজ্ঞতা থেকে ভাবতেই পারো যে, বিক্রিয়ক পদার্থগুলো পরস্পরের সংস্পর্শে আসামাত্র যে বিক্রিয়া শুরু হয়ে যায়, সেগুলোই স্বতঃস্ফূর্ত বিক্রিয়া।

হাইড্রোজেন এবং অক্সিজেন গ্যাসের সংযোগের কথাই ধরা যাক। গ্যাসদুটিকে ঘরের উন্নতায় মিশ্রিত করে দীর্ঘদিন রেখে দিলেও বিশেষ কোনো পরিবর্তন লক্ষ্য করা যায় না।

যদিও এদের মধ্যে বিক্রিয়া সংঘঠিত হচ্ছে, কিন্তু বিক্রিয়ার গতি খুবই মন্থর হয়। তবু একে স্বতঃস্ফূর্ত বিক্রিয়া বলেই ধরা হয়। সুতরাং, স্বতঃস্ফূর্ততার অর্থ হলো, 'বাহ্যিক সাহায্য ছাড়াই এগিয়ে যাওয়ার সামর্থ।' যদিও এর দ্বারা বিক্রিয়া বা প্রক্রিয়াটির গতি সম্পর্কে কোনো ধারণা পাওয়া যায় না। স্বতঃস্ফূর্ত বিক্রিয়া বা প্রক্রিয়ার আরেকটি বিশেষত্ব হলো নিজ থেকে এই সকল প্রক্রিয়াগুলো বিক্রিয়ার অভিমুখ পরিবর্তন করতে পারে না। বিষয়টিকে নিচে সংক্ষিপ্তরূপে লেখা হলোঃ

স্বতঃস্ফুর্ত প্রক্রিয়া হলো একটি একমুখী প্রক্রিয়া এবং একমাত্র বাহ্যিক শর্তের দ্বারাই এর দিক পরিবর্তন করা যায়।

(a) স্বতঃস্ফুর্ততার জন্য এনথ্যালপি হ্রাস পাওয়া আবশ্যিক কিনা (Is decrease in enthalpy a criterion for spontaneity ?)

পাহাড়ের গা-বেয়ে নীচে নেমে আসা জলের প্রবাহ বা উপর থেকে একটি পাথরখন্ডের মাটিতে পড়ার মতো ঘটনা থেকে এটা বোঝা যায় যে এসকল ঘটনায় পরিবর্তনের অভিমুখে স্থিতিশন্তির হ্রাস হচ্ছে। অনুরূপে আমরা বলতেই পারি যে নির্দিষ্ট অভিমুখে সংঘটিত যে কোনো রাসায়নিক বিক্রিয়া একটি স্বতঃস্ফুর্ত প্রক্রিয়া কেননা তাপদায়ী বিক্রিয়ার মতো এসকল ক্ষেত্রেও শক্তির হ্রাস হয়। উদাহরণস্বরূপ ঃ

$$\frac{1}{2} N_2(g) + \frac{3}{2} H_2(g) = NH_3(g);$$

$$\Delta_r H^{\theta} = -46.1 \text{ kJ mol}^{-1}$$

$$\frac{1}{2} H_2(g) + \frac{1}{2} Cl_2(g) = HCl(g);$$

$$\Delta H^{\theta} = -92.32 \text{ kJ mol}^{-1}$$

$$\begin{split} \mathrm{H_2(g)} + \frac{1}{2} \ \mathrm{O_2(g)} \to \mathrm{H_2O(l)} \ ; \\ \Delta_r H^\theta = -285.8 \ \mathrm{kJ} \ \mathrm{mol}^{-1} \end{split}$$

যে-কোনো তাপদায়ী বিক্রিয়ার ক্ষেত্রে বিক্রিয়ক পদার্থ থেকে বিক্রিয়াজাত পদার্থ তৈরী হওয়ার সময় এনথ্যালপি হ্রাসের এই ঘটনাটিকে চিত্র 6.10(a)-তে এনথ্যালপি নকসার সাহায্যে দেখানো হলো।

অর্থাৎ শক্তির হ্রাস হলো রাসায়নিক বিক্রিয়ার চালকশস্তির কারণ এই অবধি আলোচনা থেকে এই স্বীকার্যটিকে যুন্তি সংগত বলে মনে হয়।

এবার আমরা নীচের বিক্রিয়াগুলোর পর্যবেক্ষণ করবো ঃ

$$\frac{1}{2} N_2(g) + O_2(g) \rightarrow NO_2(g);$$

$$\Delta_r H^{\theta} = +33.2 \text{ kJ mol}^{-1}$$

চিত্র : 6.10 (a) তাপদায়ী বিক্রিয়ার এনথ্যালপি নক্শা

C(গ্রাফাইট, s) + 2 S(l) $\rightarrow CS_2(l);$

 $\Delta_r H^{\theta} = +128.5 \ kJ \ mol^{-1}$

এই বিক্রিয়াগুলো তাপগ্রাহী হলেও এরা স্বতঃস্ফূর্ত ভাবে সংঘটিত হয়। এনথ্যালপি বৃদ্ধির এই ঘটনাকে নীচের চিত্র 6.10(b)-তে এনথ্যালপি নকশার সাহায্যে দেখানো হলো ঃ

চিত্র : 6.10 (b) তাপমোচী বিক্রিয়ার এনথ্যালপি নক্শা

অর্থাৎ এটা মনে হতেই পারে যে কোনো বিক্রিয়ার স্বতঃস্ফূর্তার জন্য এনথ্যালপির হ্রাস হওয়া অত্যাবশ্যক, কিন্তু সমস্ত বিক্রিয়ার ক্ষেত্রে এটা সত্য নয়।

ধর পারিপার্শ্বিক থেকে বিচ্ছিন্ন অবস্থায় রাখা হয়েছে এমন একটি আবন্ধ পাত্রে দুটি গ্যাস নিজেদের মধ্যে ব্যাপিত হচ্ছে যেমনটা চিত্র 6.11-এ দেখানো হয়েছে।

রসায়ন

এখন আমাদের এনট্রপি নামক আরো একটি তাপগতীয় অপেক্ষকের প্রয়োজন হবে। এনট্রপিকে 'S' দ্বারা সূচিত করা হয়। ওপরে বর্ণিত বিশৃঙ্খলার মধ্যেই এনট্রপি প্রতিভাত রয়েছে। এনট্রপি সম্বন্ধে একটি মানসিক চিত্র গঠন করতে গিয়ে কোনো ব্যক্তি ভাবতেই পারে যে, এনট্রপি হলো কোনো সিস্টেমের গঠনকারী কণাগুলোর বিশৃঙ্খলতার মাত্রার পরিমাপ। নিঃসঙ্গা সিস্টেমের ক্ষেত্রে বিশৃঙ্খলতার মাত্রা যত বৃদ্ধি পায়, এনট্রপির পরিমাণও তত বৃদ্ধি পায়। রাসায়নিক বিক্রিয়ার ক্ষেত্রে বিক্রিয়ক পদার্থের পরমাণু বা আয়নগুলোর সজ্জা পুর্নবিন্যস্ত হয়ে বিক্রিয়াজাত পদার্থের পরমাণু বা আয়নের যে সজ্জা লাভ করে, তার কারণেই এনট্রপির পরিবর্তন হয়। বিক্রিয়াজাত পদার্থের গঠন কাঠামো যদি বিক্রিয়ক পদার্থের গঠন কাঠামো থেকে নড়বড়ে (disordered) হয়, তবে এনট্রপি বুদ্ধি পায়। কোনো রাসায়নিক বিক্রিয়ার বিক্রিয়ক এবং বিক্রিয়াজাত পদার্থের গঠন কাঠামো থেকে গুণগতভাবে (qualitatively) বিক্রিয়াটির এনট্রপির পরিবর্তন অনুমান করা যায়। গঠন কাঠামোতে পরমাণু বা আয়নের বিন্যাস নিয়মনিষ্ঠ না হলে এনট্রপি বৃদ্ধি পায়। কোনো পদার্থের কঠিন দশার কেলাসাকার রূপটি সবচেয়ে সুশৃঙ্খল বলে, এর এনট্রপি সবচেয়ে কম হয়। গ্যাসীয় দশায় কোন পদার্থের এনট্রপি সর্বাধিক হয়।

এখন চলো আমরা এনট্রপির পরিমাণ নির্ণয়ের চেম্টা করি। কোনো পদার্থের অনুগুলোর শক্তির বিশৃঙ্খলতার মাত্রা পরিমাপ করার একটা পদ্ধতি হলো পরিসংখ্যাণ পদ্ধতি, কিন্তু তাপগতিবিদ্যায় এই পদ্ধতিটি ব্যবহারের সুযোগ নেই। আরেকটিট পদ্ধতি হলো, বিশৃঙ্খলার সাথে তাপের সম্পর্ক নিরুপন করা, যার দ্বারা এনট্রপি সমন্ধে একটি তাপগতীয় ধারনা পাওয়া যাবে। অন্যান্য তাপগতীয় ধর্ম যেমন আন্তরশক্তি (U) এবং এনথ্যালপি (H) -র মতো এনট্রপিও একটি অবস্থার অপেক্ষক এবং ΔS পথনির্ভরশীল নয়।

সিস্টেমের ওপর তাপ প্রয়োগ করা হলে সিস্টেমের কণাগুলোর গতি বৃদ্বি পায়, ফলে সিস্টেমের বিশৃঙ্খলতার পরিমাণও বৃদ্বি পায়। অর্থাৎ সিস্টেমের বিশৃঙ্খলতার ওপর তাপ (q) -এর প্রভাব রয়েছে। এবার কি আমরা ΔS এবং q কে সমীকরনবদ্ব করতে পারি ? দাড়াও ! অভিজ্ঞতা থেকে আমরা জানি, যে উস্নতায় সিস্টেমের ওপর তাপ প্রয়োগ করা হয়েছে, তার ওপর তাপের বন্টন নির্ভরশীল। উচ্চ উস্নতায় কোনো সিস্টেমের কনাগুলোর বিশৃঙ্খলতার পরিমাণ নিম্ন উস্নতার কোনো সিস্টেমের কনাগুলোর বিশৃঙ্খলতার পরিমাণ নিম্ন উস্নতার কোনো সিস্টেমের কণাগুলোর গড় বিশৃঙ্খলতার পরিমাণ নিম্ন উন্নতায় কোনো সিস্টেমের কণাগুলোর গড় বিশৃঙ্খলতার পরিমাণ । নিম্ন উন্নতায় কোনো সিস্টেমের কণাগুলোর গড় বিশৃঙ্খলতার পরিমাণ । নিম্ন উন্নতায় কোনো সিস্টেমের কণাগুলোর গড় বিশৃঙ্খলতার পরিমাণ । কিন্দ উন্নতায় কোনো সিস্টেমের উপর তাপ প্রয়োগ করলে সিস্টেমের কণাগুলোর বিশৃঙ্খলতা যে পরিমাণে বৃদ্ধি পায়, উচ্চ উন্নতার কোনো সিস্টেমের ওপর সমপরিমাণ তাপ প্রয়োগ করলে বিশৃঙ্খলতা অনেক

চিত্র 6.11 দুটি গ্যাসের ব্যাপন

ধর গ্যাস দুটি হলো A এবং B। এদের যথাক্রমে কালো এবং সাদা বিন্দুর দ্বারা দেখানো হয়েছে এবং এদেরকে একটি অস্থাবর বা চলনশীল প্রাচীর দ্বারা পৃথক জায়গায় রাখা হয়েছে। (চিত্র 6.11(a)। এখন প্রাচীরটিকে সরিয়ে নিলে গ্যাস দুটি নিজেদের মধ্যে ব্যাপিত হতে শুরু করবে এবং কিছু সময়ের মধ্যে ব্যাপন প্রক্রিয়াটি সম্পন্ন হয়ে যাবে।

ব্যাপনের এই প্রক্রিয়াটিকে চলো এবার নিবিড়ভাবে পরীক্ষা করি। প্রাচীরটি থাকাকালীন বাঁদিকে পাত্র থেকে গ্যাসের কিছু অণুকে যদি আমরা তুলে আনি তবে সেগুলো নিশ্চিতভাবে A গ্যাসের অণু হবে এবং একইভাবে ডানদিকের পাত্র থেকে কিছু গ্যাসের অণু তুলে আনলে, সেগুলো B গ্যাসের অণু হবে। প্রাচীরটি সরিয়ে নেওয়ার পর আমরা যদি কিছু গ্যাসের অণুকে পাত্র থেকে তুলে আনি, তখন কিন্তু নিশ্চিতভাবে বলা যাবে না আমরা A গ্যাস না B গ্যাস, কোন্ গ্যাসের অণু তুলেছি। অর্থাৎ সিস্টেমটি সম্পর্কে এখন নিশ্চিতভাবে কিছু বলা যাবে না বা সিস্টেমটির বিশৃঙ্খলতা আরো বেড়ে গেছে বলে মনে হয়।

এখন আমরা আরেকটি স্বীকার্য তৈরী করতে পারবো। নিঃসঞ্চা সিস্টেমের ক্ষেত্রে গঠনকারী কনাগুলোর শস্তির বিশৃঙ্খলতার মাত্রা বৃদ্ধির প্রবণতা থাকে এবং সম্ভবতঃ কোনো বিক্রিয়া স্বতঃস্ফূর্তভাবে সংঘটিত হবার একটি শর্ত। কম পরিমাণে বৃদ্ধি পায়। এর থেকে বোঝা যায় এনট্রপির পরিবর্তন এবং উম্বতার মধ্যে ব্যস্তানুপাতিক সম্পর্ক রয়েছে। উভয়মুখী বিক্রিয়ার ক্ষেত্রে ΔSএর সাথে q এবং T-এর সম্পর্কটি হলো:

$$\Delta S = \frac{q_{rev}}{T} \tag{6.18}$$

স্বতঃস্ফূর্ত প্রক্রিয়ার সিস্টেম এবং পারিপার্শ্বিকের জন্য মোট এনথ্যালপি পরিবর্তন ($\Delta S_{
m total}$) হলো :

$$\Delta S_{total} = \Delta S_{system} + \Delta S_{surr} > 0 \tag{6.19}$$

সাম্যবস্থায় থাকাকালীন কোন সিস্টেমের এনট্রপি সর্বাধিক হয় এবং সামাবস্থায় এনট্রপির পরিবর্তন ($\Delta {
m S}$) = 0 হয়।

তাই আমরা বলতে পারি স্বতঃস্ফুর্ত প্রক্রিয়ার এনট্রপি ততক্ষণ পর্যন্ত বৃদ্ধি পায় যতক্ষণ না প্রক্রিয়াটি সর্বোচ্চ পরিমাণে সংঘটিত হবে এবং সাম্যাবস্থায় এনট্রপির পরিবর্তন শূণ্য (Zero) হয়। যেহেতু এনট্রপি একটি অবস্থাগত ধর্ম, তাই উভমুখী প্রক্রিয়ার এনট্রপির পরিবর্তন নিম্নলিখিত সমীকরণের সাহায্যে গণনা করা যায়।

$$\Delta S_{sys} = \frac{q_{sys,rev}}{T}$$

আমরা জানি সমোষ্ন অবস্থায় আদর্শ গ্যাসের একমুখী বা উভমুখী সম্প্রসারণের জন্য $\Delta U = 0$ হয়, কিন্তু উভমুখী সম্প্রসাণের ক্ষেত্রে ΔS_{total} অর্থাৎ ($\Delta S_{
m PRTR} + \Delta S_{
m MRMMAP}$)-এর মান শৃণ্য হয় না। অর্থাৎ ΔU উভয়মুখী এবং একমুখী প্রক্রিয়ার প্রভেদ করতে না পারলেও ΔS কিন্তু পারে।

সমস্যা ঃ 6.9

অনুমান করো নীচের কোনো ঘটনাগুলোতে এনট্রপি বৃদ্ধি পায়/হ্রাস পায়ঃ

i) তরল পদার্থ যখন কঠিন কেলাসে রূপান্তরিত হয়।

ii) একটি কেল্যাসাকার কঠিন পদার্থের উন্নতা বৃদ্ধি করে 0 K থেকে 115 K করা হলো।

iii)
$$2NaHCO_3(s) \rightarrow Na_2CO_3(s) + CO_2(g) + H_2O(g)$$

iv) $H_2(g) \rightarrow 2H(g)$

সমাধান :

 ঠান্ডায় জমে যাওয়ার ফলে অনুগুলো নিয়মিত সজ্জা ধারণ করে এবং তাই এনট্রপি হ্রাস পায়।

- ii) 0 K উন্নতায় গঠনকারী কণাগুলো স্থির অবস্থায় থাকে বলে এনট্রপি সর্বনিম্ন হয়। উন্নতা বৃদ্ধি করে 115 K করলে কণাগুলো গঠন জালকে সাম্য অবস্থান বজায় রেখে গতিশীল হয় এবং দুলতে থাকে, তাই সিস্টেমটির বিশৃঙ্খলতা বৃদ্ধি পায় এবং এনট্রপিও বৃদ্ধি পায়।
- iii) NaHCO₃ বিক্রিয়কটি একটি কঠিন পদার্থ হওয়ায় এনটুপি কম হয়। বিক্রিয়াজাত পদার্থগুলোর মধ্যে একটি কঠিন এবং দুটি গ্যাসীয় পদার্থ বর্তমান। তাই বিক্রিয়াজাত পদার্থগুলোর মোট এনট্রপি বেশী হবে।
- iv) এখানে একটি অণু থেকে দুটি পরমাণু উৎপন্ন হয়েছে অর্থাৎ কণাসংখ্যা বৃদ্ধি পেয়েছে এবং বিশৃঙ্খলতার পরিমাণও তাই বৃদ্ধি পেয়েছে। তাই 2 মোল হাইড্রোজেন পরমাণুর এনট্রপি 1 মোল হাইড্রোজেন অণুর চেয়ে বেশী হয়।

সমস্যা 6.10

আয়রনের জারণ বিক্রিয়ায়,

 $4Fe(s) + 3O_2(g) \rightarrow 2Fe_2O_3(s)$

298 K উস্নতায় এনট্রপির পরিবর্তন হয় –549.4 JK⁻¹mol⁻¹। এনট্রপি পরিবর্তনের মান ঋণাত্মক হওয়া সত্ত্বেও বিক্রিয়াটি স্বতঃ স্ফুর্তভাবে সংঘটিত হয় কিভাবে ?

(বিক্রিয়াটির $\Delta_r H^ heta$ -এর মান $-1648 imes 10^3 \ {
m J \ mol^{-1}}$) সমাধান ঃ

 $\Delta S_{total} \left(\Delta S_{sys} + \Delta S_{surr}\right)$ এর মান থেকে কোনো বিক্রিয়ার স্বতঃস্ফূর্ততা সম্বন্ধে সিম্বান্ত নেওয়া যায়। ΔS_{surr} -এর মান গণনা করার জন্য আমাদের ধরে নিতে হবে পারিপার্শ্বিক দ্বারা শোষিত তাপ $\Delta_{r}H^{\theta}$ সমান হবে। T উন্নতায় পারিপার্শ্বের এনট্রপি পরিবর্তন হবে,

$$\Delta S_{surr} = \frac{\Delta H^{\theta}}{T} \quad (স্থির চাবে)$$
$$= -\frac{\left(-1648 \times 10^{3} J \, mol^{-1}\right)}{298 K}$$
$$= 5530 \text{ JK}^{-1} \text{mol}^{-1}$$

অর্থাৎ এই বিক্রিয়াটির মোটএনথ্যালপি পরিবর্তন হবে,

184

 $\Delta_r S_{total} = 5530 \text{ JK}^{-1} \text{ mol}^{-1} + (-549.4 \text{ JK}^{-1} \text{ mol}^{-1})$ $= 4980.6 \text{ JK}^{-1} \text{ mol}^{-1}$

বিক্রিয়াটির মোট এনট্রপি পরিবর্তনের মান থেকে এটা স্পশ্ট যে বিক্রিয়াটি একটি স্বতঃস্ফূর্ত বিক্রিয়া।

(C) গিবস্ মুক্ত শক্তি এবং স্বতঃস্ফুর্ততা (Gibbs energy and spontaneity) :

কোনো প্রক্রিয়া একটি নির্দিষ্ট পরিক্ষাকালীন শর্তে স্বতঃস্ফূর্ত হবে কি না তা প্রক্রিয়াটির মোট এনথ্যালপি পরিবর্তন (ΔS_{total}) থেকে জানা যায়। কিন্তু বেশীরভাগ রাসায়নিক বিক্রিয়া বন্দ্ব অবস্থা বা মুক্ত অবস্থা, এই দুই অবস্থায় সংঘটিত হয়। অর্থাৎ বেশিরভাগ রাসায়নিক বিক্রিয়া সংঘটিত হওয়ার সময় এনট্রপি এবং এনথ্যালপি উভয়েরই পরিবর্তন হয়। পূর্বের আলোচনা থেকে এটা স্পস্ট যে এনথ্যালপির হ্রাস বা এনট্রপির বৃদ্ধি কোনটিই এককভাবে কোন স্বতঃস্ফূর্ত বিক্রিয়া কোন্ দিকে সংঘটিত হবে তা নির্ণয় করতে পারে না।

এটি জানার জন্য আমাদের গিবস্ মুক্ত শক্তি বা গিবস্ অপেক্ষক নামক আরেকটি তাপগতীয় অপেক্ষকের প্রয়োজন হয়। একে 'G' দ্বারা প্রকাশ করা হয়। TK উন্নতায় কোন সিস্টেমের এনট্রপি, এনথ্যালপি এবং গিবস্ মুক্ত শক্তির মধ্যে সম্পর্কটি হলো :

$$G = H - TS \tag{6.20}$$

 $\Delta G_{svs} = \Delta H_{svs} - T\Delta S_{svs} - S_{svs}\Delta T$

স্থির উন্নতায়, ΔT = 0 হয়

$$\Delta G_{sys} = \Delta H_{sys} - T\Delta S_{sys}$$

এক্ষেত্রে সমস্ত সাবস্ক্রিপ্টগুলো সিস্টেম হওয়ায় এখন আর সাবস্ক্রিপ্ট লেখা হয় না এবং সমীকরণটির সরলরপ হলো

$$\Delta G = \Delta H - T \Delta S \tag{6.21}$$

অর্থাৎ গিব্স মুক্তশক্তির পরিবর্তন = এনথ্যালপির পরিবর্তন – উন্নতা × এনট্রপি পরিবর্তন এবং এই সমীকরণটিকে গিবস্ এর সমীকরণ বলা হয়, রসায়নশাস্ত্রে সমীকরণটির গুরুত্ব অপরিসীম। পূর্ব আলোচনার নির্দেশমতো সমীকরণটিতে কোনো বিক্রিয়ার স্বতঃস্ফৃর্ততা জানার জন্য শক্তি (ΔH দ্বারা প্রকাশিত) এবং এনট্রপি (Δ S, বিশৃঙ্খলতার পরিমাপ) উভয়কেই ব্যবহার করা হয়েছে। মাত্রা বিশ্লেষণ করলে দেখা যায় ΔG -এর একক শক্তির হয় কারণ ΔH এবং TΔS উভয়ই শক্তির সাথে সম্পর্কিত এবং TΔS = (K) (J/K) = J. এখন আমরা কোনো রাসায়নিক বিক্রিয়ার স্বতঃস্ফূর্ততার সাথে ΔG -এর সম্পর্ক জানার চেফ্টা করবো। আমরা জানি.

 $\Delta S_{total} = \Delta S_{sys} + \Delta S_{surr}$

যখন সিস্টেম এবং পরিপার্শ্বের মধ্যে তাপীয় সাম্য থাকে তখন সিস্টেম এবং পারিপার্শ্বের উস্নতা সমান হয়। আবার পরিপার্শ্বের এনথ্যালপি বৃদ্ধির মান এবং সিস্টেমের এনথ্যালপির হ্রাসের মান পরস্পর সমান হয় অর্থাৎ পারিপার্শ্বের এনট্রপি পরিবর্তন,

$$\Delta S_{surr} = \frac{\Delta H_{surr}}{T} = -\frac{\Delta H_{sys}}{T}$$
$$\Delta S_{total} = \Delta S_{sys} + \left(-\frac{\Delta H_{sys}}{T}\right)$$

ওপরের সমীকরণটি পুর্নবিন্যাস করলে পাওয়া যায়

 $T\Delta S_{_{total}} = T\Delta S_{_{sys}} - \Delta H_{_{sys}}$ স্বতঃস্ফূর্ত প্রক্রিয়ার ক্ষেত্রে, $\Delta S_{_{total}} > 0$ হয়। সুতরাং

$$T\Delta S_{sys} - \Delta H_{sys} > O$$
$$\Rightarrow -\left(\Delta H_{sys} - T\Delta S_{sys}\right) > 0$$

 $-\Delta G > O$

6.21 সমীকরণটি ব্যবহার করে ওপরের সমীকরণটিকে নিম্নরূপে লেখা যায়,

$$\Delta G = \Delta H - T \Delta S < 0 \tag{6.22}$$

ΔH₅₉₅ দ্বারা কোনো বিক্রিয়ার এনথ্যালপির পরিবর্তনকে বোঝায়, TΔS₅₉₅ দ্বারা বোঝায় অলভ্য শক্তি যাকে ব্যবহারযোগ্য কার্যে পরিনত করা যায় না। সুতরাং ΔG হলো কোনো সিস্টেমের মোট শক্তি, যাকে ব্যবহারযোগ্য কার্যে রূপান্তর করা যাবে এবং এটির দ্বারা কোনো সিস্টেমের মুক্ত শক্তির (free energy) পরিমাপ করা যায়। একারণে এটি কোনো বিক্রিয়ার 'মুক্ত শক্তি' নামেও পরিচিত।

নির্দিষ্ট উন্নতা ও স্থিরচাপে কোনো প্রক্রিয়ার স্বতঃস্ফূর্ততা নির্ণয়ে ΔG নির্ণায়ক ভূমিকা পালন করে।

- i) ∆G-এর মান ধনাত্মক হলে (< 0) কোনো প্রক্রিয়া স্বতঃস্ফর্ত ভাবে সংঘটিত হয়।
- ii) ∆G-এর মান ঋণাত্মক (< 0) হলে কোনো প্রক্রিয়া স্বতঃস্ফুর্ত ভাবে সংঘটিত হতে পারে না।

বিঃদ্রঃ যদি কোনো পরিবর্তনে এনথ্যালপির পরিবর্তন ও এনট্রপির পরিবর্তন, উভয়ের মান ধনাত্মক এবং *T*∆S -এর সংখ্যমান ∆*H*-এর সাংখ্যমান অপেক্ষা অনেক বেশী হয়, তবে বিক্রিয়াটি স্বতঃস্ফুর্তভাবে সংঘটিত হয়।

দুভাবে এরকম হতে পারে, (a) যখন সিস্টেমের এনট্রপি পরিবর্তনের ধনাত্মক মানটি ছোট হয় এবং T-এর মান বেশী হয়। (b) যখন সিস্টেমের এনট্রপি পরিবর্তনের ধনাত্মক মান বড়ো হয় এবং T-এর মান কম হয়। প্রথম কারণের জন্যই রাসায়নিক বিক্রিয়া প্রায়শ উচ্চ উন্নতায় সংঘটিত করা হয়। 6.4 সারণিতে কোন রাসায়নিক বিক্রিয়ার স্বতঃস্ফূর্ততার ওপর তাপমাত্রার প্রভাব সংক্ষিপ্ত আকারে দেখানো হলো।

6.7 গিবস্ মুক্ত শক্তির পরিবর্তন এবং রাসায়নিক সাম্যাবস্থা (Gibbs energy change and equilibrium)

আমরা দেখতে পেলাম, কোন রাসায়নিক বিক্রিয়ার মুক্ত শক্তির সাংখ্যমান এবং চিহ্ন থেকে—

- i) রাসায়নিক বিক্রিয়াটির স্বতঃস্ফুর্ততা অনুমান করা যায়।
- রাসায়নিক বিক্রিয়াটি থেকে কী পরিমাণ ব্যবহারযোগ্য কার্য পাওয়া যাবে তার অনুমান করা যায়।

এখন অবধি আমরা একমুখী বিক্রিয়ার জন্য মুক্ত শক্তির পরিবর্তন সম্বন্ধে আলোচনা করেছি। চলো এই বার আমরা উভমুখী বিক্রিয়ার মুক্ত শক্তির পরিবর্তন সন্বন্ধে আলোচনা করি।

তাপগতিবিদ্যায় 'উভমুখী' শব্দটি ব্যবহার করার সময় আমাদের অবশ্যই মনে রাখতে হবে যে প্রক্রিয়াটি সংঘটিত হবার সময় সিস্টেম এবং পারিপার্শ্বের মধ্যে যেন নিখুঁত সাম্যবস্থা বজায় থাকে। রাসায়নিক বিক্রিয়ার ক্ষেত্রে 'উভমুখী' শব্দটি দ্বারা আমরা বুঝতে পারি বিক্রিয়াটি একইসাথে দুদিকেই সংঘটিত হচ্ছে এবং এতে করে একটি গতিশীল সাম্যাবস্থার উদ্ভব হয়। এর মানে হলো বিক্রিয়াটি দুদিকেই সংঘটিত হবার সময় মুক্ত শক্তি হ্রাস পায়, কিন্ডু এটা অসম্ভব। এটা তখনই সম্ভব যখন সাম্যাবস্থাস্থিত কোন রাসায়নিক বিক্রিয়ার মুক্ত শক্তি সর্বনিম্ন হবে। যদি এটা না হয়, তবে সিস্টেমটি স্বতঃস্ফূর্তভাবে কম মুক্ত শক্তির রূপ ধারণ করবে। সুতরাং,

A + B 💳 C + D সাম্যাবস্থাটিটর জন্য নির্ণয়ক

শতি হলো, $\Delta_r G = 0$

সমস্ত বিক্রিয়ক এবং বিক্রিয়াজাত পদার্থগুলো প্রমাণ অবস্থায় থাকলে কোনো বিক্রিয়ার গিবস্ মুক্ত শক্তির পরিবর্তনের (Δ_rG^θ) সাথে উক্ত বিক্রিয়ার সাম্যধ্রবকের সম্পর্কটি হলো ঃ

$$0 = \Delta_r G^{\theta} + RT \ln K$$
বা $\Delta_r G^{\theta} = -RT \ln K$
বা $\Delta_r G^{\theta} = -2.303 RT \log K$
আমরা এটাও জানি যে,

$$\Delta_{\rm r}G^{\theta} = \Delta_{\rm r}H^{\theta} - T\Delta_{\rm r}S^{\theta} = -RT\ln K$$
(6.24)

উচ্চমাত্রার তাপগ্রাহী বিক্রিয়ার জন্য $\Delta_{,H^{\theta}}$ -এর মান খুব বড়ো হয় এবং চিহ্ন ধনাত্মক হয়। এই সকল বিক্রিয়াগুলোতে K-এর মান 1 থেকে অনেক কম হয় এবং বিক্রিয়াগুলোর দ্বারা সৃষ্ট বিক্রিয়াজাত পদার্থের পরিমাণ খুবই কম হয়। তাপমোচী বিক্রিয়ার ক্ষেত্রে $\Delta_{,H^{\theta}}$ -এর মান খুব বড়ো হয়, কিন্তু চিহ্ন ঋণাত্মক হয় এবং $\Delta_{,G^{\theta}}$ -এর মানও তাই বড়ো এবং ঋণাত্মক হয়। এই সকল বিক্রিয়াগুলোর K-এর মানও তাই বড়ো এবং ঋণাত্মক হয়। এই সকল বিক্রিয়াগুলোর K-এর মান 1 থেকে অনেক বেশী হয়। আমরা ধরে নিতে পারি, অধিকমাত্রার তাপমোচী বিক্রিয়াগুলোর ক্ষেত্রে K-র মান বেশ বড়ো হয় এবং তাই বিক্রিয়াগুলো প্রায় সম্পূর্ণভাবে সম্পন্ন হয়। কোনো রাসায়নিক বিক্রিয়ার এনট্রপি পরিবর্তনের কথা বিবেচনা করলে আমরা দেখতে পাহ $\Delta_{,G^{\theta}}$ -এর মান $\Delta_{,S^{\theta}}$ -এর ওপর নির্ভরশীল। কারণ $\Delta_{,S^{\theta}}$ -এর চিহ্নের ওপর কোনো রাসায়নিক বিক্রিয়ার K-এর মান বা বিক্রিয়াটি কত পরিমাণে সংঘটিত হবে তা নির্ভর করে।

সারণি 6.4 বিক্রিয়ার স্বতঃস্ফুর্ততার ওপর তাপমাত্রার প্রভাব

$\Delta_r H^{ heta}$	$\Delta_{r}S^{\theta}$	$\Delta_r G^{ heta}$	স্বতঃস্ফূর্ততার ওপর উন্নতার প্রভাব*
-	+	_	সকল উম্বতায় বিক্রিয়া স্বতঃস্ফূর্ত হয়।
-	-	– (নিম্ন উন্নতায়)	নিম্ন উন্নতায় বিক্রিয়া স্বতঃস্ফূর্ত হয়।
-	-	+ (উচ্চ উন্নতায়)	উচ্চ উন্নতায় বিক্রিয়া স্বতঃস্ফূর্ত হয় না।
+	+	+ (নিম্ন উন্নতায়)	নিম্ন উম্বতায় বিক্রিয়া স্বতঃস্ফূর্ত হয় না।
+	+	– (উচ্চ উন্নতায়)	উচ্চ উম্বতায় বিক্রিয়া স্বতঃস্ফূর্ত হয়।
+	-	+ (যে কোন উন্নতায়)	যে কোনো উন্নতায় বিক্রিয়া স্বতঃস্ফূর্ত হয়।

* উচ্চ উস্নতা এবং নিম্ন উস্নতা শব্দুগুলো এক্ষেত্রে আপেক্ষিক। ঘরের উস্নতাও কোনো একটি বিশেষ বিক্রিয়ার ক্ষেত্রে উচ্চ উস্নতা হতে পারে।

সমীকরণ (6.24) ব্যবহার করে,

- ΔH^θ এবং ΔS^θ এর মান থেকে ΔG^θ -এর মান গণনা করা

 যায় এবং যেকোন উয়্লতায় স্বল্প খরচে অধিক পরিমাণ

 বিক্রিয়াজাত পদার্থ উৎপন্ন করার জন্য প্রয়োজনীয় -K এর

 মান গণনা করা যায়।
- ii) যদি K-এর মান পরীক্ষাগারে সরাসরি পরিমাপ করা হয়, তবে অন্য যেকোন উন্নতায় ΔG^θ-এর মান গণনা করা যায়।

সমস্যা 6.11

298K উম্লতায় অক্সিজেন থেকে ওজোন-এ রূপান্তরের জন্য প্রয়োজনীয় $\Delta_{\mu}G^{0}$ -এর মান গণনা করো।

3/2 O₂(g) → O₃(g) 298 K উব্লতায়

এই রূপান্তরের জন্য Kp-এর মান হল $2.47 imes 10^{-29}$

সমাধান ঃ

আমরা জানি,

$$\Delta_r G^{\theta} = -2.303 \text{ R}T \log K_p$$
 এবং
R = 8.314 JK⁻¹ mol⁻¹
জার্থাৎ $\Delta_r G^{\theta} = -2.303 (8.314 \text{ J K}^{-1} \text{ mol}^{-1}) \times (298 \text{ K}) (\log 2.47 \times 10^{-29})$
= 163000 J mol⁻¹
= 163 kJ mol⁻¹.

সমস্যা 6.12

298K উন্নতায় নিম্নলিখিত বিক্রিয়াটির সাম্যধ্রবকের মান গণনা করো ঃ

 $2NH_3(g) + CO_2(G) \rightleftharpoons NH_2CONH_2(aq) + H_2O(1)$ প্রদন্ত উন্নতায় বিক্রিয়াটির প্রমাণ গিবস্ মুক্ত শক্তির পরিবর্তনের $\Delta_r G^{\theta}$ মান হলো $-13.6 \text{ kJ mol}^{-1}$

সমাধান ঃ

আমরা জানি,
$$\log K = \frac{-\Delta_r G^{\theta}}{2.303 RT}$$

$$= \frac{\left(-13.6 \times 10^3 J mol^{-1}\right)}{2.303\left(8.314 JK^{-1} mol^{-1}\right)(298K)}$$

= 2.38

সমস্যা 6.12

60ºC উন্নতায় ডাইনাইট্রোজেন-টেট্রা অক্সাইডের 50 শতাংশ বিয়োজিত হয়। প্রদন্ত উন্নতায় এবং 1 অ্যাটমসফিয়ার (atm) চাপে প্রমাণ মুক্ত শক্তির পরিবর্তন কত হবে, গণনা করো।

সমাধান ঃ

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

N₂O₄-এর 50 শতাংশ বিয়োজনের জন্য বিক্রিয়ক এবং বিক্রিয়াজাত পদার্থের মোাল ভগ্নাংশগুলো হলো,

$$x_{N_2O_4} = \frac{1 - 0.5}{1 + 0.5} \colon x_{NO_2} = \frac{2 \times 0.5}{1 + 0.5}$$

$$p_{N_2O_4} = \frac{0.5}{1.5} \times 1 \text{ atm}, p_{NO_2} = \frac{1}{1.5} \times 1 \text{ atm}.$$

সাম্যধুবক (Kp) -এর মান হলো

$$K_{p} = \frac{\left(p_{NO_{2}}\right)^{2}}{p_{N_{2}O_{4}}} = \frac{1.5}{\left(1.5\right)^{2} (0.5)}$$
$$= 1.33 \text{ atm.}$$

যেহেতু,

$$\Delta_{r}G^{\theta} = -RT \ln K_{p}$$

$$\Delta_{r}G^{\theta} = (-8.314 \text{ JK}^{-1} \text{ mol}^{-1}) \times (333 \text{ K})$$

$$\times (2.303) \times (0.1239)$$

$$= -763.8 \text{ kJ mol}^{-1}$$

রসায়ন

সারসংক্ষেপ (SUMMARY)

তাপগতিবিদ্যায় ভৌত বা রাসায়নিক প্রক্রিয়া সংঘটিত হবার সময় শক্তির পরিবর্তন কীরূপ হয় তা অধ্যয়ন করা হয় এবং এই পরিবর্তন গুলি কী পরিমাণ সংঘটিত হবে তা পরিমাণগতভাবে নির্ণয় করা হয় বা পরিবর্তনগুলো আদৌ সংঘটিত হবে কিনা তার ধারণা পাওয়া যায়। তাপগতিবিদ্যায় মহাবিশ্বকে দুটি অংশে বিভক্ত করা হয়েছে, অংশগুলো হলো সিস্টেম এবং পারিপার্শ্বিক। ভৌত এবং রাসায়নিক প্রক্রিয়ায় উদ্ভুত বা শোষিত তাপের একটি অংশকে কার্যে (w) রূপান্তরিত করা যায়। তাপগতিবিদ্যার প্রথম সূত্র-এর গাণিতিক রূপ, $\Delta U = q + w$ দ্বারা এই পদ বা রাশিগুলোর মধ্যে সম্পর্ক স্থাপন করা হয়েছে। আন্তরশস্তির পরিবর্তন (ΔU) কেবলমাত্র প্রাথমিক এবং আন্তিম অবস্থার ওপর নির্ভর করে এবং এটি একটি অবস্থার অপেক্ষক, যদিও q এবং w পথের উপর নির্ভরশীল এবং অবস্থা অপেক্ষক নয়, q এবং w কে যখন সিস্টেমের ওপর প্রয়োগ করা হয় তখন এদের চিহ্ন ধনাত্মক হয়। যে কারণে সিস্টেমের উদ্বতা কী পরিমাণ বৃদ্ধি পাবে তার মান পদার্থটির তাপগ্রাহীতার (c) ওপর নির্ভর করে। অর্থাৎ গৃহীত বা বর্জিত তাপ q = C ΔT হয়। গ্যাসের সম্প্রসার লের ফলে যে w $_{\rm পর্বার্গত}$ কার্য থায় তার জন্য $w_{\rm rev} = -p \, {\rm d}V$ । এই শর্তে আমরা গ্যাস সমীকরণ, pV = n RT ব্যবহার করতে পারি।

স্থির আয়তনে w = 0 হয়। তখন $\Delta U = q_V$ (স্থির আয়তনে স্থানান্তরিত তাপ) হয়। কিন্তু রাসায়নিক বিক্রিয়া সংঘটিত হওয়ার সময় চাপ সাধারণত স্থির থাকে। এজন্য এনথ্যালপি নামে আরেকটি অবস্থার অপেক্ষককে সংজ্ঞায়িত করা হয়েছে। এনথ্যালপির পরিবর্তন, ΔH = $\Delta U + \Delta n_v RT$ স্থির চাপে তাপের পরিবর্তন $\Delta H = q_v$ থেকে সরাসরি পাওয়া সম্ভব।

এনথ্যালপি পরিবর্তনের বিভিন্ন ধরণ বর্তমান। দশা পরিবর্তন যেমন গলন, বাষ্পীভবন এবং ঊর্ধপাতন সাধারণত স্থির উস্নতায় সংঘটিত হয় এবং এসবক্ষেত্রে এনথ্যালপি পরিবর্তনের মাণ সবসময় ধনাত্মক হয়। গঠন এনথ্যালপি, দহন এনথ্যালপি এবং অন্যান্য এনথ্যালপির পরিবর্তনের মান **হেসের সূত্র প্রয়োগ করে** নির্ণয় করা যায়।

$$\Delta_{r}H = \sum_{f} \left(a_{i}\Delta_{f}H_{\widehat{\text{(d}}\widehat{\text{maximiv}}} \, \text{ми}) - \sum_{i} \left(b_{i}\Delta_{f}H_{\widehat{\text{(d}}\widehat{\text{mx}}} \, \text{мu})\right)$$

দ্বারা রাসায়নিক বিক্রিয়ার এনথ্যালপি পরিবর্তন গণনা করা যায় এবং গ্যাসীয় অবস্থায়,

 $\Delta_{\mu}H^{ heta}=\Sigma$ বিক্রিয়ক পদার্থের বন্ধন এনথ্যালপি– Σ বিক্রিয়াজাত পদার্থের বন্ধন এনথ্যালপি দ্বারা গণনা করা যায়।

তাপগতিবিদ্যার প্রথম সূত্র থকে রাসায়নিক বিক্রিয়া কোন্ দিকে সংঘটিত হচ্ছে অর্থাৎ রাসায়নিক বিক্রিয়ার চালকশস্তুি সম্পর্কে কোন ধারনা পাওয়া যায় না, নিঃসঙ্গা সিস্টেমের ক্ষেত্রে $\Delta U = 0$ হয়। নিঃসঙ্গা সিস্টেমের জন্য আমরা এনট্রপি নামক আরেকটি অবস্থার অপেক্ষককে সংজ্ঞায়িত করব। এনটুপি হলো কোন সিস্টেমের অংশগ্রহণকারী কণাগুলোর বিশৃঙ্খলতার পরিমাপ। স্বতঃস্ফূর্ত পরিবর্তনের ক্ষেত্রে এনটুপির মোট পরিবর্তনের মান ধনাত্মক হয়। নিঃসঙ্গা সিস্টেমের ক্ষেত্রে $\Delta U = 0$ এবং $\Delta S > 0$ অর্থাৎ এনটুপির পরিবর্তন থেকে কোন পরিবর্তন স্বতঃস্ফূর্তভাবে সংঘটিত হবে কিনা, তা জানা যায়, কিন্তু শক্তির পরিবর্তন থেকে তা জানা যায় না। উভমুখী প্রক্রিয়ার ক্ষেত্রে $\Delta S = \frac{q_{rev}}{T}$ সমীকরণ দ্বারা এনট্রপির পরিবর্তন পরিমাপ করা যায়। $\frac{q_{rev}}{T}$ পদটি পথ নির্ভরশীল নয়।

রাসায়নিক পরিবর্তন সাধারণত স্থির চাপে সংঘটিত হয়, তাই গিবস্ মুক্ত শক্তি (G) নামক আরেকটি অবস্থার অপেক্ষককে আমাদের সংজ্ঞায়িত করতে হবে। গিবস্ মুক্ত শক্তির (G) সাথে কোন সিস্টেমের এনট্রপি এবং এনথ্যালপি পরিবর্তনের সম্পর্কটি হলো :

 $\Delta_r G = \Delta_r H - T \Delta_r S$

স্বতঃস্ফূর্ত পরিবর্তনে , $\Delta G_{sys} < 0$ হয় এবং সাম্যবস্থায়, $\Delta G_{sys} = 0$ হয়,

প্রমাণ গিবস্ মুক্তশক্তির পরিবর্তন এবং সাম্যধ্রবকের মধ্যে সম্পর্কটি হলো,

 $\Delta_r G^{\theta} = - \mathbf{R} T \ln K.$

এই সমীকরণ থেকে K-এর মান গণনা করা যায়, যদি $\Delta_{\mu}G^{\theta}$ -এর মান জানা থাকে। $\Delta_{\mu}G^{\theta}$ -এর মান $\Delta_{\mu}G^{\theta} = \Delta_{\mu}H^{\theta} - T \Delta_{\mu}S^{\theta}$ সমীকরণ থেকে গণনা করা যায়। সমীকরণটিতে উন্নতার একটি গুরুত্বপূর্ণ ভূমিকা রয়েছে। কোন সিস্টেমের বিক্রিয়া এনট্রপির (Entropy of reaction) মান যদি ধনাত্মক হয়, তবে কম উন্নতায় স্বতঃস্ফূর্তভাবে সংঘটিত হয় না এমন বিক্রিয়াকে উচ্চ উন্নতায় স্বতঃস্ফূর্তভাবে সংঘটিত করা যাবে।

188

রসায়ন

		অ	নুশীলনী	
6.1	সঠিব	ক উত্তর বেছে নাও। তাপগতীয় অবস্থার অ	পক্ষক হ	লো এমন একটি পরিমাপ যা—
	(i)	তাপের পরিবর্তন নির্ধারণ করতে ব্যবহৃত	হয়।	
	(ii)	যার মান পথের ওপর নির্ভরশীল নয়।		
	(iii)	চাপ-আয়তনিক কার্য নির্ধারণ করতে ব্যবং	হৃত হয়	
	(iv)	যার মান কেবলমাত্র উম্বতার উপর নির্ভর	করে।	
6.2	রুম্বত	তাপীয় বা সমতাপীয় প্রক্রিয়া সংঘটিত করার	সঠিক ×	র্তটি হলো ঃ
	(i)	$\Delta T = 0$		
	(ii)	$\Delta p = 0$		
	(iii)	q = 0		
	(iv)	w = 0		
6.3	প্রমাণ	ণ অবস্থায় সমস্ত মৌলের এনথ্যালপি হলো	:	
	(i)	একক (unity)		
	(ii)	برقال (zero)		
	(iii)	< 0		
	(iv)	প্রতিটি মৌলের জন্য পৃথক।		
6.4	মিথে	থনের দহন বিক্রিয়ার $\Delta U^{ heta}$ -এর মান $-{ m X}~{ m kJ}$	mol ⁻¹ .	ΔH ^θ -এর মান হলো :
	(i)	$=\Delta U^{\theta}$		
	(ii)	$> \Delta U^{\theta}$		
	(iii)	$\leq \Delta U^{\theta}$		
	(iv)	= 0		
6.5	298 kJ m	: K উন্নতায় মিথেন, গ্রাফাইট ও হাইড্রোজেন গ nol ⁻¹ এবং –285.8 kJ mol ⁻¹ । মিথেনের গঠ	চ্যাসের দ চন এনথ	হন এনথ্যালপি হলো যথাক্রমে <i>—</i> 890.3 kJ mol ⁻¹ —393.5 ্যালপি হবে—
	(i)	-74.8 kJ mol ⁻¹ (ii))	–52.27 kJ mol ⁻¹
	(iii)	+74.8 kJ mol ⁻¹ (iv	r)	+52.26 kJ mol ⁻¹ .

- 6.6 A + B → C + D + q বিক্রিয়াটির এনট্রপি পরিবর্তনের মান ধনাত্মক। বিক্রিয়াটি সংঘটিত হবে—
 - (i) কেবলমাত্র উচ্চ উন্নতায়।
 - (ii) কেবলমাত্র নিম্ন উন্নতায়।
 - (iii) কোনো উন্নতাতেই সংঘটিত হবে না।
 - (v) যে কোনো উম্লতায় সংঘটিত হবে।
 - 6.7 একটি প্রক্রিয়ায় সিস্টেম দ্বারা 701 J পরিমাণ তাপ শোষিত হয় এবং সিস্টেম দ্বারা 394 J পরিমাণ কার্য সম্পাদিত হয়। প্রক্রিয়াটির আন্তরশস্তির পরিবর্তন কীরূপ হবে?
 - 6.8 বস্ব ক্যালরিমিটারে সায়ানামাইড, NH₂CN (s), এর সাথে অক্সিজেন গ্যাসের বিক্রিয়া সংঘটিত করা হলো এবং 298 K উন্নতায় দেখা গেল Δ*U* এর মান হয় –742.7 kJ mol⁻¹। 298 K উন্নতায় বিক্রিয়াটির এনথ্যালপি পরিবর্তনের মান গণনা কর।

$$NH_2CN(g) + \frac{3}{2}O_2(g) \rightarrow N_2(g) + CO_2(g) + H_2O(l)$$

- 6.9 60.0 গ্রাম অ্যালুমিনিয়ামের উন্নতা বৃষ্ধি করে 35°C থেকে 55°C -এ আনতে কি পরিমাণ তাপের প্রয়োজন হবে তা কিলোজুল (kJ) এককে গণনা কর।অ্যালুমিনিয়ামের মোলার তাপগ্রাহীতার মান হলো 24 J mol⁻¹ K⁻¹।
- 6.10 10.0°C উন্নতায় 1 মোল জলকে ঠান্ডা করে –10.0°C উন্নতায় বরফে পরিনত করতে কী পরিমাণ এনথ্যালপি পরিবর্তন হবে তা গণনা করো।

 0° C উন্নতায় $\Delta_{fus}H = 6.03 \text{ kJ mol}^{-1}$

 $C_p [H_2O(1)] = 75.3 \text{ J mol}^{-1} \text{ K}^{-1}$

 C_{p} [H₂O(s)] = 36.8 J mol⁻¹ K⁻¹

- 6.11
 কার্বনকে পুড়িয়ে CO2 উৎপন্ন করার বিক্রিয়াটির দহন এনথ্যালপির মান –393.5 kJ mol⁻¹। কার্বন এবং ডাই অক্সিজেন

 বিক্রিয়ায় 35.2 গ্রাম CO2 তৈরী করতে কী পরিমাণ তাপ নির্গত হবে তা গণনা করো।
- 6.12 CO(g), CO₂(g), N₂O(g) এবং N₂O₄(g) এর গঠন এনথ্যালপির মান যথাক্রমে –110, 393, 81 এবং 9.7 kJ mol⁻¹ । নিম্নলিখিত বিক্রিয়াটির Δ_.H -এর নির্নয় করো :

 $N_2O_4(g) + 3CO(g) \rightarrow N_2O(g) + 3CO_2(g)$

6.13 দেওয়া আছে,

 $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$; $\Delta_r H^{\theta} = -92.4 \text{ kJ mol}^{-1}$

NH, গ্যাসের প্রমাণ গঠন এনথ্যালপির মান কত?

189

রসায়ন

6.14 নিম্নলিখিত তথ্যাবলী থেকে CH₂OH(l) -এর প্রমাণ গঠন এনথ্যালপির মান নির্ণয় করো:

$$CH_3OH(l) + \frac{3}{2} O_2(g) \rightarrow CO_2(g) + 2H_2O(l); \Delta_r H^{\theta} = -726 \text{ kJ mol}^{-1}$$

 $C($ গ্রাফাইট) + $O_2(g) \rightarrow CO_2(g); \Delta_c H^{\theta} = -393 \text{ kJ mol}^{-1}$

$$\mathrm{H}_{2}(\mathrm{g}) + \frac{1}{2} \mathrm{O}_{2}(\mathrm{g}) \rightarrow \mathrm{H}_{2}\mathrm{O}(\mathrm{l}) ; \Delta_{f}H^{\theta} = -286 \mathrm{\,kJ \,mol^{-1}}.$$

6.15 নিম্নলিখিতপ্রক্রিয়াটির এনথ্যালপির পরিবর্তন গণনা করো :

 $CCl_4(g) \rightarrow C(g) + 4 Cl(g)$

এবং $\mathrm{CCl}_{\mathtt{A}}$ গ্যাসের $\mathrm{C}-\mathrm{Cl}$ বন্ধন এনথ্যালপির মান গণনা করো

 $\Delta_{vap} H^{\theta}(\text{CCl}_4) = 30.5 \text{ kJ mol}^{-1}.$

 $\Delta_{H^{\theta}}(CCl_{4}) = -135.5 \text{ kJ mol}^{-1}.$

 $\Delta_{a}H^{\theta}(C) = 715.0 \text{ kJ mol}^{-1}$, যেখানে $\Delta_{a}H^{\theta}$ অ্যাটমাইজেশন এনথ্যালপি

 $\Delta_{a}H^{\theta}(Cl_{2}) = 242 \text{ kJ mol}^{-1}$

- 6.16 নিঃসঞ্চা সিস্টেমের $\Delta U = 0$ হয়, ΔS -এর মান কত হবে ?
- 6.17 298 K উন্নতায়, $2A + B \rightarrow C$ বিক্রিয়াটির জন্য $\Delta H = 400 \text{ kJ mol}^{-1}$ এবং $\Delta S = 0.2 \text{ kJ K}^{-1} \text{ mol}^{-1}$ হয়।

কত উন্নতায় বিক্রিয়াটি স্বতঃস্ফূর্তভাবে সংঘটিত হবে ? ধরে নাও উন্নতার এই পরিধির মধ্যে ΔH এবং ΔS -এর মান স্থির থাকবে।

- 6.18 $2 \operatorname{Cl}(g) \rightarrow \operatorname{Cl}_2(g)$ বিক্রিয়াটির ΔH এবং ΔS -এর চিহ্ন কীরূপ হবে ?
- 6.19 2 A(g) + B(g) → 2D(g) বিক্রিয়াটির ΔU^θ = −10.5 kJ এবং ΔS^θ = −44.1 JK⁻¹ বিক্রিয়াটির ΔG^θ-এর মান গণনা করো এবং অনুমান করে বিক্রিয়াটি স্বতঃস্ফুর্তভাবে সংঘটিত হবে কিনা।
- 6.20 একটি বিক্রিয়ার সাম্যধ্রুবকের মান $10 \mid \Delta G^{\theta}$ -এর মান কত হবে ? দেওয়া আছে R = 8.314 JK⁻¹ mol⁻¹, T = 300 K |
- 6.21 NO(g)-এর তাপগতীয় স্থায়িত্ব (Thermody namic stability) সম্পর্কে মন্তব্য করো। দেওয়া আছে,

$$\frac{1}{2} \operatorname{N}_{2}(g) + \frac{1}{2} \operatorname{O}_{2}(g) \to \operatorname{NO}(g) \quad ; \quad \Delta_{r} H^{\theta} = 90 \text{ kJ mol}^{-1}$$
$$\operatorname{NO}(g) + \frac{1}{2} \operatorname{O}_{2}(g) \to \operatorname{NO}_{2}(g) \quad : \quad \Delta_{r} H^{\theta} = -74 \text{ kJ mol}^{-1}$$

190

6.22 প্রমাণ অবস্থায় 1 মোল H₂O(l) উৎপন্ন করতে পারিপার্শ্বিক বা পরিবেশের এনট্রপির কী পরিমাণ পরিবর্তন হবে তা গণনা করো। দেওয়া আছে, Δ_fH^θ= –286 kJ mol⁻¹।

সপ্তম অধ্যায় (UNIT 7)

সাম্যাবস্থ্যা (EQUILIBRIUM)

উদ্দেশ্য :

এই অধ্যায়টি অধ্যয়নের পর তোমরা সক্ষম হবে—

- ভৌত এবং রাসায়নিক প্রক্রিয়াগুলোতে সাম্যাবস্থার গতিশীল প্রকৃতিকে সনাক্ত করতে।
- সাম্যাবস্থার সূত্র বিবৃত করতে।
- ভৌত এবং রাসায়নিক প্রক্রিয়াগুলোতে সাম্যাবস্থার বৈশিষ্ট্যগুলোকে ব্যাখ্যা করতে।
- সাম্যধ্রবকের রাশিমালা লিখতে।
- Kৢএবং Kৢএর মধ্যে সম্পর্ক স্থাপিত করতে।
- বিভিন্ন রাসায়নিক বিক্রিয়ার সাম্যাবস্থাকে প্রভাবতি করে এমন শর্তপুলো ব্যাখ্যা করতে।
- আরহেনিয়াস, ব্রনস্টেড-লাউরি এবং লুইস তত্ত্বের আধারে পদার্থগুলোকে অ্যাসিড বা ক্ষারক রৃপে প্রকারভেদ করতে।
- অ্যাসিড ও ক্ষারকগুলোকে তাদের আয়নায়ন ধ্রুবকের অনুসারে তীব্র বা মৃদুর্পে শ্রেণিভুক্ত করতে।
- তড়িৎ বিশ্লেষ্য এবং সম আয়নের গাঢ়ত্বের উপর আয়নায়ন মাত্রার নির্ভরশীলতাকে ব্যাখ্যা করতে।
- হাইড্রোজেন আয়নের গাঢ়ত্বকে প্রকাশ করার জন্য pH স্কেলের ব্যাখ্যা করতে।
- জলের আয়নায়ন এবং অ্যাসিড ও ক্ষাররূপে এর দ্বৈত ভূমিকা ব্যাখ্যা করতে।
- জলের আয়নীয় গুণফল (K_w) এবং pK_w কে ব্যাখ্যা করতে।
- বাফার দ্রবণের ব্যবহার/উপযোগিতা বুঝতে।
- দ্রাব্যতা গুণফল ধ্রুবক গণনা করতে।

অনেক জৈবিক এবং পরিবেশগত প্রক্রিয়াতে রাসায়নিক সাম্য গুরুত্বপূর্ণ ভূমিকা পালন করে। উদাহরণস্বরূপ আমাদের ফুসফুস থেকে মাংসপেশী পর্যস্ত O₂ এর পরিবহণ এবং বন্টনের ক্ষেত্রে O₂ অণু ও হিমোগ্লোবিন নামক প্রোটিনের মধ্যে সাম্যবস্থাটি একটি গুরুত্বপূর্ণ ভূমিকা পালন করে। অনুরূপে CO অণু এবং হিমোগ্লোবিনের মধ্যে সাম্যাবস্থাটি CO এর বিষাক্ত হওয়ার কারণ ব্যাখ্যা করে।

যখন কোনো বন্দ্রপাত্রে একটি তরল বাঙ্গীভূত হয়, অপেক্ষাকৃত উচ্চ গতিশক্তি সম্পন্ন অণুগুলো তরলের পৃষ্ঠতল থেকে মুক্ত হয়ে বাষ্পদর্শায় চলে যায় এবং তরলের অসংখ্য অণু বাষ্পদর্শা থেকে তরলের পৃষ্ঠতলে আঘাত করে পুনরায় তরল দশা প্রাপ্ত হয়। এই প্রকার তরল ও বাষ্পের মধ্যে এক সাম্যাবস্থা স্থাপিত হয় যেখানে তরল থেকে বাষ্প দশায় পরিবর্তিত অণুর সংখ্যা বাষ্প দশা থেকে তরল অবস্থায় ফিরে আসা অণু সংখ্যার সমান হয় এবং এর ফলে তরলের পৃষ্টতলের উপর একটি স্থির বাষ্প চাপ সৃষ্টি হয়। আমরা তখন বলি যে সিস্টেমটি (ব্যবস্থাটি) সাম্যাবস্থা লাভ করেছে। যদিও এই সাম্যটি স্থির সাম্য নয় এবং তরল ও বাষ্পের স্পর্শতল বরাবর অঞ্চলে অনেক সক্রিয়তা লক্ষ্য করা যায়। এই প্রকারে সাম্যাবস্থায় বাষ্পায়নের হার, ঘনীভবনের হারের সমান হয়। একে এভাবে দেখানো যেতে পারে

 $H_2O(l) \rightleftharpoons H_2O(\overline{A})$

এখানে দুটি অর্ধ তীর নির্দেশ করছে যে প্রক্রিয়াগুলো উভয়দিকে একই সাথে ঘটে। সাম্যাবস্থায় বিক্রিয়ক এবং বিক্রিয়াজাত পদার্থের মিশ্রণকে সাম্য মিশ্রণ বলে। ভৌত প্রক্রিয়া এবং রাসায়নিক বিক্রিয়া উভয় ক্ষেত্রেই সাম্য প্রতিষ্ঠিত হতে পারে। পরীক্ষার শর্ত এবং বিক্রিয়কের প্রকৃতির উপর নির্ভর করে কোনোও বিক্রিয়া দ্রুত বা মন্থর গতির হতে পারে। যখন কোনোও বন্ধ পাত্রে একটি নির্দিন্ট উন্নতায় বিক্রিয়কগুলো বিক্রিয়া করে বিক্রিয়াজাত পদার্থ উৎপন্ন করে তখন বিক্রিয়কগুলোর গাঢ়ত্ব হ্রাস পেতে থাকে, যেখানে বিক্রিয়াজাত পদার্থের গাঢ়ত্ব কিছু সময় ধরে বৃদ্ধি পেতে থাকে। এরপর বিক্রিয়ক বা বিক্রিয়াজাত পদার্থের গাঢ়ত্বের কোনোও পরিবর্তন ঘটে না। এই অবস্থায় সিস্টেমটি (ব্যবস্থাটি) গতিশীল সাম্যাবস্থা অর্জন করে এবং সন্মুখমুখী বিক্রিয়ার হার এবং পশ্চাদ্মুখী বিক্রিয়ার হার সমান হয়ে যায়। এই গতিশীল সাম্যাবসত্মথার জন্যই বিক্রিয়া মিশ্রণে বিভিন্ন উপাদানের (species) গাঢ়ত্বের কোনোও পরিবর্তন ঘটে না। রাসায়নিক সাম্যাবস্থা প্রতিষ্ঠিত হওয়া পর্যন্ত বিক্রিয়া কতটুকু সম্পন্ন হলো এর উপর নির্ভর করে রাসায়নিক বিক্রিয়াগুলোকে নিম্নলিখিত তিনটি শ্রেণিতে ভাগ করা হয়েছে।

- (i) যে বিক্রিয়াগুলো প্রায় সম্পূর্ণ হয়ে যায় এবং বিক্রিয়কের গাঢ়ত্ব খুবই নগন্য পরিমাণে অবশিষ্ট থাকে। কিছু কিছু বিক্রিয়ায় বিক্রিয়কগুলোর গাঢ়ত্ব এতই হ্রাস পায় যে পরীক্ষা দ্বারাও অনেক ক্ষেত্রে এদের গাঢ়ত্ব নির্ণয় করা সম্ভব হয় না।
- (ii) যে বিক্রিয়াগুলোতে খুবই কম মাত্রায় বিক্রিয়াজাত পদার্থ উৎপন্ন হয় এবং সাম্যাবসথায় বেশির ভাগ বিক্রিয়কই অপরিবর্তিত রূপে থেকে যায়।
- (iii) যে বিক্রিয়াগুলোতে সাম্যাবস্থায় বিক্রিয়কের গাঢ়ত্ব এবং বিক্রিয়াজাত পদার্থের গাঢ়ত্ব তুলনাযোগ্য হয়।

সাম্যাবস্থায় কোনও বিক্রিয়া কতটুকু সম্পন্ন হয় তা পরীক্ষার শর্তগুলো যেমন বিক্রিয়কের গাঢ়ত্ব, উম্বতা ইত্যাদির সঙ্গে পরিবর্তিত হয়। শিল্পক্ষেত্রে এবং পরীক্ষাগারে পরিচালনাগত শর্তাবলীকে সর্বোত্তমভাবে ব্যবহার খুবই গুরুত্বপূর্ণ। যাতে সাম্যাবস্থাটির আকাঙ্ক্ষিত দ্রব্যের (product) উৎপাদনের সহযোগী হয়। এই এককে আমরা ভৌত তথা রাসায়নিক প্রক্রিয়াতে সাম্যাবস্থার কিছু গুরুত্বপূর্ণ দিক নিয়ে আলোচনা করা হয়েছে সাথে সাথে জলীয় দ্রবণে আয়নের যে সাম্য, যাকে আয়নীয় সাম্যাবস্থা বলা হয়, সেটিও আলোচিত হয়েছে।

7.1ভৌত প্রক্রিয়াতে সাম্যাবস্থা (EQUILIBRIUM IN
PHYSICAL PROCESSES)

কিছু ভৌত প্রক্রিয়াকে অধ্যয়ন করে সাম্যাবস্থায় কোনো সিস্টেমের বৈশিষ্ট্যগুলোকে ভালভাবে বুঝা যায়। দশা পরিবর্তন প্রক্রিয়া (phase transformation processes) হল সব থেকে পরিচিত উদাহরণ : যেমন

> কঠিন ⇒ তরল তরল ⇒ গ্যাস কঠিন ⇒ গ্যাস

 কঠিন-তরল সাম্যাবস্থা (Solid-Liquid Equilibrium)

 একটি পূর্ণ অন্তরিত (insulated) থার্মোফ্লাক্সে (যেখানে ফ্লাক্সে রাখা বস্তু ও পরিবেশের মধ্যে তাপের আদান প্রদান ঘটে না)

273K উম্নতায় এবং বায়ুমণ্ডলীয় চাপে বরফ এবং জল সাম্যাবস্থায় আছে এবং সিস্টেমটি আকর্ষনীয় চারিত্রিক বৈশিষ্ট্যকে প্রকাশ করে। আমরা পর্যবেক্ষণ করি যে, সময়ের সাথে সাথে বরফ এবং জলের ভরের কোনোও পরিবর্তন ঘটে না এবং উন্নতা স্থির থাকে। তা সত্ত্বেও সাম্যাবস্থাটি স্থির নয়। বরফ এবং জলের সীমানায় অধিক সক্রিয়তা লক্ষ্য করা যায়। তরল জলের অণুগুলো বরফের সঙ্গে সংঘর্ষ করে এবং বরফে লেগে যায় আবার বরফের কিছু অণু তরল দশায় চলে আসে। জল ও বরফের ভরের কোনোও পরিবর্তন হয় না, যেহেতু বরফ থেকে জলে অণুগুলোর স্থানান্তরের হার এবং বিপরীত প্রক্রিয়া অর্থাৎ জল থেকে অণুগুলোর বরফে স্থানান্তরের হার বায়ুমণ্ডলীয় চাপ এবং 273K উন্নতায় সমান হয়। এটি স্পষ্ট যে বরফ এবং জল কেবলমাত্র একটি নির্দিষ্ট উন্নতা এবং চাপে সাম্যাবস্থায় থাকে। যে কোনোও বিশুম্ধ পদার্থের ক্ষেত্রে বায়ুমণ্ডলীয় চাপে যে উন্নতায় কঠিন এবং তরল দশা সাম্যাবস্থায় থাকে তাকে ঐ পদার্থের স্বাভাবিক গলনাঙ্ক বা স্বাভাবিক হিমাঙ্ক বলা হয়। এখানে সিস্টেমটি গতীয় সাম্যাবস্থায় আছে এবং আমরা নীচের সিম্ধান্তগুলো নিতে পারি :

- (i) দুটি বিপরীত মুখী প্রক্রিয়া যুগপৎ ঘটে।
- (ii) দুটি প্রক্রিয়াই সমহারে ঘটে যার ফলে বরফ এবং জলের পরিমাণ স্থির থাকে।

7.1.2 তরল-বাম্প সাম্যাবস্থা (Liquid-Vapour Equilibrium)

এই সাম্যাবস্থাটিকে আরও ভালভাবে বুঝা যাবে যদি আমরা মার্কারি সহ ইউটিউব (manometer) (U-tube) লাগানো একটি স্বচ্ছ বাক্স নিয়ে দেখি, প্রথমে বাক্সটিতে কয়েক ঘন্টার জন্য শুষ্ককারী পদার্থ যেমন অনাদ্র ক্যালসিয়াম ক্লোরাইড (বা ফসফরাস পেন্টাঅক্সাইড-কেরাখা হলো। শুষ্ককারী পদার্থকে বের করে নিয়ে বাক্সটিকে একদিকে খানিকটা তুলে তাড়াতাড়ি করে জল সহ ওয়াচ গ্লাস (বা পেট্রিডস) রেখে দেওয়া হলো। এটি লক্ষ্য করা যায় যে মনোমিটার (manometer) এর দক্ষিণ বাহুর মার্কারির স্তর ধীরে ধীরে উপরে ওঠে এবং শেষ পর্যন্ত একটি নির্দিন্ট মানে পৌঁছায়। অর্থাৎ বাক্সের অভ্যন্তরের চাপ বৃদ্ধি পায় এবং একটি স্থির মানে পৌঁছায়। আবার ওয়াচ গ্লাসের জলের আয়তনও হ্রাস পায় (চিত্র 7.1) প্রথমদিকে বাক্সের ভিতর কোনও জলীয় বাষ্প ছিল না বা খুবই কম ছিল। যেহেতু জল বাষ্পীভূত

চিত্র 7.1 একটি নির্দিষ্ট উন্নতায় জলের বাষ্পচাপের সাম্যাবস্থা পরিমাপ।

হতে শুরু করে। বাক্সের অভ্যন্তরের চাপও বৃদ্ধি পেতে থাকে যেহেতু জলের অণুগুলো গ্যাসীয় দশায় স্থানান্তরিত হতে শুরু করে। বাষ্পীভবনের হার ধ্রুবক যা ইউক বাষ্পের জলে ঘনীভবনের কারণে চাপ বৃদ্ধির হার সময়ের সাথে হ্রাস পায়। শেষ পর্যন্ত একটি সাম্যাবস্থা উপনিত হয় যখন ফলতঃ আর কোনোও বাষ্পায়ন হয় না। এর থেকে বোঝা যায় গ্যাসীয় অবস্থা থেকে জলের অণুর তরল অবস্থায় স্থানান্তরও বৃদ্ধি পায় যতক্ষণ না পর্যন্ত সাম্যাবস্থা উপনিত হয়, অর্থাৎ

বাষ্পায়নের হার 🔁 ঘনীভবনের হার (বাষ্প)

 $H_2O(l) \rightleftharpoons H_2O(a)$

সাম্যাবস্থায় একটি নির্দিষ্ট উন্নতায় জলের অণুগুলো দ্বারা

প্রযুক্ত চাপ নির্দিষ্ট এবং একে জলের সাম্যবস্থা বাষ্প চাপ (বা জলের বাষ্প চাপ) বলে। জলের বাষ্প চাপ উন্নতার সঙ্গে বৃদ্ধি পায়। যদি উপরের পরীক্ষাটি মিথাইল অ্যালকোহল, অ্যাসিটোন এবং ইথার সহযোগে পুনরায় করা হয়, তবে দেখা যায় একই উন্নতায় বিভিন্ন তরলের বিভিন্ন সাম্য বাষ্প চাপ থাকে এবং যে তরলের বাষ্প চাপ বেশি হয় সেটি বেশি উদ্বায়ী হয় এবং স্ফুটনাঙ্ক কম হয়।

যদি আমরা তিনটি ওয়াচ গ্লাসে পৃথকভাবে 1 ml অ্যাসিটোন, ইথাইল অ্যাকোহল এবং জল নিয়ে খোলা অবস্থায় রাখি এবং এই পরীক্ষাটি বিভিন্ন আয়তনের তরল নিয়ে একটি অপেক্ষাকৃত উন্ন ঘরে করি তবে দেখা যাবে প্রত্যেক ক্ষেত্রে তরল শেষ পর্যন্ত বিলীন হয়ে যায় এবং সম্পূর্ণরূপে বাষ্পীভূত হতে যে সময় লাগে তা নির্ভর করে (i) তরলের প্রকৃতির উপর (ii) তরলের পরিমাণ এবং (iii) উন্নতার উপর।

যখন ওয়াচ গ্লাসকে খোলা বায়ুতে রাখা হয় তখন বাষ্পায়নের হার স্থির থাকে কিন্তু বাষ্পের অণুগুলো ঘরের সমস্ত আয়তনে ছড়িয়ে যায়, এর ফলে বাষ্প থেকে তরল অবস্থায় ঘণীভবনের হার বাষ্পীভবনের হার থেকে অনেক কম হয়। এগুলো খোলাতন্ত্র (System) এবং একটি খোলা তন্ত্রে (opensystem) সাম্যাবস্থায় পৌঁছানো সম্ভব হয় না। 100°C উন্নতা এবং বায়ুমণ্ডলীয় চাপে (1.013 bar) কোনোও বন্দ্র পাত্রে জল ও জলীয় বাষ্প সাম্যাবস্থায় থাকে। 1.013 bar চাপে জলের স্ফুটনাঙ্ক 100°C। কোনোও বিশুম্ব তরলের ক্ষেত্রে এক বায়ুমন্ডলীয় চাপে (1.013 bar) যে উন্নতায় তরল এবং তার বায়্মন্ডলীয় চাপে (1.013 bar) যে উন্নতায় তরল এবং তার বাষ্প সাম্যাবস্থায় থাকে তাকে ঐ তরলের স্বাভাবিক স্ফুটনাঙ্ক বলে। কোনোও তরলের স্ফুটনাঙ্ক বায়ুমণ্ডলীয় চাপের উপর নির্ভর করে। এটি কোন স্থানের উচ্চতার উপর নির্ভর করে। উঁচু স্থানে স্ফুটনাঙ্ক হ্রাস পায়।

7.1.3 কঠিন-বাষ্প সাম্যাবস্থা (Solid – Vapour Equilibrium)

এখন আমরা একটি তন্ত্রের (systems) কথা বিবেচনা করবো যেখানে কঠিনটি সরাসরি ঊধ্বর্পাতিত হয়ে বাষ্প দশায় চলে যায়। যদি আমরা একটি বন্ধপাত্রে কঠিন আয়োডিনকে রাখি, তবে কিছু সময় পর পাত্রটি বেগুণী রঙের বাষ্পেপূর্ণ হয়ে যায় এবং রঙের গাঢ়ত্ব (intensity of colour) সময়ের সাথে সাথে বৃদ্ধি পায়। কিছু সময় পর রঙের গাঢ়ত্ব স্থির হয়ে আসে এবং এই অবস্থায় সাম্যাবস্থা প্রতিষ্ঠিত হয়।অর্থাৎ কঠিন আয়োডিন ঊর্ধ্বপাতিত হয়ে আয়োডিন বাষ্প দেয় এবং আয়োডিন বাষ্প ঘনীভূত হয়ে কঠিন আয়োডিন দেয়। সাম্যাবস্থাটিকে নীচের মতো প্রকাাশ করা যায়—

এই ধরনের সাম্যের অন্যান্য উদাহরণ হলো—

সাম্যাবস্থ্যা

কর্পূর (কঠিন) \rightleftharpoons কর্পূর (বাষ্প) NH₄Cl (কঠিন) \rightleftharpoons NH₄Cl (বাষ্প)

7.1.4 তরলে কঠিন বা গ্যাসের দ্রবণ ঘটিত সাম্য (Equilibrium Involving Dissolution of Solid or Gases in Liquids)

তরলে কঠিনের দ্রবণ (Solids in liquids)

পূর্ব অভিজ্ঞতা থেকে আমরা জানি যে ঘরের উস্নতায় একটি নির্দিষ্ট পরিমাণ জলে আমরা সীমিত পরিমাণ লবন বা চিনি গুলতে পারি। যদি উচ্চ উস্নতায় আমরা চিনি গুলে একটি গাঢ় চিনির সিরাপ তৈরি করি তবে ঘরের উস্নতায় সিরাপটিকে শীতল করলে চিনির কেলাস পৃথক হয়ে বেরিয়ে আসে। আমরা একে সম্পৃক্ত দ্রবণ বলি যখন নির্দিষ্ট তাপমাত্রায় দ্রবণে আর কোনোও দ্রাব দ্রবীভূত হয় না। সম্পৃক্ত দ্রবণে দ্রাব্যের গাঢ়ত্ব উস্নতার উপর নির্ভর করে। সম্পৃক্ত দ্রবণে কঠিন অবস্থায় দ্রাবের অণু এবং দ্রবণের মধ্যে দ্রাবের গতিশীল সাম্যাবস্থা থাকে

চিনি (দ্রবণ) ⇒ চিনি (কঠিন), এবং

চিনির দ্রবীভূত হওয়ার হার = চিনির কেলাস গঠনের হার।

দুটি হারের সমানতা এবং সাম্যের গতীয় প্রকৃতিকে তেজস্ক্রিয় (radioactive) চিনির সাহায্যে সুনিশ্চিত করা হয়েছে। আমরা যদি কিছু পরিমাণ তেজস্ক্রিয় চিনিকে অতেজস্ক্রিয় চিনির সম্পৃক্ত দ্রবণে যোগ করি তবে কিছু সময় পর দ্রবণে এবং কঠিন চিনি উভয়েই তেজস্ক্রিয়তা লক্ষ্য করতে পারি। প্রথমে দ্রবণে কোনো তেজস্ক্রিয় চিনির অণু ছিল না কিন্তু সাম্যের গতীয় প্রকৃতির জন্য দুটি দশাতে তেজস্ক্রিয় এবং অ-তেজস্ক্রিয় চিনির অণুর মধ্যে বিনিময় ঘটে। দ্রবণে তেজস্ক্রিয় অণুর অনুপাত অতেজস্ক্রিয় অণুর চেয়ে বৃদ্ধি পায় যতক্ষণ না পর্যন্ত এর মান স্থির হয়।

তরলে গ্যাসের দ্রবণ (Gases in liquids)

যখন সোডা ওয়াটার এর বোতল খোলা হয়, তখন দ্রবীভূত কার্বন ডাই অক্সাইড গ্যাস তীব্রভাবে বাইরে বেরিয়ে আসে। বিভিন্ন চাপে জলে কার্বন ডাই অক্সাইড এর বিভিন্ন দ্রাব্যতার কারণে এই ঘটনা ঘটে। স্থির উন্নতা এবং চাপে গ্যাসীয় অবস্থার অণু এবং দ্রবণে দ্রবীভূত অণুর মধ্যে সাম্যাবস্থা প্রতিষ্ঠিত হয়। উদাহরণস্বরূপ—

 $CO_2(\eta\eta\pi) \rightleftharpoons CO_2(\pi\pi\eta)$

এই সাম্যাবস্থা হেনরীর নিয়মানুসারে নিয়ন্ত্রিত হয়। যার বিবৃতি অনুসারে কোনোও নির্দিষ্ট তাপমাত্রায় কোনোও নির্দিষ্ট ভরের দ্রাবকে দ্রবীভূত গ্যাসের ভর দ্রাবকের উপর গ্যাসের চাপের সমানুপাতীক। তাপমাত্রা বৃদ্ধির সাথে সাথে দ্রবীভূত গ্যাসের পরিমাণ হ্রাস পেতে থাকে। সোডা ওয়াটার বোতলে গ্যাসকে উচ্চচাপে যখন গ্যাসের দ্রাব্যতা বেশি হয়, তখন সীলবদ্ধ করা হয়। যখনই বোতল খোলা হয় তখনই বোতলের দ্রাবকের পৃষ্ঠতলে চাপ হঠাৎ কম হয়ে যায়, যার ফলে জলে দ্রবীভূত কার্বন ডাই অক্সাইড বের হয়ে নিম্ন বায়ুমণ্ডলীয় চাপে নতুন সাম্যাবস্থার দিকে অগ্রসর হয়। যদি সোডা ওয়াটারের বোতলকে কিছু সময় ধরে বাতাসে খোলা রাখা হয়, তবে এর থেকে প্রায় সমস্ত গ্যাস বের হয়ে যাবে। একে সাধারণীকরণ করে বলা যায়—

- (i) কঠিন ⇒ তরল সাম্যাবস্থার জন্য, বায়ুমঙলীয় চাপে (1.013 bar) কেবল মাত্র একটি তাপমাত্রা (গলনাজ্ঞ) আছে, যে তাপমাত্রায় দুটি দশাই এক সাথে অবস্থান করে। যদি পারিপার্শ্বিক থেকে তাপের বিনিময় না ঘটে, তখন দুটো দশার ভর স্থির থাকে।
- (ii) তরল → বাষ্প সাম্যাবস্থায়, একটি নির্দিষ্ট তাপমাত্রায় বাষ্পচাপ ধ্রুবক হয়।
- (iii) তরলে কঠিনের দ্রাব্যতার ক্ষেত্রে কোনোও নির্দিষ্ট তাপমাত্রায় দ্রাব্যতা ধ্রুবক হয়।
- (iv) তরলে গ্যাসের দ্রাব্যতার ক্ষেত্রে, তরলে গ্যাসের গাঢ়ত্ব তরলের উপর গ্যাসের চাপের (গাঢ়ত্ব) সমানুপাতীক। এই পর্যবেক্ষণগুলোকে সারণী 7.1 এ সংক্ষিপ্তভাবে দেওয়া হয়েছে।

সারণী 7.1 ভৌত সাম্যাবস্থার কিছু বৈশিষ্ট্য

প্রক্রিয়া	সিম্ধান্ত
তরল বাষ্প H₂O (তরল) Հ H₂O (গ্যাস)	নির্দিন্ট তাপমাত্রায় _{PH20} স্থির /ধ্রুবক হয়
কঠিন তরল H₂O(কঠিন) Հ H₂O(তরল)	স্থির চাপে গলনাঙ্ক ধ্রুবক হয়
দ্রাব (কঠিন) দ্রাব (দ্রবণ) চিনি (কঠিন) Հ চিনি (দ্রবণ)	দ্রবণে দ্রাবের গাঢ়ত্ব একটি নির্দিষ্ট তাপমাত্রায় ধ্রুবক হয়
ণ্যাস (ণ্যাস) ণ্যাস (জলীয়)	[গ্যাস (জলীয়)]/[গ্যাস (গ্যাস)] নির্দিষ্ট তাপমাত্রায় ধ্রুবক হয়।
CO₂ (গ্যাস) ╤ेCO₂ (জলীয়)	[CO ₂ (জলীয়)]/[CO ₂ (গ্যাস)] নির্দিষ্ট তাপমাত্রায় ধ্রুবক হয়।

7.1.5 ভৌত প্রক্রিয়াতে সাম্যাবস্থার সাধারণ বৈশিষ্ট্য সমূহ (General Characteristics of Equilibria Involving Physical Processes)

উপরোক্ত ভৌত প্রক্রিয়াগুলোতে কোনো তন্ত্রের (সিস্টেমের) সাম্যাবস্থাতে নিম্নলিখিত বৈশিষ্ট্যগুলো সাধারণভাবে দেখা যায়—

- (i) একটি নির্দিষ্ট উন্নতাতে কেবলমাত্র বম্ব তন্ত্রেই (সিস্টেমে) সাম্যাবস্থা সন্তব।
- সাম্যাবস্থায় দুটি বিরোধী প্রক্রিয়া একই হারে ঘটে। এটি একটি গতিশীল কিন্তু স্থায়ী অবস্থা।
- (iii) তন্ত্রের (সিস্টেম) সকল পরিমাপযোগ্য গুণ-ধর্ম (properties)
 স্থির থাকে।
- (iv) যখন কোনো ভৌত প্রক্রিয়াতে সাম্যাবস্থা স্থাপিত হয়ে যায়, তখন কোনো নির্দিষ্ট তাপমাত্রায় কোনো একটি মাপদণ্ডের (parameters) মান ধ্রুবক হয়। সারণী 7.1 তে কিছু রাশি উল্লেখ করা হয়েছে।
- (v) কোনো একটি সময়ে এই রাশিগুলোর মান সাম্যাবস্থাতে পৌঁছার পূর্বে ভৌত প্রক্রিয়া কতদ্র পর্যন্ত এগিয়ে গেছে তা প্রকাশ করে।

7.2 রাসায়নিক প্রক্রিয়াতে সাম্যবস্থা—গতীয় সাম্যাবস্থা (EQUILIBRIUM IN CHEMICAL PROCESSES – DYNAMIC EQUILIBRIUM)

ভৌত প্রক্রিয়ার মতো রাসায়নিক বিক্রিয়াগুলোও সাম্যাবস্থার স্থিতিতে পৌঁছে যায়। এই বিক্রিয়াগুলো সম্মুখমুখী ও পশ্চাদমুখী উভয়দিকেই ঘটতে পারে। যখন সম্মুখমুখী এবং পশ্চাদমুখী উভয় বিক্রিয়ার হার সমান হয় তখন বিক্রিয়ক ও বিক্রিয়াজাত পদার্থের গাঢ়ত্ব স্থির থাকে। এটি রাসায়নিক সাম্যাবস্থার অবস্থা। এই সাম্যাবস্থাটি গতীয় প্রকৃতির এবং এটি সম্মুখমুখী বিক্রিয়া যেখানে বিক্রিয়কগুলো বিক্রিয়াজাত পদার্থদেয় এবং বিপরীতমুখী (পশ্চাদমুখী) বিক্রিয়া যেখানে বিক্রিয়াজাত পদার্থ পুনরায় মূল বিক্রিয়ক পদার্থ উৎপন্ন করে। একে আরও ভালভাবে বোঝার জন্য আমরা নিম্নলিখিত উভয়মুখী বিক্রিয়াটিকে বিবেচনা করি—

$A + B \rightleftharpoons C + D$

সময়ের সাথে সাথে বিক্রিয়াজাত পদার্থ C ও D জমা হতে থাকে এবং বিক্রিয়ক পদার্থ A ও B হ্রাস পেতে থাকে (চিত্র 7.2)। এর ফলে সম্মুখমুখী বিক্রিয়ার গতিহ্রাস পায় এবং পশ্চাদমুখী বিক্রিয়ার

চিত্র 7.2 রাসায়নিক সাম্যাবস্থা অর্জন।

গতি বৃদ্ধি পায়। অবশেষে দুটি বিক্রিয়াই একই হারে ঘটে এবং তন্ত্রটি সাম্যাবস্থায় পৌঁছায়।

একইভাবে যদি আমরা শুধু C ও D দিয়ে শুরু করি তখনও বিক্রিয়াটি সাম্যাবস্থা অর্জন করে অর্থাৎ যদি প্রারম্ভিক অবস্থাতে A ও B না থাকে, যেহেতু উভয়দিক থেকেই সাম্যাবস্থায় পৌঁছান যায়।

হেবার-পম্ধতিতে অ্যামোনিয়া উৎপাদনে রাসায়নিক সাম্যাবস্থার গতীয় প্রকৃতিকে দেখানো যেতে পারে। হেবার কয়েকটি ধারাবাহিক পরীক্ষা দ্বারা উচ্চ তাপমাত্রা এবং চাপে জ্ঞাত পরিমাণ ডাই নাইট্রোজেন এবং ডাই হাইড্রোজেনের মধ্যে বিক্রিয়া ঘটিয়ে কিছু সময় পরপর উপস্থিত অ্যামোনিয়ার পরিমাণ নির্ণয় করেন। এর সাহায্যে তিনি বিক্রিয়ার পর অবিকৃত ডাই হাইড্রোজেন এবং ডাই নাইট্রোজেনের গাঢ়ত্বকে ও নির্ণয় করতে পেরেছিলেন। চিত্র 7.4 থেকে দেখা যায় নির্দিষ্ট কিছু সময় পর মিশ্রণের সংযুক্তি একই থাকে যদিও কিছু বিক্রিয়ক তখনও উপস্থিত থাকে। মিশ্রণের সংযুক্তিতে এই স্থিরতা বিক্রিয়াটি সাম্যাবস্থায় পৌঁছে গেছে তা নির্দেশ করে। বিক্রিয়াটির গতীয় প্রকৃতিকে বোঝার জন্য H, এর পরিবর্তে D2 (ডিউটেরিয়াম) ব্যবহার করে একই প্রারম্ভিক শর্তে (অংশচাপ ও উম্লতা) অ্যামোনিয়া উৎপাদন ঘটানো হয়। H, বা D, দিয়ে বিক্রিয়া ঘটালেও সাম্যাবস্থাতে একই সংযুক্তির মিশ্রন পাওয়া যায়, শুধুমাত্র H_2 এবং NH_3 এর পরিবর্তে D_2 এবং ND_3 পাওয়া যায়। সাম্যাবস্থায় পৌছানোর পর দুটি মিশ্রণকে (H₂, N₂, NH₃ এবং D₂, N₂, ND₃) মিশ্রিত করে কিছু সময়ের জন্য রেখে দেওয়া হলো।

যখন পরে এই মিশ্রণটিকে বিশ্লেষণ করা হলো তখন দেখা

গতীয় সাম্যাবস্থা—ছাত্রছাত্রীদের জন্য একটি প্রয়োগ (Dynamic Equilibrium – A Student's Activity)

ভৌত বা রাসায়নিক তন্ত্রে সাম্যাবস্থা সর্বদা গতীয় প্রকৃতির হয়। তেজস্ক্রীয় আইসোটোপের প্রয়োগ এই তথ্যটিকে প্রদর্শন করা সম্ভব। বিদ্যালয়ের প্রয়োগমালাতে একে প্রদর্শন করা সম্ভব নয়। যদিও নিম্নলিখিত প্রয়োগের মাধ্যমে এই তথ্যটিকে সহজে দেখানো যায়। 5 - 6 জন ছাত্রছাত্রী নিয়ে গঠিত দলে এই প্রয়োগটি দেখানো যেতে পারে।

100mL এর দুটি মাপন চোঙে (1 ও 2 নং রুপে চিহ্নিত) এবং 30 cm লম্বা দুটি কাঁচের নল নাও। নলগুলির ব্যাস সমান বা 3 থেকে 5 mm পর্যন্ত পার্থক্য থাকতে পারে। মাপন চোঙ 1 এর অর্ধেক পর্যন্ত রঙিন জল (জলে পটাশিয়াম পার ম্যাঙ্গানেটের একটি কেলাস যোগ করে তৈরি করা যেতে পারে) দিয়ে ভর্তি করো এবং মাপন চোঙ 2 কে খালি রাখো।

চোঙ 1 -এ একটি নল এবং চোঙ 2-এ দ্বিতীয় নল নাও। চোঙ 1-এর নলটির উপরের ছিদ্রটিকে আঞ্চাল দিয়ে বন্ধ করে নলটির নীচের অংশে পুর্ণ হওয়া রঙিন জলকে চোঙ 2 - এর নিস্নাংশ স্থানান্তরিত করো। চোঙ 2 -থেকে চোঙ 1 -এ জল স্থানান্তরিত করো। এই প্রকারে দুটি নলের সাহায্যে চোঙ 1 থেকে চোঙ 2 এ এবং চোঙ 2 থেকে চোঙ 1 -এ রঙিন জল বার বার স্থানান্তরিত করতে থাকো যতক্ষণ না পর্যন্ত উভয় চোঙে রঙিন জলের স্তর সমান হয়।

যদি এই দুটি চোঙে রঙিন জলের স্তরে আর কোনও পরিবর্তন হবে না। যদি এই দুটি চোঙে রঙিন জলের স্তর কে যথাক্রমে বিক্রিয়ক এবং বিক্রিয়াত পদার্থের গাঢ়ত্ব রূপে দেখি তাহলে আমরা বলতে পারি এই প্রক্রিয়াটি একটি গতীয় প্রকৃতিকে নির্দেশ করছে, যেটি রঙিন জলের স্তর স্থায়ী হওয়ার পরও চলতে থাকে। যদি আমরা এই পরীক্ষাটিকে দুটি বিভিন্ন ব্যাসের নল দিয়ে পুনরায় করি তাহলে আমরা দেখতে পাব সাম্যাবস্তায় এই দুই সিলিন্ডার রঙিন জলের স্তর বিভিন্ন হবে। দুটি চোঙে রঙিন জলের স্তরে মধ্যে যে পার্থক্য তার জন্য কাঁচনলের ব্যাস কতটুকু দায়ী ? (2) নং খালি চোঙটি নির্দেশ করে যে শুরুতে কোনও বিক্রিয়াজাত পদার্থ থাকে না।

চিত্র : 7.4 N₂(g) + 3H₂(g) ⇒ 2NH₃ (g) বিক্রিয়ার ক্ষেত্রে সাম্যাবস্থার চিত্রাঙ্কন।

গেলো অ্যামোনিয়া গাঢ়ত্ব ঠিক পূর্বের সমান অর্থাৎ অপরিবর্তিত থাকে। কিন্তু যখন মিশ্রণটিকে ভর স্পেক্ট্রোমিটার এর সাহায্যে বিশ্লেষণ করা হলো তখন এতে ডিউটেরিয়াম যুক্ত অ্যামোনিয়া (NH₃, NH₂D, NHD₂ এবং ND₃) এবং ডিউটেরিয়াম যুক্ত ডাই হাইড্রোজেন (H₂, HD এবং D₂) পাওয়া গেলো। সুতরাং পরিশেষে বলা যায় মিশ্রণে সম্মুখমুখী অএবং পশ্চাদ্মুখী বিক্রিয়ার ধারাবাহিকতার জন্য অণুর মধ্যে হাইড্রোজেন ও ডিউটেরিয়াম পরমাণুর মধ্যে সংঘর্ষ (Scramblign) ঘটে। যদি সাম্যাবস্থা স্থাপিত হওয়ার পর বিক্রিয়াটি থেমে যেত, সেক্ষেত্রে এইভাবে আইসোটোপের মিশ্রণ ঘটতো না।

অ্যামোনিয়া সংশ্লেষণে আইসোটোপের (ডিউটেরিয়াম) ব্যবহার থেকে এটি স্পষ্ট যে রাসায়নিক বিক্রিয়ার একটি গতিশীল সাম্যাবস্থা স্থাপিত হয় যেক্ষেত্রে সম্মুখমুখী এবং পশ্চাদ্মুখী বিক্রিয়ার হার সমান হয়ে যায় এবং সাম্যাবস্থায় সংযুক্তির কোনও পরিবর্তন ঘটে না।

সাম্যাবস্থা দুই দিক থেকেই স্থাপিত হতে পারে, হয় H₂(g) এবং N₂(g)-এর বিক্রিয়া ঘটিয়ে NH₃(g) উৎপাদন করা হোক বা NH₃(g) কে N₂(g) ও H₂(g) -এ বিয়োজিত করা হোক।

N₂(g) + 3H₂(g) ⇒ 2NH₃(g) 2NH₃(g) ⇒ N₂(g) + 3H₂(g) একইভাবে আমরা H₂(g) + I₂(g) ⇒ 2HI(g) বিক্রিয়াটি বিবেচনা করি। যদি H₂ এবং I₂ এর সমান প্রারম্ভিক গাঢ়ত্বে বিক্রিয়াটি শুরু হয় তবে বিক্রিয়াটি সম্মুখদিকে অগ্রসর হয় এবং যতক্ষণ না পর্যন্ত সাম্যাবস্থা স্থাপিত হয় ততক্ষণ পর্যন্ত H₂ ও I₂ এর গাঢ়ত্ব হ্রাস পায় এবং HI এর গাঢ়ত্ব বৃদ্বি পায়। (চিত্র : 7.5)। যদি আমরা কেবলমাত্র HI থেকে শুরু করে বিক্রিয়াটিকে বিপরীত দিকে হতে দেই তবে HI এর গাঢ়ত্ব হ্রাস পেতে থাকে এবং H₂ ও I₂ -এর গাঢ়ত্ব হ্রাস পেতে থাকে এবং H₂ ও I₂ -এর গাঢ়ত্ব হ্রাস পেতে থাকে এবং H₂ ও I₂ -এর গাঢ়ত্ব হ্রাস পেতে থাকে যতক্ষণ না পর্যন্ত সাম্যাবস্থা স্থাপিত হয় (চিত্র : 7.5)। যদি কোনও নির্দিন্ট আয়তনে H এবং I পরমাণুগুলোর মোট সংখ্যা একই হয় তখন বিশুচ্ব বিক্রিয়ক বা বিশুদ্ব বিক্রিয়াজাত পদার্থ থেকে শুরু করলেও একই সাম্যাবস্থা মিশ্রণ পাওয়া যাবে।

চিত্র 7.5 H₂(g) + I₂(g) ➡ 2HI(g) বিক্রিয়াতে রাসায়নিক সাম্যাবস্থা যে কোনোও দিকে হতে স্থাপিত হতে পারে।

7.3 রাসায়নিক সাম্যবস্থার সূত্র (নিয়ম) এবং সাম্য ধ্রুবক (LAW
OF CHEMICAL EQUILIBRIUM AND
EQUILIBRIUM CONSTANT)

সাম্যাবস্থায় বিক্রিয়ক এবং বিক্রিয়াজাত পদার্থের মিশ্রণকে সাম্যমিশ্রণ বলে। এই ভাগে আমরা সাম্য মিশ্রণের সংযুক্তির সঙ্গে সম্পর্কিত অনেক গুরুত্বপূর্ণ প্রশ্ন নিয়ে বিবেচনা করবো। সাম্যমিশ্রণে বিক্রিয়ক এবং বিক্রিয়াজাত পদার্থের গাঢ়ত্বের মধ্যে কী সম্পর্ক বিদ্যমান ? প্রারম্ভিক গাঢ়ত্ব থেকে কীভাবে আমরা সাম্য গাঢ়ত্বকে নির্ণয় করতে পারব ?

কোন্ শর্তগুলো সাম্যমিশ্রণের সংযুক্তিকে পরিবর্তন করতে পাবে? শেষের প্রশ্নটি শিল্পে উপযোগী রাসায়নিক দ্রব্য যেমন H₂, NH₃, CaO ইত্যাদির সংশ্লেষণে উপযুক্ত শর্তগুলোর নির্ধারণে সাম্যাবস্থ্যা

বিশেষভাবে গুরুত্বপূর্ণ।

এই প্রশ্নগুলোর উত্তরের জন্য একটি সাধারণ উভমুখী বিক্রিয়াকে বিবেচনা করা যাক্

$$A + B \rightleftharpoons C + D$$

এই সমিত সমীকরণে A ও B হল বিক্রিয়ক এবং C ও D হল বিক্রিয়াজাত পদার্থ। বহু উভমুখ বিক্রিয়ার পরীক্ষালব্দ ফলাফলের উপর নির্ভর করে নরওয়ের রসায়নবিদ কেটো মেক্সমিলিয়ন গুলবার্গ (Cato Maximillian Guldberg) এবং পিটার ওয়াজে (Peter Waage) 1864 সালে প্রস্তাবিত করেন যে সাম্যাবস্থায় গাঢ়ত্বের সম্পর্কটি নিম্নলিখিত সাম্যাবস্থা সমীকরণের মাধ্যমে প্রকাশ করা যায়।

এখানে K_c হল সাম্যধুবক এবং ডান পক্ষের রাশিমালাকে সাম্যধুবকের রাশিমালা বলা হয়। এই সাম্য সমীকরণটি ভরক্রিয়া সূত্র নামেও পরিচিত কারণ পূর্বে গাঢ়ত্ব কে রসায়নে 'সক্রিয়ভর' রূপে প্রকাশ করা হতো।

গুলবার্গ তথা ওয়াজে প্রতিপাদিত তথ্যগুলো ভালভাবে বুঝতে আমরা বন্দ্বপাত্রে 731K উন্নতায় গ্যাসীয় H₂ এবং গ্যাসীয় I₂ এর মধ্যে বিক্রয়াকে বিবেচনা করবো—

$$\begin{array}{rcl} H_2(g) &+& I_2(g) &\rightleftharpoons & 2HI(g) \\ 1 \ \text{mol} & 1 \ \text{mol} & & 2 \ \text{mol} \end{array}$$

বিভিন্ন প্রারম্ভিক শর্তে ছয়টি পরীক্ষার মধ্যে প্রথম চারটি পরীক্ষাতে

(1, 2, 3 এবং 4) বদ্ধ পাত্রে কেবলমাত্র গ্যাসীয় H₂ এবং I₂ শেষ দুটি পরীক্ষাতে (5 এবং 6) শুধুমাত্র HI নেওয়া হলো। প্রত্যেক পরীক্ষাতে হাইড্রোজেন এবং আয়োডিনের ভিন্ন ভিন্ন গাঢ়ত্ব নিয়ে দেখা গেলো সময়ের সঙ্গে বদ্ধ পাত্রে মিশ্রণের নীলাভ বেগুনী (Purple) বর্ণের তীব্রতা স্থির হয়ে যায় অর্থাৎ সাম্যাবস্থা প্রতিষ্ঠিত হয়। একই প্রকারে 5 নং ও 6 নং পরীক্ষাতে বিপরীত বিক্রিয়া থেকে সাম্যাবস্থা স্থাপিত হয়। সবকটি (ছয় সেট) পরীক্ষার ফলাফল 7.2 সারণীতে দেওয়া হয়েছে।

পরীক্ষা নং 1, 2, 3 এবং 4 থেকে স্পষ্ট যে বিক্রিয়াতে অংশগ্রহণকারী H₂-এর মোল সংখ্যা = বিক্রিয়াতে অংশগ্রহণকারী আয়োডিন এর মোল সংখ্যা = ½ (গঠিত HI এর মোল সংখ্যা)

আবার পরীক্ষা নং 5 ও 6 -এ দেখা যায়

$$[H_2(g)]_{eq} = [I_2(g)]_{eq}$$

উপরোক্ত তথ্যগুলো জানার পর সাম্যাবস্থায় বিক্রিয়ক এবং বিক্রিয়াজাত পদার্থের মধ্যে সম্পর্ক স্থাপনের জন্য আমরা অনেকগুলো সম্ভাবনা নিয়ে বিচার করতে পারি। নীচের সাধারণ রাশিমালাকে বিবেচনা করা যাক

$[\mathrm{HI}(\mathrm{g})]_{\mathrm{eq}} / [\mathrm{H}_{2}(\mathrm{g})]_{\mathrm{eq}} [\mathrm{I}_{2}(\mathrm{g})]_{\mathrm{eq}}$

সারণী 7.3 তে দেওয়া তথ্যগুলোর সাহায্যে যদি আমরা বিক্রিয়ক এবং বিক্রিয়াজাত পদার্থের সাম্য গাঢ়ত্ত্বকে উপরের রাশিমালাতে বসাই তবে রাশিমালার মান স্থির না হয়ে ভিন্ন ভিন্ন হয় (সারণী 7.3)।

পরীক্ষা সংখ্যা	প্রান	রম্ভিক গাঢ়ত্ব /mol	L ⁻¹	সাম্য গাঁঢ়ত্ব $/{ m mol}~{ m L}^{-1}$			
	[H2 (g)]	[I2 (g)]	[HI (g)]	[H2(g)]	[I2 (g)]	[HI (g)]	
1	2.4×10^{-2}	1.38×10^{-2}	0	1.14×10^{-2}	0.12×10^{-2}	2.52×10^{-2}	
2	2.4×10^{-2}	1.68×10^{-2}	0	0.92×10^{-2}	0.20×10^{-2}	$2.96\times10^{^{-2}}$	
3	2.44×10^{-2}	1.98×10^{-2}	0	0.77×10^{-2}	0.31×10^{-2}	3.34×10^{-2}	
4	2.46×10^{-2}	1.76×10^{-2}	0	0.92×10^{-2}	0.22×10^{-2}	3.08×10^{-2}	
5	0	0	3.04×10^{-2}	0.345×10^{-2}	0.345×10^{-2}	2.35×10^{-2}	
6	0	0	7.58×10^{-2}	0.86×10^{-2}	0.86×10^{-2}	5.86×10^{-2}	

সারণী 7.2 H,, I, এবং HI এর প্রারন্তিক এবং সাম্য গাঢ়ত্ব

199

প্রবীক্ষা সংখ্যা	[HI(g)] _{eq}	[HI(g)] ² _{eq}
12141 1140	$\left[\mathrm{H_2(g)}\right]_{\mathrm{eq}}\left[\mathrm{I_2(g)}\right]_{\mathrm{eq}}$	$\left[\mathrm{H_2(g)}\right]_{\mathrm{eq}}\left[\mathrm{I_2(g)}\right]_{\mathrm{eq}}$
1	1840	46.4
2	1610	47.6
3	1400	46.7
4	1520	46.9
5	1970	46.4
6	790	46.4

যদি আমরা নিচের রাশিমালা নেই

 $\left[\mathrm{HI}(g)\right]_{eq}^{2}/\left[\mathrm{H}_{2}(g)\right]_{eq}\left[\mathrm{I}_{2}(g)\right]_{eq}$

তখন দেখা যায় ছয়টি পরীক্ষাতেই এই রাশিমালা স্থির মান দেয় (সারণী 7.3 তে দেখানো হয়েছে)। রাশিমালাটি থেকে বোঝা যায় বিক্রিয়ক ও বিক্রিয়াজাত পদার্থের গাঢ়ত্বের ঘাতের মান রাসায়নিক বিক্রিয়া সমীকরণের রস সমীকরণ মিতীয় গুনাঞ্চোর (Stoichionetric Coefficiout) সমান। সাম্যাবস্থায় এই রাশিমালাটির মানকে সাম্যস্থিরাঙ্ক বলা হয় যাকে K_c দ্বারা প্রকাশ করা হয়।

সুতরাং, H₂(g) + I₂(g) ⇒ 2HI(g) এই সমীকরণের জন্য সাম্য ধ্রুবক বা সাম্যাবস্তা স্থিরাঙ্ক, K₂ কে নিম্নলিখিত ভাবে প্রকাশ করা যায়—

 $K_c = [\text{HI}(g)]_{eq}^2 / [\text{H}_2(g)]_{eq} [I_2(g)]_{eq} \dots (7.2)$

উপরের রাশিমালাতে গাঢ়ত্বের পাদাঙ্ক (Subcript) রূপে যে 'eq' (সাম্যবস্থার এর জন্য ব্যবহৃত) লেখা হয়েছে, সেটি সাধারণত লেখা যায় না।

এটি স্বীকার করা হয়েছে K_c এর রাশিমালায় গাঢ়ত্বের মান সাম্যাবস্থায় আছে। সেজন্য আমরা লিখি—

 $K_c = [\mathrm{HI}(\mathrm{g})]^2 / [\mathrm{H}_2(\mathrm{g})] [\mathrm{I}_2(\mathrm{g})].....(7.3)$ পদাঞ্চন 'c' নির্দেশ করে যে K_{c} এর মান গাঢ়ত্বের মাত্রা mol L^{-1} এ প্রকাশ করা হয়েছে।

একটি নির্দিস্ট তাপমাত্রায়, কোনও রাসায়নিক বিক্রিয়ার সমিত সমীকরণের বিক্রিয়াজাত পদার্থগুলোর অনুসংখ্যার ঘাতে উন্নীত গাঢ়ত্বের গুণফলকে বিক্রিয়ক পদার্থগুলোর অনুসংখ্যার খাতে উন্নীত গাঢ়ত্বের গুণফল দ্বারা ভাগ করলে একটি স্থিরমান পাওয়া যায়। একে সাম্যাবস্থা সূত্র বা রাসায়নিক সাম্যাবস্থা সূত্র বলে। একটি সাধারণ বিক্রিয়া

a A + b B ≓ c C + d D এর ক্ষেত্র

সাম্যবস্থা স্থিরাঙ্ককে প্রকাশ করা হয়

$$K_{c} = [C]^{c}[D]^{d} / [A]^{a}[B]^{b}$$
 (7.4)

যেখানে [A], [B], [C] এবং [D] হল বিক্রিয়া ও বিক্রিয়াজাত পদার্থের সাম্য গাঢ়ত্ব।

$$4NH_3(g) + 5O_2(g) \rightleftharpoons 4NO(g) + 6H_2O(g)$$

এই সমীকরণের ক্ষেত্রে সাম্যধুবককে এভাবে লেখা যায়

 $K_c = [NO]^4 [H_2O]^6 / [NH_3]^4 [O_2]^5$

বিভিন্ন পদার্থের মোলার গাঢ়ত্বকে বর্গকার বন্ধনীর দ্বারা ঘিরে দেখানো হয় এবং এগুলো সাম্য গাঢ়ত্বকে প্রকাশ করে। সাম্য ধ্রুবককে রাশিমালা লেখার ক্ষেত্রে তিনটি দশার চিহ্ন (s, l, g) কে সাধারণত লেখা হয় না।

 $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ (7.5)

বিক্রিয়ার ক্ষেত্রে সাম্যধুবক কে নিম্নরূপে লেখা যায়

 $K_c = [\text{HI}]^2 / [\text{H}_2] [\text{I}_2] = \text{x}$ (7.6)

বিপরীত মুখী বিক্রিয়ার ক্ষেত্রে, একই তাপমাত্রায় সাম্যধ্রবককে লেখা যায়- 2HI(g) = H₂(g) + I₂(g),

$$K'_c = [H_2] [I_2] / [HI]^2 = 1 / x = 1 / K_c ... (7.7)$$

সূতরাং, $K'_c = 1 / K_c$ (7.8)

অর্থাৎ বিপরীত মুখী বিক্রিয়ার সাম্যধ্রবক সম্মুখমুখী বিক্রিয়ার সাম্যধ্রবাঙ্খকের অনোন্যক হয়।

যদি আমরা কোনোও রাসায়নিক সমীকরণের রসসমীকরণমিতিক গুনাঙ্ক (stoichiometric coefficients) কে কোনো একটি গুণক দ্বারা গুণ করে পরিবর্তিত করতে চাই তবে আমাদের লক্ষ্য রাখতে হবে যাতে সাম্যধ্রুবকের রাশিমালাটিও যাতে এই পরিবর্তনকে প্রকাশ করে। উদাহরণ স্বরূপ যদি সমীকরণ (7.5) এভাবে লেখা হয়—

¹/₂ H₂(g) + ¹/₂ I₂(g) ➡ HI(g) (7.9)
তবে উপরের বিক্রিয়াটির ক্ষেত্রে সাম্য ধ্রুবক লেখা যায়
$$K_c'' = [\text{HI}] / [\text{H}_2]^{1/2} [\text{I}_2]^{1/2} = \{[\text{HI}]^2 / [\text{H}_2][\text{I}_2]\}^{1/2}$$

 $= x^{1/2} = K_2^{1/2}$ (7.10)

সমীকরণ (7.5) কে n দ্বারা গুণ করে পাই

$$nH_2(g) + nI_2(g) D \rightleftharpoons 2nHI(g)$$
(7.11)

এই বিক্রিয়ার সাম্যধ্রুবক, K_c^n এর সমান হবে। এই পর্যবেক্ষণগুলোকে সারণী 7.4 এর সংক্ষিপ্তরুপে দেওয়া হলো। এখানে উল্লেখ করতে হবে সাম্যধ্রুবক K_c এবং K'_c এর বিভিন্ন সংখ্যাগত মানের জন্য সাম্যধ্রুবক এর মান প্রকাশ করার ক্ষেত্রে সমিত রাসায়নিক সমীকরণের ধরণকে উল্লেখ করা প্রয়োজনীয়।

সারণী 7.4 সাধারণ বিক্রিয়া এবং তাদের গুণিতকের ক্ষেত্রে সাম্যধুবকগুলোর মধ্যে সম্পর্ক।

রাসায়নিক সমীকরণ	সাম্যধ্রুবক
$a A + b B \rightleftharpoons c C + dD$	K _c
$c C + d D \rightleftharpoons a A + b B$	$K_{c}' = (1/K_{c})$
$na A + nb B \rightleftharpoons ncC + ndD$	$K_c'' = (K_c^n)$

সমস্যা 7.1

500K উম্নতায়, N₂ ও H₂ থেকে NH₃ গঠনের ক্ষেত্রে সাম্যাবস্থায় নিম্নলিখিত গাঢ়ত্বগুলো পাওয়া গেলো [N₂] = 1.5 × 10⁻²M. [H₂] = 3.0 ×10⁻² M এবং [NH₃] = 1.2 ×10⁻²M। সাম্যধুবক গণনা করো।

সমাধান ঃ

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ বিক্রিয়াটির ক্ষেত্রে সাম্যধ্রুবককে লেখা যায়,

$$K_{c} = \frac{\left[NH_{3}(g)\right]^{2}}{\left[N_{2}(g)\right]\left[H_{2}(g)\right]^{3}}$$
$$= \frac{\left(1.2 \times 10^{-2}\right)^{2}}{\left(1.5 \times 10^{-2}\right)\left(3.0 \times 10^{-2}\right)^{3}}$$
$$= 0.106 \times 10^{4} = 1.06 \times 10^{3}$$

সমস্যা 7.2

800K উন্নতায় কোনও বন্দ্ধপাত্রে, সাম্যাবস্থায় গাঢ়ত্বগুলো হলো N $_2{=}3.0~\times~10^{-3}M,~O_2~=~4.2~\times~10^{-3}M~$ এবং NO = 2.8×10^{-3}

 $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$ -এই বিক্রিয়ার ক্ষেত্রে K_c নির্ণয় করো।

সমাধান ঃ

বিক্রিয়াটির ক্ষেত্রে সাম্যধ্রবক K_c কে লেখা যেতে পারে।

$$K_{c} = \frac{[NO]^{2}}{[N_{2}][O_{2}]}$$

= $\frac{(2.8 \times 10^{-3} M)^{2}}{(3.0 \times 10^{-3} M)(4.2 \times 10^{-3} M)}$
= 0.622

7.4 সমসত্ত্বসাম্যাবস্থা (HOMOGENEOUS EQUILIBRIA)

একটি সমসত্ত্ব তন্ত্রে (System) সব বিক্রিয়ক এবং বিক্রিয়াজাত পদার্থ একই দশায় থাকে। উদাহরণ স্বরূপ একটি গ্যাসীয় বিক্রিয়ায় N₂(g) + 3H₂(g) = 2NH₃(g) বিক্রিয়ক এবং বিক্রিয়াজাত পদার্থগুলো সমসত্ত্ব দশায় আছে।

$$CH_{3}COOC_{2}H_{5}(aq) + H_{2}O(l) \rightleftharpoons CH_{3}COOH(aq) + C_{2}H_{5}OH(aq)$$

এবং, $Fe^{3+}(aq) + SCN^{-}(aq) \rightleftharpoons Fe(SCN)^{2+}(aq)$

অনুরূপে উপরের বিক্রিয়াগুলোতে সব বিক্রিয়ক এবং বিক্রিয়াজাত পদার্থগুলো সমসত্ত্ব ভাবে দ্রবনীয় দশায় আছে। এখন আমরা কিছু সমসত্ত্ব বিক্রিয়ার সাম্যধ্রুবকের রাশিমালা দেখব।

7.4.1 গ্যাসীয় তন্ত্রে সাম্যধ্রবক (Equilibrium Constant in Gaseous Systems)

এই পর্যন্ত কোনো বিক্রিয়ার সাম্যধ্রুবকের রাশিমালায় বিক্রিয়ক ও বিক্রিয়াজাত পদার্থের সাম্যধ্রুবককে মোলার গাঢ়ত্বের ভিত্তিতে প্রকাশ করা হত এবং তারজন্য K_c চিহ্ন ব্যবহার করা হত। তবে গ্যাসীয় বিক্রিয়ার জন্য সাম্যধ্রুবককে আংশিক চাপ দ্বারা প্রকাশ করা অধিক শ্রেয়।

আদর্শ গ্যাস সমীকরণটি নিম্নরুপে লেখা হয়

pV = nRT

$$\Rightarrow p = \frac{n}{V}RT$$

এখানে *p* হল পাস্কেল (Pa) এককে চাপ, *n* হল গ্যাসের মোল সংখ্যা, *V* হল ঘনমিটার (*m*³) এককে *u* আয়তন এবং *T* হল কেলভিন স্কেলে তাপমাত্রা। সুতরাং *n/V* হল মোল/ঘনমিটার *(m³)* এককে গাঢ়ত্ব। যদি গাঢ়ত্ব 'c' কে মোল/মিটার অথবা মোল/ঘনডেসিমিটার *(dm³)* এবং *P* কে বার এককে প্রকাশ করা হয় তাহলে

$$p = cRT$$

আমরা এটাও লিখতে পারি p = [গ্যাস] RT.

এখানে, R=0.0831 বার লিটার/মোল কেলভিন

ম্থির তাপমাত্রায় গ্যাসের চাপ ইহার গাঢ়ত্বের সহিত সমানুপাতীক, অর্থাৎ $p \propto [গ্যাস]$

সাম্যাবস্থায় একটি ব্রিক্রিয়ার, $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ আমরা লিখতে পারি,

$$K_{c} = \frac{\left[HI(g)\right]^{2}}{\left[H_{2}(g)\right]\left[I_{2}(g)\right]}$$
নতুবা $K_{p} = \frac{\left(P_{HI}\right)^{2}}{\left(P_{H_{2}}\right)\left(P_{I_{2}}\right)}$
(7.12)

আবার যেহেতু $p_{HI} = [HI(g)]RT$ $p_{I_2} = [I_2(g)]RT$ $p_{H_2} = [H_2(g)]RT$

সুতরাং,

$$K_{p} = \frac{(p_{HI})^{2}}{(p_{H_{2}})(p_{I_{2}})} = \frac{\left[\operatorname{HI}(g)\right]^{2} \left[\operatorname{RT}\right]^{2}}{\left[\operatorname{H}_{2}(g)\right] \operatorname{RT} \cdot \left[\operatorname{I}_{2}(g)\right] \operatorname{RT}}$$
$$= \frac{\left[\operatorname{HI}(g)\right]^{2}}{\left[\operatorname{H}_{2}(g)\right] \left[\operatorname{I}_{2}(g)\right]} = K_{c}$$
(7.13)

এই উদাহরণ, $K_p = K_c$ অর্থাৎ উভয় সাম্যধ্রবকই সমান। তবে ইহা সর্বদা সত্য নয়। উদাহরণ স্বরূপ $N_2(g) + 3H_2(g) \rightleftharpoons$ 2NH₃(g) এই বিক্রিয়ায়

$$K_{p} = \frac{(p_{NH_{3}})^{2}}{(p_{N_{2}})(p_{H_{2}})^{3}}$$
$$= \frac{[NH_{3}(g)]^{2}[RT]^{2}}{[N_{2}(g)]RT.[H_{2}(g)]^{3}(RT)^{3}}$$

$$=\frac{\left[\mathrm{NH}_{3}(\mathrm{g})\right]^{2}\left[\mathrm{R}T\right]^{-2}}{\left[\mathrm{N}_{2}(\mathrm{g})\right]\left[H_{2}(\mathrm{g})\right]^{3}}=K_{c}\left(\mathrm{R}T\right)^{-2}$$

অথবা,
$$K_p = K_c \left(\mathbf{R}T \right)^{-2}$$
 (7.14)

অনুরূপে, একটি সাধারণ বিক্রিয়ার জন্য

$$aA + bB \rightleftharpoons cC + dD$$

$$K_{p} = \frac{\left(p_{c}^{c}\right)\left(p_{D}^{d}\right)}{\left(p_{A}^{a}\right)\left(p_{B}^{b}\right)} = \frac{\left[C\right]^{c}\left[D\right]^{d}\left(RT\right)^{(c+d)}}{\left[A\right]^{a}\left[B\right]^{b}\left(RT\right)^{(a+b)}}$$

$$= \frac{\left[C\right]^{c}\left[D\right]^{d}}{\left[A\right]^{a}\left[B\right]^{b}}\left(RT\right)^{(c+d)-(a+b)}$$

$$= \frac{\left[C\right]^{c}\left[D\right]^{d}}{\left[A\right]^{a}\left[B\right]^{b}}\left(RT\right)^{\Delta n} = K_{c}\left(RT\right)^{\Delta n} \quad (7.15)$$

যেখানে একটি সমিত সমীকরণে △n=(গ্যাসীয় বিক্রিয়াজাত পদার্থের মোল সংখ্যা) – (গ্যাসীয় বিক্রিয়ক পদার্থের মোল সংখ্যা)।

ইহা আবশ্যিক যে, K_p এর মান গণনা করার সময়, চাপকে বার এককে প্রকাশ করা উচিত কারণ চাপের প্রমান অবস্থা হল 1 বার। আমরা প্রথমে অধ্যায় (ইউনিট 1) থেকে জানতে পারি যে, 1 পাস্কেল, Pa = নিউটন মিটার ⁻² এবং 1 বার = 10⁵ Pa

সারণী 7.5 এ বিভিন্ন তাপমাত্রায় কিছু নির্দিষ্ট বিক্রিয়ার ${
m K}_{
m p}$ এর মান দেওয়া হল।

সারণী 7.5 কিছু নির্দিষ্ট বিক্রিয়ার সাম্যধ্রুবক K_p এর মান

বিক্রিয়া	উন্নতা /K	Kp
$N_2(g) + 3H_2(g) \Rightarrow 2NH_3$	298	6.8×10^{5}
	400	41
	500	3.6×10^{-2}
$2SO_2(g) + O_2(g) \Rightarrow 2SO_3(g)$	298	4.0×10^{24}
	500	2.5×10^{10}
	700	3.0×10^4
$N_2O_4(g) \rightleftharpoons 2NO_2(g)$	298	0.98
	400	47.9
	500	1700

সমস্যা 7.3

500K উন্নতায় PCl₅, PCl₃ এবং Cl₂ সাম্যাবস্থায় আছে যেখানে PCl₃, Cl₂ এবং PCl₅ এর গাঢ়ত্ব হল যথাক্রমে 1.59M, 1.59M এবং 1.41 M ।
$PCl_{s} \rightleftharpoons PCl_{s} + Cl_{s}$ এই বিক্রিয়ার K_{c} গণনা কর।

সমাধান ঃ

উপরের বিক্রিয়ার সাম্যধ্রুবক
$$K_c$$
 কে লেখা যেতে পা $K_c = \frac{\left[PCl_3\right]\left[Cl_2\right]}{\left[PCl_5\right]} = \frac{\left(1.59\right)^2}{\left(1.41\right)} = 1.79$

800K উন্নতায় CO (g) + H₂O (g) \rightleftharpoons CO₂ (g) + H₂ (g)

এই বিক্রিয়ার $K_{_{\! C}}$ এর মান 4.24। যদি ${
m CO}$ এবং ${
m H}_{_{2}}{
m O}$ প্রত্যেকের

প্রাথমিক গাঢ়ত্ব 0.10M হয় তবে 800K উন্নতায় সাম্যাবস্থায়

0.1M

ধরি, প্রত্যেক বিক্রিয়যাজাত পদার্থ x মোল/লিটার উৎপন্ন হয়।

0

0

x M

 $\mathrm{CO}_2,\,\mathrm{H}_2,\,\mathrm{CO}$ এবং $\mathrm{H}_2\mathrm{O}$ এদের গাঁঢ়ত্ব গণনা কর।

 $CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$

র,

সমস্যা 7.4

সমাধান ঃ

প্রাথমিক গাঢ়ত্ব 0.1M

গাঢ়ত্ব, যাহা বিক্রিয়কের প্রাথমিক গাঢ়ত্বের চেয়ে
অতএব, সাম্যবস্থায় গাঢ়ত্ব গুলো হল,
$$[\mathrm{CO}_2] = [\mathrm{H}_2] = \mathrm{x} = 0.067 \; \mathrm{M}$$

 $[CO] = [H_2O] = 0.1 - 0.067 = 0.033 M$

সমস্যা 7.5

0.194 মানটি উপেক্ষা করা উচিত কারণ ইহা হল বিক্রিয়কের া বেশি।

1069K উন্নতায়, 2NOCl(g) → 2NO(g) + Cl₂(g) এই

বিক্রিয়াটির সাম্যধ্রুবক $K_{_{\! C}}$ এর মান হল $3.75 imes 10^{-6}$ । উক্ত

সমাধান ঃ আমরা জানি, $K_p = K_c (\mathbf{R}T)^{\Delta n}$

তাপমাত্রায় উপরের বিক্রিয়ার K_p এর মান গণনা কর।

উপরের বিক্রিয়ার জন্য
$$\Delta n = (2+1) - 2 = 1$$

 $K_p = 3.75 imes 10^{-6} (0.0831 imes 1069)$
 $K_p = 0.033$

7.5 অসমসত্ত্বসাম্যাবস্থা (HETEROGENEOUS EQUILIBRIA) সাম্যবস্থায় কোনো তন্ত্রে একের অধিক দশা থাকলে অসমসত্ত্ব সাম্যবস্থা বলা হয়। একটি বন্ধ পাত্রে জলের বাস্প এবং তরলের মধ্যে সাম্যবস্থাটি হল অসমসত্ত্ব সাম্যবস্থার উদাহরণ।

$$H_2O(l) \rightleftharpoons H_2O(g)$$

এই উদাহরণে গ্যাসীয় এবং তরল দশা সাম্যবস্থায় আছে। একইভাবে, একটি কঠিন এবং ইহার সম্পৃক্ত দ্রবণের মধ্যে সাম্যবস্থাটি হল অসমসত্ত্ব সাম্যবস্থা। যেমন-

 $Ca(OH)_2(s) + (aq) \rightleftharpoons Ca^{2+}(aq) + 2OH^{-}(aq)$

প্রায়ই বিশুদ্ধ কঠিন বা তরল পদার্থে অসমসত্ত্ব সাম্যবস্থা দেখা যায়। বিশুম্ব তরল বা বিশুম্ব কঠিনের অসমসত্ত্ব সাম্যাবস্থায় সাম্যের রাশিমালাকে আমরা সরলীকৃত করতে পারি, যেহেতু বিশুম্ব কঠিন বা তরলের মোলার গাঢ়ত্ব ধ্রুবক (অর্থাৎ পরিমাণের উপর নির্ভরশীল নয়)। অন্যভাবে যদি কোনোও বিশুদ্ধ পদার্থ X নেওয়া হয় তখন [X(s)] এবং [X(P)] ধ্রুবক হয়, এক্ষেত্রে X এর পরিমাণ যাই হউক না কেন।

অতএব, $K_c = x^2/(0.1-x)^2 = 4.24$ $x^2 = 4.24(0.01 + x^2 - 0.2x)$ $x^2 = 0.0424 + 4.24x^2 - 0.848x$ $3.24x^2 - 0.848x + 0.0424 = 0$

সাম্যবস্থায় (0.1-x) M (0.1-x) M x M

যেখানে, সাম্যাবস্থায় CO_2 এবং H_2 এর পরিমাণ x

$$a = 3.24, b = -0.848, c = 0.0424$$

দ্বিঘাত সমীকরণ অনুযায়ী, $ax^2 + bx + c = 0$,

$$x = \frac{\left(-b \pm \sqrt{b^2 - 4ac}\right)}{2a}$$

$$x = 0.848 \pm \sqrt{(0.848)^2 - 4(3.24)(0.0424)} / (3.24 \times 2)$$

$$x = (0.848 \pm 0.4118) / 6.48$$

$$x_1 = (0.848 - 0.4118) / 6.48 = 0.067$$

$$x_2 = (0.848 \pm 0.4118) / 6.48 = 0.194$$

অপরপক্ষে, [X(g)] এবং [X(aq)] পরিবর্তনশীল যেহেতু X এর পরিমাণ একটি নির্দিন্ট আয়তনে পরিবর্তনশীল। ক্যালসিয়াম কার্বনেটের তাপীয় বিয়োজন হল একটি মজাদার এবং গুরুত্বপূর্ণ অসমসত্ত্ব সাম্যবস্থার উদাহরণ।

CaCO₃(s) <u>△</u> CaO (s) + CO₂(g) (7.16) স্টয়সিওমিতি সমীকরণ অনুসারে আমরা লিখতে পারি,

$$K_{c} = \frac{\left[CaO(s)\right]\left[CO_{2}(g)\right]}{\left[CaCO_{3}(s)\right]}$$

যেহেতু [CaCO₃(s)] এবং [CaO(s)] উভয়ই ধ্রুবক সেইহেতু ক্যালসিয়াম কার্বনেটের তাপীয় বিয়োজনের সাম্য ধ্রুবকের সংশোধিত রূপটি হল-

অথবা, $K_p = p_{CO_2}$ (7.18)

সাম্যধ্রবকের একক (Units of Equilibrium Constant) গাঢ়ত্ব পদটির পরিবর্তে মোল/লিটার ব্যবহার করে সাম্য ধ্রবক K_c এর মান গণনা করা যায় এবং আংশিক চাপের পরিবর্তে Pa, kPa, বার (bar) বা অ্যাটমস্ফিয়ার (atm) বসিয়ে K_p গণনা করা যায়। প্রাপ্ত ফলাফল থেকে মোলরিটি বা চাপের ভিত্তিতে সাম্য ধ্রুবকের একক পাওয়া যায়, যদি লব এবং হর উভয়ের ঘাত সমান হয়। $H_2(g) + I_2(g) \rightleftharpoons 2HI$, এই বিক্রিয়ায় K_c এবং K_p কোনো একক নেই।

 $N_2O_4(g) \rightleftharpoons 2NO_2(g)$, এই বিক্রিয়ায় K_c এর একক হল মোল/লিটার এবং K_p এর একক হল বার (bar)।

সাম্যধ্রবককে মাত্রাহীন রাশিরুপেও প্রকাশ করা যায়, যদি নির্দিষ্ট বিক্রিয়ক এবং বিক্রিয়াজাত পদার্থকে প্রমাণ অবস্থায় ধরা হয়। বিশুম্ধ গ্যাসের ক্ষেত্রে প্রমাণ অবস্থা হল 1 বার। সুতরাং প্রমাণ অবস্থায় 4 বারকে প্রকাশ করলে হবে 4 bar/1 bar = 4 যাহা মাত্রাহীন সংখ্যা।

কোনোও দ্রাবের প্রমাণ অবস্থা (c₀) হল 1 মোলার দ্রবণ এবং অন্যান্য সব গাঢ়ত্বকে এর সাপেক্ষে পরিমাপ করা যেতে পারে। এই কারণে কোনোও তন্ত্রে K_p এবং K_c উভয়েই মাত্রাবিহীন রাশি কিন্তু বিভিন্ন প্রমাণ অবস্থার জন্য তাদের সংখ্যাগত মান বিভিন্ন হয়। এর থেকে দেখা যায় যে, একটি নির্দিফ্ট তাপমাত্রায়, CaO(s) এবং CaCO₃(s) এর সহিত সাম্যে উপস্থিত CO₂ এর গাঢ়ত্ব বা চাপ ধ্রুবক। পরীক্ষালব্দ ফল থেকে দেখা গেছে যে, 1100K, উস্নতায় CaO(s) এবং CaCO₃(s) এর সহিত সাম্যে উপস্থিত CO₂ এর চাপ হল 2.0 ×10⁵ Pa। সুতরাং 1100K উস্নতায় উপরের বিক্রিয়ার সাম্য ধ্রুবকের মান হল

$$K_p = P_{CO_2} = 2 \times 10^5 \text{ Pa}/10^5 \text{ Pa} = 2.00$$

অনুরূপে নিকেল, কার্বন মনোক্সাইড এবং নিকেল কার্বনিল এদের মধ্যে সাম্যাবস্থার সমীকরনটি হল (ইহা নিকেল বিশুদ্ধিকরনটি হল (ইহা নিকেল বিশুদ্ধিকরণে ব্যবহৃত হয়)

Ni (s) + 4 CO (g)
$$\rightleftharpoons$$
 Ni(CO)₄(g),

সাম্যধ্রবকের রাশিমালাটি হল

$$K_{c} = \frac{\left[\operatorname{Ni}(\operatorname{CO})_{4}\right]}{\left[\operatorname{CO}\right]^{4}}$$

তবে, অবশ্যই মনে রাখতে হবে অসমসত্ত্ব সাম্যাবস্থার অস্তিত্বের জন্য সাম্যবস্থায় কঠিন বা তরলের উপস্থিতি অবশ্যই দরকার (কম পরিমাণে হলেও) কিন্তু তাদের গাঢ়ত্ব বা আংশিক চাপ সাম্যধ্রবকের রাশিমালায় থাকবে না। যেমন নিচের বিক্রিয়ায় -

$$Ag_2O(s) + 2HNO_3(aq) \Longrightarrow 2AgNO_3(aq) + H_2O(l)$$

$$K_c = \frac{\left[\text{AgNO}_3\right]^2}{\left[\text{HNO}_3\right]^2}$$

সমস্যা (Problem) 7.6

1000 K উস্নতায় CO₂ (g) + C (s) ⇒ 2CO (g) বিক্রিয়াটির K_p এর মান হল 3.0. যদি প্রারম্ভিক অবস্থায়, P_{CO2} = 0.48 বার এবং P_{CO} = 0 বার এবং যদি বিশুদ্ধ গ্রাফাইট উপস্থিত থাকে তাহলে সাম্যবস্থায় CO এবং CO₂ এর আংশিক চাপ গণনা কর।

সমাধান (Solution)

ধরি, CO₂ এর চাপ x হ্রাস পায়, তাহলে এই বিক্রিয়ায় CO₂(g) + C(s) ⇒ 2CO(g) প্রারম্ভিক চাপ 0.48 বার 0

সাম্যবস্থায় (0.48 - x)bar 2x bar $K_p = \frac{p_{CO}^2}{p_{CO_2}}$ $K_p = (2x)^2 / (0.48 - x) = 3$ $4x^2 = 3(0.48 - x)$ $4x^2 = 1.44 - x$ $4x^2 + 3x - 1.44 = 0$ a = 4, b = 3, c = -1.44 $x = \frac{\left(-b \pm \sqrt{b^2 - 4ac}\right)}{2c}$ $= [-3 \pm \sqrt{(3)^2 - 4(4)(-1.44)}]/2 \times 4$ $= (-3 \pm 5.66)/8$ = (-3 + 5.66)/ 8 (যেহেতু x এর মান -ve হতে পারবে না সেই হেতু উপক্ষো করা হল) x = 2.66/8 = 0.33সাম্যবস্থায় আংশিক চাপ গুলো হল $p_{_{CO}} = 2x = 2 \times 0.33 = 0.66$ বার $p_{_{CO_2}}$ = 0.48 – x = 0.48 – 0.33 = 0.15 বার

7.6 সাম্যধ্রুবকের প্রয়োগ সমূহ (APPLICATIONS OF EQUILIBRIUM CONSTANTS)

সাম্যধ্রবকের প্রয়োগ সমূহ বিবেচনা করার পূর্বে সাম্যধ্রবকের গুরুত্বপূর্ণ বৈশিষ্টগুলোর সারাংশ নিচে দেওয়া হল।

- সাম্যাবস্থায় বিক্রিয়ক ও বিক্রিয়াজাত পদার্থের গাঢ়ত্ব পরিবর্তন হয়ে যখন স্থির মানে পৌঁছায় তখনই কেবলমাত্র সাম্যধ্রবকের রাশিমালা প্রযোজ্য।
- বিক্রিয়ক ও বিক্রিয়াজাত পদার্থের প্রারম্ভিক গাঢ়ত্বের উপর সাম্যধ্রুবকের মান নির্ভর করে না।
- একটি নির্দিষ্ট উন্নতায় সমিত সমীকরণযুক্ত একটি নির্দিষ্ট বিক্রিয়ার সাম্যধ্রুবকের মান তাপমাত্রার উপর নির্ভরশীল এবং একটি অনন্য মান থাকে।
- সম্মুখ বিক্রিয়ার সাম্যধ্রবকের মান বিপরীত বিক্রিয়ার সাম্যধ্রবকের মানের অনোন্যকের সমান হয়।

 একটি বিক্রিয়ার সাম্যধ্রবক K অনুরূপ বিক্রিয়া যে ক্ষেত্রে বিক্রিয়াটি একটি ক্ষুদ্র অখন্ড সংখ্যার দ্বারা গুণ বা ভাগ করে পাওয়া যায় সেই বিক্রিয়ার সাম্যধ্রবকের সহিত সম্পর্ক যুক্ত।

চল আমরা সাম্যধ্রবকের প্রয়োগ বিবেচনা করি।

- সাম্যধ্রবকের মান থেকে বিক্রিয়াটি কতদূর পর্যন্ত অগ্রসর হয়েছে
 তার ধারনা পাওয়া যায়।
- বিক্রিয়াটির অভিমুখের দিক সম্পর্কে ধারণা করা যায়।
- সাম্যাবস্থায় গাঁঢ়ত্ব গণনা করা যায়।

7.6.1একটি বিক্রিয়ার অগ্রগতির ধারনা (Predicting the
Extent of a Reaction)

কোনো বিক্রিয়ার সাম্যধ্রবকের সংখ্যাগতমান, বিক্রিয়াটির অগ্রগতির ধারনা দেয়। কিন্তু ইহা গুরুত্বপূর্ণ যে বিক্রিয়াটি যে হারে সাম্যবস্থায় পৌঁছেছে সাম্যধ্রবকতার কোনোও তথ্য প্রদান করে না। K_c অথবা K_p এর মান বিক্রিয়াজাত পদার্থের গাঢ়ত্বের সহিত সমানুপাতী (যেহেতু সাম্যধ্রবকের রাশিমালায় ইহারা লবে থাকে) এবং বিক্রিয়কের গাঢ়ত্বের সহিত ব্যস্তানুপাতী (যেহেতু ইহারা হরে থাকে)। এ থেকে বুঝা যায় যে K এর মান বেশি হলে বিক্রিয়াজাত পদার্থের গাঢ়ত্বেও বেশি হবে এবং বিপরীত ভাবেও সত্য।

সাম্যমিশ্রনের সংযুতির সঙ্গে সম্পর্কযুক্ত কয়েকটি সাধারণ ধারনা নিচে দেওয়া হল ঃ

- যদি K_c > 10³ হয়, তাহলে বিক্রিয়ায় বিক্রিয়াজাত পদার্থবেশি হবে অর্থাৎ K_c এর মান যদি খুব বেশী হয় তাহলে বিক্রিয়াটি সম্পূর্ণতার দিকে অগ্রসর হবে। নিচের উদাহরণগুলো বিবেচনা করা হয়।
- (a) $500~{
 m K}$ উন্নতায়, H $_2$ এর সহিত O $_2$ এর বিক্রিয়ার সাম্যধ্রবকের মান খুব বেশী হয়। $K_{
 m c}=2.4 imes 10^{47}.$
- (b) 300 K উন্নতায় H₂(g) + Cl₂(g) → 2HCl(g) এই বিক্রিয়ার K_c = 4.0 × 10³¹.
- (c) 300 K উন্নতায় H₂(g) + Br₂(g) ⇒ 2HBr (g) এই বিক্রিয়ার K_c = 5.4 × 10¹⁸
- যদি K_c < 10⁻³ হয় তাহলে বিক্রিয়ায় বিক্রিয়ক পদার্থ বেশি হবে, অর্থাৎ K_c এর মান খুব কম হয়, বিক্রিয়াটি কদাচিৎ অগ্রসর হয়। নিচের উদাহরণগুলি বিবেচনা করা হল।

(a) 500 K উন্নতায়, H₂O এর বিয়োজনে উৎপন্ন H₂ এবং O₂
 বিক্রিয়াটির সাম্য ধ্রুবকের মান খুব কম হয়।

$$K_c = 4.1 \times 10^{-48}$$

- (b) 298K উন্নতায়, N₂(g) + O₂(g) ⇒ 2NO(g), এই বিক্রিয়ার সাম্যধ্রুবকের মান, K_c = 4.8 ×10⁻³¹.
- যদি K_c এর মান 10⁻³ থেকে 10³ এই পরিসরে থাকে তাহলে বিক্রিয়ক এবং বিক্রিয়াজাত উভয়েরই গাঢ়ত্ব উল্লেখযোগ্য পরিমাণে বজায় থাকে। নিচের উদাহরণগুলো বিবেচনা করা হল।
- (a) 700 K উন্নতায়, H₂ (g) + I₂(g) ⇒ 2HI(g) এই বিক্রিয়ার সাম্যধ্রুবক K_c = 57.0
- (b) গ্যাসীয় দশায়, 25°C উস্নতায় N₂O₄ (g) → 2NO₂(g) বিক্রিয়ার সাম্যধ্রুবকের মান K_c = 4.64 × 10⁻³ । এই মানটি খুব ক্ষুদ্র ও না আবার খুব বড়ও না।

অতএব, সাম্যমিশ্রনে N₂O₄এবং NO₂ উভয়ের গাঢ়ত্ব উল্লেখযোগ্য পরিমাণে বজায় থাকে।

এই সাধারণ বিষয়গুলো চিত্র 7.6 এ চিত্রিত করা হল।

চিত্র 7.6 K এর মানের উপর নির্ভর করে বিক্রিয়ার অগ্রগতি।

7.6.2বিক্রিয়ার অভিমুখের উপর ভবিষ্যত বাণী (Predicting
the Direction of the Reaction)

সাম্যধ্রুবক থেকে কোনোও একটি বিক্রিয়ার যে কোনোও মুহূর্তে বিক্রিয়াটির অভিমুখের ধারনা পাওয়া যেতে পারে। তারজন্য আমাদের বিক্রিয়া কোশেন্ট **Q** গণনা করতে হবে। বিক্রিয়া কোশেন্ট **Q** (যখন মোলার গাঢ়ত্ব হবে তখন হবে Q_c এবং যখন আংশিক চাপ হবে তখন Q_p) সাম্যধুবক K_c এর মত সংজ্ঞায়িত করা যায়, ব্যতিক্রম শুধুমাত্র এই যে Q_c এর ক্ষেত্রে গাঢ়ত্ব সাম্যগাঢ়ত্ব নাও হতে পারে। একটি সাধারণ বিক্রিয়া

$a A + b B \rightleftharpoons c C + d D$	(7.19)
একটি সাধারণ বিক্রিয়া	

 $Q_{c} = [C]^{c}[D]^{d} / [A]^{a}[B]^{b}$ (7.20)

যদি $Q_c > K_c$ হয় তাহলে বিক্রিয়াটি বিপরীত দিকে অর্থাৎ বিক্রিয়ক পদার্থের দিকে অগ্রসর হবে।

যদি $Q_c < K_c$ হয় তাহলে সম্মুখদিকে অর্থাৎ বিক্রিয়াজাত পদার্থের দিকে অগ্রসর হবে। যদি $Q_c = K_c$ হয় বিক্রিয়ামিশ্রণটি যথারীতি সাম্যবস্থায় আছে। একটি গ্যাসীয় বিক্রিয়া, H₂ এর সহিত I₂ এর বিক্রিয়া বিবেচনা করা হল। 700 K উন্নতায় H₂ (g) + I₂(g) ⇒ 2HI(g)

এই বিক্রিয়াটির K_c = 57.0

ধরি, যে কোনোও মুহূর্তে H_2 , I_2 এবং HI এর মোলার গাঢ়ত্ব যথাক্রমে $[H_2]_t=0.10M$, $[I_2]_t=0.20$ M এবং $[HI]_t=0.40$ M.

গাঢ়ত্ব চিহ্নের নীচে 't' কে বুঝায় t সময়ে গাঢ়ত্ব পরিমাপ করা হয়েছে সাম্যবস্থার গাঢ়ত্ব জরুরী নয়।

উপরিউক্ত বিক্রিয়ার এই মুহূর্তে বিক্রিয়া কোশেন্ট Q_c হল,

 $Q_c = [\text{HI}]_t^2 / [\text{H}_2]_t [\text{I}_2]_t = (0.40)^2 / (0.10) \times (0.20)$ = 8.0

এইক্ষেত্রে, Q_c হল (8.0) যাহা K_c (57.0) এর সমান নয়। সুতরাং $H_2(g)$, $I_2(g)$ এবং HI(g) মিশ্রনটি সাম্যাবস্থায় নেই, Q_c = K_c হওয়ার জন্য অধিক পরিমানে $H_2(g)$ এবং $I_2(g)$ বিক্রিয়া করে অধিক পরিমাণে HI(g) তৈরি হতে হবে, ফলে $H_2(g)$ এবং $I_2(g)$ এর গাঢ়ত্ব ক্রমাগত কমতে থাকবে।

 Q_c এবং K_c এর তুলনামূলক মান থেকে বিক্রিয়াকোশেন্ট Q_c একটি বিক্রিয়ার অভিমুখের ধারণা প্রদান করে।

বিক্রিয়ার অভিমুখের একটি সাধারণ রূপরেখা আমরা নিম্নরূপে তৈরি করতে পারি (চিত্র: 7.7)

চিত্র 7.7 বিক্রিয়ার অভিমুখের ধারণা

- যদি Q_c < K_c হয়, তাহলে সমগ্র বিক্রিয়াটি বাম দিক থেকে ডান দিকে অগ্রসর হবে।
- যদি Q_c > K_c হয়, তাহলে সমগ্র বিক্রিয়াটি ডানদিক থেকে বামদিকে অগ্রসর হবে।
- যদি Q_c = K_c হয়, তবে কোনো নিট বিক্রিয়া সংগঠিত হয় না।

সমস্যা 7.7

2A ⇒ B + C এই বিক্রিয়াটির K ূএর মান হল 2 ×10⁻³। একটি নির্দিষ্ট সময়ে বিক্রিয়া মিশ্রনের সংযুতি হল যথাক্রমে [A] = [B] = [C] = 3 × 10⁻⁴ M কোন অভিমুখে বিক্রিয়াটি অগ্রসর হবে ?

রসায়ন

206

সমাধান ঃ

এই বিক্রিয়াটির জন্য বিক্রিয়া কোশেন্ট Q_c হল, $Q_c = [B][C]/ [A]^2$ যেহেতু $[A] = [B] = [C] = 3 \times 10^{-4} M$ $Q_c = (3 \times 10^{-4})(3 \times 10^{-4}) / (3 \times 10^{-4})^2 = 1$ যেহেতু $Q_c > K_c$ অতএব বিক্রিয়াটি বিপরীত অভিমুখী হবে।

7.6.3সাম্য গাঢ়ত্বের গণনা (Calculating Equilibrium
Concentrations)

যেসব সমস্যার ক্ষেত্রে আমরা প্রারম্ভিক গাঢ়ত্ব জানি কিন্তু সাম্যবস্থার গাঢ়ত্ব জানি না সেসব ক্ষেত্রে নিম্নলিখিত পাঁচটি ধাপগুলো অনুসরণ করা উচিত।

ধাপ 1. বিক্রিয়াটির সমিত সমীকরণটি লিখ।

ধাপ 2. সমিত সমীকরনের নিচে বিক্রিয়ায় যুক্ত প্রতিটি পদার্থের তালিকা সারণিরূপে তৈরি কর।

- (a) প্রারম্ভিক গাঢ়ত্ব
- (b) সাম্যাবস্থার দিকে অগ্রসর হওয়ার সহিত গাঢ়ত্বের পরিবর্তন
- (c) সাম্যগাঢ়ত্ব

সারণি তৈরি করার সময় সাম্যের দিকে অগ্রগামী বিক্রিয়াতে অংশগ্রহণকারী কোনো পদার্থের গাঢ়ত্বকে x [মোল/লিটার] ধরে অন্যান্য পদার্থের গাঢ়ত্ব x এর স্বাপেক্ষে নির্ণয় করো, বিক্রিয়ার স্টওসিওমিতি ব্যবহার করে।

ধাপ 3. কোনো বিক্রিয়ায় সাম্যের সমীকরণে সাম্যগাঢ়ত্ব কে অপনয়ন করে x সমাধান কর। যদি দ্বিঘাত সমীকরণ সমাধান করতে হয় তাহলে x এর যুক্তি গ্রাহ্য মানটি নাও।

ধাপ 4. x এর নির্ণিত মান থেকে সাম্য গাঢ়ত্ব গণনা কর।

ধাপ 5. সাম্যের সমীকরণে মানগুলো বসিয়ে তোমার ফলাফল পর্যালোচনা করো।

সমস্যা 7.8

400K উন্নতায় 1 লিটার আয়তনের একটি পাত্রে 13.8 গ্রাম $m N_2O_4$ রাখা হল এবং বিক্রিয়াটি সাম্যাবস্থায় উপনীত হতে দেওয়া হল,

 $N_2O_4(g) \rightleftharpoons 2NO_2(g)$

সাম্যাবস্থায় মোট চাপ দেখা গেল 9.15 বার। K_c, K_p এবং সাম্যবস্থায় আংশিক চাপ গণনা কর।

সমাধান ঃ

আমরা জানি, pV = nRTমোট আয়তন (V) = 1 লিঃ N₂O₄ এর আনবিক গুরুত্ব = 92 g গ্যাসের মোল সংখ্যা (n) = 13.8g / 92g = 0.15গ্যাস ধ্রবক (R) = 0.083 বার লিঃ মোল⁻¹ কেলভিন⁻¹ উন্নতা (T) = 400 K pV = nRT $p \times 1L = 0.15$ মোল $\times 0.083$ বার লিঃ মোল⁻¹কেলভিন⁻¹ p = 4.98 bar

সাম্যাবস্থায় (4.98 – x) বার 2x বার

সেইহেতু

সাম্যাবস্থায় মোট চাপ $(P) = p_{N_2O_4} + p_{NO_2}$ 9.15 = (4.98 - x) + 2x9.15 = 4.98 + x

$$x = 9.15 - 4.98 = 4.17$$
 bar

সাম্যাবস্থায় আংশিক চাপ হল

 $p_{N_2O_4} = 4.98 - 4.17 = 0.81$ bar $p_{NO_2} = 2x = 2 \times 4.17 = 8.34$ bar $K_p = (p_{NO_2})^2 / p_{N_2O_4}$

$$= (8.34)^{2}/0.81 = 85.87$$

 $K_{p} = K_{c}(RT)^{\Delta n}$
 $85.87 = K_{c}(0.083 \times 400)^{1}$

 $K_c = 2.586 = 2.6$

সমস্যা 7.9

380K উন্নতায় 1 লিটার বম্ধপাত্রে 3.00 মোল PCl₅ রাখা হল এবং সাম্যাবস্থা লাভ করতে দেওয়া হল। সাম্যাবস্থায় মিশ্রনের সংযুতি গণনা করা।

 $K_{c} = 1.80$

সমাধান ঃ

প্রারন্তিক গাঢ়ত্ব 🔅

$$PCl_{5} \rightleftharpoons PCl_{3} + Cl_{2}$$

$$3.0 \qquad 0 \qquad 0$$

উভয়দিকে antilog নিয়ে আমরা পাই,

$$K = e^{-\Delta G^{\theta/RT}} \tag{7.23}$$

অতএব (7.23) সমীকরণ ব্যবহার করে ΔG^{θ} মানের সাহায্যে কোনো বিক্রিয়ার স্বতঃস্ফুর্ততাকে প্রকাশ করা যায়।

- যদি $\Delta G^{\theta} < 0$, হয়, তখন $\Delta G^{\theta}/\mathbf{R}T$ ধনাত্মক হয় এবং $e^{-\Delta G^{\theta}/RT} > 1$ হয় তাহলে K > 1 হয়, যাহা বিক্রিয়ার স্বতঃস্ফূর্ততাকে নির্দেশ করে অথবা বিক্রিয়াটি সম্মুখ দিকে অগ্রসর হবে যাতে বিক্রিয়াজাত পদার্থ বেশী পরিমাণে থাকে।
- যদি $\Delta G^{\theta} > 0$ হয়, তখন- $\Delta G^{\theta}/\mathbf{R}T$ ঋণাত্মক হয় এবং e^{−ΔG^θ/RT < 1 হওয়ার ফলে K < 1 হয়, তখন বিক্রিয়াটি} অস্বতস্ফূর্ত হয় অথবা এত স্বল্পমাত্রায় বিক্রিয়াটি সম্মুখ দিকে অগ্রসর হয় যে খুব সামান্য পরিমাণে বিক্রিয়াজাত পদার্থ উৎপন্ন হয়।

সমস্যা 7.10

গ্লাইকোলিসিস বিক্রিয়ায় গ্লুকোজের ফসফোরাইলেশনে $\Delta G^{ heta}$ এর মান হল 13.8 KJ/mol, 298 K উন্নতায় K এর মান নির্ণয় কর।

সমাধান ঃ

 $\Delta G^{\theta} = 13.8 \text{ KJ/mol} = 13.8 \times 10^3 \text{ J/mol}$ আবার $\Delta G^{\theta} = - \operatorname{RT} \ln K_{a}$ অতএব $\ln K_{2} = -13.8 \times 10^{3} \text{J/mol}$ $(8.314 \text{ J mol}^{-1}\text{K}^{-1} \times 298 \text{ K})$ $\ln K = -5.569$

$$K_{\rm c} = e^{-5.569}$$

 $K_{\rm c} = 3.81 \times 10^{-3}$

সমস্যা 7.11

300 কেলভিন উন্নতায় সুক্রোজ এর আদ্রবিশ্লেষণ বিক্রিয়ার K_c এর মান হল $2 imes 10^{13}$ । 300 কেলভিন উন্নতায় ΔG^{0} গণনা কর। বিক্রিয়াটি হল, সুক্রোজ + H₂O == গ্লুকোজ + ফ্রুক্টোজ

সমাধান (Solution)

 $\Delta G^{\theta} = - \mathbf{R}T \ln K_{a}$ $\Delta G^{\theta} = -8.314 \text{J mol}^{-1} \text{K}^{-1} \times$ $300K \times \ln(2 \times 10^{13})$ $\Delta G^{\theta} = -7.64 \times 10^4 \text{ J mol}^{-1}$

ধরি, x মোল/লিটার PCl, বিয়োজিত হয়। সাম্যাবস্থায়, 3-x $K_c = [PCl_3][Cl_2]/[PCl_5]$ $1.8 = x^2/(3 - x)$ $x^2 + 1.8x - 5.4 = 0$ $x = [-1.8 \pm \sqrt{(1.8)^2 - 4(-5.4)}]/2$ $x = [-1.8 \pm \sqrt{3.24 + 21.6}]/2$ $x = [-1.8 \pm 4.98]/2$ x = [-1.8 + 4.98]/2 = 1.59 $[PCl_5] = 3.0 - x = 3 - 1.59 = 1.41 M$ $[PCl_{2}] = [Cl_{2}] = x = 1.59 M$

7.7 সাম্যধুবক K, বিক্রিয়ার কোশেন্ট Q এবং গিবস্ শক্তি Gএর মধ্যে সম্পর্ক (RELATIONSHIP BETWEEN EQUILIBRIUM CONSTANT K, REACTION QUOTIENT Q AND GIBBS ENERGY G)

একটি বিক্রিয়ার K এর মান বিক্রিয়াটির হারের উপর নির্ভর করে না। তবে 6নং অধ্যায়ে তুমি পড়েছ যে, ইহা (K) একটি বিক্রিয়ার তাপগতিবিদ্যার উপর বিশেষভাবে গিব্স মুক্ত শক্তির পরিবর্তনের ∆G সহিত সরাসরি সম্পর্কযুক্ত।

- যদি ΔG ঋণাত্মক হয়, তাহলে বিক্রিয়াটি স্বতঃস্ফুর্তভাবে সংগঠিত হবে এবং সম্মুখ অভিমুখে অগ্রসর হবে।
- ∆G ধনাত্মক হয়, তবে বিক্রিয়াটি অস্বতঃস্ফূর্ত বলিয়া বিবেচনা করা হয়। পরিবর্তে বিপরীতমুখী বিক্রিয়াটির ΔG ঋণাত্মক হয়, সম্মুখমুখী বিক্রিয়ার দ্বারা বিক্রিয়াজাত পদার্থ উৎপন্ন হওয়ার পরিবর্তে বিক্রিয়ক পদার্থ উৎপন্ন হয়।
- $\Delta G, 0$ হয়, এই বিন্দুতে সাম্যাবস্থা অর্জিত হয়, আর কোনোও মুক্তশক্তি অবশিষ্ঠ থাকে না, যাহা বিক্রিয়াকে পরিচালিত করবে। তাপবিদ্যার দৃষ্টিতে সাম্যের গাণিতিক রাশিমালা নিম্নলিখিত সমীকরণ দ্বারা ব্যাখ্যা করা হল-

$$\Delta G = \Delta G^{\theta} + \mathrm{RT} \ln Q \tag{7.21}$$

যেখানে ΔG^{0} হল প্রমানমুক্ত শক্তি। সাম্যাবস্থায় যখন $\Delta G =$ 0 এবং $Q = K_c$, তখন সমীকরণ (7.21) টি হয়

$$\Delta G = \Delta G^{\theta} + RT \ln K = 0$$

$$\Delta G^{\theta} = -RT \ln K \qquad (7.22)$$

$$\ln K = -\Delta G^{\theta} / RT$$

х

7.8 সাম্যবস্থাকে প্রভাবিত করে এমন শর্ত সমূহ (FACTORS AFFECTING EQUILIBRIA)

রাসায়নিক সংশ্লেষণের মুখ্য উদ্দেশ্যগুলোর মধ্যে একটি হলো ন্যূনতম শক্তি ব্যবহার করে বিক্রিয়ক পদার্থ গুলোকে সর্বোচ্চ পরিমাণে বিক্রিয়াজাত পদার্থ তৈরি করা। এর অর্থ হলো মধ্যমানের উস্নতা এবং চাপে অধিক পরিমাণে বিক্রিয়াজাত পদার্থ তৈরি করা। যদি এমনটি না ঘটে, তখন পরীক্ষার শর্তগুলোকে পরিবর্তন করতে হয়। উদাহরণ স্বরূপ হেবার পদ্ধতিতে N₂ এবং H₂ থেকে অ্যামোনিয়া সংশ্লেষণে পরীক্ষার শর্তগুলোর চয়ন আর্থিক রূপ থেকে খুবই গুরুত্বপূর্ণ। বিশ্বে বার্ষিক অ্যামোনিয়া উৎপাদন প্রায় 100 মিলিয়ন টনের সমান। যেটি মুখ্যত রাসায়নিক সাররূপে ব্যবহৃত হয়।

সাম্য ধ্রুবক K_{c} প্রারম্ভিক গাঢ়ত্বের ওপর নির্ভর করে না। কিন্ডু যদি সাম্যাবস্থাতে স্থিত কোনও তন্ত্রে এক বা একাধিক বিক্রিয়াকারী পদার্থের গাঢ়ত্বের পরিবর্তন করা হয় তবে ঐ তন্ত্রে সাম্যাবস্থা থাকতে পারে না এবং নেট বিক্রিয়াটি পুনরায় ততক্ষণ পর্যস্ত ঘটতে থাকে যতক্ষণ না পর্যন্ত তন্ত্রে পুনরায় সাম্যাবস্থা স্থাপিত হয়। একইভাবে তন্ত্রে তাপমাত্রা বা চাপের পরিবর্তনেও সাম্যাবস্থাটি হতে পারে।

কোন্পথে বিক্রিয়াটি ঘটবে সেটি নির্ণয় করতে এবং বিক্রিয়া শর্তগুলোর পরিবর্তদে সাম্যাবস্থার ওপর কি প্রভাব পরে তার গুণগত ধারণা করতে লা শাতেলীয়ার নীতি ব্যবহার করা হয়। এই নীতি অনুসারে সাম্যাবস্থায় স্থিত কোনো তন্ত্রের (সিস্টেমের) সাম্যাবস্থা নিয়ন্ত্রণকারী শর্তগুলোর কোনো একটি শর্তের পরিবর্তন করলে তন্ত্রটি এমনভাবে নিজেকে বিন্যস্ত করবে যাতে এই পরিবর্তগজণিত প্রভাবকে যতদূর সম্ভব কম বা প্রশমিত করা যায়। এটি সকল প্রকার ভৌত ও রাসায়নিক সাম্যাবস্থার ক্ষেত্রে প্রযোজ্য।

আমরা এখন এমন শর্তগুলো আলোচরা করবো যারা সাম্যাবস্থাকে প্রভাবিত করতে পারে।

7.8.1 গাঢ়ত্বের পরিবর্তগের প্রভাব (Effect of Concentration Change)

সাধারণত বিক্রিয়ক/বিক্রিয়াজাত পদার্থ যুক্ত করলে বা সরিয়ে নিলে যখন সাম্যবাস্থা বিঘ্নিত হয়, লা শর্তে লিয়ার নীতি অনুসারে ঃ

- বিক্রিয়ক/বিক্রিয়াজাত পদার্থ যোগ করলে গাঢ়ত্বের ওপর যে চাপ পরে তাকে কম করার জন্য বিক্রিয়াটি সেইদিকে অগ্রসর হয় সেদিকে যোগ করা পদার্থের ব্যয় হয়।
- বিক্রিয়ক/বিক্রিয়াজাত পদার্থ নিস্কাসিত হলে গাঢ়ত্বের ওপর যে চাপ আসে তাকে কম করার জন্য বিক্রিয়াটি সেই দিকে হবে যেদিকে বিক্রিয়া থেকে নিস্কাষিত পদার্থের পূর্তি হতে পারে।

অন্যভাবে বলতে গেলে, যখন কেনো বিক্রিয়াতে বিক্রিয়ক বা বিক্রিয়াজাত পদার্থের মধ্যে কোনও একটির গাঢ়ত্ব সাম্যাবস্থাতে পরিবর্তিত হয়, তখন সাম্যাবস্থা মিশ্রণের সংযুতিতে এমন পরিবর্তন ঘটে যাতে গাঢ়ত্ব পরিবর্তনের প্রভাবকে যতদুর সম্ভব কম বা শূন্য করা যায়।

চলো নীচের বিক্রিয়াটি নিয়ে বিচার করি,

 $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$

যদি সাম্যাবস্থায় বিক্রিয়া মিশ্রণে H₂ যোগ করা হয়, তখন বিক্রিয়াটির সাম্যাবস্থা বিঘ্নিত হয়। সাম্যাবস্থাটিকে পুনঃস্থাপন করার জন্য বিক্রিয়াটি সেইদিকে অগ্রসর হবে যেদিকে H₂ ব্যয় হয় অর্থাৎ অধিক H₂ এবং I₂ বিক্রিয়া করে HI গঠন করবে এবং শেষ পর্যন্ত সাম্যাবস্থা ডানদিকে (সম্মুখদিকে) অগ্রসর হবে (চিত্র : 7.8)। এটি লা শতেলিয়ার নীতির অনুরূপ যার অনুসারে বিক্রিয়ক/বিক্রিয়াজাত পদার্থ যোগ করার পর একটি নতুন সাম্যাবস্থা প্রতিষ্ঠিত হবে যেখানে বিক্রিয়ক/বিক্রিয়াজাত পদার্থের গাঢ়ত্ব পদার্থটি যোগ করার পর যে গাঢ়ত্ব হয়েছে তার থেকে কম হবে কিন্তু মূল মিশ্রণে যে গাঢ়ত্ব তার থেকে বেশি হবে।

চিত্র: 7.8 H₂(g) + I₂ (g) ⇒ 2HI(g) বিক্রিয়াতে বিক্রিয়ক ও বিক্রিয়াজাত পদার্থের গাঢ়ত্বের পরিবর্তনের ওপর H₂ যোগ করার প্রভাব।

বিক্রিয়া কোশেন্ট Q_c উপর ভিত্তি করেও এই বিষয়টি ব্যাখ্যা করা যেতে পারে।

$$Q_c = [\text{HI}]^2 / [\text{H}_2][\text{I}_2]$$

সাম্যাবস্থায় H_2 যোগ করলে Q_c এর মান K_c থেকে কম হয়ে যায়। এর ফলে পুনরায় সাম্যাবস্থা স্থাপন করার জন্য বিক্রিয়াটি সম্মুখদিকে (Forward direction) অগ্রসর হয়। একইভাবে আমরা বলতে পারি বিক্রিয়াজাত পদার্থ অপসারিত করলে সম্মুখমুখী বিক্রিয়া আরোও জোরদার হয় এবং বিক্রিয়াজাত পদার্থের গাঢ়ত্ব বৃদ্ধি করে। যে সমস্ত বিক্রিয়াতে বিক্রিয়াজাত পদার্থ গ্যাসীয় বা উদ্বায়ী প্রকৃতির হয় সেক্ষেত্র বাণিজ্যিক দিক থেকে এটি খুবই লাভজনক। অ্যামেনিয়ার শিল্পোৎপাদন প্রক্রিয়াতে অ্যামোনিয়াকে তরলে পরিনত করে বিক্রিয়া মিশ্রণ থেকে অপসারিত করা হয় যাতে বিক্রিয়াটি সম্মুখমুখী (Forward direction) হয়। এই প্রকার CaCO₃ থেকে বিশাল পরিমাণে CaO (গুরুত্বপূর্ণ নির্মাণ সামগ্রী রূপে ব্যবহৃত হয়) উৎপাদনে চুল্লী থেকে ক্রমাগত CO₂ কে অপসারিত করিয়ে বিক্রিয়াটিকে সম্পূর্ণ করা হয়। এখানে মনে রাখতে হবে বিক্রিয়াজাত পদার্থকে ক্রমাগত অপসারণ করলে Q_c এর মান K_c থেকে কম হয় এবং বিক্রিয়াটি ক্রমাগত সম্মুখদিকে (Forward direction) অগ্রসর হয়।

গাঢ়ত্বের প্রভাব-একটি প্রয়োগ/পরীক্ষা (Effect of Concentration – An experiment)

নিচের বিক্রিয়াটির দ্বারা এটি দেখানো যেতে পারে

$$Fe^{3+}(aq)+SCN^{-}(aq) \rightleftharpoons [Fe(SCN)]^{2+}(aq)$$
 (7.24)
হলুদ বৰ্ণহীন গাঢ়লাল

$$K_{c} = \frac{\left[\operatorname{Fe}(\operatorname{SCN})^{2^{+}}(\operatorname{aq})\right]}{\left[\operatorname{Fe}^{3^{+}}(\operatorname{aq})\right]\left[\operatorname{SCN}^{-}(\operatorname{aq})\right]}$$
(7.25)

1 mL of 0.2 M আয়রণ (III) নাইট্রেট দ্রবণে দুই ফোঁটা 0.002 M পটাশিয়াম থায়োসায়ানেট যোগ করলে [Fe(SCN)]²⁺ আয়ন গঠণের ফলে দ্রবণটি লাল বর্ণ ধারণ করে। লাল বর্ণের তীব্রতা সাম্যাবস্থা স্থাপিত হওয়ার পর স্থির হয়। আমাদের পছন্দ মতো বিক্রিয়ক বা বিক্রিয়াজাত পদার্থ যোগের ওপর নির্ভর করে সাম্যাবস্থাটিকে সম্মুখমুখী বা পাশ্চাদ্মুখী করা যেতে পারে। Fe³⁺ বা SCN ⁻ আয়নকে অপসারিত করতে পারে এমন বিকারক যোগ করে সাম্যাবস্থাটিকে পশ্চাদ্মুখী করা যেতে পারে। উদাহরণ স্বরূপ অক্সালিক অ্যাসিড (H₂C₂O₄), Fe³⁺ আয়নের সঞ্চো বিক্রিয়া করে স্থায়ী জটিল আয়ন [Fe(C₂O₄)₃]³⁻ গঠন করে, ফলে মুক্ত Fe³⁺(aq) আয়নের গাঢ়ত্ব কম হয়ে যায়। লা শাতলিয়ার নীতি অনুসারে, Fe³⁺ আয়ন অপসারণের ফলে গাঢ়ত্বের উপর যে চাপ আসে সেটি [Fe(SCN)]²⁺ আয়নের বিয়োজনে উৎপন্ন Fe³⁺ আয়ন দ্বারা প্রশমিত হয়। যেহেতু [Fe(SCN)]²⁺ আয়নের গাঢ়ত্ব হ্রাস পায় সেজন্য লাল বর্ণের তীব্রতা হ্রাস পায়।

জলীয় HgCl₂ যোগ করলেও লাল বর্ণ হ্রাস পায় কারণ Hg²⁺ আয়ন SCN ⁻ আয়নের সঙ্গো বিক্রিয়া করে স্থায়ী জটিল আয়ন [Hg(SCN)₄]²⁻ গঠন করে। মুক্ত আয়ন SCN ⁻ জলীয় অপসারণের ফলে (7.24) সমীকরণটির সাম্যাবস্থা ডান দিক থেকে বা দিকে সরে গিয়ে SCN ⁻ আয়নের গাঢ়ত্ব পুনরায় বৃদ্ধি করে। আবার পটাশিয়াম থায়োসায়ামেট যোগ করলে বর্ণের তীব্রতা বৃদ্ধি পায় যেহেতু এটি সাম্যাবস্থাটিকে ডান দিকে স্থানান্তরিত করে দেয়।

7.8.2 চাপ পরিবর্তনের প্রভাব (Effect of Pressure Change)

গ্যাসীয় বিক্রিয়া যেখানে গ্যাসীয় বিক্রিয়কের মোট মোল সংখ্যা গ্যাসীয় বিক্রিয়াজাত পদার্থের মোট মোল সংখ্যা থেকে ভিন্ন সেক্ষেত্রে আয়তন পরিবর্তনের দ্বারা চাপের পরিবর্তন হলে বিক্রিয়াজাত পদার্থের উৎপাদনের উপর প্রভাব পড়ে। অসমসত্ত্ব সাম্যাবস্থাতে লা শাতলীয়ার নীতি প্রয়োগ করলে কঠিন এবং তরলের চাপ পরিবর্তনের প্রভাবকে উপক্ষো করা যেতে পারে কারণ দ্রবণ/তরলের আয়তন (এবং গাঢ়ত্ব) চাপের উপর প্রায় নির্ভর করে না বললেই চলে।

নিচের বিক্রিয়াটি বিবেচনা করা যাক্

 $CO(g) + 3H_2(g) \rightleftharpoons CH_4(g) + H_2O(g)$

এখানে 4 মোল গ্যাসীয় বিক্রিয়ক (CO + 3H₂) হতে 2 মোল গ্যাসীয় বিক্রিয়াজাত পদার্থ (CH₄ + H₂O) পাওয়া যায়। ধরি এই বিক্রিয়াতে সাম্যমিশ্রণকে একটি নির্দিন্ট উন্নতায় পিস্টন লাগানো একটি সিলিন্ডারে রেখে চাপ বৃদ্ধি করে মূল আয়তনের অর্ধেক আয়তনে সংকুচিত করা হলো। এর ফলে মোট চাপ দ্বিগুন হয়ে যাবে (*pV* = ধ্রুবক অনুসারে)। বিক্রিয়ক ও বিক্রিয়াজাত পদার্থের আংশিক চাপ এবং তার জন্য গাঢ়ত্ব পরিবর্তিত হয়ে গেল এবং মিশ্রণটি এখন আর সাম্যাবস্থায় নেই। লা শাতেলীয়ার নীতি ব্যবহার করে যে অভিমুখে বিক্রিয়াটি প্রবাহিত হয়ে সাম্যাবস্থাটি পুনঃস্থাপিত করবে তা সম্পর্কে ধারণা করা যায়। যেহেতু চাপ দ্বিগুণ হলো, সুতরাং সাম্যাবস্থাটি সম্মুখদিকে সরে গেলো, যে অভিমুখে গ্যাসের মোলসংখ্যা বা চাপ হ্রাস পায় (আমরা জানি চাপ গ্যাসের মোল সংখ্যার সমানুপাতিক)। বিক্রিয়া কোশেন্ট (*Q*) ব্যবহার করেও একে বুঝা যায়। ধরি মিথানেশান (methanation) বিক্রিয়ার সাম্যাবস্থায় বিক্রিয়ক এবং বিক্রিয়াজাত পদার্থের মোলার গাঢ়ত্বগুলো [CO],

[H₂], [CH₄] এবং [H₂O] যখন বিক্রিয়া মিশ্রণের আয়তন অর্ধেক করা হয়, তখন অংশচাপ এবং গাঢ়ত্ব দ্বিগুন হয়ে যায়। এখন প্রত্যেকটি সাম্য গাঢ়ত্বের মান দ্বিগুন করে, আমরা বিক্রিয়া কোশেন্ট পাই,

$$Q_{c} = \frac{\left[CH_{4}(g)\right]\left[H_{2}O(g)\right]}{\left[CO(g)\right]\left[H_{2}(g)\right]^{3}}$$

যেহেতু $Q_c < K_c$ বিক্রিয়াটি সম্মুখমুখী হয়।

C(s) + CO₂(g) ≕ 2CO(g) এই বিক্রিয়াতে যখন চাপ বৃদ্ধি করা হয় তখন বিক্রিয়াটি পশ্চাদ্মুখী হয় কারণ সম্মুখমুখী বিক্রিয়াতে গ্যাসের মোল সংখ্যা বৃদ্ধি পায়।

7.8.3 নিস্ক্রীয় গ্যাস যোগ করার প্রভাব (Effect of Inert Gas Addition)

যদি আয়তন স্থির রেখে নিস্ক্রীয় গ্যাস যেমন আর্গন, যেটি বিক্রিয়াতে অংশগ্রহণ করে না, যদি যোগ করা হয় তখন সাম্যাবস্থাটি বিঘ্নিত হয় না। এর কারণ স্থির আয়তনে নিস্ক্রীয় গ্যাস যোগ করলে বিক্রিয়াতে অংশগ্রহণকারী পদার্থের আংশিক চাপের বা মোলার গাঢ়ত্বের কোনও পরিবর্তন হয় না। বিক্রিয়া কোশেন্ট Q তু তখনই পরিবর্তন হয় যদি যোগ করা গ্যাসটি বিক্রিয়ক বা বিক্রিয়াজাত পদার্থের মধ্যে যে কোনও একটি হয়।

7.8.4 উন্নতা পরিবর্তনের প্রভাব (Effect of Temperature Change)

যখন গাঢ়ত্ব, চাপ বা আয়তন পরিবর্তনের ফলে, সাম্যাবস্থা বিঘ্নিত হয়, তখন সাম্যমিশ্রণের সংযুতি পরিবর্তিত হয় কারণ তখন বিক্রিয়া কোশেন্ট *Q*ুও সাম্যধ্রুবক *K*ু সমান থাকে না। কিন্ডু যখন উন্নতা পরিবর্তিত হয়, তখন সাম্যধ্রুবক *Kু* পরিবর্তিত হয়।

সাধারণত সাম্যধ্রবকের উন্নতা নির্ভরশীলতা বিক্রিয়ার ∆H -এর চিহ্নের উপর নির্ভর করে।

- তাপমোচী বিক্রিয়ার (ঋণাত্মক △H) ক্ষেত্রে সাম্যধ্রুবকের মান উন্নতা বৃদ্ধির সাথে সাথে হ্রাস পায়।
- তাপগ্রাহী বিক্রিয়ার (ধনাত্মক △H) ক্ষেত্রে সাম্যধ্রুবকের মান উন্নতা বৃদ্ধির সাথে সাথে বৃদ্ধি পায়।

উম্বতা পরিবর্তণ সাম্যধুবক এবং বিক্রিয়াহার কে প্রভাবিত করে।

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g);$ $\Delta H = -92.38 \text{ kJ mol}^{-1}$

এই বিক্রিয়া অনুসারে অ্যামোনিয়া উৎপাদন একটি তাপমোচী বিক্রিয়া।লা লাতেলিয়ার নীতি অনুসারে উন্নতা বৃদ্ধি করলে বিক্রিয়া সাম্যটি বামদিকে সরে যায় এবং অ্যামোনিয়ার সাম্যগাঢ়ত্বকে হ্রাস করে। অন্য কথায় নিম্ন তাপমাত্রা বেশি পরিমাণে অ্যামোনিয়া উৎপাদনে সাহায্য করে। কিন্তু বাস্তবে দেখা যায় খুব কম উন্নতা বিক্রিয়াটিকে মন্দীভূত করে সেই কারণেই অনুঘটক ব্যবহার করা হয়।

উন্নতার প্রভাব-একটি প্রয়োগ/পরীক্ষা (Effect of Temperature – An experiment)

বাদামী বর্ণের NO₂ গ্যাসের ডাইমার গঠণের মাধ্যম্যে বর্ণহীন N₂O₄ এ রূপান্তরের বিক্রিয়াটি দিয়ে সাম্যবস্থায় ওপর উস্নতার প্রভাবকে দেখানো যেতে পারে।

 $2NO_2(g) \rightleftharpoons N_2O_4(g); \Delta H = -57.2 \text{ kJ mol}^{-1}$

গাঢ় HNO₃ এ কপার ছিবড় যোগ করে উৎপন্ন NO₂ গ্যাসকে দুটি 5 মিলি টেস্টটিটউবে (প্রতিটি টিউবে বর্ণের তীব্রতা সমান হবে) নিয়ে অ্যারাল ডাইট (araldite) দিয়ে সীল (seal) করে দেওয়া হয়। তিনটি 250 মিলি বীকার 1, 2 ও 3 নাম্বার লিখে যথাক্রমে হিমমিশ্রণ, ঘরের উস্নতায় জল এবং গরমজল (363K) নেওয়া হলো। (চিত্র: 7.9)। উভয় টেস্টটিউবকে 2 নং বীকারে 8-10 মিনিটের জন্য রাখা হলো। তারপর একটি টেস্টটিউব 1 নং বীকারে এবং অন্যটি 3 নং বীকারে রাখা হলো। এই বিক্রিয়াতে বিক্রিয়ার অভিমুখের ওপর উম্নতার প্রভাবকে ভাল করে দেখানো যায়।

নিম্ন উন্নতায় 1নং বীকারে N₂O₄ গঠণের সম্মুখমুখী বিক্রিয়াটি প্রাধান্য পায় কারণ বিক্রিয়াটি তাপমোচী বিক্রিয়া এবং এর ফলস্বরূপ

চিত্র 7.9. 2NO₂(g) ़ N₂O₄(g) বিক্রিয়াতে সাম্যাবস্থার ওপর উন্নতার প্রভাব NO₂ -এর বাদামী বর্শের তীব্রতা হ্রাস পায়। আবার 3 নং বীকারে উচ্চ উন্নতায় NO₂ গঠণের পশ্চাদমুখী বিক্রিয়াটি অনুকুল থাকে এবং এইভাবে বাদামী বর্শের তীব্রতার বৃদ্ধি ঘটে।

সাম্যাবস্থার ওপর তাপমাত্রার প্রভাবটি নীচের তাপগ্রাহী বিক্রিয়াতেও দেখা যায়।

ঘরের উন্নতায় সাম্য মিশ্রণটি [CoCl₄]^{2–} এর কারণে নীল বর্ণের হয়। যখন এটিট হিমমিশ্রনে ঠান্ডা করা হয় তখন [Co(H₂O)₆]³⁺ এর কারণে গোলাপী হয়।

7.8.5 অনুঘটকের প্রভাব (Effect of a Catalyst)

অনুঘটক একটি কম শক্তি সম্পন্ন পথের মাধ্যমে বিক্রিয়ককে বিক্রিয়াজাত পদার্থে রুপান্তরিত করে দেয় এবং এতে রাসায়নিক বিক্রিয়ার হার বৃদ্ধি পায়। অনুঘটক একই সংক্রমন অবস্থা (Transition State) দিয়ে গতিশীল সম্মুখমুখী ও পশ্চাদ্মুখী বিক্রিয়ার গতি বৃদ্ধি করে কিন্তু সাম্যাবস্থাকে প্রভাবিত করে না। অনুঘটক সম্মুখমুখী এবং পশ্চাদ্মুখী বিক্রিয়া উভয় ক্ষেত্রেই সক্রীয়করণ শক্তি (Activation Energy) কে সমান মাত্রায় হ্রাস করে। অনুঘটক সন্মিশ্রনের সংযুতির কোনও পরিবর্তন করে না এবং এটি সমিত সমীকরণে বা সাম্যাবস্থায় স্থিরাজ্ঞ সমীকরণে প্রকাশিত হয় না।

ডাই নাইট্রোজেন এবং ডাই হাইড্রোজেন থেকে অ্যামোনিয়া গঠনের রাসায়নিক বিক্রিয়াটি বিচার করা যাক। এটি একটি উচ্চ তাপমোচী বিক্রিয়া। এই বিক্রিয়াতে বিক্রিয়াজাত পদার্থের মোট মোল সংখ্যা বিক্রিয়কের মোট মোল সংখ্যা থেকে কম। এই বিক্রিয়াতে সাম্যধ্রুবকের মান উন্নতা বৃষ্ধির সাথে হ্রাস পায়। নিম্ন উন্নতার বিক্রিয়া হার হ্রাস পায় এবং সাম্যাবস্থায় পৌঁছতে অনেক সময় নেয় অন্যদিকে উচ্চ উন্নতায় বিক্রিয়া হার সন্তোষজনক হলেও উৎপাদন কম হয়।

জার্মান রসায়নবিদ ফ্রীস হেবার (Fritz Haber) আবিস্কার করেন যে লৌহ অনুঘঠকের উপস্থিতিতে বিক্রিয়াটি সন্তোষজনক হারে ঘটে এবং NH₃ -এর সাম্য গাঢ়ত্ব সন্তোষজনক হয়। যেহেতু বিক্রিয়াটিতে বিক্রিয়াজাত পদার্থের মোল সংখ্যা, বিক্রিয়ক পদার্থের মোল সংখ্যা থেকে কম যেহেতু চাপ বৃদ্ধি করে NH₃ -এর উৎপাদন বৃদ্ধি করা যায়।

দেখা যায় অনুঘটক ব্যবহার করে NH, উৎপাদনের জন্য সব থেকে অনুকুলতম উন্নতা ও চপ যথাক্রমে500°C এবং 200 অ্যাটমসফীয়ার এর কাছাকাছি। একইভাবে স্পর্শ পম্ধতিতে সালফিউরিকঅ্যাসিডের প্রস্তুতি

 $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g); K_c = 1.7 \times 10^{26}$

K -এর মান অনুসারে বিক্রিয়াটি প্রায় সম্পূর্ণ হয়ে যাওয়ার কথা হলেও প্রকৃতপক্ষে SO₂ থেকে SO₃ এ জারণ খুবই মন্থর প্রক্রিয়া। সেজন্য বিক্রিয়ার হারকে বৃদ্ধি করার জন্য প্লাটিনাম বা ডাই ভেনডিয়াম পেন্টা অক্সাইড (V₂O₅) কে অনুঘটক রূপে ব্যবহার করা হয়।

দ্রন্ফব্য (Note) : যদি কোনও বিক্রিয়ার সাম্যাবস্থা স্থিরাঙ্কের মান (K) খুবই কম হয়, তখন অনুঘটকের সাহায্য কম লাগে।

7.9 দ্রবনে আয়নিয় সাম্যাবস্থা (Ionic Equilibrium in Solution)

সাম্যের অভিমুখের উপর গাঢ়ত্বের পরিবর্তনের প্রভাব প্রসঙ্গে আলোচনা করতে গিয়ে ঘটনাব্রুমে নিচের আয়ন সমন্বিত সাম্যাবস্থাটি নেওয়া হল–

 $Fe^{3+}(aq) + SCN^{-}(aq) \rightleftharpoons [Fe(SCN)]^{2+}(aq)$

সাম্যের অনেক রাশিমালা আছে যেখানে শুধুমাত্র আয়ন উপস্থিত থাকে। নিচের অনুচ্ছেদে আমরা আয়ন সমন্বিত সাম্য নিয়ে অধ্যয়ন করব। এটা সবার জানা যে, চিনির জলীয় দ্রবণ তড়িৎ পরিবহন করে না। তবে সাধারণ লবন (সোডিয়াম ক্লোরাইড) জলে যোগ করলে ইহার দ্রবণ তড়িৎ পরিবহন করে। সাধারণ লবনের গাঢ়ত্ব বৃদ্ধি করিয়া তড়িৎ পরিবাহিতা ও বৃদ্ধি করা যায়। তড়িৎ পরিবহনের সামর্থ্যের উপর ভিত্তি করে মাইকেল ফ্যারাডে পদার্থকে দুটি শ্রেণিতে বিভক্ত করেছেন। এক শ্রেণির পদার্থ জলীয় দ্রবণে তড়িৎ পরিবহন করে এবং তাদেরকে তড়িৎ বিশ্লেষ্য বলে, যেখানে অন্যান্যরা করতে পারে না, এরা হল তড়িৎ-অবিশ্লেষ্য। ফ্যারাডে তড়িৎ বিশ্লেষ্য পদার্থকে, তীব্র এবং মৃদু বিশ্লেষ্য পদার্থরুপেও শ্রেণিভুক্ত করেন। তীব্র তড়িৎ বিশ্লেষ্য পদার্থ জলে প্রায় সম্পূর্ণরূপে আয়নিত হয় যেখানে দুর্বল তড়িৎ বিশ্লেষ্য পদার্থ আংশিক বিয়োজিত হয়। উদাহরণ স্বরুপ সোডিয়াম ক্লোরাইড সম্পূর্ণরূপে সোডিয়াম আয়ন এবং ক্লোরাইড আয়নে বিয়োজিত হয় যেখানে অ্যাসিটিক অ্যাসিড প্রধানত অবিয়োজিত অ্যাসিটিক অ্যাসিড অনুরূপে থাকে এবং কেবলমাত্র সামান্য অ্যাসিটেট আয়ন এবং হাইড্রোনিয়াম আয়ন থাকে। এর কারণ হচ্ছে সোডিয়াম ক্লোরাইড প্রায় 100% আয়নিত হয় যেখানে অ্যাসিটিক অ্যাসিড মৃদু তড়িৎ বিশ্লেষ্য বলে 5% এরও কম আয়নিত হয়। এখানে মনে রাখতে হবে মৃদু তড়িৎ বিশ্লেষ্যের ক্ষেত্রে সাম্যাবস্থাটি আয়ন এবং অবিয়োজিত অনুর মধ্যে স্থাপিত হয়। জলীয় দ্রবণে আয়ন নিয়ে এই ধরণের সাম্যাবস্থাকে আয়নীয় সাম্যাবস্থা বলে।অ্যাসিড,ক্ষারকএবংলবন তড়িৎ বিশ্লেষ্য শ্রেণিতে পড়ে এবং তীব্র বা মৃদু তড়িৎ বিশ্লেষ্যরূপে কাজ করতে পারে।

7.10 অ্যাসিড, ক্ষারক এবং লবণ (ACIDS, BASES AND SALTS)

অ্যাসিড, ক্ষারক এবং লবণ প্রকৃতিতে বহুল পরিমাণে পাওয়া যায়। পাচক রসে উপস্থিত হাইড্রোক্লোরিক অ্যাসিড যেটি পাকস্থলীর ভিতরের আস্তরণ থেকে প্রচুর পরিমাণে (1.2-1.5 L/day) ক্ষরিত হয় এবং আমাদের হজমের জন্য অতি প্রয়োজনীয়। ভিনিগারের মূল উপাদান হল অ্যাসিটিক অ্যাসিড। লেবু এবং কমলালেবুর রসে সাইট্রিক এবং অ্যাসকরবিক অ্যাসিড পাওয়া যায় আবার টারটারিক অ্যাসিড পাওয়া যায় তেতুলে ৷ যেহেতু বেশীর ভাগ অ্যাসিডই স্বাদে টক, 'অ্যাসিড' শব্দটি ল্যাটিন শব্দ 'অ্যাসিডাস' (acidus) থেকে নেওয়া হয়েছে, যার অর্থ টক। অ্যাসিড নীল লিটমাস কাগজকে লাল বর্ণে পরিণত করে এবং কিছু কিছু ধাতৃর সঙ্গে বিক্রিয়া করে ডাই হাইড্রোজেন গ্যাস দেয়। একই ভাবে ক্ষারক গুলো লাল লিটমাস কাগজকে নীল বর্ণে পরিণত করে। স্বাদে তিক্ত হয় এবং স্পর্শ করলে সবানের মত। ক্ষারকের একটি সাধারণ উদাহরণ হল কাপড কাচার সোডা যেটি কাপড ধৌত করতে ব্যবহত হয়। যখন অ্যাসিড এবং ক্ষারক কে নির্দিষ্ট মাত্রায় মেশানো হয় তখন তারা পরস্পর বিক্রিয়া করে লবণ তৈরি করে। সাধারণভাবে পরিচিত কিছু লবণের উদাহরণ হল সোডিয়াম ক্লোরাইড, বেরিয়াম সালফেট, সোডিয়াম নাইট্রেট। সোডিয়াম ক্লোরাইড (সাধারণ লবণ) আমাদের খাদ্যের একটি গুরুত্বপূর্ণ উপাদান এবং এটি হাইড্রোক্লোরিক অ্যাসিড এবং সোডিয়াম হাইড্রোক্সাইডের বিক্রিয়াতে উৎপন্ন হয়। এটি কঠিন অবস্থায় ধনাত্মক সোডিয়াম আয়ন এবং ঋণাত্মক ক্লোরাইড আয়নের গুচ্ছরূপে অবস্থান করে। যেগুলো দুটি বিপরীত ধর্মী আধান বিশিষ্ট কণার মধ্যে স্থির তাড়িতিক আকর্ষণ বলের সাহায্যে একত্রে যুক্ত থাকে (চিত্র 7.10)। দুটি আধানের মধ্যে স্থির তড়িৎ বল মাধ্যম্যের পরাবৈদ্যুতিক ধ্রুবকের সাথে ব্যস্তানুপাতিক। সার্বজনীন দ্রাবক জল এর পরাবৈদ্যুতিক ধ্রুবক (dielective constant) উচ্চমানের (৪0) হয়। ফলে যখন সোডিয়াম ক্লোরাইড জলে দ্রবীভূত করা হয়, তখন স্থিরতাড়িতীক বল ৪০ ভাগ কমে যায় এবং এর ফলে আয়নগুলো দ্রবণে স্বাধীনভাবে

চিত্র 7.10 জলে সোডিয়াম ক্লোরাইডের বিয়োজন।Na⁺ আয়ন এবং Cl⁻ আয়ন জলের ধ্রুবীয় অণুগুলোর সাথে দ্রাবকায়ণের মাধ্যমে স্থিতিশীলতা লাভ করে।

চলাচল করতে পারে। আবার জলের অণুগুলোর সাথে দ্রাবকায়ণের ফলে আয়নগুলো বেশ পৃথকভাবে থাকে।

ফ্যারাডের জন্ম লন্ডনের পাশে একটি সাধারণ পরিবারে হয়েছিল। 14 বছর বয়সে উনি একজন দয়ালু পুস্তক বাধাইকারীর (Bookbinder) সহযোগী হিসাবে কাজ করতে শুরু করেন। যিনি ফ্যারাডেকে বাঁধাই করা বইগুলোকে পড়তে অনুমতি দিয়েছিলেন। ভাগ্যক্রমে তিনি ডেভির (Davy) প্রয়োগশালায় সহযোগী হিসাবে নিযুক্ত হয়েছিলেন। 1813-14 খ্রিস্টাব্দে ফ্যারাডে ডেভির সাথে মহাদেশ ভ্রমণে গিয়েছিলেন। এই ভ্রমণে উনি ঐ সময়কার বিখ্যাত বৈজ্ঞানিকগণের সংস্পর্শে এসে অনেক অভিজ্ঞতা অর্জন করেছিলেন। 1825 খ্রিস্টাব্দে তিনি ডেভির পরবর্তী নির্দেশকরুপে রয়াল প্রতিষ্ঠান প্রয়োগশালাতে (Royal Institution Laboratories) নিযুক্ত হন এবং 1833 খ্রিস্টাব্দে তিনি রসায়নে প্রথম ফুলেরিয়ান অধ্যাপক হন। ফ্যারাডের প্রথম উল্লেখযোগ্য কাজ বিশ্লেষণত্নক রসায়নের উপর ছিল। 1821 খ্রিস্টাব্দের পর উনার বেশিরভাগ গবেষণাই তড়িৎ ও চুম্বকত্ব এবং তড়িৎ চুম্বকীয় ঘটনাবলীর সম্পর্কিত

মার্কেল ফরাডে

ছিল। উনার ধারণার উপর নির্ভর করেই Modern Field Theory প্রতিপাদিত হয়েছে। তিনি 1834 খ্রিস্টাব্দে তড়িৎ বিশ্লেষণের দুটি সূত্র আবিস্কার করেছিলেন। ফ্যারাডে খুবই বিনয়ী এবং দয়ালু ছিলেন। তিনি সমস্ত সম্মান গ্রহণ করতে অস্বীকার করেছিলেন এবং বৈজ্ঞানিক বিতর্ক থেকে সর্বদা নিজেকে দুরে সরিয়ে রাখতেন। তিনি একা কাজ করতে পছন্দ করতেন এবং তার কোনও সহযোগী ছিল না। তিনি বিভিন্নভাবে বিজ্ঞানের প্রচারে অংশগ্রহণ করতেন যার মধ্যে রয়াল প্রতিষ্ঠান (Royal Institution) তার প্রতিষ্ঠিত শুক্রবারের সাম্ব্যকালীন প্রবচনে ''মোমবাতির রাসায়নিক ইতিহাস'' নিয়ে ক্রিসমাস প্রবচনটি বিখ্যাত। তিনি প্রায় 450 টি বৈজ্ঞানিক গবেষণাপত্র প্রকাশ করেছিলেন। জলে হাইড্রোক্লোরিক অ্যাসিড এবং (অ্যাসিটিক অ্যাসিডের সাপেক্ষে) আয়নাইজেশন তুলনা করলে যদিও উভয়ই ধ্রুবীয় সমযোজী যৌগ।

প্রথমটি সম্পূর্ণরূপে উপাদান আয়নে আয়নিত হয়ে যায় কিন্ডু দ্বিতীয়টি আংশিক ভাবে (< 5%) আয়নিত হয়। আয়নীভবনের মাত্রা নির্ভর করে বন্ধনের শস্তি এবং আয়নিত আয়নগুলোর দ্রাবকায়নের মাত্রার উপর। বিয়োজন এবং আয়নীভবন এই দুটি পদকে পূর্বে পৃথক অর্থে ব্যবহার করা হয়েছে। বিয়োজন বলতে জলে আয়নগুলোর পৃথক হওয়াকে বুঝানো হয়েছে যা দ্রাবের কঠিন অবস্থাতেও বর্তমান। যেমন সোডিয়াম ক্লোরাইডের মতো। অপরদিকে আয়নীভবন হলো একটি নিস্তড়িৎ (neutral) অনুর দ্রবর্শের মধ্যে বিভাজিত হয়ে আধানযুক্ত আয়ন তৈরির প্রক্রিয়া। এখানে আমরা এই দুটি পদকে অদলবদল করে ব্যবহার করবো।

7.10.1 আরহেনিয়াসের অ্যাসিড এবং ক্ষারকতত্ত্ব (Arrhenius Concept of Acids and Bases)

আরহেনিয়াসের তত্ত্ব অনুসারে অ্যাসিড হল সেই সকল পদার্থ যারা জলীয় দ্রবণে বিয়োজিত হয়ে হাইড্রোজেন আয়ন $H^+(aq)$ দেয় এবং ক্ষারক হল সেই সকল পদার্থ যারা জলীয় দ্রবণে বিয়োজিত হয়ে হাইড্রোক্সিল আয়ন OH⁻(aq) আয়ন দেয়। কোনোও অ্যাসিড HX (aq)-এর আয়নীভবন (Ionization) কে নিম্নলিখিত সমীকরণগুলোর সাহায্যে প্রকাশ করা যেতে পারে :

> HX (aq) → H⁺(aq) + X⁻(aq) অথবা

 $HX(aq) + H_2O(l) \rightarrow H_3O^+(aq) + X^-(aq)$

একটি মুক্ত প্রোটন, H⁺ খুবই ক্রিয়াশীল এবং জলীয়দ্রবণে স্বাধীনভাবে থাকতে পারে না। সেজন্য এটি দ্রাবক জলের অনুর অক্সিজেন পরমানুর সঙ্গে বন্ধন গঠন করে ত্রিকোনীয় পিরমিডীয় হাইড্রোনিয়ম আয়ণ, H₃O⁺ দেয় {[H (H₂O)]⁺} (বক্স দেখ)।এই অধ্যায়ে আমরা H⁺(aq) এবং H₃O⁺(aq) কে অদল বদল করে একই অর্থে জলযোজিত প্রোটন (Hydrated proton) হিসাবে ব্যবহার করবো।

একইতাবে MOH এর ন্যায় ক্ষারক অনু জলীয় দ্রবনে নিম্নলিখিত সমীকরণ অনুসারে আয়নিত হয় :

 $MOH(aq) \rightarrow M^{+}(aq) + OH^{-}(aq)$

হাইড্রক্সিল আয়ন জলীয় দ্রবণে জলযোজিত অবস্থায়ও থাকে। কিন্তু আরহেনিয়াসের অ্যাসিড ও ক্ষরক তত্ত্বের সীমাবন্ধতা হল যে এটি কেবলমাত্র জলীয় দ্রবর্ণেই প্রযোজ্য এবং অ্যামোনিয়ার মত পদার্থের ক্ষারকীয়তা ব্যাখ্যা করতে পারে না, যার মধ্যে হাইড্রক্সিল গ্রুপ থাকে না।

হাইড্রোনিয়াম এবং হাইড্রক্সিল আয়ন

হাইড্রোজেন আয়ন নিজেই খুব ছোট আকার (~10⁻¹⁵ m ব্যাসার্ধ) যুক্ত এবং তীব্র বৈদ্যুতিক ক্ষেত্র বিশিষ্ট অণাবৃত প্রোটন। এটি জলের অণুর দুইজোড়া নিঃসঙ্গা যুগল ইলেকট্রনের মধ্যে একটি জোড়ার সাথে বন্ধন গঠন করে H_3O^+ আয়ন দেয়। এই আয়নটি বিভিন্ন যৌগে (যেমন $H_3O^+CI^-$) কঠিন অবস্থায় সনাক্ত করা হয়েছে। জলীয় দ্রবনে হাইড্রোনিয়াম আয়ন আরোও জলযোজিত হয়ে $H_3O_2^+$, $H_7O_3^+$ এবং $H_9O_4^+$ এর ন্যায় আয়ন গুলোগঠন করে। একইভাবে হাইড্রন্সিল আয়ন জলযোজিত হয়ে বিভিন্ন আয়নগুলো যেমন $H_3O_2^-$, $H_5O_3^-$ এবং $H_7O_4^-$ ইত্যোদি গঠন করে।

7.10.2 ব্রনস্টেড লাউরি অ্যাসিড এবং ক্ষারক (The Brönsted-Lowry Acids and Bases)

ড্যানিস রসায়নিবিদ জোহান ব্লনস্টেড (Johannes Brönsted) এবং ইংরেজ রসায়নবিদ থমাস এম লাউরি (Thomas M. Lowry) অ্যাসিড এবং ক্ষারকের আরও ব্যাপক সংজ্ঞা দিয়েছেন। ব্রনস্টেড লাউরি তত্ত্বঅনুসারে অ্যাসিড হল সেই সকল পদার্থ যারা হাইড্রোজেন আয়ন *H*⁺ দিতে পারে এবং ক্ষারক হল ঐসকল পদার্থ যারা হাইড্রোজেন আয়ন *H*⁺ গ্রহণ করতে পারে। সংক্ষেপে বলতে হলে, অ্যাসিড হল প্রোটন দাতা এবং ক্ষারক হল প্রোটন গ্রহীতা।

এখন নিচের সমীকরণে অ্যামোনিয়ার জলে দ্রবীভূত হওয়ার উদাহরণটি লক্ষ্য করো :

হাইড্রোক্সিল আয়নের উপস্থিতির জন্য দ্রবণ ক্ষারীয় হয়। এই বিক্রিয়াতে জলের অণু প্রোটন দাতা এবং অ্যামোনিয়া অণু প্রোটন গ্রহীতা হিসাবে কাজ করে ফলে তাদের যথাক্রমে লাউরি ব্রনস্টেড

সান্টে আরহেনিয়াস (Svante Arrhenius) (1859-1927)

আরহেনিয়াসের জন্ম সুইডেনের ওপশালার নিকটে হয়েছিল। 1884 খ্রিস্টাব্দে তিনি ওপশালা বিশ্ববিদ্যালয়ে তড়িৎ বিশ্লেষ্য দ্রবণের পরিবাহিতার ওপর ওনার গবেষণাপত্র (Thesis) প্রকাশ করেন। পরবর্তী পাঁচ বৎসর পর্যন্ত তিনি অনেক ভ্রমণ করেন এবং ইউরোপের বহু গবেষণা কেন্দ্র পরিদর্শন করেন। 1895 খ্রিস্টাব্দে ওনাকে নতুন স্থাপিত স্টকহোম বিশ্ববিদ্যালয়ে পদার্থবিদ্যার অধ্যাপক রুপে নিযুক্ত করা হয়। যেখানে 1897 খ্রিস্টাব্দ থেকে 1902 খ্রিস্টাব্দ পর্যন্ত তিনি রেক্টর (Rector) হিসাবে তার পরিসেবা প্রদান করেন। 1905 খ্রিস্টাব্দ থেকে মৃত্যু পর্যন্ত তিনি স্টকহোমের নোবেল ইনস্টিটিউটে ভৌত রসায়ন বিভাগের ডাইরেক্টর (Director) রুপে কাজ করেন। তিনি অনেক বৎসর যাবৎ তড়িৎ বিশ্লেষ্য দ্রবদের ওপর গবেষণা করেন। 1899 খ্রিস্টাব্দে তিনি উন্নতার উপর বিক্রিয়া হারের নির্ভরশীলতাকে একটি সমীকরণের সাহায্যে ব্যাখ্যা করেন, যেটি বর্তমানে আরহেনিয়াসের সমীকরণ নামে পরিচিত।

তিনি বিভিন্ন ক্ষেত্রে কাজ করেছিলেন। প্রতিরোধ রসায়ন (Immunochemistry), ব্রশ্বান্ড বিজ্ঞান (Cosmology), জীবনের ম্রোতের উৎস (The origin of life) ও হিমযুগের কারণ ইত্যাদি ক্ষেত্রে গুরুত্বপূর্ণ অবদান রেখেছেন। তিনিই সর্বপ্রথম 'গ্রীণ হাউজ এফেক্ট' নামটি ব্যবহার করে এর ব্যাখ্যা করেন। 'তড়িৎ বিয়োজন এবং রসায়নের প্রগতিতে এর প্রয়োগ' উনার এই তত্ত্বটির জন্য 1903 খ্রিস্টাব্দে রাসায়নে নোবেল পুরস্কার লাভ করেন।

অ্যাসিড ও ক্ষারক বলে। বিপরীতমুখী বিক্রিয়াতে NH⁺ আয়ন থেকে H⁺ আয়ন, OH⁻ আয়নে স্থানান্তরিত হয়। এই ক্ষেত্রে NH⁺₄ ব্রনস্টেড অ্যাসিড এবং OH⁻ ব্রনস্টেড ক্ষারক হিসাবে আচরণ করে। অ্যাসিড-ক্ষার যুগল যাতে কেবলমাত্র 1টি প্রোটনের পার্থক্য থাকে তাকে অণুবন্ধী অ্যাসিড-ক্ষার যুগল বলে। সেজন্য OH⁻ কে অ্যাসিড H₂O এর অণুবন্ধী ক্ষার এবং NH⁺₄ কে ক্ষার NH₃ এর অণুবন্ধী অ্যাসিড বলে। যদি ব্রনস্টেড অ্যাসিডটি তীব্র অ্যাসিড হয় তবে এর অনুবন্ধী ক্ষার হল মৃদু ক্ষার এবং ব্রনস্টেড অ্যাসিডটি যদি মৃদু অ্যাসিড হয় তবে এর অণুবন্ধী ক্ষারটি হবে তীব্র ক্ষার। এটি লক্ষ করতে হবে অণুবন্ধী অ্যাসিডে একটি প্রোটন অতিরিক্ত থাকে এবং অণুবন্ধী ক্ষারে একটি প্রোটন কম থাকে।

জলে হাইড্রোক্লোরিক অ্যাসিডের আয়নীভবনের উদাহরণটি বিবেচনা করো। HCl(aq), H₂O অণুকে প্রোটন দান করে অ্যাসিড হিসাবে এবং H₂O ক্ষার হিসাবে আচরণ করে।

উপরের সমীকরণে দেখা যায় জল ক্ষার হিসাবে আচরণ করে, কারণ এটি প্রোটন গ্রহণ করে। যখন জল HCl থেকে প্রোটন গ্রহণ করে তখন H₃O⁺ আয়নটি গঠিত হয়। সেই কারণে Cl⁻ হল HCl এর অনুবন্ধী ক্ষার এবং HCl হল ক্ষারের Cl⁻ অনুবন্ধী অ্যাসিড। একইভাবে অ্যাসিড H₃O⁺ এর অনুবন্ধী ক্ষার হল H₂O এবং H₃O⁺ হল ক্ষার H₂O এর অনুবন্ধী অ্যাসিড।

অ্যাসিড এবং ক্ষার হিসাবে জলের দ্বৈত ভূমিকাটি একটি মজার বিষয়। HCl এর সঙ্গে বিক্রিয়ায় জল ক্ষার রূপে এবং অ্যামোনিয়াকে একটি প্রোটন দান করে অ্যাসিড হিসেবে আচরণ করে।

সমস্যা 7.12

নিম্নলিখিত ব্রনস্টেড অ্যাসিডগুলোর অনুবন্ধী ক্ষারকগুলো কি কি হবে ? HF, H₂SO₄ এবং HCO₃

সমাধান

অনুবন্ধী ক্ষারকের মধ্যে প্রত্যেক ক্ষেত্রে একটি প্রোটন কম হবে। সুতরাং অনুরূপ অনুবন্ধী ক্ষারকগুলো হল যথাব্রুমে $F^-,\,HSO_4^-$ এবং $CO_3^{2^-}$.

সমস্যা 7.13

নীচের ব্রনস্টেড ক্ষারকগুলোর অনুবন্ধী অ্যাসিডগুলো লেখো NH₂⁻, NH, এবং HCOO⁻

সমাধান

অণুবন্ধী অ্যাসিডে প্রত্যেক ক্ষেত্রে একটি প্রোটন বেশি থাকবে এবং সেই জন্য অনুরূপ অণুবন্ধী অ্যাসিডগুলো হল যথাক্রমে $\rm NH_3^+$, $\rm NH_4^+$ এবং HCOOH

সমস্যা 7.14

H₂O, HCO₃⁻, HSO₄⁻ এবং NH₃ এই পদার্থগুলো ব্রনস্টেড অ্যাসিড এবং ক্ষারক উভয়রূপে কাজ করে। প্রত্যেক ক্ষেত্রে অণুরূপ অণুবন্ধী অ্যাসিড এবং অণুবন্ধী ক্ষারকগুলো লেখো।

সমাধান

উত্তরটি নীচের টেবিলে দেওয়া হল :

পদার্থ	অণুবন্ধী অ্যাসিড	অণুবন্ধী ক্ষার
H ₂ O	$H_{3}O^{+}$	OH
HCO_3^-	H ₂ CO ₃	CO_{3}^{2-}
HSO_4^-	H_2SO_4	SO_4^{2-}

7.10.3 লুইস অ্যাসিড এবংক্ষারক (Lewis Acids and Bases)

জি.এন লুইস (G.N. Lewis) 1923 খ্রিস্টাব্দে অ্যাসিডকে ইলেকট্রন যুগল গ্রাহকরূপে এবং ক্ষারককে ইলেকট্রন যুগল দাতা রূপে সংজ্ঞায়িত করেন। ক্ষারকের ক্ষেত্রে ব্রনস্টেড লাউরি এবং লুইস ধারণার মধ্যে বিশেষ কোনোও পার্থক্য নেই, যেহেতু উভয় তত্ত্বেই ক্ষারক ইলেকট্রন যুগল দান করে। তবে লুইস তত্ত্ব অনুসারে এরূপ অনেক অ্যাসিড আছে যাদের মধ্যে প্রোটন থাকে না। এর একটি বিশেষ উদাহরণ হল অসম্পূর্ণ ইলেকট্রন বিশিষ্ট BF₃ এর সাথে NH₃ এর বিক্রিয়া।

BF₃ তে কোনও প্রোটন নেই তারপরও এটি NH₃ এর সঙ্গো বিক্রিয়া করার সময় নিঃসঙ্গা ইলেকট্রন যুগল গ্রহণ করে অ্যাসিড হিসাবে আচরণ করে। এই বিক্রিয়াটিকে এভাবে দেখানো যায়,

 $BF_3 + :NH_3 \rightarrow BF_3:NH_3$

ইলেকট্রন ঘাটতি বিশিষ্ট যৌগ বা আয়ন যেমন AlCl₃, Co³⁺, Mg²⁺ ইত্যাদি লুইস অ্যাসিড রূপে আচরণ করে যেখানে H₂O, NH₃, OH⁻ ইত্যাদি যৌগ বা আয়নগুলো যারা একজোড়া ইলেকট্রন দান করে লুইস ক্ষারক হিসাবে আচরণ করে।

সমস্যা	7.15			
নিম্নলি	খিত আয়ন	ন বা যৌগগুলে	ণাকে লুইস অ্যাসি	নড এবং লুইস
ক্ষারক	হিসাবে শ্রে	াণিভুক্ত করো এ	মবং তাদের এই ত	গচরণের কারণ
দেখাও	1			
(a) H0	0-	(b)F ⁻	$(c) H^+$	$(d) BCl_3$
সমাধান	4			
(a)	হাইড্রস্কিণ্	ণ আয়ন হল লুই	ইস ক্ষারক যেহেতু	এটি একজোড়া
	নিঃসজাই	ইলেকট্রন দান	করতে পারে।	

- (b) ফ্রুরাইড আয়ন তার চার ডোড়া নিঃসঙ্গা ইলেকট্রন এর মধ্যে যে কোনো একটি দান করতে পারে, সে জন্য এটি লুইস ক্ষারক হিসাবে আচরণ করে।
- (c) একটি প্রোটন হল লুইস অ্যাসিড যেহেতু এটি হাইদ্রস্কিল আয়ন এবং ফ্লুরাইড আয়ণের মত ক্ষারকগুলো হতে একজোড়া নিঃসঞ্চা ইলেকট্রন যুগল গ্রহণ করতে পারে।
- (d) BCl₃ লুইস অ্যাসিড হিসাবে আচরণ করে কারণ অ্যামোনিয়া বা অ্যামিন অণুর মত পদার্থগুলো হতে একজোড়া নিঃসঙ্গা ইলেকট্রন যুগল গ্রহণ করতে পারে।

7.11অ্যাসিড এবং ক্ষারকের আয়নীভবন (IONIZATION OF
ACIDS AND BASES)

আরহেনিয়াসের অ্যাসিড ও ক্ষারক তত্ত্বটি অ্যাসিড ও ক্ষারকের আয়নীভবনের ক্ষেত্রে উপযোগী কারণ বেশিরভাগ রাসায়নিক ও রসায়ন

জৈবিক ব্যবস্থায় আয়নীভবন জলীয় মাধ্যমে ঘটে। পারক্লোরিক অ্যাসিড (HClO₄), হাইড্রোক্লোরিক অ্যাসিড (HCl), হাইড্রোব্রোমিক অ্যাসিড (HBr), হাইড্রো আয়োডিক অ্যাসিড (HI), নাইট্রিক অ্যাসিড (HNO₃) এবং সালফিউরিক অ্যাসিড (H₂SO₄) কে তীব্র অ্যাসিড বলা হয় কারণ জলীয় মাধ্যমে তারা সম্পূর্ণরূপে উপাদান আয়নে বিয়োজিত হয়ে যায়, এবং প্রোটন (H⁺) দাতা হিসাবে আচরণ করে। একইভাবে তীব্ৰ ক্ষারক যেমন লিথিয়াম হাইদ্রক্সাইড (LiOH), সোডিয়াম হাইদ্রক্সাইড (NaOH), পটাশিয়াম হাইদ্রক্সাইড (KOH), সিজিয়াম হাইড্রক্সাইড (CsOH) এবং বেরিয়াম হাইড্রক্সাইড Ba(OH), জলীয় মাধ্যমে সম্পূর্ণভাবে বিয়োজিত হয়ে এবং উপদান আয়নে বিশ্লেষিত হয়ে হাইড্রক্সিল (OH ⁻) আয়ন উৎপন্ন করে। আরহেনিয়াসের তত্ত্ব অনুযায়ী তারা তীব্র অ্যাসিড এবং ক্ষারক, যেহেতু সম্পূর্ণভাবে বিয়োজিত হয়ে মাধ্যমে যথাক্রমে H₂O⁺ এবং OH⁻ আয়ন উৎপন্ন করে। বিকল্পরুপে, অ্যাসিড এবং ক্ষারকের শক্তি ব্রনস্টেড লাউরি অ্যাসিড ক্ষারক তত্ত্বের সাহায্যেও পরিমাপ করা সম্ভব, সেক্ষেত্রে তীব্র অ্যাসিড মানে উৎকৃষ্ট প্রোটন দাতা এবং তীব্র ক্ষারক মানে উৎকৃষ্ট প্রোটন গ্রহীতা। মৃদু অ্যাসিড HA এর অ্যাসিড ক্ষারক বিয়োজন সাম্যটি লক্ষ করো—

HA(aq) + H₂O(l) ⇒ H₃O⁺(aq) + A⁻(aq) অণুবন্ধী অণুবন্ধী আসিড ক্ষারক আাসিড ক্ষারক

অনুচ্ছেদ 7.10.2 তে আমরা দেখেছি যে অ্যাসিড (বা ক্ষারক) বিয়োজন সাম্যটি একটি গতিশীল সাম্য যেখানে একটি প্রোটন, সম্মুখ দিকে এবং বিপরীত দিকে স্থানান্তরিত হয়। এখন প্রশ্ন এসে যায়, যদি সাম্যটি গতিশীল হয় তবে সময়ের সাথে কোন্দিকে সাম্যাবস্থাটি প্রাধান্য পাবে। এর পেছনে চালক বলটি কি ? এই প্রশ্নগুলোর উত্তরের জন্য আমরা বিয়োজন সাম্যে যুক্ত দুটি অ্যাসিড (বা ক্ষারকের) শক্তির তুলনামূলক আলোচনা করতে পারি। মনে করো দুটি অ্যাসিড HA এবং H₃O⁺ উপরে উল্লেখিত অ্যাসিড বিয়োজন সাম্যে আছে। আমাদের দেখতে হবে তাদের মধ্যে কোনটি অধিকতর শক্তিশালী প্রোটন দাতা। যেটির প্রোটন দানের প্রবণতা অপরটি থেকে অধিক হবে সেটিকে তীব্রতর অ্যাসিড বলা হবে এবং সাম্যটি মৃদু অ্যাসিড এর দিকে সরে যাবে। ধর, HA হল H₂O⁺ অপেক্ষা তীব্র অ্যাসিড, তবে HA প্রোটন দান করবে H₃O⁺ নয় এবং দ্রবণটিতে মুখ্যত A⁻ এবং H₂O⁺ আয়ন থাকবে। সাম্যটি মৃদু অ্যাসিড এবং মৃদু ক্ষারকের গঠন যেদিকে ঘটে সেদিকে সরে যাবে, কারণ- তীব্র অ্যাসিড তীব্র ক্ষারকে প্রোটন দান করে।

এর থেকে বুঝা যায় তীব্র অ্যাসিড জলে সম্পূর্ণভাবে বিয়োজিত হয়ে যে ক্ষারক উৎপন্ন করে সেটি খুব দুর্বল হয় অর্থাৎ তীব্র অ্যাসিড খুবই মৃদু (দুর্বল) অণুবন্ধী ক্ষারক গঠন করে। তীব্র অ্যাসিড যেমন পারক্লোরিক অ্যাসিড (HClO₄), হাইড্রোক্লোরিক অ্যাসিড (HCl), হাইড্রোব্রোমিক অ্যাসিড (HBr), হাইড্রো আয়োডিক অ্যাসিড (HI), নাইট্রিক অ্যাসিড (HNO₃) এবং সালফিউরিক অ্যাসিড (H₂SO₄) অণুবন্ধী ক্ষারক রূপে ClO₄, Cl⁻, Br⁻, I ⁻, NO₅ এবং HSO₄ আয়ন দেয় যারা H₂O থেকেও অনেক মৃদু ক্ষারক। একইভাবে একটি তীব্র ক্ষারক খুবই মৃদু অণুবন্ধী অ্যাসিড দেয়। অপরদিকে একটি মৃদু অ্যাসিড যেমন HA জলীয় দ্রবণে আংশিক বিয়োজিত হয় এবং এর ফলে দ্রবণে মুখ্যত অবিয়োজিত HA অণু বেশি পরিমাণে থাকে। নাইট্রাস অ্যাসিড (HNO,), হাইড্রোফ্লুরিক অ্যাসিড (HF) এবং অ্যাসিটিক অ্যাসিড (CH,COOH) গুলো হল বৈশিষ্ট্যসূচক মৃদু অ্যাসিড। মনে রাখতে হবে মৃদু অ্যাসিডগুলোর অণুবন্ধী ক্ষারক খুবই তীব্র হয়। যেমন উদাহরণস্বরূপ NH⁻, O²⁻ এবং H⁻ আয়নগুলো (ক্ষারক) উত্তম প্রোটন গ্রাহক হিসাবে আচরণ করে ফলে এরা ${
m H_2O}$ থেকেও তীব্র ক্ষারক।

কিছু কিছু জলে দ্রবণীয় জৈব যৌগ যেমন ফিনপথ্যালিন (Phenolphthalein) এবং ব্রোমোথাইমল ব্লু (Bromothymol blue) মৃদু অ্যাসিড হিসাবে আচরণ করে এবং তাদের অ্যাসিড (HIn) এবং অণুবন্ধী ক্ষারক (In) রূপ বিভিন্ন বর্ণ প্রদর্শন করে।

HIn(aq) +	$H_2O(l)$	\rightleftharpoons	$H_3O^{+}(aq)$	+	In (aq)
অ্যাসিড			অণুবন্ধী		অণুবন্ধী
নির্দেশক			অ্যাসিড		ক্ষারক
colour A					colourB

এই যৌগগুলো অ্যাসিড-ক্ষারক প্রশমণ বিক্রিয়াতে উপযোগী নির্দেশক রূপে এবং H⁺ আয়নের গাঢ়ত্ব নির্ণয়ে ব্যবহৃত হয়।

7.11.1 জলের আয়নীয় ধ্রুবক এবং আয়নীয় গুণফল (The Ionization Constant of Water and its Ionic Product)

জলের মতো কিছু পদার্থ আছে যারা অ্যাসিড এবং ক্ষারক উভয়রূপে আচরণ করতে সক্ষম। 7.10.2 পরিচ্ছেদে আমরা জলের ক্ষেত্রে এটি লক্ষ করেছি। অ্যাসিড HA এর উপস্থিতিতে এটি একটি প্রোটন গ্রহণ করে ক্ষার হিসাবে আচরণ করে আবার ক্ষারক B⁻ এর উপস্থিতিতে এটি অ্যাসিড হিসাবে আচরণ করে এবং একটি প্রোটন দান করে। বিশুদ্ধ জলে একটি H₂O অণু প্রোটন দান করে এবং অ্যাসিডরূপে আচরণ করে এবং অন্য একটি জলের অণু একই সময়ে একটি প্রোটন গ্রহণ করে ক্ষার হিসাবে আচরণ করে। জলে নিম্নলিখিত সাম্যটি বর্তমান :

H₂O(l) + H₂O(l) ⇒ H₃O⁺(aq) + OH⁻(aq) অ্যাসিড ক্ষারক অণুবন্ধী অণুবন্ধী অ্যাসিড ক্ষারক

বিয়োজন ধ্রুবকটিকে নিম্নলিখিতভাবে প্রকাশ করা যায়,

$$K = [H_3O^+] [OH^-] / [H_2O]$$
(7.26)

জলের ঘনত্বকে হর থেকে বাদ দেওয়া হয়েছে, যেহেতু জল একটি বিশুদ্ধ তরল এবং এর ঘনত্ব স্থির থাকে। [H₂O] কে সাম্য ধ্রুবকের সঙ্গো গুণ করে একটি নতুন ধ্রুবক $K_{_{\rm W}}$, পাওয়া যায় যাকে জলের আয়নীয় গুণফল বলে।

$$K_{\rm w} = [{\rm H}^+][{\rm OH}^-]$$
(7.27)

পরীক্ষামূলকভাবে পাওয়া গেছে 298 K উস্নতায় H⁺এর গাঢ়ত্ব 1.0 × 10⁻⁷ M এবং যেহেতু জলের বিয়োজনে সম পরিমাণ H⁺ এবং OH⁻ আয়ন উৎপন্ন হয়। সুতরাং হাইড্রোক্সিল আয়নের গাঢ়ত্ব [OH⁻] = [H⁺] = 1.0 × 10⁻⁷ M. সুতরাং 298K উস্নতায় K_w এর মান হবে,

$$K_{\rm w} = [{\rm H}_3 {\rm O}^+][{\rm O}{\rm H}^-]$$

= $(1 \times 10^{-7})^2 = 1 \times 10^{-14} {\rm M}^2$ (7.28)

 $K_{
m w}$ এর মান উস্নতা নির্ভরশীল যেহেতু এটি একটি সাম্য ধ্রুবক। বিশুম্ব জলের ঘনত্ব 1000 g / L এবং এর মোলার ভর 18.0 g / mol. এই তথ্য থেকে বিশুম্ব জলের মোলারটি নির্ণয় করা যায়।

 $[H_2O] = (1000 \text{ g} /\text{L})(1 \text{ mol}/18.0 \text{ g}) = 55.55 \text{ M}.$

সুতরাং বিয়োজিত জল এবং অবিয়োজিত জলের অনুপাতকে হবে 10⁻⁷ / (55.55) = 1.8 × 10⁻⁹ বা ~ 2 × 10⁻⁹ (এই প্রকার সাম্য মুখ্যত অবিয়োজিত জলের অণুর দিকে অবস্থান করে)। আমরা আল্লিক, প্রশম এবং ক্ষারীয় জলীয় দ্রবণকে H₃O⁺ এবং OH⁻ এর গাঢ়ত্বের আপেক্ষিক মানের সাহায্যে পার্থক্য করতে পারি :

আল্লিক : [H₃O⁺] > [OH⁻] প্রশম : [H₃O⁺] = [OH⁻] ক্ষারীয় : [H₃O⁺] < [OH⁻]

7.11.2 pH স্কেল (The pH Scale)

মোলারিটিতে হাইড্রোনিয়াম আয়নের গাঢ়ত্বকে লগারিদমিক স্কেলে সহজে প্রকাশ করা যায়, যাকে pH স্কেল বলে। কোনো দ্রবণের হাইড্রোজেন আয়নের সক্রিয়তাকে (a_H,) 10 নিধান বিশিষ্ট ঋণাত্মক লগারিদমে প্রকাশ করলে তাকে pH বলে। লঘু দ্রবণের ক্ষেত্রে (< 0.01 M) হাইড্রোজেন আয়নের (H⁺) সক্রিয়তা ঐ দ্রবণে হাইড্রোজেন আয়নের মোলার গাঢ়ত্বের সমান। মনে রাখতে হবে সক্রিয়তার কোনো একক নেই এবং একে নিম্নলিখিত সমীকরণের সাহাায্যে প্রকাশ করা যায়—

 $a_{H^+} = [H^+] / \text{mol } L^{-1}$

pH এর সংজ্ঞা হতে নিম্নলিখিত সমীকরণটি লেখা যায় :

$$pH = -\log a_{H^+}$$

 $= -\log \{ [H^+] / mol L^{-1} \}$

সুতরাং HCl (10⁻² M) এর আল্লিক দ্রবণের pH হবে 2। একইভাবে NaOH এর ক্ষারীয় দ্রবণের ক্ষেত্রে যদি [OH⁻]=10⁻⁴ M এবং [H₃O⁺] = 10⁻¹⁰ M হয়, তবে pH হবে 10। 25 °C উন্নতায় বিশুম্ধ জলে হাইড্রোজেন আয়নের গাঢ়ত্ব [H⁺] = 10⁻⁷ M । সেজন্য বিশুম্ধ জলের pH হবে :

 $pH = -log(10^{-7}) = 7$

আল্লিক দ্রবণে হাইড্রোজেন আয়নের গাঢ়ত্ব $[{
m H}^+]>10^{-7}~{
m M}$ হয় যেখানে ক্ষারীয় দ্রবণে হাইড্রোজেন আয়নের গাঢ়ত্ব $[{
m H}^+]>10^{-7}~{
m M}$ হয়। ফলে আমরা সংক্ষেপে বলতে পারি-

```
আন্নিক দ্রবণের : pH < 7
```

```
ক্ষারীয় দ্রবণের : pH > 7
```

```
প্রশম দ্রবণের : pH = 7
```

এখন সমীকরণ 7.28 কে 298 K উম্বতায় পূর্ণবিচার করি

 $K_{\rm w} = [{\rm H}_{3}{\rm O}^{+}] [{\rm O}{\rm H}^{-}] = 10^{-14}$

সমীকরণের উভয়দিকে ঋণাত্মক লগারিদম নিয়ে পাই

$$-\log K_{w} = -\log \{ [H_{3}O^{+}] [OH^{-}] \}$$
$$= -\log [H_{3}O^{+}] - \log [OH^{-}]$$
$$= -\log 10^{-14}$$

 $pK_w = pH + pOH = 14$ (7.29)

লক্ষ করার বিষয়, যদিও K_w এর মান উম্বতার সাথে পরিবর্তিত হতে পারে, কিন্তু উম্বতার সাথে pH এর পরিবর্তন এতই ক্ষুদ্র যে আমরা প্রায়ই একে উপেক্ষা করি। জলীয় দ্রবণের ক্ষেত্রে p K_w একটি গুরুত্বপূর্ণ রাশি যা হাইড্রোজেন এবং হাইড্রক্সিল আয়নের আপেক্ষিক গাঢ়ত্বকে নিয়ন্ত্রণ করে যাদের গুণফল একটি ধ্রুবক। মনে রাখতে হবে যেহেতু pH স্কেল লগারিদমিক, pH স্কেলে এক এককের পরিবর্তন [H⁺] এর গাঢ়ত্বের 10 গুণ পরিবর্তন বুঝায়। একইভাবে যখন হাইড্রোজেন আয়নের গাঢ়ত্ব [H⁺], 100 গুণ পরিবর্তন হয়, তখন pH এর মানে 2 একক পরিবর্তন হয়। এখন তোমরা বুঝতে পারবে কেন তাপমাত্রার সাপেক্ষে pH এর পরিবর্তনকে প্রায়ই উপেক্ষা করা হয়।

জৈবিক এবং প্রসাধন সম্বন্ধীয় প্রয়োগের সময় দ্রবণের pH সমন্ধে জানা, বা পরিমাপ করা অতি প্রয়োজনীয়। pH পেপার যেটি বিভিন্ন মানের pH এর দ্রবণে বিভিন্ন রং দেখায়, তার সাহায্যে মোটামুটিভাবে কোন দ্রবণের pH নির্ণয় করা যায়।

আজকাল চারটি পটিযুক্ত pH পেপার পাওয়া যাচ্ছে। একই pH এর মানে (চিত্র 7.11) বিভিন্ন পটি বিভিন্ন রঙ দেখায়। pH পেপার এর সাহায্যে 1-14 পর্যন্ত pH এর মান ~0.5 যথার্থতার (accuracy) পর্যন্ত নির্ণয় করা সম্ভব।

চিত্র 7.11 চারটি পটিযুক্ত pH পেপার যেটি একই pH মানে বিভিন্ন রঙ প্রদর্শন করে।

অধিক যথার্থতার (accuracy) জন্য pH মিটার ব্যবহার করা হয়। pH মিটার হল এমন এক যন্ত্র যার সাহায্যে কোন পরীক্ষণীয় দ্রবণের pH নির্ভর বৈদ্যুতিক বিভবকে 0.001 যথার্থতা পর্যন্ত নির্ণয় করা যায়। বাজারে এখন কলমের আকারের সমান pH মিটার পাওয়া যায়। কিছু সাধারণ পদার্থের pH এর মান টেবিল 7.5 এ দেওয়া হল।

সমস্যা 7.16

কোনো পানীয়ের নমুনাতে হাইড্রোজেন আয়নের গাঢ়ত্ব 3.8 ×
10 ⁻³ M দ্রবণটির pH কত হবে ?
সমাধান
$pH = -\log[3.8 \times 10^{-3}]$
$= - \{ \log[3.8] + \log[10^{-3}] \}$
$= - \{ (0.58) + (-3.0) \} = - \{ -2.42 \} = 2.42$
অর্থাৎ মৃদু পানীয়টির pH হল 2.42 এবং এটি একটি অস্লিক
দ্রবর্ণ।
সমস্যা 7.17
$ m HCl}$ এর $1.0 imes 10^{-8}~ m M$ দ্রবণের $ m pH$ নির্ণয় কর।

MINI /.5 149 MINING MILLAN DH	সারণী 7.5	কিছ সাধারণ	পদার্থের nH	
-------------------------------	-----------	------------	-------------	--

তরলের নাম	pН	তরলের নাম	pН
NaOH এর সম্পৃক্ত দ্রবণ	~15	ব্ল্যাক কফি (Black Coffee)	5.0
0.1 M NaOH দ্রবণ	13	টমেটো জুস	~4.2
লেবুর জল (Lime water)	10.5	মৃদু পানীয় এবং ভিনিগার	~3.0
মিল্ক অব ম্যাগনেশিয়া	10	লেবুর জুস (রস)	~2.2
ডিমের সাদা অংশ, সমুদ্র জল	7.8	গ্যাসট্রিক জুস (জঠর রস)	~1.2
মানুষের রক্ত	7.4	1M HCl দ্রবণ	~0
দুধ	6.8	গাঁঢ় HCl	~-1.0
মানুষের লালারস	6.4		

সমাধান $2H_2O(1) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$ $K_w = [OH^-][H_3O^+]$ $= 10^{-14}$ ধরি $x = [OH^-] =$ জল থেকে প্রাপ্ত $[H_3O^+]$ এখানে H_3O^+ দুইভাবে উৎপন্ন হয় (i) দ্রবীভূত HCl এর আয়ণীভবন থেকে যেমন— HCl(aq) + H_2O(1) \rightleftharpoons H_3O⁺ (aq) + Cl⁻(aq) এবং(ii) H_2O-এর আয়নীভবন হতে। এমন ধরনের অতিলঘু দ্রবদের ক্ষেত্রে H_3O⁺ এর উভয় প্রকার উৎসকে বিবেচনা করতে হবে। $[H_3O^+] = 10^{-8} + x$ $K_w = (10^{-8} + x)(x) = 10^{-14}$ or $x^2 + 10^{-8} x - 10^{-14} = 0$ $[OH^-] = x = 9.5 \times 10^{-8}$ অর্থাৎ, pOH = 7.02 এবং pH = 6.98

7.11.3 মৃদু অ্যাসিডের আয়নীভবন ধ্রুবক (Ionization Constants of Weak Acids)

জলীয় দ্রবণে আংশিক ভাবে আয়নিত একটি মৃদু অ্যাসিড HX বিবেচনা করা যাক। এই ক্ষেত্রে সাম্যাবস্থাটিকে নিম্নলিখিতভাবে প্রকাশ করা যায়—

HX(aq) + H₂O(l) ⇒ H₃O⁺(aq) + X⁻(aq) প্রাথমিক গাঢ়ত্ব (M) c 0 0 যদি α বিয়োজন মাত্রা হয় তবে গাঢ়ত্বের পরিবর্তন (M) -cα +cα +cα সাম্যাবস্থার গাঢ়ত্ব (M) c-cα cα cα এখানে c হল t = 0 সময়ে অবিয়োজিত অ্যাসিড HX এর গাঢ়ত্ব, lpha হল HX এর বিয়োজন মাত্রা। এই সংকেতগুলো ব্যবহার করে আমরা উপরে আলোচিত অ্যাসিডটির বিয়োজন স্যাম্যাবস্থায় সাম্য ধ্রুবকটি প্রতিপাদিত করতে পারি—

 $K_{\rm a} = c^2 \alpha^2 / c(1-\alpha) = c \alpha^2 / 1-\alpha$

 K_a হল অ্যাসিড HX এর বিয়োজন বা আয়নীভবন ধ্রুবক। উপরের সমীকরণটিকে মোলার গাঢ়ত্বের সাহয্যে বিকল্পরূপে নিম্নলিখিতভাবে প্রকাশ করা যায়—

 $K_{a} = [H^{+}][X^{-}] / [HX]$ (7.30)

একটি নির্দিষ্ট উম্বতা *T* তে *K*_a অ্যাসিড HX এর শক্তির (তীব্রতার) পরিমাপকে প্রকাশ করে। অর্থাৎ *K*_a এর মান যত বেশি হবে অ্যাসিডটি তত বেশি তীব্র হবে।

সব পদার্থের প্রমাণ অবস্থায় গাঢ়ত্ব 1M ধরলে $K_{
m a}$ মাত্রাবিহীন হয়।

সারণি 7.6 এ কিছু মৃদু অ্যাসিডের আয়নীভবন ধ্রুবকের মান দেওয়া হলো।

সারণী 7.6 কিছু মৃদু অ্যাসিডের (298K উম্নতায়) আয়নীভবন ধ্রুবক

অ্যাসিড	আয়নীভবন ধ্রুবক, K _a
হাইড্রেফ্লুরিক অ্যাসিড (HF)	3.5×10^{-4}
নাইট্রাস অ্যাসিড (HNO ₂)	4.5×10^{-4}
ফরমিক অ্যাসিড (HCOOH)	$1.8 imes 10^{-4}$
নিয়াসিন (C_5H_4NCOOH)	$1.5 imes 10^{-5}$
অ্যাসিটিক অ্যাসিড (CH ₃ COOH)	1.74×10^{-5}
বেঞ্জোয়িক অ্যাসিড (C_6H_5COOH)	$6.5 imes 10^{-5}$
হাইপো ক্লোরাস অ্যাসিড (HCIO)	3.0×10^{-8}
হাইড্রো সায়ানিক অ্যাসিড (HCN)	4.9×10^{-10}
ফেনল (C_6H_5OH)	1.3×10^{-10}

হাইড্রোজেন আয়নের গাঢ়ত্বের জন্য pH স্কেল এত উপযোগী যে pK, ছাড়াও অন্যান্য পদার্থ ও রাশির ক্ষেত্রেও এর বর্ধিত ব্যবহার রয়েছে।

অতএব আমরা পাই

 $pK_{a} = -\log(K_{a})$ (7.31)

একটি অ্যাসিড এর বিয়োজন ধ্রুবক $K_{_{\!\!A}}$ এবং প্রাথমিক গাঢ়ত্ব c জেনে সকল পদার্থের সাম্য গাঢ়ত্ব, অ্যাসিডটির বিয়োজন মাত্রা এবং দ্রবণের pH নির্ণয় করা সম্ভব।

দুর্বল তড়িৎ বিশ্লেষ্যগুলোর pH এর মান নির্ণয়ে নিম্নলিখিত সাধারণ ধাপগুলো ক্রমাণুসারে গ্রহণ করা যেতে পারে।

১ম ধাপ. বিয়োজনের পূর্বে পদার্থগুলোকে ব্রনস্টেড-লাউরি অ্যাসিড/ক্ষারক রুপে চিহ্নিত করা হয়।

২য় ধাপ. যে সকল পদার্থ অ্যাসিড এবং ক্ষারক উভয়রপে আচরণ করে তাদের ক্ষেত্রে সকল সম্ভাব্য বিক্রিয়ার সমিত সমীকরণ লিখতে হবে।

৩য় ধাপ. যে বিক্রিয়ার K_a এর মান উচ্চ হয়, তাকে মূলবিক্রিয়া এবং অন্যান্য বিক্রিয়াগুলোকে গৌণবিক্রিয়া বলে।

৪র্থ ধাপ. মূল বিক্রিয়ার প্রত্যেকটি পদার্থের ক্ষেত্রে সারণি আকারে নীচের মানগুলো লিপিবদ্ধ করো।

(a) প্রাথমিক গাঢ়ত্ব, c

(b) সাম্যাবস্থার দিকে গতিশীল বিক্রিয়ার গাঢ়ত্বের পরিবর্তনকে বিয়োজন মাত্রা lpha এর সাপেক্ষে প্রকাশ করো।

(c) সাম্য গাঢ়ত্ব

৫ম ধাপ. মূল বিক্রিয়ার ক্ষেত্রে সাম্যাবস্থা স্থিরাঙ্ক সমীকরণে সাম্য গাঢ়ত্বগুলোকে প্রতিস্থাপিত করে lpha এর মান নির্ণয় করো।

৬ষ্ঠ ধাপ. মূল বিক্রিয়াতে পদার্থগুলোর গাঢ়ত্বকে গণনা করো।

৭ম ধাপ. pH গণনা করো, pH = – log[H₃O⁺]

উপরে উল্লেখিত প্রণালীটিকে নীচের উদাহরণের মাধ্যমে স্পষ্টভাবে প্রকাশ করা হলো।

সমস্যা 7.18

HF এর আয়নীভবন ধ্রুবক 3.2 × 10⁻⁴. HF এর 0.02 M দ্রবণে HF এর আয়নন মাত্রা গণনা করো। দ্রবণে উপস্থিত সকল পদার্থ (H₃O⁺, F⁻ এবং HF) এর গাঢ়ত্ব গণনা করো এবং দ্রবণটির pH নির্ণয় করো।

নীচের প্রোটন স্থানান্তর বিক্রিয়াগুলো সম্ভব :

1) $\Pi E + \Pi O \rightarrow \Pi O^{\dagger} + I$

1)
$$\text{Hr} + \text{H}_2\text{O} \rightleftharpoons \text{H}_3\text{O} + \text{F}$$

$$K_a = 3.2 \times 10^{-4}$$
2) $\text{H}_2\text{O} + \text{H}_2\text{O} \rightleftharpoons \text{H}_3\text{O}^+ + \text{OH}^-$

$$K_w = 1.0 \times 10^{-14}$$

রসায়ন

যেহেতু $K_{_{\!\! a}}>>K_{_{\!\! w}},$ [1] নং বিক্রিয়াটির মূল বিক্রিয়া $HF + H_2O \rightleftharpoons H_3O^+ + F^-$

0

 $+ 0.02\alpha$

 0.02α

মূল বিক্রিয়ার জন্য সাম্য বিক্রিয়াতে সাম্য গাঢ়ত্বগুলোকে

দ্বিঘীত সমীকরণটিকে সমাধান করলে lpha এর বর্গমূলের দুটি মান

অর্থাৎ বিয়োজন মাত্রা $\alpha = 0.12$ এবং অন্যান্য পদার্থগুলোর

 $= 2.4 \times 10^{-3} \text{ M}$

যেমন HF, F $^-$ এবং $\rm H_{2}O^{+}$ এর সাম্য গাঢ়ত্ব হলো

 $[H_2O^+] = [F^-] = c\alpha = 0.02 \times 0.12$

 $[HF] = c(1 - \alpha) = 0.02 \ (1 - 0.12)$

K এবং pK এর মানও নির্ণয় করো।

 $pH = -\log[H^+] = -\log(2.4 \times 10^{-3}) = 2.62$

এক ক্ষারীয় অ্যাসিড এর 0.1M দ্রবণের pH 4.50। সাম্যাবস্থায়

H⁺, A⁻এবং HA এর গাঢ়ত্ব গণনা করো। একক্ষারীয় অ্যাসিডটির

0

 $+0.02\alpha$

0.02α

প্রাথমিক গাঢ়ত্ব (M)

0.02

পরিবর্তন (M)

সাম্য গাঢ়ত্ব (M)

পাওয়া যায়

 $\alpha = 0.12$

 $= 17.6 \times 10^{-3} \text{ M}$

সমস্যা 7.19

প্রতিস্থাপিত করে পাই,

 -0.02α

 $0.02 - 0.02\alpha$

 $K_{a} = (0.02\alpha)^2 / (0.02 - 0.02\alpha)$

আমরা নীচের দ্বিঘাত সমীকরণটি পাই,

α = + 0.12 এবং - 0.12

ঋণাত্মক মানটি গ্রহণযোগ্য হয়। সুতরাং

 $\alpha^2 + 1.6 \times 10^{-2} \alpha - 1.6 \times 10^{-2} = 0$

= 0.02 α^2 / (1 – α) = 3.2 × 10⁻⁴

সমাধান

pH = $-\log [H^+]$ সুতরাং, [H⁺] = $10^{-pH} = 10^{-4.50}$ = 3.16×10^{-5} [H⁺] = [A⁻] = 3.16×10^{-5} এবং $K_a = [H^+][A^-] / [HA]$ [HA]_{eqlbm} = $0.1 - (3.16 \times 10^{-5}) \simeq 0.1$ $K_a = (3.16 \times 10^{-5})^2 / 0.1 = 1.0 \times 10^{-8}$ p $K_a = -\log(10^{-8}) = 8$

বিকল্পরুপে 'বিয়োজন শতাংশ' দুর্বল (মৃদু) অ্যাসিডের শক্তি নির্ণয়ের জন্য একটি উপযোগী পম্বতি যাকে নিম্নলিখিতভাবে প্রকাশ করা যায়।

বিয়োজন শতাংশ

 $= [HA]_{\text{facilities}} / [HA]_{\text{gigNes}} \times 100\%$ (7.32)

সমস্যা 7.20

হাইড্রোক্লোরাস অ্যাসিড, HOCl এর 0.08M দ্রবণের pH গণনা করো। অ্যাসিডটির আয়ণীভবন ধ্রুবক এর মান 2.5 × 10⁻⁵হলে HOCl এর বিয়োজন শতাংশ নির্ণয় করো।

সমাধান

 $HOCl(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + ClO^-(aq)$ প্রারম্ভিক গাঢ়ত্ব (M)

0

+x

х

0.08 0

সাম্যে পৌঁছার পূর্বে গাঢ়ত্বের (M) পরিবর্তন

- x + x সাম্য গাঢ়ত্ব (M)

0.08 - x x

$$K_a = \frac{[H_3O+][ClO^-]}{[HOCl]} = \frac{x^2}{(0.08) - x}$$

যেহেতু x << 0.08, সেজন্য 0.08 – x $\simeq 0.08$

$$\frac{x^2}{0.08} = 2.5 \times 10^{-5}$$

 $x^2 = 2.0 \times 10^{-6}$, সুতরাং, $x = 1.41 \times 10^{-3}$
 $[H^+] = 1.41 \times 10^{-3}$ M.

সুতরাং বিয়োজন শতাংশ = { $[HA]_{factories}/[HA]_{214(harbornov)}$ × 100% = 1.41 × 10⁻³ × 10²/ 0.08 = 1.76 %. pH = $-\log(1.41 \times 10^{-3})$ = 2.85

7.11.4 মৃদু ক্ষারকের আয়নীভবন (Ionization of Weak Bases)

ক্ষারক MOH এর আয়নীভবনকে নিম্নলিখিত সমীকরণের সাহায্যে প্রকাশ করা যেতে পারে :

 $MOH(aq) \rightleftharpoons M^+(aq) + OH^-(aq)$

অ্যাসিড বিয়োজন সাম্যের ন্যায় দুর্বল ক্ষারক (MOH) আংশিকরুপে আয়নিত হয়ে M⁺এবং OH⁻ আয়ন দেয়। ক্ষারক আয়নীভবনের ক্ষেত্রে সাম্য ধ্রুবককে ক্ষারক বিয়োজন ধ্রুবক বলা হয় এবং K_b দ্বারা প্রকাশ করা হয়। বিভিন্ন পদার্থের সাম্যাবস্থায় গাঢ়ত্বকে মোলারিটির মাধ্যমে প্রকাশ করে ক্ষার বিয়োজন ধ্রুবককে নিম্নলিখিত সমীকরণের সাহায্যে প্রকাশ করা যায়:

$$K_{\rm b} = [{\rm M}^+][{\rm OH}^-] / [{\rm MOH}]$$
 (7.33)

বিকল্পরূপে, যদি c = ক্ষারকের প্রারম্ভিক গাঢ়ত্ব হয় এবং α = ক্ষারকের আয়নন মাত্রা হয় অর্থাৎ যে পরিমাণে ক্ষারক আয়নিত হয়েছে। তখন সাম্যাবস্থা প্রতিষ্ঠিত হলে সাম্য ধ্রুবককে নিম্নলিখিতভাবে লেখা যায়:

$$K_b = (\mathbf{c}\alpha)^2 / \mathbf{c} (1-\alpha) = \frac{c\alpha^2}{1-\alpha}$$

নির্বাচিত কিছু মৃদু ক্ষারকের আয়নীভবন ধ্রুবক K_b , সারণি 7.7 এ দেওয়া হল

সারণি 7.7 298K এ কিছু মৃদু (দুর্বল) ক্ষারকের আয়নীভবন ধ্রুবকের মান

ক্ষারক	K _b
ডাইমিথাইল অ্যামিন, (CH ₃) ₂ NH	5.4×10^{-4}
ট্রাই ইথাইল অ্যামিন, (C ₂ H ₅) ₃ N	6.45×10^{-5}
অ্যানোমিয়া, $\rm NH_3$ or $\rm NH_4OH$	1.77×10^{-5}
কুইনিন (উদ্ভিজ্জ বস্তু)	1.10×10^{-6}
পিরিডিন, $\mathrm{C_5H_5N}$	1.77×10^{-9}
অ্যানিলিন, $C_6H_5NH_2$	4.27×10^{-10}
ইউরিয়া, CO (NH ₂) ₂	1.3×10^{-14}

অনেক জৈব যৌগ যেমন অ্যামিন দুর্বল ক্ষারক। অ্যামিনগুলো অ্যামোনিয়া জাতক যৌগ (*Derivatives*) যেখানে এক বা একাধিক হাইড্রোজেন পরমাণু অন্য গ্রুপ দ্বারা প্রতিস্থাপিত হয়। যেমন মিথাইল অ্যামিন, কোডেইন, কুইনিন এবং নিকোটিন, প্রত্যেকেই দুর্বল ক্ষারক হিসাবে আচরণ করে কারণ তাদের $K_{
m b}$ এর মান কম। অ্যামোনিয়া জলীয় দ্রবণে OH⁻ আয়ন দেয় :

 $NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$

হাইড্রোজেন আয়নের গাঢ়ত্ব নির্ধারনকারী pH স্কেলের পরিবর্ধন করা হয়েছে যাতে নিম্নলিখিত সমীকরণটি পাওয়া যায়। p $K_{_b} = - \log (K_{_b})$ (7.34)

সমস্যা 7.21

 $0.004{
m M}$ হাইড্রজিন দ্রবণের $p{
m H}$ এর মান 9.7 . আয়নীভবন ধ্রুবক $K_{
m b}$ এবং $pK_{
m b}$ এর মান গণনা করো।

সমাধান

 $NH_2NH_2 + H_2O \rightleftharpoons NH_2NH_3^+ + OH^-$

আমরা pH থেকে হাইড্রোজেন আয়নের গাঢ়ত্ব গণনা করতে পারি। হাইড্রোজেন আয়ন গাঢ়ত্ব এবং জলের আয়নীয় গুণফল হতে আমরা হাইড্রক্সিল আয়নের গাঢ়ত্ব গণনা করতে পারি। এই প্রকারে আমরা পাই

$$[H^+] = antilog (-pH)$$

= antilog (-9.7) = 1.67 × 10⁻¹⁰
$$[OH^-] = K_w / [H^+] = 1 \times 10^{-14} / 1.67 \times 10^{-10}$$

= 5.98 × 10⁻⁵

হাইড্রাজিনিয়াম আয়েনর গাঢ়ত্ব হাইড্রক্সিল আয়নের গাঢ়ত্বের সমান। এই দুটি আয়নের গঢ়ত্ব খুবই কম, সে জন্য অবিয়োজিত ক্ষারকের গাঢ়ত্ব 0.004M এর সমান ধরা যেতে পারে। এই প্রকারে,

$$\begin{split} K_{\rm b} &= [{\rm NH}_2 {\rm NH}_3^+] [{\rm OH}^-] / [{\rm NH}_2 {\rm NH}_2] \\ &= (5.98 \times 10^{-5})^2 / 0.004 = 8.96 \times 10^{-7} \\ {\rm p} K_{\rm b} = -{\rm log} K_{\rm b} = -{\rm log} (8.96 \times 10^{-7}) = 6.04. \end{split}$$

সমস্যা 7.22

কোনো দ্রবণে 0.2M NH₄Cl এবং 0.1M NH₃ উপস্থিত। দ্রবণটির pH গণনা কর। অ্যামোনিয়া দ্রবণের pK_b, 4.75।

সমাধান

NH₃ + H₂O ➡ NH₄⁺ + OH⁻ অ্যামোনিয়ার আয়নীভবন ধ্রুবক,

 $K_{\rm b} = {\rm antilog} \; (-{\rm p}K_{\rm b})$ অর্থাৎ $K_{\rm b} = 10^{-4.75} = 1.77 \times 10^{-5} \; {\rm M}$

 $NH_3 + H_2O \rightleftharpoons NH_4^+$ OH প্রারম্ভিক গাঢ়ত্ব (M) 0.10 0.20 0 সাম্যে পৌঁছার জন্য গাঢ়ত্বের পরিবর্তন +x-X+xসাম্যাবস্থায় (M), 0.10 – x 0.20 + xХ $K_{\rm b} = [\rm NH_4^+][\rm OH^-] / [\rm NH_3]$ $= (0.20 + x)(x) / (0.1 - x) = 1.77 \times 10^{-5}$ যেহেতু $K_{\rm b}$ এর মান ছোট, সেজন্য আমরা x কে $0.1{
m M}$ এবং 0.2M গাঢ়ত্বের সাপেক্ষে উপেক্ষা করতে পারি। সেজন্য $[OH^{-}] = x = 0.88 \times 10^{-5}$ সেজন্য, $[\mathrm{H^{+}}] = 1.12 \times 10^{-9}$ $pH = -\log[H^+] = 8.95.$

7.11.5 $K_{\rm a}$ এবং $K_{\rm b}$ এর মধ্যে সম্পর্ক (Relation between $K_{\rm a}$ and $K_{\rm b}$)

এই অধ্যায়ে পূর্বে দেখানো হয়েছে অ্যাসিড এবং ক্ষারের তীব্রতা যথাক্রমে K_a এবং K_b দ্বারা প্রকাশ করা হয়। অণুবন্ধী অ্যাসিড ও ক্ষার যুগলের ক্ষেত্রে, তারা এভাবে সম্পর্কিত যে যদি একটি জানা থাকে তাহলে অপরটি সহজেই অণুমান করা যায়। NH_4^+ এবং NH_3 এর উদাহরণ বিবেচনা করলে আমরা দেখি—

NH₄⁺(aq) + H₂O(l) ⇒ H₃O⁺(aq) + NH₃(aq) $K_a = [H_3O^+][NH_3] / [NH_4^+] = 5.6 \times 10^{-10}$ NH₃(aq) + H₂O(l) ⇒ NH₄⁺(aq) + OH⁻(aq) $K_b = [NH_4^+][OH^-] / [NH_3] = 1.8 \times 10^{-5}$ সম্পূর্ণ বিক্রিয়া : 2 H₂O(l) ⇒ H₃O⁺(aq) + OH⁻(aq) $K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14}$ M

যেখানে $K_{_{\rm A}}$ দ্বারা NH $_{_{\rm 4}}^+$ অ্যাসিডটির তীব্রতা প্রকাশ করা হয় এবং $K_{_{\rm b}}$ দ্বারা NH, ক্ষারকটির তীব্রতা প্রকাশ করা হয়।

বিক্রিয়াগুলোকে যোগ করে যে সামগ্রিক বিক্রিয়াটি পাওয়া যায় তার সাম্য ধ্রুবক হলো K_{s} এবং K_{b} এর গুণফলের সমান।

$$K_a \times K_b = \frac{[H_3O^+][NH_3]}{[NH_4^+]} \times \frac{[NH_4^+][OH^-]}{[NH_3]}$$

= [H_3O^+][OH^-] = K_w
= (5.6x10^{-10}) \times (1.8 \times 10^{-5})
= 1.0 \times 10^{-14} \text{ M}

একে বর্ধিত করে একটি সাধারণ রূপ তৈরি করা যেতে পারে। দুই বা ততোধিক রাসায়নিক বিক্রিয়া যোগ করার পর যে সামগ্রিক বিক্রিয়াটি পাওয়া যায় তার সাম্য ধ্রুবক প্রত্যেকটি বিক্রিয়ার সাম্য ধ্রুবকের গুণফলের সমান।

$$K_{\text{provides}} = K_1 \times K_2 \times \dots \tag{7.35}$$

একইভাবে, অণুবন্ধী অ্যাসিড ও ক্ষার যুগলের ক্ষেত্রে,

$$K_{a} \times K_{b} = K_{w} \tag{7.36}$$

একটি জানা থাকলে, অপরটি পাওয়া যায়। এটা উল্লেখ করা উচিত যে শক্তিশালী বা তীব্র অ্যাসিডের অণুবন্ধী ক্ষার দুর্বল হয় এবং বিপরীত বিবৃতিটিও সত্য।

বিকল্পভাবে, উপরের সমীকরণ $K_{_{
m W}}=K_{_{
m A}} imes K_{_{
m b}}$ কে ক্ষারক বিয়োজন সাম্যবস্থা বিক্রিয়ার সাহায্যে পাওয়া যায়।

 $B(aq) + H_2O(l) \rightleftharpoons BH^+(aq) + OH^-(aq)$

$$K_b = \frac{[BH^+][OH^-]}{[B]}$$

যেহেতু জলের গাঢ়ত্ব ধ্রুবক (স্থির) সে জন্য হর থেকে বাদ দেওয়া হয়েছে এবং বিয়োজন ধ্রুবকের সাথে অন্তর্ভুক্ত করা হয়েছে। এবার উপরের সমীকরণটিকে [H⁺] দ্বারা গুণ করে এবং ভাগ করে আমরা পাই,

$$K_{b} = \frac{[BH^{+}][OH^{-}][H^{+}]}{[B][H^{+}]}$$
$$= \frac{[OH^{-}][H^{+}][BH^{+}]}{[B][H^{+}]}$$
$$= \frac{K_{w}}{K_{a}}$$

বা $K_a \times K_b = K_w$

এখানে উল্লেখযোগ্য যে, যদি আমরা উপরের সমীকরণটির উভয়দিকে/উভয়পক্ষে ঋণাত্মক লগারিদম প্রয়োগ করি, তখন অণুবন্ধী অ্যাসিড ও ক্ষারকের pK-র মান নীচের সমীকরণের দ্বারা সম্পর্কিত হয় :

 $pK_a + pK_b = pK_w = 14\ 298K$. উন্নতায়

সমস্যা 7.23

0.05M অ্যামোনিয়া দ্রবণের আয়ন মাত্রা এবং pH গণনা করো। অ্যামোনিয়ার আয়নীভবন ধ্রুবক সারণি 7.7 থেকে নেওয়া যেতে পারে। অ্যামোনিয়ার অণুবন্থী অ্যাসিডের আয়ণীভবন ধ্রুবক ও গণনা করো।

সমাধান

জলে অ্যামোনিয়ার আয়নীভবনকে নীচের সমীকরণের মাধ্যমে প্রকাশ করা যেতে পারে। $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$

আমরা সমীকরণ 7.33 কে ব্যবহার করে হাইড্রক্সিল আয়নের গাঢ়ত্ব গণনা করি,

$$[OH^{-}] = c \alpha = 0.05 \alpha$$

$$K_{\rm h} = 0.05 \ \alpha^2 \ / \ (1 - \alpha)$$

α এর মান খুবই ছোট, সেজন্য সমীকরণটির ডান দিকে সংঘটিত হবে। এর সাপেক্ষে α এর মানকে উপেক্ষা করে দ্বিঘাত সমীকরণটিকে সরলভাবে প্রকাশ করা যায়।

এইরুপে

$$K_{\rm b} = c \ \alpha^2 \ \text{or} \ \alpha = \sqrt{(1.77 \times 10^{-5} / 0.05)}$$

= 0.018.

$$[OH^{-}] = c \alpha = 0.05 \times 0.018 = 9.4 \times 10^{-4}M.$$
$$[H^{+}] = K_{w} / [OH^{-}] = 10^{-14} / (9.4 \times 10^{-4})$$

$$= 1.06 \times 10^{-1}$$

 $pH = -\log(1.06 \times 10^{-11}) = 10.97.$

অণুবন্ধী অ্যাসিড ক্ষারক যুগ্ম সম্পর্কটি ব্যবহার করে পাই,

$$K_{\rm a} \times K_{\rm b} = K_{\rm w}$$

সারণি 7.7 থেকে $\mathrm{NH}_{_4}$ এর $K_{_\mathrm{b}}$ এর মান ব্যবহার করে আমরা অণুবন্ধী অ্যাসিড $\mathrm{NH}_{_4}^+$ এর গাঢ়ত্ব গণনা করতে পারি।

$$\begin{split} K_{\rm a} &= K_{\rm w} \ / \ K_{\rm b} = 10^{-14} \ / \ 1.77 \ \times \ 10^{-5} \\ &= 5.64 \ \times \ 10^{-10}. \end{split}$$

7.11.6 দ্বি এবং বহুক্ষারকীয় অস্ল ও দ্বি এবং বহু অস্লীয় ক্ষার (Di- and Polybasic Acids and Di- and Polyacidic Bases)

কিছু অ্যাসিড যেমন অক্সালিক অ্যাসিড, সালফিউরিক অ্যাসিড এবং ফসফরিক অ্যাসিডের মধ্যে অণুতে একাধিক আয়নিত হবার যোগ্য প্রোটন বর্তমান থাকে। এই সমস্ত অ্যাসিডগুলোকে বহুক্ষারকীয় বা পলিপ্রোটিক অ্যাসিড বলে।

উদাহরণস্বরূপ একটি দ্বিক্ষারকীয় অ্যাসিড H₂X এর আয়নীভবন বিক্রিয়াগুলোকে নীচের সমীকরণগুলোর সাহায্যে দেখানো যেতে পারে:

$$H_2X(aq) \rightleftharpoons H'(aq) + HX(aq)$$

 $HX^{-}(aq) \rightleftharpoons H^{+}(aq) + X^{2-}(aq)$

এবং তাদের সম্পর্কিত সাম্য ধ্রুবকগুলোকে নীচে দেখানো হলো: $K_{a_{I}} = \{ [H^{+}] [HX^{-}] \} / [H_{2}X] এবং$

$K_{a_2} = \{ [H^+] [X^{2-}] \} / [HX^{-}]$

এক্ষেত্রে K_{a_1} এবং K_{a_2} কে যথাক্রমে অ্যাসিড $H_2 X$ এর প্রথম এবং দ্বিতীয় আয়নীভবন ধ্রুবক বলা হয়। এইভাবে ত্রিক্ষারীয় অ্যাসিড যেমন $H_3 PO_4$ এর ক্ষেত্রে তিনটি আয়নীভবন ধ্রুবক থাকে। সারণি 7.8 এ কিছু সাধারণ পলিপ্রোটিক অ্যাসিডের আয়নীভবন ধ্রুবকের মান দেওয়া হলো।

সারণি 7.8 কিছু সাধারণ পলিপ্রোটিক অ্যাসিডের 298K উন্নতায় আয়নীভবন ধ্রুবকের মান

অ্যাসিড		K_{a_2}	K _{<i>a</i>₃}
অক্সলিক অ্যাসিড	5.9×10^{-2}	6.4×10^{-5}	
অ্যাসকরবিক অ্যাসিড	7.4×10^{-4}	1.6×10^{-12}	
সালফিউরাস অ্যাসিড	$1.7 imes 10^{-2}$	$6.4 imes 10^{-8}$	
সালফিউরিক অ্যাসিড	খুবই বেশি	$1.2 imes 10^{-2}$	
কার্বনিক অ্যাসিড	4.3×10^{-7}	5.6×10^{-11}	
সাইট্রিক অ্যাসিড	7.4×10^{-4}	$1.7 imes 10^{-5}$	4.0×10^{-7}
ফসফরিক অ্যাসিড	7.5×10^{-3}	$6.2 imes 10^{-8}$	4.2×10^{-13}

লক্ষণীয় যে পলি প্রোটিক অ্যাসিডের উচ্চক্রম বিশিষ্ট আয়নীভবন ধ্রুবক (K_{a_2}, K_{a_3}) এর মান নিম্নক্রম বিশিষ্ট আয়নীভবন ধ্রুবক (K_{a_1}) অপেক্ষা ছোট হয়। এর কারণ হলো স্থির তাড়িতিক বলের জন্য ঋণাত্মক আয়ন থেকে ধনাত্মক আধান বিশিষ্ট প্রোটনকে অপসারণ করা অধিকতর কঠিন। অনাহিত H_2CO_3 এর সাপেক্ষে ঋণাত্মকভাবে আহিত HCO_3^- এর থেকে প্রোটন অপসারণের ক্ষেত্রে এটি দেখা যায়। একইভাবে $H_2PO_4^-$ অ্যানায়ন অপেক্ষা দ্বিআধান গ্রহস্থ HPO_4^{-2} অ্যানায়ন থেকে প্রোটন অপসারণ করা অধিক সমস্যা বহুল।

পলিপ্রোটিক অ্যাসিডের দ্রবণে যেমন ডাইপ্রোটিক অ্যাসিড H₂A এর দ্রবণে H₂A, HA⁻এবং A²⁻ অ্যাসিডগুলোর মিশ্রণ থাকে। H₂A একটি তীব্র অ্যাসিড হওয়ার ফলে মুখ্য বিক্রিয়াটিতে H₂A এর বিয়োজন ঘটে এবং দ্রবণে H₃O⁺ মূলত বিয়োজনের প্রথম ধাপ থেকে আসে।

7.11.7 অ্যাসিডের শক্তি নিয়ন্ত্রণকারী বিষয় সমূহ (Factors Affecting Acid Strength)

পরিমাণগত অ্যাসিড এবং ক্ষারকের শস্তির মাত্রা বিবেচনা করার পর আমরা এমন একটি অবস্থায় যখন কোনো প্রদন্ত অ্যাসিড দ্রবণের pH গণনা করতে পারি। কিন্তু প্রশ্ন উঠে কেন কিছু অ্যাসিড অন্যান্য অ্যাসিডের তুলনায় অধিক তীব্র হয় ? অ্যাসিডগুলোর তীব্রতার জন্য কোন্ কোন্ বিষয় দায়ী থাকে। এর উত্তর একটি জটিল ধর্মাবলীতে বিরাজ করে। কিন্তু মুখ্যত রূপে আমরা বলতে পারি কোন অ্যাসিডের বিয়োজন সীমা H-A বন্ধনের শক্তি এবং ধ্রুবীয়তার উপর নির্ভর করে।

সাধারণত যখন H-A বন্ধনের শক্তি হ্রাস পায় অর্থাৎ যখন বন্ধন বিভাজনে প্রয়োজনীয় শক্তির পরিমাণ হ্রাস পায়, তখন HA তীব্র অ্যাসিড রুপে আচরণ করে। আবার যখন H-A বন্ধন অধিক ধ্রুবীয় হয় অর্থাৎ যখন H এবং A পরমাণুর মধ্যে তড়িৎ ঋণাত্মকতা বৃদ্ধি পায় এবং আধান পৃথকীকরণ উল্লেখযোগ্য পরিমাণে ঘটে তখন বন্ধন বিভাজন সহজ হয়। ফলস্বরূপ অম্লতা বৃদ্ধি পায়।

কিন্তু এখানে উল্লেখনীয় যে পর্যায়সারণীর একই শ্রেণির মৌলগুলোর তুলনা করতে হলে H-A বন্ধনের শক্তি, অ্যাসিড ধর্ম নির্ণয়ে ধ্রুবীয় প্রকৃতি অপেক্ষা অধিক গুরুত্বপূর্ণ কারণ হিসাবে ধরা হয়। শ্রেণির নীচের দিকে যেতে যেতে A এর আকৃতি বৃদ্ধির সাথে সাথে H-A বন্ধনের শক্তি হ্রাস পায় এবং অ্যাসিডের শক্তি বৃদ্ধি পায়। উদাহরণস্বরুপ,

আকার বৃদ্ধি পায়	
HF << HCl << HBr << HI	
অ্যাসিড ধর্ম বৃদ্ধি পায়	

একইভাবে, H₂O অপেক্ষা H₂S অধিক তীব্র অ্যাসিড। আবার যখন আমরা পর্যায় সারণির একই পর্যায়ের মৌলগুলো নিয়ে বিবেচনা করি, H-A -এর বন্ধন ধ্রুবীয়তা অ্যাসিডের শক্তি নির্ণয়ে মুখ্য কারণ হিসাবে ধরা হয়। A-এর তড়িৎ ঋণাত্মকতা বৃদ্ধির সাথে সাথে অ্যাসিডের তীব্রতা বৃদ্ধি পায়। উদাবরণস্বরূপ,

A-এর তড়িৎ ঋণাত্মকতা বৃদ্ধি পায়

$CH_4 < NH_3 < H_2O < HF$	
অ্যাসিডের তীব্রতা বৃদ্ধি পায়	

7.11.8 অ্যাসিড এবং ক্ষারকের আয়নীভবনে সমআয়ন প্রভাব
(Common Ion Effect in the Ionization of
Acids and Bases)

উদাহরণরূপে অ্যাসিটিক অ্যাসিডের বিয়োজন সাম্যটি এভাবে প্রকাশ করা যায় :

$$CH_3COOH(aq) \rightleftharpoons H^+(aq) + CH_3COO^-(aq)$$

$$K_{\rm a} = [\rm H^+][\rm Ac^-] / [\rm HAc]$$

অ্যাসিটিক অ্যাসিডের দ্রবণে অ্যাসিটেট আয়নকে যোগ করলে হাইড্রোজেন আয়নের [H⁺] গাঢ়ত্ব হ্রাস পায়। আবার যদি H⁺ আয়নকে বাহ্যিক উৎস থেকে যোগ করা হয় তখন সাম্যটি অবিয়োজিত অ্যাসিটিক অ্যাসিডের দিকে সরে যায় অর্থাৎ যেদিকে হাইড্রোজেন আয়নে [H⁺] গাঢ়ত্ব হ্রাস পায় সেদিকে সরে যায়। এই ঘটনাটি সম আয়ন প্রভাবের একটি উদাহরণ। একে বিয়োজন সাম্যাবস্তায় বাইরে থেকে কোন পদার্থ যোগ করার ফলে, সাম্যে পূর্ব থেকে উপস্থিত কোনো আয়নের গাঢ়ত্ব বৃষ্ণির ফলে সাম্যের সরণ হিসাবে সংজ্ঞায়িত করা যেতে পারে। সুতরাং আমরা বলতে পারি সমআয়ন প্রভাব ঘটনাটি লাশাতেলিয়ার নীতির উপর নির্ভরশীল যাকে 7.8 অনুচ্ছেদে আলোচনা করা হয়েছে।

0.05M অ্যাসিটিক অ্যাসিড দ্রবণে 0.05M অ্যাসিটেট আয়ন যোগ করার ফলে দ্রবণের pH এর কি পরিবর্তন ঘটে তা পরিমাপ করার জন্য আমরা পুনরায় অ্যাসিটিক অ্যাসিডের বিয়োজন সাম্যকে পুনরায় বিবেচনা করি,

$HAc(aq) \rightleftharpoons H^+(aq)$	q) + Ac(aq)	
প্রারম্ভিক গাঢ়ত্ব (M)		
0.05	0	0.05
-		-

মনে করি, x হল অ্যাসিটিক অ্যাসিডের বিয়োজন মাত্রা। গাঢ়ত্বের পরিবর্তন (M)

X	$+_{\mathbf{X}}$	$+_{\rm X}$
সাম্য গাঢ়ত্ব (M)		
0.05-x	Х	0.05+x
সুতরাং		

 $1.8 \times 10^{-5} = (x) (0.05 + x) / (0.05 - x)$ = x(0.05) / (0.05) = x = [H⁺] = 1.8 × 10⁻⁵M pH = -log(1.8 × 10⁻⁵) = 4.74

সমস্যা 7.24

0.10M অ্যামোনিয়া দ্রবণের pH গণনা করো। যদি এই দ্রবণের 50.0 mL এর সঙ্গে 25.0 mL, 0.10M HCl দ্রবণ যোগ করা হয় তবে তার pH গণনা করো। অ্যামোনিয়ার বিয়োজন ধ্রুবকের মান $K_{
m b} = 1.77 imes 10^{-5}$

সমাধান

 $NH_3 + H_2O \rightarrow NH_4^+ + OH^ K_b = [NH_4^+][OH^-] / [NH_3] = 1.77 \times 10^{-5}$ ଥ୍ୟୁଲ୍ଲାମେଶ পূର୍বେ, $[NH_4^+] = [OH^-] = x$ $[NH_3] = 0.10 - x \simeq 0.10$ x² / 0.10 = 1.77 × 10⁻⁵ এইভাবে, x = 1.33 × 10⁻³ = [OH⁻] সুতরাং, [H⁺] = K_w / [OH⁻] = 10⁻¹⁴ / (1.33 × 10⁻³) = 7.51 × 10⁻¹² pH = -log(7.5 × 10⁻¹²) = 11.12

25 mL, 0.1M HCl দ্রবণ (অর্থাৎ 2.5 mmol HCl) 50 mL 0.1M অ্যামোনিয়া দ্রবণে (অর্থাৎ 5 mmol NH₃) যোগ করার ফলে 2.5 mmol অ্যামোনিয়া অণু প্রশমিত হয়। উৎপন্ন 75 mL দ্রবণে অপ্রশমিত 2.5 mmol NH₃ অণু এবং 2.5m mol NH₄⁺ থাকে।

 $NH_3 + HCl \rightarrow NH_4^+ + Cl^-$ 2.5 2.5 0 0 সাম্যাবস্থায়

0 0 2.5 2.5

উৎপন্ন 75 mL দ্রবণে 2.5 mmol NH⁺ আয়ন (অর্থাৎ 0.033 M) এবং 2.5 m mol (অর্থাৎ 0.033 M) অপ্রশমিত NH₃ অণু থাকে। এই অ্যামোনিয়া নীচের সাম্যতে উপস্থিত :

NH ₄ OH	\rightleftharpoons	NH_4^+	+	OH
0.033M – y		у		у
যেখানে, y =	[OH ⁻] =	= [NH	$[_{4}^{+}]$	

প্রশমনের পর 75 mL সর্বশেষ দ্রবণে 2.5 mmol NH⁺ আয়ন (অর্থাৎ 0.033 M) থেকে যায়, এইভাবে NH⁺₄ আয়নের মোট গাঢ়ত্বকে দেখানো যায়।

$$[NH_4^+] = 0.033 + y$$

যেহেতু y খুব ছোট, তাই $[NH_4OH] \simeq 0.033$ M এবং $[NH_4^+] \simeq 0.033$ M.

আমরা জানি, $K_{
m b} = [{
m NH}_4^+][{
m OH}^-] / [{
m NH}_4{
m OH}]$ $= y(0.033)/(0.033) = 1.77 imes 10^{-5} {
m M}$ একইভাবে, $y = 1.77 imes 10^{-5} = [{
m OH}^-]$ $[{
m H}^+] = 10^{-14} / 1.77 imes 10^{-5} = 0.56 imes 10^{-9}$ সুতরাং, pH = 9.24

7.11.9 লবণের আর্দ্র বিশ্লেষণ এবং তাদের দ্রবণের pH (Hydrolysis of Salts and the pH of their Solutions)

অ্যাসিড এবং ক্ষারের নির্দিষ্ট অনুপাতে বিক্রিয়ার দ্বারা গঠিত লবণের

জলে আয়নীভবন ঘটে। লবণের আয়নীভবনে গঠিত ক্যাটায়ন/অ্যানায়ন জলীয় দ্রবণে জলযোজিত আয়নরুপে বর্তমান থাকে বা জলের সাথে বিক্রিয়া করে লবণের প্রকৃতি অনুযায়ী পুনরায় অ্যাসিড বা ক্ষারক গঠন করে। জলের সঞ্চো লবণের ক্যাটায়ন/অন্যায়ন বা উভয়ের বিক্রিয়াকে আর্দ্রবিশ্লেষণ বলে। এই বিক্রিয়ার ফলে দ্রবণের pH এর উপর প্রভাব পরে। তীব্র ক্ষার থেকে প্রাপ্ত ক্যাটায়ন (যেমন Na⁺, K⁺, Ca²⁺, Ba²⁺ প্রভৃতি) এবং তীব্র অ্যাসিড থেকে প্রাপ্ত অ্যানায়ন (যেমন Cl⁻, Br⁻, NO₃⁻, ClO₄ ইত্যাদি) গুলো সহজেই জলযোজিত হয়ে যায় কিন্ডু আদ্রবিশ্লেষিত হয় না ফলে তীব্র অ্যাসিড এবং ক্ষার থেকে প্রাপ্ত লবণের দ্রবণ প্রশম হয় অর্থাৎ তাদের pH 7 হয়। যদিও অন্য প্রকার লবণের আদ্র বিশ্লেষণ ঘটে।

আমরা এখন নিম্নলিখিত লবণগুলোর আদ্রবিশ্লেষণকে বিবেচনা করবো :

(i) মৃদু অ্যাসিড এবং তীব্র ক্ষারের লবণ যেমন CH₃COONa.

(ii) তীব্র অ্যাসিড এবং দুর্বল ক্ষারের লবণ যেমন NH₄Cl, এবং

(iii) মৃদু অ্যাসিড এবং মৃদু ক্ষারের লবণ যেমন CH₃COONH₄.

প্রথম ক্ষেত্রে, CH₃COONa মৃদু অ্যাসিড CH₃COOH এবং তীব্র ক্ষার NaOH এর লবণ হওয়ার সুবাদে জলীয় দ্রবণে সম্পূর্ণভাবে আয়নিত হয়ে যায়

 $CH_3COONa(aq) \rightarrow CH_3COO^-(aq)+ Na^+(aq)$

উৎপন্ন অ্যাসিটেট আয়ন জলে আদ্রবিশ্লেষিত হয়ে অ্যাসিটিক অ্যাসিড এবং OH- আয়ন উৎপন্ন করে।

 $CH_3COO^{-}(aq)+H_2O(l) \rightleftharpoons CH_3COOH(aq)+OH^{-}(aq)$

অ্যাসিটিক অ্যাসিড একটি মৃদু অ্যাসিড ($K_a = 1.8 \times 10^{-5}$) হওয়ায় দ্রবণে মুখ্যত অ-আয়নিত অবস্থায় থাকে। এর ফলে দ্রবণে OH⁻ আয়নের গাঢ়ত্ব বৃদ্ধি পেয়ে দ্রবণটি ক্ষারকীয় হয়। এই ধরনের দ্রবণের pH, 7 থেকে বেশি হয়।

একইভাবে মৃদু ক্ষার NH₄OH এবং তীব্র অ্যাসিড HCl থেকে গঠিত NH₄Cl জলে সম্পূর্ণরূপে বিয়োজিত হয়ে যায়।

 $NH_4Cl(aq) \rightarrow NH_4^+(aq) + Cl^-(aq)$

অ্যামোনিয়াম আয়ন জলের সঙ্গে আদ্রবিশ্লেষিত হয়ে NH₄OH এবং H⁺ আয়ন গঠন করে।

 $\operatorname{NH}_{4}^{+}(\operatorname{aq}) + \operatorname{H}_{2}\operatorname{O}(1) \rightleftharpoons \operatorname{NH}_{4}\operatorname{OH}(\operatorname{aq}) + \operatorname{H}^{+}(\operatorname{aq})$ অ্যামোনিয়াম হাইড্রক্সাইড একটি দুর্বল ক্ষার ($K_{\mathrm{b}} = 1.77 \times 10^{-5}$

10⁻⁵) এবং ফলস্বরূপ দ্রবণে অ-আয়নিত অবস্থায় থাকে। এর ফলে দ্রবণে H⁺ আয়নের গাঢ়ত্ব বৃদ্ধি পায় এবং দ্রবণটি আল্লিক হয়। ফলে NH₄Cl এর জলীয় দ্রবণের pH, 7 এর কম হয়।

মৃদু অ্যাসিড এবং মৃদু ক্ষার থেকে গঠিত CH₃COONH₄ লবণের আদ্রবিশ্লেষণ বিবেচনা করা যাক্। উৎপন্ন আয়নগুলো নিন্নলিখিতভাবে আদ্রবিশ্লেষিতহয় :

 $\mathrm{CH}_{3}\mathrm{COO}^{-}\mathrm{+}\,\mathrm{NH}_{4}^{+}\mathrm{+}\,\mathrm{H}_{2}\mathrm{O}\rightleftharpoons\mathrm{CH}_{3}\mathrm{COOH}\mathrm{+}\,\mathrm{NH}_{4}\mathrm{OH}$

 CH_3COOH এবং NH_4OH ও আংশিকভাবে বিয়োজিত হয় ৷ $CH_3COOH \implies CH_3COO^- + H^+$ $NH_4OH \implies NH_4^+ + OH^-$

 $H_{2}O \rightleftharpoons H^{+} + OH^{-}$

বিস্তারিত রূপে গণনা না করে বলা যায়, আদ্রবিশ্লেষণের মাত্রা দ্রবণের গাঢ়ত্বের উপর নির্ভরশীল নয় এবং এই সকল দ্রবণের pH, তাদের pK এর মান থেকে নির্ণয় করা হয়।

$$pH = 7 + \frac{1}{2} \left(pK_a - pK_b \right) \tag{7.38}$$

দ্রবণের pH এর মান 7 থেকে বড় হতে পারে যদি পার্থক্যটি ধনাত্মকহয় এবং pH এর মান 7 থেকে ছোটহয় যদি পার্থক্যটি ঋণাত্মক হয়।

সমস্যা 7.25

অ্যাসিটিক অ্যাসিডের p K_a এবং অ্যামোনিয়াম হাইড্রস্কাইডের p K_b যথাক্রমে 4.76 এবং 4.75। অ্যামোনিয়াম অ্যাসিটেট দ্রবণের pH গণনা করো।

সমাধান $pH = 7 + \frac{1}{2} [pK_a - pK_b]$ $= 7 + \frac{1}{2} [4.76 - 4.75]$ $= 7 + \frac{1}{2} [0.01] = 7 + 0.005 = 7.005$

7.12 বাফার দ্রবণ (BUFFER SOLUTIONS)

শরীরে উপস্থিত বিভিন্ন তরল যেমন রক্ত বা মৃত্রের নির্দিষ্ট pH মান থাকে এবং pH এর মানের কোন প্রকার বিচ্যুতি শারীরিক সমস্যার ইঞ্চািত দেয়। বিভিন্ন রাসায়নিক এবং জৈব রাসায়নিক প্রক্রিয়াতে pH এর নিয়ন্ত্রণ খুবই গুরুত্বপূর্ণ হয়। বিভিন্ন ওষুধ এবং প্রসাধনীয় সামগ্রীকে নির্দিষ্ট pH এ রাখা হয় এবং প্রয়োগ করা হয়। যে ধরনের দ্রবণ, দ্রবণটিকে লঘু করলে বা দ্রবণে সামান্য পরিমাণ অ্যাসিড বা ক্ষার যোগ করলে pH এর পরিবর্তনকে বাঁধা দেয় তাকে **বাফার** দ্রবণ বলে।অ্যাসিডের pKa বা ক্ষারের pK মান থেকে এবং মিশ্রণে লবণ ও অ্যাসিডের বা লবণ ও ক্ষারের অনুপাতকে নিয়ন্ত্রণ করে জ্ঞাত মাত্রার pH বিশিষ্ট বাফার দ্রবণ তৈরি করা যায়। অ্যাসিটিক অ্যাসিড এবং সোডিয়াম অ্যাসিটেট এর মিশ্রণ 4.75 pH এ বাফার দ্রবণ হিসাবে কাজ করে এবং অ্যামোনিয়াম ক্লোরাইড এবং অ্যামোনিয়াম হাইড্রক্সাইড এর মিশ্রণ 9.25 pH এ বাফার হিসাবে কাজ করে। তোমরা উঁচু শ্রেণিতে বাফার দ্রবণ সম্পর্কে আরও জানতে পারবে।

7.12.1 বাফার দ্রবণ প্রস্তুতি (Designing Buffer Solution)

p K_a , p K_b এবং সাম্যধ্রুবকের বিষয়ে জেনে আমরা নির্দিষ্ট pH বিশিষ্ট বাফার দ্রবণ প্রস্তুত করতে পারি। চলো দেখি, আমরা কীভাবে এটি তৈরি করতে পারি।

আল্লীক বাফার দ্রবণ প্রস্তুতি (Preparation of Acidic Buffer) আল্লীক pH বিশিষ্ট বাফার দ্রবণ তৈরি করার জন্য আমরা মৃদু অ্যাসিড এবং এর সঙ্গে তীব্র ক্ষারকের বিক্রিয়ায় গঠিত লবণকে ব্যবহার করি। আমরা pH, মৃদু অ্যাসিডের সাম্য ধ্রবক, K_a এবং মৃদু অ্যাসিড ও এর অনুবন্ধী ক্ষারকের গাঢ়ত্বের অনুপাতের মধ্যে সম্পর্ক স্থাপনকারী সমীকরণটি প্রতিষ্ঠা করি। একটি সাধারণ ক্ষেত্রে ধরে নেই যেখানে মৃদু অ্যাসিড HA, জলে আয়নিত হয়।

$$HA + H_2O \rightleftharpoons H_3O^+ + A^-$$

এই ক্ষেত্রে আমরা নিম্নলিখিত রাশিমালা লিখতে পারি

$$K_a = \frac{\left[H_3O^+\right]\left[A^-\right]}{\left[HA\right]}$$

রাশিমালাটিকে পুর্নবিন্যাস করলে আমরা পাই,

$$[H_{3}O^{+}] = K_{a} \frac{[HA]}{[A^{-}]}$$

রাশিমালাটির উভয়দিকে লগারিদম নিয়ে পুনর্বিন্যাস করলে আমরা পাই,—

$$pK_a = pH - log \frac{[A^-]}{[HA]}$$
অথবা

$$pH = pK_a + \log\frac{[A^-]}{[HA]}$$
(7.39)

$$pH = pK_a + \log \frac{[আনুবন্ধী ক্ষারক, A^-]}{[আ্যাসিড, HA]}$$
 (7.40)

(7.40) রাশিমালাটিকে হেন্ডারসন হাসেলবান্ধ (Henderson-

Hasselbalch) সমীকরণ বলে। $\frac{[A^-]}{[HA]}$ এই অনুপাতটি মিশ্রণে উপস্থিত অ্যাসিডের অনুবন্ধী ক্ষারক (অ্যানায়ন) এবং অ্যাসিডের গাঢ়ত্বের অনুপাতকে প্রকাশ করছে। যেহেতু অ্যাসিডটি মৃদু, সে জন্য এটি খুবই কম মাত্রায় আয়নিত হয় এবং [HA] এর গাঢ়ত্ব, বাফার দ্রবণ প্রস্তুতিতে গৃহীত অ্যাসিডের গাঢ়ত্বের প্রায় সমান হয়। আবার অনুবন্ধী ক্ষারক [A⁻⁻]-এর অধিকতর অংশই অ্যাসিড থেকে প্রাপ্ত লবণটির আয়নীভবনের ফলে পাওয়া যায়। সেজন্য অনুবন্ধী ক্ষারকের গাঢ়ত্ব ও লবণটির গাঢ়ত্বের পার্থক্য খুবই নগন্য হয়। এইভাবে (7.40) সমীকরণটিকে নিম্নলিখিতরুপে লেখা যায়–

$$pH = pK_a + \log \frac{[enamediate{mathbb{n}]}{[enamediate{mathbb{n}]}}$$

সমীকরণ (7.39) এ [A⁻] এর গাঢ়ত্ব যদি [HA]-র গাঢ়ত্বের সমান হয় তখন pH = pK_a হয়, কারণ log 1 এর মান শূন্য। এইভাবে যদি আমরা অ্যাসিড এবং লবণের (অনুবন্ধী ক্ষারক) মোলার গাঢ়ত্ব সমান ধরে নেই তবে বাফার দ্রবণের pH অ্যাসিডের pK_a এর মানের সমান হবে। সেজন্য প্রয়োজনীয় pH বিশিষ্ট বাফার দ্রবণ তৈরির জন্য আমরা ঐ অ্যাসিডকেই নির্বাচন করি যার pK_a-এর মান প্রয়োজনীয় pH-এর মানের কাছাকাছি হয়। অ্যাসিটিক অ্যাসিডের ক্ষেত্র pK_a-এর মান 4.76, সেজন্য অ্যাসিটিক অ্যাসিড এবং সোডিয়াম অ্যাসিটিটের সমান মোলার গাঢ়ত্বের মিশ্রণে গঠিত বাফার দ্রবণটির pH-এর মান 4.76 এর প্রায় কাছাকাছি থাকবে।

একটি মৃদু ক্ষারক এবং এর অনুবন্ধী অ্যাসিড দ্বারা গঠিত বাফার দ্রবর্ণাট একইভাবে বিশ্লেষণ করলে নিম্নলিখিত ফলাফল পাওয়া যায় :

$$pOH = pK_b + \log \frac{[wangate and angate and angate beta]}{[wangate angate angate angate beta]}$$
 (7.41)

বাফার দ্রবণের pH, সমীকরণ pH + pOH =14 ব্যবহার করে গণনা করা যায়।

আমরা জানি, pH + pOH = p
$$K_{_{
m W}}$$
এবং

$$pK_a + pK_b = pK_w$$

সমীকরণ (7.41) তে এই মানগুলো বসালে সমীকরণটিকে নিম্নলিখিত রপে পাই:

$$pK_w - pH = pK_w - pK_a + \log \frac{[$$
আনুবন্ধী অ্যাসিড, $BH^+]}{[$ ক্ষারক, $B]}$ বা

$$pH = pK_a + \log \frac{[\Box n_1 \sigma^2 \eta]}{[\tau m \sigma, B]}$$
 (7.42)

যদি ক্ষারক এবং এর অনুবন্ধী অ্যাসিডের (ক্যাটায়ন) মোলার গাঢ়ত্ব সমান হয় তবে বাফার দ্রবণের pH ক্ষারকের p K_a এর মানের সমান হল। অ্যামোনিয়াম আয়নের (NH₄⁺) p K_a এর মান 9.25। সুতরাং সমমোলার গাঢ়ত্ব বিশিষ্ট অ্যামোনিয়া দ্রবণ এবং অ্যামোনিয়াম

রসায়ন

ক্লোরাইড দ্রবণ নিয়ে pH = 9.25 এর কাছাকাছি বাফার দ্রবণ তৈরি করা যাবে। অ্যামোনিয়াম ক্লোরাইড এবং অ্যামোনিয়াম হাইড্রক্সাইড দিয়ে তৈরি বাফার দ্রবণের ক্ষেত্রে (7.42) সমীকরণটি হবে:

pH=9.25+log [অনুবন্ধী অ্যাসিড, BH⁺] [ক্ষারক, B]

বাফার দ্রবণের pH লঘুকরণের ফলে প্রভাবিত হয় না কারণ লগারিদম পদটির অন্তর্গত অনুপাতটি অপরিবর্তিত থাকে।

7.13 স্বল্প দ্রাব্য লবণের দ্রাব্যতা সাম্য (SOLUBILITY EQUILIBRIA OF SPARINGLY SOLUBLE SALTS)

আমরা ইতিমধ্যে জেনে গেছি যে, জলে আয়নীয় কঠিনগুলোর দ্রাব্যতার মধ্যে অনেক পার্থক্য বর্তমান। এদের মধ্যে কিছু (যেমন ক্যালসিয়াম ক্লোরাইড) এতই দ্রবণীয় যে তারা উদগ্রাহী প্রকৃতির হয় এবং এমনকি বায়ুমণ্ডল থেকেও জলীয় বাষ্প শোষণ করে। অন্যগুলো (যেমন লিথিয়াম ফ্লুরাইড) খুবই কম পরিমাণে দ্রবীভূত হয় এবং সে জন্য তাদের সাধারণত অদ্রবণীয় লবণ বলে। দ্রাব্যতা অনেকগুলো বিষয়ের উপর নির্ভর করে। এদের মধ্যে গুরুত্বপূর্ণ হল লবণের জালক শক্তি (lattice enthalpy) এবং দ্রবণে আয়নগুলোর দ্রাবকায়ণ শক্তি (solvation enthalpy)। কোনো লবণকে দ্রাবকে দ্রবীভূত হতে হলে আয়ন-দ্রাবক আকর্ষণ বল আয়নগুলোর মধ্যে উপস্থিত তীব্র আকর্ষণ বল (জালক শক্তি) থেকে বেশি হতে হবে। আয়নগুলোর দ্রাবকায়ণ শক্তিকে দ্রাবকায়ণ হিসাবে নির্দেশ করা হয় যেটি সর্বদা ঋণাত্মক হয় অর্থাৎ দ্রাবকায়ণ প্রক্রিয়াতে শক্তি মুক্ত হয়। দ্রাবকায়ণ শক্তির পরিমাণ দ্রাবকের প্রকৃতির উপর নির্ভর করে। অধ্রুবীয় (সমযোজী) দ্রাবকের ক্ষেত্রে দ্রাবকায়ণ শক্তি মান কম হয়, যা লবণের জালক শক্তিকে অতিক্রম করার পক্ষে যথেষ্ট নয়। এই কারণে লবণ অধুবীয় দ্রাবকে দ্রবীভূত হয় না। সাধারণ নিয়মানুসারে কোনোও লবণকে কোনও নির্দিষ্ট দ্রাবকে দ্রবীভূত হতে গেলে তার দ্রাবকায়ণ শক্তুি অবশ্যই জালক শক্তি থেকে বেশি হতে হবে যাতে দ্রাবকায়ণ শস্তি জালক শস্তিকে অতিক্রম করতে পারে। প্রত্যেক লবণের একটি নিজস্ব বৈশিষ্টমূলক দ্রাব্যতা থাকে যেটি উম্নতার উপর নির্ভর করে। আমরা লবণগুলোকে তাদের দ্রাব্যতার উপর নির্ভর করে নীচের মতো তিনটি শ্রেণিতে ভাগ করেছি।

বিভাগ I	দ্রাব্য	দ্রাব্যতা > 0.1M
বিভাগ II	আংশিক দ্রাব্য	0.01M< দ্রাব্যতা < 0.1M
বিভাগ III	স্বল্প দ্রাব্য	দ্রাব্যতা < 0.01M

আমরা এখন স্বল্পদ্রাব্য আয়নীয় লবণ এবং এর সম্পৃক্ত জলীয় দ্রবণের মধ্যে সাম্যাবস্থা নিয়ে বিবেচনা করবো।

7.13.1 দ্রাব্যতা গুণফল ধ্রুক (Solubility Product Constant)

চলো আমরা কঠিন বেরিয়াম সালফেট এবং তার সংস্পর্শে থাকা বেরিয়াম সালফেটের সম্পৃক্ত জলীয় দ্রবণের কথা বিবেচনা করি। অদ্রবীভূত কঠিন এবং সম্পৃক্ত দ্রবণে উপস্থিত আয়নগুলোর প্রতিষ্ঠিত সাম্যকে নীচের সমীকরণের সাহায্যে প্রকাশ করা যায় :

সাম্য ধ্রুবককে নীচের সমীকরণের সাহায্যে প্রকাশ করা যায় : $K = \{ [Ba^{2+}] [SO_4^{2-}] \} / [BaSO_4]$

একটি বিশুন্ধ কঠিন পদার্থের গাঢ়ত্ব ধ্রুবক (স্থির) থাকে, সেজন্য আমরা লিখতে পারি

$$K_{\rm sp} = K[BaSO_4] = [Ba^{2+}][SO_4^{2-}]$$
 (7.43)

আমরা K_{sp} কে দ্রাব্যতা গুণফল স্থিরাঙ্ক বা সাধারণভাবে দ্রাব্যতা গুণফল বলি। 298K উস্নতায় উপরের সমীকরণের ক্ষেত্রে K_{sp} -র পরীক্ষালব্দ্ব মান 1.1×10^{-10} । এর অর্থ হচ্ছে কঠিন বেরিয়াম সালফেট এবং তার সম্পৃক্ত দ্রবণের মধ্যে যে সাম্য প্রতিষ্ঠিত তাতে সালফেট আয়ন এবং বেরিয়াম আয়নের গাঢ়ত্বের গুণফল দ্রাব্যতা গুণফল ধ্রুবকের সমান। দুটি আয়নের গাঢ়ত্ব বেরিয়াম সালফেটের মোলার দ্রাব্যতার সমান হবে। যদি মোলার দ্রাব্যতা S হয় তবে— $1.1 \times 10^{-10} = (S)(S) = S^2$

অর্থাৎ বেরিয়াম সালফেটের মোলার দ্রাব্যতা 1.05 × 10⁻⁵ mol L⁻¹ এর সমান হবে।

একটি লবণ বিয়োজিত হয়ে বিভিন্ন আধান বিশিষ্ট দুই বা ততোধিক অ্যানায়ন এবং ক্যাটায়ন দেয়। উদাহরণস্বরূপ $(Zr^{4+})_3(PO_4^{-3-})_4$ আনবিক সংকেত বিশিষ্ট লবণ জিরকোনিয়াম ফসফেটকে বিবেচনা করা যাক। এটি +4 আধান বিশিষ্ট 3টি জিরকোনিয়াম ক্যাটায়ন এবং –3 আধান বিশিষ্ট 4টি ফসফেট অ্যানায়নে বিয়োজিত হয়। যদি জিরকোনিয়াম ফসফেটের মোলার দ্রাব্যতা S হয়, তবে যৌগটির স্টয়শিওমিতি (stoichiometry) অনুসারে আমরা দেখি,

$$[Zr^{4+}] = 3S \text{ Gar} [PO_4^{3-}] = 4S$$

 $Gargerightarrow K_{sp} = (3S)^3 (4S)^4 = 6912 (S)^7$
 $and S = \{K_{sp} / (3^3 \times 4^4)\}^{1/7} = (K_{sp} / 6912)^{1/7}$

 $M_x^{p+} X_y^{q-}$ সাধারণ সংকেত যুক্ত ও S মোলার দ্রাব্যতা বিশিষ্ট কোনো কঠিন লবণ এবং তার সম্পৃক্ত দ্রবণের সাম্যাবস্থাকে নিম্নলিখিত সমীকরণের সাহায্যে প্রকাশ করা যায়—

$$M_x X_v(s) \implies x M^{p^+}(aq) + y X^{q^-}(aq)$$

(বেখানে $x \times p^+ = y \times q^-$)

এবং এর দ্রাব্যতা গুণফল স্থিরাঙ্ককে নিম্নরূপে দেখানো যায় :

$$K_{sp} = [M^{p^+}]^{x} [X^{q^-}]^{y} = (xS)^{x} (yS)^{y}$$
(7.44)
= x^x . y^y . S^(x + y)
S^(x + y) = K_{sp} / x^x . y^y
S = (K_{sp} / x^x . y^y)^{1/x + y}(7.45)

সমীকরণে যখন এক বা একাধিক পদার্থের গাঢ়ত্ব ওদের সাম্যাবস্থায় গাঢ়ত্বের সমান হয় না তখন K_{sp} কে Q_{sp} দ্বারা প্রকাশ করা হয় (অনুচ্ছেদ 7.6.2)। স্পন্টতই সাম্যাবস্থায় $K_{sp} = Q_{sp}$ হয়। কিন্তু অন্য পরিস্থিতিতে এটি অধক্ষেপন বা বিলিয়ন (dissolution) প্রক্রিয়াকে নির্দেশ করে। 298K উন্নতায় কিছু সংখ্যক সাধারণ লবণের দ্রাব্যতা গুণফল স্থিরাঙ্ক সারণী 7.9-এ দেখানো হলো।

সমস্যা 7.26

কোনো প্রকার আয়নই জলের সঞ্চো বিক্রিয়া করে না এমন মনে করে বিশুদ্ধ জলে ${
m A_2}X_3$ এর দ্রাব্যতা গণনা করো । ${
m A_2}X_3$ এর দ্রাব্যতা গণনা করো । ${
m A_2}X_3$ এর দ্রাব্যতা গুণফল, $K_{
m sp}=1.1 imes10^{-23}$

সমাধান

 $A_2X_3 \rightarrow 2A^{3+} + 3X^{2-}$ $K_{sp} = [A^{3+}]^2 [X^{2-}]^3 = 1.1 \times 10^{-23}$ যদি S = A_2X_3 -এর দ্রাব্যতা হয়, তবে $[A^{3+}] = 2S; [X^{2-}] = 3S$ সুতরাং, $K_{sp} = (2S)^2(3S)^3 = 108S^5$ $= 1.1 \times 10^{-23}$ অর্থাৎ S⁵ = 1 × 10⁻²⁵ S = 1.0 × 10⁻⁵ mol/L. সমস্যা 7.27

দুটি স্বল্প দ্রাব্য লবণ Ni(OH)₂ এবং AgCN এর $K_{
m sp}$ এর মান যথাক্রমে 2.0 × 10⁻¹⁵ এবং 6 × 0⁻¹⁷ । কোন লবণটি অধিক দ্রাব্য ? ব্যাখ্যা করো।

সমাধান

AgCN \rightleftharpoons Ag⁺ + CN⁻ $K_{\rm sp} = [Ag^+][CN^-] = 6 \times 10^{-17}$

ব শি ষ্ট	সারণি 7.9 কিছু সাধারণ আয়নীয	য় লবণের 298K	উম্বতায় দ্রাব্যতা
থাকে	গুণফল স্থিরাঙ্ক K _{sp}	এর মান দেওয়া	হলো
	লবণের নাম	সংকেত	K _{sp}
	সিলভার ব্রোমাইড	AgBr	5.0×10^{-13}

		sp
সিলভার ব্রোমাইড	AgBr	5.0×10^{-13}
সিলভাব কার্বোনেট	AgCO	8.1×10^{-12}
সিল্লার কোমোর	$A_{g}CrO$	1.1×10^{-12}
সিল্ভাব কোবাইড	$\Lambda g_2 Clo_4$	1.1×10^{-10}
লিলাভার ভ্লোরা২৩ সিলাভার ফাসোম্বাইনন	Agel	1.0 × 10 9.2 × 10-17
াগলভার আরোভাহত মিলান্ডার মালস্কেট	Agi	8.5×10^{-5}
াসলভার সালকেট	Ag_2SO_4	1.4×10^{-3}
অ্যাল্যামানয়াম হাহড্রাক্সাহড	$AI(OH)_3$	1.3×10^{-33}
বোরয়াম ক্রোমেট	BaCrO ₄	1.2×10^{-10}
বেরিয়াম ফ্লুরাইড	BaF ₂	1.0×10^{-6}
বেরিয়াম সালফেট	$BaSO_4$	1.1×10^{-10}
ক্যালসিয়াম কার্বোনেট	CaCO,	2.8×10^{-9}
ক্যালসিয়াম ফ্লুরাইড	CaF	5.3×10^{-9}
ক্যালসিয়াম হাইড্রক্সাইড	Ca(ÔH),	5.5×10^{-6}
ক্যালসিয়াম অক্সালেট	CaC.O.	4.0×10^{-9}
ক্যালসিয়াম সালফেট	CaSO	9.1×10^{-6}
ক্যাদেমিয়াম হাইডেকাইড	Cd(OH)	2.5×10^{-14}
আইমান হাইব্রসাহত	CdS	2.5×10^{-27}
কোমিক হাইদ্রেজাইদ্র	Cr(OH)	6.0×10^{-31}
রেণাশন বাবপ্রসাবত কিটপ্রাস রোসাইদ	$C_1(OH)_3$	0.5×10^{-9}
াগতরাগ রোমাহত নিউলিন কার্কেন্ট	Cubi	3.3×10^{-10}
াকডাপ্রক কাবোনেট নিউন্ডাল লালাইল	CuCO ₃	1.4×10^{-10}
াক্র আস কোরাহর্	CuCl	1.7×10^{-6}
কিডপ্রিক হাইড্রক্সাইড	Cu(OH) ₂	2.2×10^{-20}
কিউপ্রাস আয়োডাইড	Cul	1.1×10^{-12}
কিউপ্রিক সালফাইড	CuS	6.3×10^{-36}
ফেরাস কার্বোনেট	FeCO ₃	3.2×10^{-11}
ফেরাস হাইড্রক্সাইড	Fe(OH),	$8.0 imes 10^{-16}$
ফেরিক হাইড্রক্সাইড	Fe(OH),	1.0×10^{-38}
ফেরাস সালফাইড	FeS	6.3×10^{-18}
মারকিউরাস ব্রোমাইড	Hg Br	5.6×10^{-23}
মারকিউরাস কোরাইড	Ho	1.3×10^{-18}
মাবকিউবাস আযোডাইড	Ho I	4.5×10^{-29}
মারকিউরাস সালফেট	Hg SO	7.4×10^{-7}
মারকিউরিক সালফাইড	$Hg_2 SO_4$	1.4×10^{-53}
মাধানতায়ক নাগবাহত	MaCO	4.0×10 2.5 × 10-8
ন্যা গলে। শিলা মান সাওমালে। মালল নেমিহাগম ফলাইদ	MgCO ₃	5.5×10^{-9}
ন্যা গন্যোগারান গ্রুয়োহত মার্গপ্রক্রেয়ায় কাইদ্রুকাইদে	Mg(OII)	0.5 × 10
ম্যাগনোগরাম হাহণ্ড্রস্পাহত	Mg(OH) ₂	1.8 × 10 ···
	MgC_2O_4	7.0×10^{-7}
ম্যাজ্যানিজ কাবোনেট	MnCO ₃	1.8×10^{-11}
ম্যাজ্ঞানিজ সালাইড	MnS	2.5×10^{-13}
নিকেল হাইড্রক্সাইড	Ni(OH) ₂	2.0×10^{-15}
নিকেল সালফাইড	NiS	4.7×10^{-5}
লেড ব্রোমাইড	PbBr ₂	4.0×10^{-5}
লেড কার্বোনেট	PbCO ₃	$7.4 imes 10^{-14}$
লেড ক্লোরাইড	PbCl,	1.6×10^{-5}
লেড ফ্লুরাইড	PbF,	7.7×10^{-8}
লেড হাঁইড্ৰক্সাইড	Pb(OH)	1.2×10^{-15}
লেড আয়োডাইড	PbI,	7.1×10^{-9}
লেড সালফেট	PbŚO.	1.6×10^{-8}
লেড সালফাইড	PhS	8.0×10^{-28}
স্ট্রানাস হাইডেঝাইড	Sn(OH)	1.4×10^{-28}
সনানাস সালফাইজ	SnS	1.0×10^{-25}
সন্দ্রিয়ায় কার্বোনেট	SrCO	1.0×10 1.1×10^{-10}
- প্রাণানাশ পাওমতাও সন্দ্রসিয়াহা হর্রাইদে	SrE	2.5×10^{-9}
ম্দ্রনাগান রুমাৎত মন্দ্রমিয়ায় মালস্কেট	SIF ₂ SrSO	2.3×10^{-7}
প্রলাশরাম পাণাবেণ্ড	5150 ₄	5.2×10^{-6}
খ্যালাস ব্রোমাহড	TIBr	3.4×10^{-6}
খ্যালাস ক্লোরাহড	TICI	1.7×10^{-4}
থ্যালাস আয়োডাইড	Til	6.5×10^{-8}
াজজ্ঞ কার্বোনেট	ZnCO ₃	1.4×10^{-11}
জিঞ্চ হাইড্রক্সাইড	Zn(OH) ₂	1.0×10^{-15}
জিষ্ক সালফাইড	ZnS	1.6×10^{-24}

 $Ni(OH)_2 \rightleftharpoons Ni^{2+} + 2OH^{-}$ $K_{\rm sp} = [Ni^{2+}][OH^{-}]^2 = 2 \times 10^{-15}$ ধরি $[Ag^+] = S_1^-$, তখন $[CN^-] = S_1^-$ ধরি [Ni²⁺] = S₂, তখন [OH⁻] = 2S₂ $\mathrm{S_1^2}=6\times10^{-17}$, $\mathrm{S_1}=7.8\times10^{-9}$ $(S_2)(2S_2)^2 = 2 \times 10^{-15}, S_2 = 0.58 \times 10^{-4}$ অর্থাৎ Ni(OH)₂, AgCN থেকে বেশি দ্রাব্য।

230

7.13.2 আয়নীয় লবণের দ্রাব্যতার উপর সমআয়ন প্রভাব (Common Ion Effect on Solubility of Ionic Salts)

লা শাতেলীয়ার নীতি থেকে এটা আশা করা যায় যে যদি আমরা কোনো একটি আয়নের গাঢ়ত্ব বৃদ্ধি করি তবে এটি বিপরীত আধান বিশিষ্ট আয়নের সঙ্গো যুক্ত হবে এবং কিছু লবণ অধ্যক্ষিপ্ত হবে যতক্ষণ না পর্যন্ত পুনরায় $K_{
m sp}=Q_{
m sp}$ হয়। একইভাবে যদি কোনো একটি আয়নের গাঢ়ত্ব হ্রাস পায় তখন অধিক পরিমাণে লবণ দ্রবীভূত হয়ে উভয় প্রকার আয়নের গাঢ়ত্ব বৃদ্ধি করবে যতক্ষণ না পর্যন্ত পুনরায় $K_{
m sp}=Q_{
m sp}$ হয়। এটি সোডিয়াম ক্লোরাইড এর ন্যায় দ্রবণীয় লবণের ক্ষেত্রেও প্রযোজ্য। কিন্তু আয়নগুলোর উচ্চ গাঢ়ত্বের জন্য আমরা $Q_{
m sp}$ রাশিমালায় মোলারটির বদলে সক্রিয় ভরকে ব্যবহার করি। যদি আমরা সোডিয়াম ক্লোরাইডের একটি সম্পৃক্ত দ্রবণ নেই এবং তার মধ্য দিয়ে HCl গ্যাসকে প্রবাহিত করি তখন HCl এর বিয়োজনে ক্লোরাইড আয়নের উৎপত্তির ফলে দ্রবণে ক্লোরাইড আয়নের গাঢ়ত্ব (সক্রিয়তা) বৃদ্ধি পায় এবং সোডিয়াম ক্লোরাইড অধঃক্ষিপ্ত হয়। এভাবে প্রাপ্ত সোডিয়াম ক্লোরাইডের বিশুদ্ধতা খুবই উঁচু মানের হয় এবং আমরা অশুদ্ধি যেমন সোডিয়াম এবং ম্যাগনেশিয়াম সালফেটকে দূর করতে পারি। ওজন মাত্রিক পরিমাপে কোনো আয়নকে সম্পূর্ণরূপে খুবই কম দ্রাব্যতা গুণফল বিশিষ্ট স্বল্প দ্রাব্য লবণ হিসাবে অধঃক্ষিপ্ত করতে সম আয়ন প্রভাব ব্যবহার করা হয়। এইভাবে আমরা পরিমাণ গত পরিমাপে সিলভার আয়নকে সিলভার ক্লোরাইড, ফেরিক আয়নকে তার হাইড্রক্সাইড (বা জল যোজিত ফেরিক অক্সাইড) এবং বেরিয়াম আয়নকে তার সালফেটরূপে অধঃক্ষিপ্ত করতে পারি।

সমস্যা 7.28

 $0.10~{
m M}$ NaOH এর মধ্যে Ni(OH) $_2$ এর মোলার দ্রাব্যতা গণনা করো ৷ ${
m Ni(OH)}_2$ এর আয়নীয় গুণফল $2.0 imes 10^{-15}$.

সমাধান

মনে করি, $Ni(OH)_2$ এর দ্রাব্যতা S | S mol/L $Ni(OH)_2$ এর

হ্রাস পায়।

এইভাবে দ্রাব্যতা S বৃদ্ধি পায় যদি [H+] বৃদ্ধি পায় বা pH

$$K = [S] [f S] = S^2 \{K / (K + [H^+])\}$$

$$K_{sp} = [S] [f S] = S^2 \{K_a / (K_a + [H^+])\}$$
 आवर
 $S = \{K_{sp}([H^+] + K_a) / K_a\}^{1/2}$ (7.46)

$$K_{\rm sp} = [S] [f S] = S^2 \{K_{\rm a} / (K_{\rm a} + [H^+])\}$$
 धाव
S = $\{K_{\rm sp} ([H^+] + K_{\rm a}) / K_{\rm a} \}^{1/2}$ (7.46)

$$K = [S] [f S] = S^2 (K / (K + [H^+]))$$

$$K_{\rm sp} = [S] [f S] = S^2 \{K_{\rm a} / (K_{\rm a} + [H^+])\}$$
 ध्वर
 $S = \{K_{\rm c} ([H^+] + K_{\rm c}) / K_{\rm c} \}^{1/2} = (7.46)$

বিয়োজনে S mol/L Ni²⁺ আয়ন এবং 2S mol/L OH⁻ আয়ন দেয়। কিন্তু OH⁻ এর মোট গাঢ়ত্ব (0.10 + 2S) mol/L কারণ

দ্রবণে আগে থেকেই NaOH হতে 0.10 mol/L OH- আয়ন

 $= (S) (0.10 + 2S)^2$

কম pH এ ফসফেটের ন্যায় মৃদু অ্যাসিডের লবণের দ্রাব্যতা

বৃদ্ধি পায়। এর কারণ হচ্ছে কম pH এ প্রোটোনেশান এর কারণে

অ্যানায়ন এর গাঢ়ত্ব হ্রাস পায়। যার ফলে লবণের দ্রাব্যতা বৃদ্ধি পায়

এবং $K_{
m sp}={\cal Q}_{
m sp}$ হয়। আমাদের দুটি সাম্যকে একই সাথে সন্তুষ্ট

 $K_{\rm sp} = 2.0 \times 10^{-15} = [Ni^{2+}] [OH^{-}]^2$

যেহেতু $K_{
m sp}$ এর মান ক্ষুদ্র $2{
m S}<<0.10,$

এইভাবে, (0.10 + 2S) ≈ 0.10

 $2.0 \times 10^{-15} = S (0.10)^2$

 $S = 2.0 \times 10^{-13} M = [Ni^{2+}]$

উপস্থিত।

ফলে,

করতে হয় অর্থাৎ

 $K_{\rm sp} = [M^+] [X^-],$

$$\begin{bmatrix} X^{-} \end{bmatrix} \quad K_{a}$$

$$\frac{[HX] + [H^{-}]}{[X^{-}]} = \frac{[H^{+}] + K_{a}}{K_{a}}$$

$$\frac{[HX]}{[X^-]} + 1 = \frac{[H^+]}{K_a} + 1$$

 $HX(aq) \rightleftharpoons H^+(aq) + X^-(aq);$

 $K_{a} = \frac{\left\lfloor H^{+}(aq) \right\rfloor \left\lfloor X^{-}(aq) \right\rfloor}{\left[HX(aq) \right]}$

সারাংশ

যদি দ্রবণ থেকে বাস্পে নির্গত অণুর সংখ্যা, বাষ্প থেকে দ্রবণে ফিরে অণুর সংখ্যার সমান হয় তবে সাম্য প্রতিষ্ঠিত হয়েছে বলে ধরা হয় এবং এটি একটি গতিশীল প্রক্রিয়া। ভৌত এবং রাসায়নিক উভয় প্রকৃয়ার ক্ষেত্রেই সাম্যাবস্থা প্রতিষ্ঠিত হতে পারে এবং এই অবস্থায় সম্মুখমুখী এবং পশ্চাদমুখী বিক্রিয়ার গতি সমান হয়। শমিত সমীকরণ অনুযায়ী অণুসংখ্যার ঘাতে উন্নীত প্রতিটি বিক্রিয়াজাত পদার্থের মোলার গাঢ়ত্বের গুণফল এবং অণুসংখ্যার ঘাতে উন্নীত প্রতিটি বিক্রিয়ক পদার্থের মোলার গাঢ়ত্বের গুণফলের অনুপাত হিসাবে সাম্যধুবক K_c কে প্রকাশ করা হয়। যেমন

 $A + b B \rightleftharpoons c C + d D$ এই বিক্রিয়ার ক্ষেত্রে $K_c = [C]^c [D]^d / [A]^a [B]^b$

একটি নির্দিষ্ট উন্নতায় সাম্য ধ্রুবকের মান নির্দিষ্ট এবং এই অবস্থায় সকল স্থূল গুণ (macroscopic properties) যেমন গাঢ়ত্ব, চাপ ইত্যাদি স্থির থাকে। গ্যাসীয় বিক্রিয়ার ক্ষেত্রে সাম্য ধ্রুবককে K_p দ্বারা প্রকাশ করা হয় এবং K_c রাশিমালায় গাঢ়ত্বের পদগুলোকে আংশিক চাপ দ্বারা প্রতিস্থাপিত করে K_p -র রাশিমালা লেখা হয়। বিক্রিয়া কোশেন্ট Q_c এর সাহায্যে বিক্রিয়ার অভিমুখ সম্পর্কে ধারণা করা যায় যেটি সাম্যাবস্থায় K_c এর সমান হয়। লা শাতেলিয়ার নীতি অনুযায়ী সাম্যাবস্থায় কোনও একটি শর্ত যেমন তাপমাত্রা, চাপ, গাঢ়ত্ব ইত্যাদি পরিবর্তন করলে সাম্যাবস্থাটি এমন অভিমুখে সরে যাবে যাতে পরিবর্তনজনিত ফলকে কমিয়ে বা নন্ট করে দিতে পারে। এই নীতিটি বিভিন্ন শর্ত যেমন তাপমাত্রা, গাঢ়ত্ব, চাপ, অনুযটক এবং নিষ্ক্রিয় গ্যাস, সাম্যের অভিমুখের উপর প্রভাব অধ্যয়ন করতে এবং এই শর্তগুলোর নিয়ন্ত্রণ করে বিক্রিয়াজাত পদার্থের পরিমাণকে নিয়ন্ত্রণ করতে ব্যবহার করা যায়। অনুযটক বিক্রিয়া মিশ্রণের সাম্যাবস্থার সংযুস্তিকে প্রভাবিত করে না কিন্তু বিক্রিয়ক থেকে বিক্রিয়াজাত এবং বিপরীত প্রক্রিয়াকে সম্পন্ন করার জন্য একটি নতুন নিন্ন শস্তি সম্পন্ন পথ ব্যবহার করে রাসায়নিক বিক্রিয়ার গতি বৃন্দ্বি করে।

সকল পদার্থ যারা জলীয় দ্রবণে তড়িৎ পরিবহণ করে তাদের তড়িৎ বিশ্লেষ্য বলা হয়। অ্যাসিড, ক্ষারক এবং লবণ তড়িৎ বিশ্লেষ্য এবং জলীয় দ্রবণে তাদের বিয়োজনে বা আয়নীভবনে ক্যাটায়ন বা অ্যানায়নের উৎপত্তির ফলে তারা তড়িৎ পরিবহণ করে। তীব্র তড়িৎ বিশ্লেষ্যগুলো সম্পূর্ণরূপে বিয়োজিত হয়ে যায়। মৃদু তড়িৎ বিশ্লেষ্যের ক্ষেত্রে আয়ন এবং অবিয়োজিত তড়িৎ বিশ্লেষ্য অণুর মধ্যে সাম্যাবস্থায় বজায় থাকে। আরহেনিয়াসের মতানুসারে অ্যাসিড জলীয় দ্রবণে হাইড্রোজেন আয়ন এবং ক্ষারক জলীয় দ্রবণে হাইড্রোক্সিল আয়ন দেয়। অন্যদিকে ব্রনস্টেডলাউরি অ্যাসিডকে প্রোটন দাতা এবং ক্ষারককে প্রোটন গ্রহীতা হিসাবে সংজ্ঞায়িত করেছেন। যখন একটি ব্রনস্টেড লাউরি অ্যাসিড একটি ক্ষারকের সঙ্গে বিক্রিয়া করে তখন এটি অনুবন্ধী ক্ষারক ও অনুবন্ধী অ্যাসিড দেয়। যা বিক্রিয়ায় অংশগ্রহণকারী আয়নের সঙ্গে সম্পর্কিত। এইভাবে অ্যাসিড ক্ষারকের একটি অনুবন্ধী যুগলে কেবলমাত্র একটি প্রোটনের পার্থক্য থাকে। পরে বিজ্ঞানী লুইস সাধারণভাবে অ্যাসিডকে ইলেকট্রন যুগল গ্রহীতা এবং ক্ষারককে ইলেকট্রন যুগল দাতা রূপে সংজ্ঞায়িত করেছেন। মৃদু অ্যাসিডের আয়নীভবন (সাম্যবস্থা) ধ্রুবক ($K_{
m c}$) এবং মৃদু ক্ষারকের আয়নীভবন ধ্রুবকের ($K_{
m c}$) রাশিমালা গঠনে আরহেনিয়াসের মতবাদকে ব্যবহার করা হয়েছে। আয়নীভবনের মাত্রা এবং গাঢ়ত্ব ও সমআয়নের উপর আয়নীভবনের নির্ভরশীলতা আলোচিত হয়েছে। হাইড্রোজেন আয়নের গাঢ়ত্বের (সক্রিয়তা) ক্ষেত্রে pH স্কেল (pH = -log[H⁺]) প্রস্তুত করা হয়েছে এবং একে অন্য রাশিগুলোর (pOH = - log[OH⁻]) ; pK_a = -log[K_a] ; pK_b = - $\log[K_h];$ এবং $pK_w = -\log[K_w]$ ইত্যাদি) ক্ষেত্রে বর্ধিত প্রয়োগ করা হয়েছে। জলের আয়নয়ণকে বিবেচনা করে আমরা দেখতে পাই সমীকরণ pH + pOH = pK ৣসকল ক্ষেত্রে সফল হয়। তীব্র অ্যাসিড এবং মৃদু ক্ষারক, মৃদু অ্যাসিড এবং তীব্র ক্ষারক ও মৃদু অ্যাসিড এবং মৃদু ক্ষারকের লবণগুলো জলীয় দ্রবনে আদ্রবিশ্লেষিত হয়। বাফার দ্রবণের পরিভাষা এবং তাদের গুরুত্ব আলোচনা করা হয়েছে। স্বল্প দ্রাব্য লবণের দ্রাব্যতাসাম্য আলোচনা করা হয়েছে এবং সাম্য ধ্রুবকে দ্রাব্যতা গুণফল ধ্রুবক $(K_{_{\rm sp}})$ হিসাবে উপস্থাপিত হয়েছে। এর সাথে লবণের দ্রাব্যতার সম্পর্কটি প্রতিষ্ঠা করা হয়েছে। দ্রবণ হতে লবণের অধ্যক্ষেপনের বা জলে লবণের বিয়োজনের শর্তগুলো নির্ধারিত করা হয়েছে। সম আয়নের ভূমিকা এবং স্বল্প দ্রাব্য লবণের দ্রাব্যতা আলোচিত হয়েছে।

বিদ্যার্থীদের জন্য এই একক সম্পর্কিত কিছু কাজ

- (a) বিদ্যার্থীরা বিভিন্ন তাজা ফল ও সবজির রস, মৃদু পানীয়, দেহরস এবং উপলব্ধ জলের নমুনার pH জানতে pH পেপার ব্যবহার করতে পারে।
- (b) pH পেপার বিভিন্ন লবণের দ্রবণের pH নির্ণয় করতে ব্যবহার করা যেতে পারে এবং বিদ্যার্থীরা এও নির্ণয় করতে পারবে যে ঐ লবণগুলো তীব্র না মৃদু অ্যাসিড বা ক্ষারক হতে গঠিত হয়েছে।
- (c) তারা সোডিয়াম অ্যাসিটেট এবং অ্যাসিটিক অ্যাসিড এর দ্রবণ মিশ্রিত করে কিছু বাফার দ্রবণ তৈরি করতে পারবে এবং pH পেপার ব্যবহার করে ঐ বাফার দ্রবণের pH নির্ণয় করতে পারবে।
- (d) তাদেরকে বিভিন্ন নির্দেশক সরবরাহ করে বিভিন্ন মানের pH দ্রবণে ঐ নির্দেশকগুলোর বর্ণ পর্যবেক্ষণ করতে দেওয়া যেতে পারে।
- (e) নির্দেশক ব্যবহার করে তারা কিছু অ্যাসিড ক্ষারক নিয়ে টাইট্রোশান (Titration) করতে পারবে।
- (f) তারা কিছু স্বল্পদ্রাব্য লবণের দ্রাব্যতার উপর সম আয়ন প্রভাব পর্যবেক্ষণ করতে পারবে।
- (g) যদি বিদ্যালয়ে pH মিটার থাকে, তবে তারা এর সাহায্যে pH পরিমাপ করতে পারবে এবং pH পেপার থেকে প্রাপ্ত ফলাফলের সাথে তুলনা করতে পারবে।

অনুশীলনী

- 7.1 একটি নির্দিষ্ট উন্নতায় একটি বন্ধ পাত্রে একটি তরল তার বাষ্পের সহিত সাম্যবস্থায় আছে। হঠাৎ পাত্রের আয়তন বৃদ্ধি পেল।
- a) বাষ্পচাপ পরিবর্তনের প্রারম্ভিক প্রভাব কী?
- b) বাষ্পীভবন ও ঘণীভবনের /প্রারম্ভিক হারের কিরূপ পরিবর্তন হবে?
- c) যখন সাম্যাবস্থা পুনরুম্বার হবে তখন কী হবে এবং চূড়ান্ত বাষ্প চাপ কী হবে ?
- 7.2
 নিন্নের সাম্যাবস্থার সমীকরণের K_c এর মান কত হবে যখন প্রত্যেক পদার্থের সাম্যাবস্থায় গাঢ়ত্ব যথাক্রমে : $[SO_2] = 0.60M$,

 $[O_2] = 0.82M$ এবং $[SO_3] = 1.90M$?

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

- 7.3 10⁵ পাস্কলে মোট চাপে এবং একটি নির্দিন্ট উন্নতায় I₂ (g) → 2I (g) সাম্যবস্থার সমীকরণটির K_p এর মান নির্ণয় কর, যেখানে আয়োডিন বাষ্পে আয়তন হিসেবে 40% I (আয়োডিন) পরমাণু আছে।
- 7.4 নীচের প্রত্যেক বিক্রিয়ার সাম্য ধ্রুবককে K_c রুপে প্রকাশ কর :
 - (i) $2\text{NOCl}(g) \rightleftharpoons 2\text{NO}(g) + \text{Cl}_2(g)$
 - (ii) $2Cu(NO_3)_2$ (s) $\rightleftharpoons 2CuO$ (s) + $4NO_2$ (g) + O_2 (g)
 - (iii) $CH_3COOC_2H_5(aq) + H_2O(l) \rightleftharpoons CH_3COOH(aq) + C_2H_5OH(aq)$
 - (iv) $Fe^{3+}(aq) + 3OH^{-}(aq) \rightleftharpoons Fe(OH)_{3}(s)$
 - (v) $I_2(s) + 5F_2 \rightleftharpoons 2IF_5$
- 7.5 K_p এর মান থেকে নীচের সাম্য বিক্রিয়াগুলোর K_c এর মান নির্ণয় কর :
 - (i) 2NOCl (g) ⇒ 2NO (g) + Cl₂ (g); K_p = 1.8 × 10⁻², 500 K উন্নতায়
 - (ii) CaCO₃ (s) ⇒ CaO(s) + CO₂(g); K_p = 167, 1073 K উন্নতায়
- 7.6 1000 K উম্বতায় নীচের সাম্যাবস্থার K_c এর মান হল $6.3 imes 10^{14}$

 $NO(g) + O_{3}(g) \rightleftharpoons NO_{2}(g) + O_{2}(g)$

সাম্যবস্থায় সম্মুখমুখী ও বিপরীতমুখী উভয় বিক্রিয়াই মৌলিক দ্বিআনবিক বিক্রিয়া। বিপরীতমুখী বিক্রিয়ার K_c এর মান কত ?

- 7.7 সাম্যধ্রবক লেখার সময় বিশুদ্ধ তরল এবং কঠিনকে উপেক্ষা করা হয় কেন ?
- 7.8 N₂ এবং O₂ মধ্যে বিক্রিয়া নিম্নলিখিতভাবে ঘটে :

$$2N_2(g) + O_2(g) \rightleftharpoons 2N_2O(g)$$

যদি 0.482 মোল N₂ এবং 0.933 মোল O₂ এর মিশ্রণকে 10 L বিক্রিয়া পাত্রে রাখা হয় এবং একটি নির্দিষ্ট উন্নতায় N₂O তৈরি হয়, যেখানে K_c = 2.0 × 10⁻³⁷, তাহলে সাম্য মিশ্রণে উপাদানগুলোর সংযুতি নির্ণয় কর।

7.9 নীচের বিক্রিয়া অনুসারে নাইট্রিক অক্সাইড Br₂ এর সহিত ক্রিয়া করে নাইট্রোসিল ব্রোমাইড উৎপন্ন করে :

$$2NO(g) + Br_2(g) \rightleftharpoons 2NOBr(g)$$

একটি নির্দিন্ট উন্নতায় একটি বন্ধপাত্রে 0.087 মোল NO এবং 0.0437 মোল ${
m Br}_2$ কে মিশানো হয় তখন সাম্যে 0.0518 মোল NOBr তৈরি হয়। সাম্যবস্থায় NO এবং ${
m Br}_2$ এর পরিমাণ গণনা কর।

7.10 450K উন্নতায় নীচের সাম্য বিক্রিয়ার জন্য $K_p = 2.0 \times 10^{10}$ /bar

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

এই উন্নতায় K_c এর মান কত?

 7.11
 0.2 অ্যাটমস্কিয়ার চাপে একটি ফ্লাস্কে HI(g) এর নমুনা রাখা হল। সাম্যবস্থায় HI(g) এর আংশিক চাপ হল 0.04 অ্যাটমস্ফিয়ার।

 তাহলে নীচের সাম্যবিক্রিয়াটির K_p এর মান কত ?

$$2 \text{HI}(g) \rightleftharpoons H_2(g) + I_2(g)$$

7.12 500 K উস্নতায় 20 L বিক্রিয়া পাত্রে 1.57 মোল N₂, 1.92 মোল H₂ এবং 8.13 মোল NH₃ এর মিশ্রন রাখা হল। এই তাপমাত্রায় N₂ (g) + 3H₂ (g) ⇒ 2NH₃ (g) বিক্রিয়াটির K₂ এর মান হল 1.7 × 10². বিক্রিয়া মিশ্রন কি সাম্যবস্থায় আছে? যদি না থাকে তাহলে সমগ্র বিক্রিয়াটি কোনদিকে হবে?

7.13 একটি গ্যাসীয় বিক্রিয়ার সাম্য ধ্রুবকের প্রকাশ হল,

$$\mathbf{K}_{c} = \frac{[NH_{3}]^{4}[O_{2}]^{5}}{[NO]^{4}[H_{2}O]^{6}}$$

এই প্রকাশ অনুসারে বিব্রিয়াটির সমিত সমীকরণটি লেখ।

 7.14
 10 L পাত্রে এক মোল H2O এবং এক মোল CO রেখে 725 K উন্নতা পর্যন্ত উত্তপ্ত করা হল। সাম্যবস্থায় নীচের সমীকরণ অনুসারে ওজন হিসেবে 40% জল CO এর সহিত বিক্রিয়া করে।

$$H_2O(g) + CO(g) \rightleftharpoons H_2(g) + CO_2(g)$$

এই বিক্রিয়াটির সাম্য ধ্রুবকের মান নির্ণয় কর।

- 7.15 700 K, উস্নতায় H₂ (g) + I₂ (g) → 2HI (g) এই বিক্রিয়াটির সাম্য ধ্রুবকের মান হল 54.8। 700 K উস্নতায় সাম্যবস্থায় যদি 0.5 মোল লিটার⁻¹ HI উপস্থিত থাকে তাহলে H₂(g) এবং I₂(g) এর গাঢ়ত্ব কত ? ধরে নাও প্রাথমিক অবস্থায় আমরা HI নিয়ে শুরু করেছি এবং 700 K উস্নতায় সাম্যবস্থায় সৌঁছাল।
- 7.16 ICI এর প্রারম্বিক গাঢ়ত্ব 0.78 M হয় তাহলে সাম্যবস্থায় প্রত্যেকটি পদার্থের সাম্য গাঢ়ত্ব কত ?

 $2\text{ICl}(g) \rightleftharpoons I_2(g) + \text{Cl}_2(g); K_c = 0.14$

 7.17
 নীচের সাম্য বিক্রিয়াটির 899 K উন্নতায় K_p=0.04 অ্যাটমস্ফিয়ার। 4.0 অ্যাটমস্ফিয়ার চাপে একটি ফ্লাস্কে C₂H₆ কে রাখা হল এবং

 সাম্যবস্থায় পৌঁছাল। তাহলে C₂H₆ এর সাম্য গাঢ়ত্ব কত ?

$$C_2H_6(g) \rightleftharpoons C_2H_4(g) + H_2(g)$$

7.18 ইথানল এবং অ্যাসিটিক অ্যাসিড এর বিক্রিয়ায় ইথাইল অ্যাসিটেট তৈরি হল এবং সাম্যবস্থাটিকে নিম্নরুপে প্রকাশ করা হল :

 $CH_3COOH(l) + C_2H_5OH(l) \rightleftharpoons CH_3COOC_2H_5(l) + H_2O(l)$

- (i) এই বিক্রিয়ার জন্য Q_c (বিক্রিয়া কোশেন্ট) -এর গাঢ়ত্বের অনুপাত লেখ। (দ্রন্টব্য : অতিরিক্ত জল নেই এবং বিক্রিয়ায় কোনো দ্রাবক নেই)।
- (ii) 293 K উন্নতায়, যদি 1 মোল অ্যাসিটিক অ্যাসিড এবং 0.18 মোল ইথানল নিয়ে বিক্রিয়া শুরু করা হয় তাহলে চূড়ান্ত সাম্য মিশ্রণের 0.171 মোল ইথাইল অ্যাসিটেট তৈরি হয়। সাম্য ধ্রুবকের মান গণনা কর।
- (iii) 293 K উন্নতায় 0.5 মোল ইথানল এবং 1.0 মোল অ্যাসিটিক অ্যাসিড নিয়ে বিক্রিয়া শুরু করা হয়। কিছু সময় পরে 0.214 মোল ইথাইল অ্যাসিটেট উৎপন্ন হয়। সাম্যবস্থা উৎপন্ন হয়েছে কি?
- 7.19
 473 K উন্নতায় বিশুন্দ PCI, এর নমুনা একটি শূন্য পাত্রে প্রবেশ করানো হল। সাম্যবস্থায় পৌঁছানোর পর PCI, এর গাঢ়ত্ব হল 0.5

 × 10⁻¹ mol/L । যদি K, এর মান 8.3 × 10⁻³ হয়, তাহলে সাম্যে PCI, ও CI, এর গাঢ়ত্ব নির্ণয় কর।

$$PCl_{5}(g) \rightleftharpoons PCl_{3}(g) + Cl_{2}(g)$$

7.20 একটি রাসায়নিক বিক্রিয়ায় আয়রনের আকরিক থেকে স্টিল উৎপাদনের সময় আয়রন (II) অক্সাইড কার্বন মনোক্সাইড দ্বারা বিজারিত হয়ে আয়রন এবং CO, উৎপন্ন করে।

FeO (s) + CO (g) \rightleftharpoons Fe (s) + CO, (g); $K_p = 0.265$ অ্যাটমস্ফিয়ার, উন্নতা = 1050K

যদি প্রারম্বিক আংশিক চাপ যথাক্রমে $p_{\rm CO}$ = 1.4 অ্যাটমস্ফিয়ার p_{CO_2} = 0.80 অ্যাটমস্ফিয়ার হয় তাহলে সাম্যবস্থায় CO এবং CO₂ -এর আংশিক চাপ কত ?

- 7.21
 500 K উস্নতায় N₂ (g) + 3H₂ (g) ➡ 2NH₃ (g) বিক্রিয়ার জন্য K₂ এর মান হল 0.061, একটি নির্দিষ্ট মুহূর্তে বিশ্লেষণ করে দেখা গেল বিক্রিয়া মিশ্রণের সংযুতি হল 3 mol/L N₂, 2.0 mol/L H₂ এবং 0.5 mol/L NH₃ । বিক্রিয়াটি কি সাম্যবস্থা লাভ করেছে ? যদি না হয় তাহলে বিক্রিয়াটি কোনদিকে অগ্রসর হলে সাম্যবস্থায় পৌঁছাবে ?
- 7.22 ব্রোমিন মনোক্লোরাইড, (BrCl), ব্রোমিন এবং ক্লোরিনে বিয়োজিত হয় এবং সাম্যবস্থায় পৌঁছায় :

$$2BrCl(g) \rightleftharpoons Br_2(g) + Cl_2(g)$$

500 K উন্নতায় এই বিক্রিয়ার K_{c} এর মান 32. যদি বিশুষ্প BrCl এর প্রারম্বিক গাঢ়ত্ব $3.3 imes 10^{-3} ext{ mol/L}$ হয় তাহলে সাম্যবস্থায় ইহার মোলার গাঢ়ত্ব কত?

 7.23
 1127 K উন্নতায় এবং 1 অ্যাটমস্ফিয়ার চাপে CO এবং CO2 এর গ্যাসীয় মিশ্রন কঠিন কার্বন এর সহিত সাম্যবস্থায় আছে, যেখানে

 90.55% CO ওজনগত ভাবে বর্তমান।

$$C(s) + CO_{2}(g) \rightleftharpoons 2CO(g)$$

ঐ উম্বতায় Kু এর মান গণনা কর।

7.24 298K উন্নতায় NO এবং O, থেকে NO, উৎপাদনের সময় a) ΔG^{θ} এবং b) সাম্যধ্রুবকের মান গণনা কর।

NO (g) + $\frac{1}{2}$ O₂ (g) \rightleftharpoons NO₂(g)

যেখানে,

 $\Delta_{\rm f} G^{\theta} ({\rm NO}_2) = 52.0 \text{ KJ/mol}$

 $\Delta_{\rm f} G^{\theta}$ (NO) = 87.0 KJ/mol

 $\Delta_{\rm f} G^{\theta} ({\rm O}_2) = 0 \text{ KJ/mol}$

- 7.25 নীচের প্রত্যেকটি সাম্য বিক্রিয়ায় আয়তন বৃষ্ধি করে চাপ হ্রাস করলে বিক্রিয়াজাত পদার্থের মোল সংখ্যার কীরূপ পরিবর্তন ঘটবে ? বৃষ্ধি পাবে, হ্রাস পাবে নাকি ঠিকই থাকবে ?
- (a) $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$
- (b) $CaO(s) + CO_2(g) \rightleftharpoons CaCO_3(s)$
- (c) $3Fe(s) + 4H_2O(g) \rightleftharpoons Fe_3O_4(s) + 4H_2(g)$

7.27

7.28

7.26 চাপ বৃদ্ধিতে নীচের কোন বিক্রিয়াগুলো প্রভাবিত হবে ? চাপের পরিবর্তনের ফলে বিক্রিয়া সম্মখুমুখী হবে না গ উল্লেখ কর। (i) $\operatorname{COCl}_2(g) \rightleftharpoons \operatorname{CO}(g) + \operatorname{Cl}_2(g)$

1024K উন্নতায়, H₂(g) + Br₂(g) 🔁 2HBr(g) এই রাসায়নিক বিক্রিয়ার সাম্য ধ্রুবকের মান 1.6 ×10⁵, 1024K উন্নতায়, 10.0

- (ii) $CH_4(g) + 2S_2(g) \rightleftharpoons CS_2(g) + 2H_2S(g)$

(vi) $4 \operatorname{NH}_3(g) + 5O_2(g) \rightleftharpoons 4\operatorname{NO}(g) + 6H_2O(g)$

(b) সাম্য মিশ্রলের সংযুতি এবং K_p মানের কিরূপ পরিবর্তন হবে ?

- (iii) $CO_2(g) + C(s) \rightleftharpoons 2CO(g)$
- (iv) $2H_2(g) + CO(g) \rightleftharpoons CH_3OH(g)$

(v) $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$

 $CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$ (a) উপরের বিক্রিয়ার K_pর রাশিমালাটি লেখ।

> (i) চাপ বৃদ্ধি করলে (ii) উম্বতা বৃদ্ধি করলে (iii) অনুঘটক ব্যবহার করলে

c) CO কে অপসারিত করা হলে d) CH₃OH কে অপসারিত করা হলে

235

CO আরও স্টীমের সহিত বিক্রিয়া করে। $CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$

- $\Delta_{\rm r} H^{
 m heta} = 124.0$ কিলোজুল মোল⁻¹ তাহলে

473 K উম্লতায় ফসফরাস পেন্টা ক্লোরাইডের বিয়োজন বিক্রিয়ায় সাম্যধ্রুবক K_c এর মান হল $8.3 imes 10^{-3}$, যদি বিয়োজন নিম্নানুসারে

হেবার পম্বতিতে ব্যবহৃত ডাই-হাইড্রোজেন তৈরি হয় প্রাকৃতিক গ্যাস থেকে প্রাপ্ত মিথেন ও উচ্চ উন্নতায় স্টীমের বিক্রিয়ায়। দুই

ধাপের বিক্রিয়ায় প্রথম ধাপটি হল CO এবং H, এর উৎপাদন। দ্বিতীয় ধাপটি হল, ওয়াটার গ্যাস শিষ্ট বিক্রিয়ায় প্রথম ধাপে উৎপন্ন

- a) বিক্রিয়াটির $K_{_{\!\!\!\!\!\!c}}$ এর রাশিমালাটি লেখ।

b) ঐ উম্বতায় বিপরীত বিক্রিয়ায় Kু এর মান কত?

- $PCl_{5}(g) \rightleftharpoons PCl_{3}(g) + Cl_{2}(g)$

c) যদি (i) আরও PCl, যোগ করা হয় (ii) চাপ বৃদ্ধি করা হয় (iii) তাপমাত্রা বৃদ্ধি করা হয়

তাহলে K_{μ} এর উপর কী প্রভাব পড়বে ?

বার (bar) চাপে একটি বন্দ্ব পাত্রে HBr প্রবেশ করালে সাম্যবস্থায় প্রত্যেকটি গ্যাসের চাপ গণনা কর। স্টামের আংশিক জারণ দ্বারা প্রাকৃতিক গ্যাস থেকে ডাই হাইড্রোজেন গ্যাস পাওয়া যায় এবং বিক্রিয়াটি তাপগ্রাহী

2H,(g) + CO (g) 📛 CH,OH (g) এই সাম্যবিক্রিয়ার উপর নিম্নলিখিত ক্ষেত্রগুলোতে প্রভাব কী হবে ব্যাখ্যা কর। 7.29 a) H₂ যোগ করলে

হয়,

7.30

7.31

যদি কোন বিক্রিয়াপাত্রে 400°C উন্নতায় CO এবং স্টীম এর সমমোলার মিশ্রণ এমনভাবে প্রবেশ করানো হয় যাতে $p_{co} = p_{\rm H_2O} = 4.0$ বার হয় তবে সাম্যবস্থায় H₂ এর অংশ চাপ কত হবে ? 400°C উন্নতায়, $K_{p} = 10.1$

- 7.32 নীচের কোনো বিক্রিয়ায় বিক্রিয়ক এবং বিক্রিয়াজাত পদার্থের উল্লেখযোগ্য গাঢ়ত্ব হবে তা অনুমান কর:
 - a) $\operatorname{Cl}_2(g) \rightleftharpoons 2\operatorname{Cl}(g)$ $K_c = 5 \times 10^{-39}$
 - b) $Cl_2(g) + 2NO(g) \rightleftharpoons 2NOCl(g)$ $K_c = 3.7 \times 10^8$
 - c) $\operatorname{Cl}_{2}(g) + 2\operatorname{NO}_{2}(g) \rightleftharpoons 2\operatorname{NO}_{2}\operatorname{Cl}(g)$ $K_{c} = 1.8$
- 7.33 25° C উন্নতায় $3O_2(g) \rightleftharpoons 2O_3(g)$ বিক্রিয়াটির K_c এর মান হল 2.0×10^{-50} , 25° C উন্নতায় বায়ুতে O_2 এর সাম্যগাঢ়ত্ব 1.6×10^{-2} হলে O_3 এর গাঢ়ত্ব কত হবে ?
- 7.34
 CO(g) + 3H₂(g) → CH₄(g) + H₂O(g) এই বিক্রিয়াটি 1300 K উন্নতায় 1L ফ্লাক্ষে সাম্যবস্থায় আছে। বিক্রিয়াটিতে 0.30 মোল

 CO, 0.10 মোল H₂ এবং 0.02 মোল H₂O এবং অজ্ঞাত পরিমাণ CH₄ আছে। মিশ্রনটিতে CH₄ এর গাঢ়ত্ব নির্ণয় কর। এই উন্নতায়

 বিক্রিয়াটির সাম্য ধ্রুবক K₂ এর মান হল 3.90.
- 7.35 অনুবন্ধী অ্যাসিড ক্ষারক যুগল কী? নীচের পদার্থগুলোর অনুবন্ধী অ্যাসিড/ক্ষার নির্ণয় কর।

HNO₂, CN⁻, HClO₄, F⁻, OH⁻, CO₃²⁻ এবং S²⁻

7.36 নীচের কোনগুলো লুইস অ্যাসিড?

H₂O, BF₃, H⁺, ଏବଂ NH₄⁺

- 7.37 HF, H,SO, এবং HCO, এই ব্রনস্টেড অ্যাসিডগুলোর অনুবন্ধী ক্ষারকগুলো লেখ।
- 7.38 নিম্নলিখিত ব্রনস্টেড ক্ষারগুলোর অনুবন্ধী অ্যাসিডগুলো কী তাহা লেখ।

NH₂, NH₃ এবং HCOO⁻.

- 7.39
 H₂O, HCO₃, HSO₄ এবং NH₃ এইগুলো ব্লনস্টেড অ্যাসিড ও ক্ষারক উভয়রুপেই কাজ করতে পারে। প্রত্যেক ক্ষেত্রে অনুবন্ধী

 অ্যাসিড ও ক্ষারক উল্লেখ কর।
- 7.40 নিম্নলিখিত পদার্থগুলো থেকে লুইস অ্যাসিড ও লুইস ক্ষারক শ্রেণিভুক্ত কর এবং দেখাও ইহারা কীভাবে লুইস অ্যাসিড ও লুইস ক্ষারক রূপে কাজ করতে পারে।

(a) $OH^{-}(b) F^{-}(c) H^{+}(d) BCl_{3}$.

- 7.41 একটি ঠাণ্ডা পানীয়র নমুনায় হাইড্রোজেন আয়নের গাঢ়ত্ব হল 3.8 × 10⁻³ M. ইহার pH কত?
- 7.42 ভিনিগারের একটি নমুনার pH এর মান হল 3.76. এই দ্রবণে হাইড্রোজেন আয়নের গাঢ়ত্ব নির্ণয় কর।
- 7.43
 298K উন্নতায় HF, HCOOH এবং HCN এর আয়োনাইজেশন ধ্রুবকের মানগুলো হল যথাক্রমে 6.8 × 10⁻⁴, 1.8 × 10⁻⁴ এবং

 4.8 × 10⁻⁹ এদের অনুবন্ধী ক্ষারকের আয়োনাইজেশন ধ্রুবকের মালগুলো গণনা কর।
- 7.44
 ফেনলের বিয়োজন ধ্রুবকের মান হল 1.0 × 10⁻¹⁰, ফেনলের 0.05 M দ্রবণে ফেনলেট আয়নের গাঢ়ত্ব কত ? 0.01(M) সোডিয়াম

 ফেনলেট দ্রবণে ইহার (ফেনলের) বিয়োজন মাত্রা গণনা কর।
- 7.45 H₂S এর প্রথম আয়োনাইজেশন ধ্রুবকের মান হল 9.1 × 10⁻⁸. ইহার 0.1(M) দ্রবণে HS⁻ আয়নের গাঢ়ত্ব গণনা কর। 0.1(M) মোলার HCl দ্রবণের উপস্থিতিতে এই গাঢ়ত্বের উপর কীরূপ প্রভাব পড়বে? যদি H₂S এর দ্বিতীয় বিয়োজন ধ্রুবক এর মান 1.2 × 10⁻¹³ হয় তাহলে উভয় শর্তাধীনে S²⁻ -এর গাঢ়ত্ব গণনা কর।
- 7.46 অ্যাসিটিক অ্যাসিডের আয়োনাইজেশন ধ্রুবকের মান হল 1.74 × 10⁻⁵. অ্যাসিটিক অ্যাসিডের 0.05 M দ্রবণে ইহার বিয়োজন মাত্রা গণনা কর। অ্যাসিটেট আয়নের গাঢ়ত্ব এবং দ্রবণের pH গণনা কর।
- 7.47 0.01M একটি জৈব অ্যাসিড দ্রবণের pH এর মান হল 4.15. অ্যাসিডটির অ্যানায়নের গাঢ়ত্ব, অ্যাসিডটির আয়োনাইজেশন ধ্রুবক এবং অ্যাসিডটির pKa এর মান গণনা কর।

7.48

(a) 0.003 M HCl

237

	(c) 0.002 M HBr (d) 0.002 M KOH
7.49	নীচের দ্রবণগুলোর pH গণনা কর :
	a) 2 g TIOH জলে দ্রবীভূত করে 2 L দ্রবণ তৈরি করা হল।
	b) 0.3 g Ca(OH) ₂ জলে দ্রবীভূত করে 500 mL দ্রবণ তৈরি করা হল।
	c) 0.3 g NaOH জলে দ্রবীভূত করে 200 mL দ্রবণ তৈরি করা হল।
	d) 13.6 M, 1 mL HCl দ্রবণে জল যোগ করে লঘু করা হল এবং দ্রবণের আয়তন 1L করা হল।
7.50	0.1M ব্রোমো অ্যাসিটিক অ্যাসিড দ্রবণের বিয়োজন মাত্রা হল 0.132. দ্রবণের pH এবং ব্রোমো অ্যাসিটিক অ্যাসিড দ্রবণের $pK_{_{ m a}}$ এর মান গণনা কর।
7.51	0.005M কোডেইন (codeine) (C ₁₈ H ₂₁ NO ₃) দ্রবণের pH এর মান 9.95। আয়োনাইজেশন ধ্রুবক এবং pK _b এর মান গণনা কর।
7.52	0.001M অ্যানিলিন দ্রবণের pH এর মান কত ? সারণি 7.7 থেকে অ্যানিলিনের আয়োনাইজেশন ধ্রুবকের মান নিতে হবে। দ্রবণে অ্যানিলিনের অনুবন্ধী অ্যাসিডের আয়োনাইজেশন ধ্রুবকের মান গণনা কর।
7.53	0.05M অ্যাসিটিক অ্যাসিড দ্রবণের আয়োনাইজেশন মাত্রা গণনা কর যদি অ্যাসিটিক অ্যাসিডের pKa এর মান হল 4.74. (a) 0.01M (b) 0.1M HCl দ্রবণের উপস্থিতিতে উক্তু দ্রবণের বিয়োজন মাত্রার উপর কীরূপ প্রভাব পড়বে?
7.54	ডাইমিথাইল অ্যামিনের আয়োনাইজেশন ধ্রুবকের মান হল 5.4 × 10 ⁻⁴ , 0.02M উক্ত দ্রবণের আয়োনাইজেশন মাত্রা গণনা কর। 0.1M NaOH দ্রবণের উপস্থিতিতে শতকরা কত ভাগ ডাইমিথাইল অ্যামিন আয়োনিত হবে?
7.55	নিম্নলিখিত জীববিজ্ঞান সংক্রান্ত তরলগুলোর হাইড্রোজেন আয়নের গাঢ়ত্ব গণনা কর যাদের pH এর মান নীচে দেওয়া আছে— (a) মানুযের পেশী তরল 6.83 (b) মানুযের পাকস্থলীর তরল 1.2
	(c) মানুযের রস্তু 7.38 (d) মানুযের মুখের লালা 6.4.
7.56	দুধ, কালো কফি, ট্যমেটো রস, লেবুর রস এবং ডিমের সাদা অংশের pH এর মান হল যথাক্রমে 6.8, 5.0, 4.2, 2.2 এবং 7.8. প্রতি ক্ষেত্রে হাইড্রোজেন আয়নের গাঢ়ত্ব গণনা কর।
7.57	298K উম্বতায় যদি 0.561 গ্রাম KOH জলে দ্রবীভূত করে 200 মিলি দ্রবণ তৈরি করা হয় তাহলে ঐ দ্রবণে পটাসিয়াম, হাইড্রোজেন এবং হাইড্রোক্সিল আয়নের গাঢ়ত্ব গণনা কর। এই দ্রবণের pH এর নাম কত ?
7.58	298K উম্লতায় Sr(OH) ₂ এর দ্রাব্যতা 19.23 g/L, স্ট্রনসিয়াম এবং হাইড্রোক্সিল আয়নের গাঢ়ত্ব এবং দ্রবণের pH এর মান গণনা কর।
7.59	প্রোপানোয়িক অ্যাসিডের আয়োনাইজেশন ধ্রুবকের মান হল 1.32 × 10 ⁻⁵ . ইহার 0.05M দ্রবণের বিয়োজন মাত্রা এবং দ্রবণের pH এর মানও গণনা কর। 0.01M HCl দ্রবণে ইহার আয়োনাইজেশন মাত্রা কী হবে?
7.60	0.1(M) সায়ানিক অ্যাসিড (HCNO) দ্রবণের pH এর মান হল 2.34. অ্যাসিড দ্রবর্ণাটির আয়োনাইজেশন ধ্রুবকের মান এবং দ্রবর্ণাটির বিয়োজন মাত্রা গণনা কর।
7.61	নাইট্রাস অ্যাসিডের বিয়োজন ধ্রুবকের মান হল 4.5 × 10 ⁻⁴ , 0.04 M সোডিয়াম নাইট্রাইট দ্রবণের pH এর মান এবং আর্দ্র বিশ্লেষণ মাত্রা গণনা কর।
7.62	0.02M পিরিডিনিয়াম হাইড্রোক্লোরাইড দ্রবণের pH এর মান 3.44 হলে পিরিডিনের আয়োনাইজেশন ধ্রবকের মান গণনা কর।
7.63	নিন্নলিখিত লবণগুলোর জলীয় দ্রবণের প্রকৃতি প্রশম, আল্লিক না ক্ষারীয় হবে উল্লেখ কর।
	NaCl, KBr, NaCN, NH4NO,, NaNO, এবং KF

সম্পূর্ণ বিয়োজন হয়েছে ধরে নিয়ে নীচের দ্রবণগুলোর pH এর মান গণনা কর।

(b) 0.005 M NaOH

- 7.64 ক্লোরো অ্যাসিটিক অ্যাসিডের আয়োনাইজেশন ধ্রুবকের মান হল 1.35 × 10⁻³, 0.1(M) এই অ্যাসিডটির এবং অ্যাসিডটির 0.1M সোডিয়াম লবণের দ্রবণের pH নির্ণয় কর।
- 7.65 $310~{
 m K}$ উন্নতায় জলের আয়নীয় গুণফলের মান হল $2.7 imes 10^{-14}$. এই উন্নতায় প্রশম জলের pH এর মান কত ?
- 7.66 নিম্নলিখিত মিশ্র দ্রবণগুলোর pH এর মান গণনা কর।
 - a) 10 mL 0.2M $Ca(OH)_2 + 25$ mL 0.1M HCl
 - b) 10 mL 0.01M $H_2SO_4 + 10$ mL 0.01M Ca(OH)₂
 - c) 10 mL 0.1M $H_2SO_4 + 10$ mL 0.1M KOH
- 7.67 সারণি 7.9 থেকে সিলভার ক্লোমেট, বেরিয়াম ক্রোমেট, ফেরিক হাইড্রোক্সাইড, লেড ক্লোরাইড এবং মারকিউরাস আয়োডাইড যৌগগুলোর দ্রাব্যতা গুণফলের মান থেকে 298K উন্নতায় দ্রাব্যতার মান নির্ণয় কর।
- Ag_2CrO_4 এবং AgBr এর দ্রাব্যতা গুণফল ধ্রুবক এর মান যথাক্রমে 1.1×10^{-12} এবং 5.0×10^{-13} . এদের সম্পৃক্ত দ্রবণের মোলারিটির অণুপাত গণনা কর।
- 7.69 সমআয়তন 0.002 M শক্তিমাত্রার সোডিয়াম আয়োডেট এবং কিউপ্রিক ক্লোরেট একত্রে মিশানো হল। এক্ষেত্রে কপার আয়োডেট এর অধ্যক্ষেপন ঘটবে কি? (কিউপ্রিক আয়োডেট এর $K_{_{\rm so}}=7.4 imes10^{-8}$)
- 7.70 বেনজোয়িক অ্যাসিডের আয়োনাইজেশন ধ্রুবকের মান হল 6.46 × 10⁻⁵ এবং সিলভার বেনজোয়েট এর K_{sp} এর মান 2.5 × 10⁻¹³। বিশুদ্ধ জলের তুলনায় 3.19 pH সম্পন্ন কোনো বাফার দ্রবণে সিলভার বেঞ্জোয়েটের দ্রাব্যতা কত গুণ বেশি হবে?
- 7.71 সর্বোচ্চ কত গাঢ়ত্বে সম মোলার ফেরাস সালফেট এবং সোডিয়াম সালফাইড দ্রবণ সম আয়তনে মিশানো হলে ফেরাস সালফাইড এর অধঃক্ষেপন হবে না? (ফরাসসালফাইডের K_{sp} = 6.3 × 10⁻¹⁸)
- 7.72 298 K উষ্ণতায় 1 গ্রাম ক্যালসিয়াম সালফেটকে জলে দ্রবীভূত করতে জলের সর্বনিম্ন আয়তন কত ? (ক্যালসিয়াম সালফেটের K_{sp} এর মান হল 9.1 × 10⁻⁶)
- 7.73 H_2S দ্বারা সম্পৃক্ত 0.1M HCl দ্রবণে সালফাইড আয়নের গাঢ়ত্ব হল 1.0×10^{-19} M. যদি এই দ্রবণের 10 মিলি, 0.04 Mশক্তিমাত্রার 5 মিলি নীচের দ্রবণগুলোর সঙ্গে মিশানো হয় তাহলে কোন্ কোন্ ক্ষেত্রে অধঃক্ষেপন হবে?

FeSO4, MnCl,, ZnCl, এবং CdCl,.
এস আই (SI) পম্ধতিতে একক সমূহের সংজ্ঞা (Definitions of the SI Base Units)

মিটার (m): শৃণ্য মাধ্যমে আলো এক সেকেন্ডের 1/299 792 458 ভাগ সময়ে যে দূরত্ব অতিক্রম করে তাকে 1 মিটার বলে। (১৭ তম CGPM, 1983).

কিলোগ্রাম (kg): কিলোগ্রাম হল ভরের একক। এটি কিলোগ্রামের আন্তর্জাতিক প্রোটোটাইপের ভরের সমান। (তৃতীয় CGPM–1901)

সেকেন্ড (S): 1 সেকেণ্ড হল ভূমি স্তরে সিজিয়াম - 133 পরমাণুর দুটো সূক্ষ্ম শক্তিস্তরের মধ্যকার দূরত্ব অতিক্রম করার জন্য কোনো বিকিরণের প্রয়োজনীয় সময়ের 9 192 631 770 টি পর্যায়। (১৩ তম CGPM, 1967)

অ্যান্সিয়ার (A): 1 অ্যান্সিয়ার হল একটি স্থির বিদ্যুৎ প্রবাহ যা নগণ্য প্রস্থচ্ছেদ যুক্ত অসীম দৈর্ঘ্যের দুটো গোলাকার পরিবাহী তারকে শূণ্যে 1 মিটার দূরত্বে সমান্তরালভাবে রেখে তড়িৎ প্রবাহিত করলে পরিবাহী দুটির প্রতি মিটার দৈর্ঘ্যে 2×10⁻⁷ নিউটন বল সৃষ্টি করে। (নবম CGPM, 1945)

কেলভিন (K): কেলভিন হল উন্নতার একটি তাপগতীয় একক, যা জলের ত্রেধবিন্দুর তাপগতীয় উন্নতার 1/273.16 অংশ। (১৩ তম CGPM, 1967)

মোল (mol): 1 মোল (mole) হল কোনো সিস্টেমের সেই পরিমাণ পদার্থ যার মধ্যে কার্বন-12 পরমাণুর 0.012 কিলোগ্রাম পরিমাণে উপস্থিত পরমাণু সংখ্যার সমান সংখ্যক মূল কণিকা উপস্থিত থাকে। এর চিহ্ন হল মোল (mole)। মোল (mole) শব্দের ব্যবহার করতে হলে মূল কণিকাগুলোকে নির্দিষ্ট করে বলতে হয় এবং এগুলো পরমাণু, অণু, আয়ন, ইলেকট্রন, অন্যান্য কণিকা বা অন্যান্য কণিকার নির্দিষ্ট সমবায় হতে পারে।

ক্যান্ডেলা (cd): ক্যান্ডেলা হল উৎসের একটি নির্দিষ্ট অভিমুখে সেই পরিমাণ দীপন প্রাবল্য যা 540×10¹² হার্ৎজ কম্পাঙ্কের একবর্ণী বিকিরণ নিঃসৃত করে এবং যার ঐ অভিমুখে বিকিরিত প্রাবল্য হল 1/683 ওয়াট প্রতি স্টেরেডিয়ান।

(এখানে তালিকাভুক্ত চিহ্নগুলো আন্তর্জাতিক স্তরে স্বীকৃত এবং অন্য কোনো ভাষা বা লিপিতে পরিবর্তন করা যাবে না।)

উপাজা I

রসায়ন

উপাঞ্চা II

মৌল সমূহ, তাদের পারমাণবিক সংখ্যা এবং মোল আণব ভর Elements, their Atomic Number and Molar Mass

মৌল	ब्र्य	প্রমাণ	আনব	õ	মীল	চহ্ন	পরমাণু	আনব
		ব্রহ্মাৎক	শন্তি/				ব্রুমার্জ্ব	শক্তি/
			(g mol ⁻¹)					(g mol ⁻¹)
অক্ষানি হাছে	A -	20	227.02	ম	ারকারি	Hø	80	200 59
অ্যান্য্টানরাম জ্যালয়িনিয়ায	AC	89	227.03	ম	লিবডেনাম	Mo	42	95.94
অ্যাল্যান্দালগান জনসম্যানিমিয়াম	AI	13	20.98	f	ওডিমিয়াম	Nd	60	144 24
অ্যান্মোরাশারাম জনগলিমান	Am	95	(243)	, i	যান	Ne	10	20.18
অ্যান্ডমান কাৰ্থন	Sb	51	121.75		নপচন	Nn	93	(237.05)
আগন	Ar	18	39.95	, i	ন । তু-। নকল	Ni	28	58 71
আসোনক	As	33	74.92	f.	াউন-শ নিটনিসাম	Nh	20	02.01
অ্যাস্চাচন	At	85	210	1	াতানরাশ কিটোক্লেন	NU	41	14 0067
বোরয়াম	Ba	56	137.34		।ৎত্রে।তেও নাবেলিয়াহা	No	102	(250)
বাকোলয়াম	Bk	97	(247)	ত ক	নার্বনিশাসন ব্যাহারিয়ার		76	100.2
বোরালয়াম	Be	4	9.01		গশ্যশহান ক্রিকেন	OS O	/0	190.2
বিসমাথ	Bi	83	208.98		থাঙ্গতেশ ধার্মান্যাস্য		0	10.00
বোরিয়াম	Bh	107	(264)	-	।)।ଙ୍ଗା ଓ ଶା শ সমসন কাম	Pa	40	106.4
বোর্ন	В	5	10.81	4	•সব্দর।স শলীনামা	P	15	30.97
ব্রোমিনু	Br	35	79.91	8	।।।তনাম দল্টসলিকাল	Pt	/8	195.09
ক্যাডমিয়াম	Cd	48	112.40	20	(ঢোলরাম	Pu	94	(244)
সিজিয়াম	Cs	55	132.91	2	(লা।নয়াম উ. <u>লি</u> জ্জান	Ро	84	210
ক্যালসিয়াম	Ca	20	40.08	8	ঢ়াসয়াম্	K	19	39.10
ক্যালিফোর্নিয়াম	Cf	98	251.08	2	গাসওডাহাময়াম	Pr	59	140.91
কাৰ্বন	С	6	12.01	G	প্রামোথয়াম	Pm	61	(145)
সিরিয়াম	Ce	58	140.12	G	প্রাটাঅ্যাক্টিনিয়াম	Ра	91	231.04
ক্রোরিন	Cl	17	35.45	G	রডিয়াম	Ra	88	(226)
ক্রোমিয়াম	Cr	24	52.00	G	রডন	Rn	86	(222)
কোবাল্ট	Co	27	58.93	G	রহেনিয়াম	Re	75	186.2
কপার	Cu	29	63 54	G	রাডিয়াম	Rh	45	102.91
কবিয়াম	Cm	96	247.07	G	রাবিডিয়াম	Rb	37	85.47
<u>দোরনিয়াম</u>	Dh	105	(263)	G	রাথেনিয়াম	Ru	44	101.07
ডিসপোসিয়াম	Dv	66	162 50	র	াদারফর্ডিয়াম	Rf	104	(261)
আইনসেইনিয়াম	Es	00	(252)	স	মারিয়াম	Sm	62	150.35
ইবরিয়াম	Er	68	167.26	ষ	ঢ্যানডিয়াম	Sc	21	44.96
<u>হ</u> য়। গ্যান ইট্রেরোঝিয়াহা	En	63	151.06	ने	নবর্গিয়াম	Sg	106	(266)
২৩৫না। ফার্য্যায়	Eu	100	(257.10)	G	সলনিয়াম	Se	34	78.96
ম্যাশমান ফোরিন	E	100	(237.10)	f	নলিকন	Si	14	28.08
জনামণ মহাক্রিমাম	Г Га	2	(222)	e l	নলভার	Ăσ	47	107.87
สาเพราผ		0/	(223)		সাড়িয়াম	Na	11	22.99
গ্যাভোগাশরান প্রান্দ্রিয়াস	Ga	04	157.25	2	টনশিয়াম টনশিয়াম	Sr	38	87.62
গ্যালারাম কার্কানিয়াম	Ga	31	69.72	2	ালফাব	S	16	32.06
জাঝোনরাম কোন্যান	Ge	32	/2.61	là	নি ন	Та	73	180.95
(গাণ্ড	Au	79	196.97	ă	কনেসিয়াম	Te	43	(98.91)
হাঞ্চানরাম	Ht	72	1/8.49	ä	ন্দুর্বোগারান্দ উল্লবিয়ায়	Те	52	127.60
হ্যাসিয়াম	Hs	108	(269)	1 Te	তথ্যমেরান বিরিয়াম	Th	65	158.02
। হালয়াম কাল্যাম	Не	2	4.00	9	াগলিয়াম াললিয়াম	TI	81	204.37
হোলাসয়াম	Но	67	164.93		গাবিসাম পারিসাম	Th	00	204.57
হাহড্রোজেন	Н	1	1.0079	9	নারিমান্দ লিয়ায়	Tm	90 60	168.02
হনাডয়াম	In	49	114.82	l e	(গে।সাশ নৈ	iiii Sm	50	110 60
আয়োাডন	I	53	126.90	10	শ বিদ্যালিয়ার	511	30	116.09
হারাডয়াম	Ir	77	192.2	7	।২৩।।শর।শ কল্যেন্য	11	22	4/.88
আয়রন	Fe	26	55.85		126-004	W	/4	183.85
ক্রিপ্টন	Kr	36	83.80		<u>মানআনাবরাম</u>	Uub	112	(277)
ল্যান্থেনাম	La	57	138.91	<u> </u>	মানআনানালারাম মানহার্জনের্জনের্জনের্জনের	Uun	110	(269)
লরেন্সাসয়াম	Lr	103	(262.1)	5	মানআনআনিয়াম উল্লেজ্য	Uuu	111	(272)
লেড	Рb	82	207.19	হ	ঙরোনয়াম	U	92	238.03
লিথিয়াম	Li	3	6.94	C	ভনা।ডয়াম	V	23	50.94
লুটেশিয়াম	Lu	71	174.96	0	জনন	Xe	54	131.30
ম্যাগনেসিয়াম	Mg	12	24.31	্ই	ঢারাবয়াম	Yb	70	173.04
ম্যাঙ্গানিজ	Mn	25	54.94	10	ট্রিয়াম	Y	39	88.91
মেটনিয়াম	Mt	109	(268)	া বি	<u></u> জঙ্ক	Zn	30	65.37
মেন্ডেলিভিয়াম	Md	101	258.10	ভ	গরকোনিয়াম	Zr	40	91.22

গরিষ্ঠ অর্ধায়ু সম্পন্ন আইসোটোপের মোলার ভরের মান প্রথম বন্ধনীর মধ্যে দেওয়া আছে।

উপাজ্ঞা III

A. 298K তাপমাত্রায় এবং এক বায়ুমন্ডলীয় চাপে কিছু পদার্থসমূহের আপেক্ষিক এবং মোলার তাপগ্রাহিতার মান (Specific and Molar Heat						
Capacities for Some Substance	es at 298 K and one Atmosp	heric Pressure				
পদার্থ	আপেক্ষিক তাপমাত্রা	মোলার তাপগ্রহীতা				
	(J/g)	(J/mol)				
বায়ু	0.720	20.8				
জল (তরল)	4.184	75.4				
অ্যামোনিয়া (গ্যাস)	2.06	35.1				
হাইড্রোজেন ক্লোরাইড	0.797	29.1				
হাইড্রোজেন ব্রোমাইড	0.360	29.1				
অ্যামোনিয়া (তরল)	4.70	79.9				
ইথাইল অ্যালকোহল (তরল)	2.46	113.16				
ইথিলিন গ্রাইকল (তরল)	2.42	152.52				
জল (কঠিন)	2.06	37.08				
কার্বন টেট্রাক্লোরাইড (তরল)	0.861	132.59				
ক্লোরোফোরোকার্বন (CC1 F_)	0.5980	72.35				
ওজোন 22	0.817	39.2				
নিয়ন	1.03	20.7				
ক্লোরিন	0.477	33.8				
ব্রোমিন	0.473	75.6				
আয়রন	0.460	25.1				
কপার	0.385	24.7				
অ্যালুমিনিয়াম	0.902	24.35				
গোল্ড	0.128	25.2				
গ্রাফাইট	0.720	8.65				

স	C _p	$C_{ m v}$	$C_{\rm p}$ - $C_{\rm v}$	$C_{\rm p}/C_{\rm v}$
› পারমাণবিক*				
হিলিয়াম	20.9	12.8	8.28	1.63
আর্গন	20.8	12.5	8.33	1.66
আয়োডিন	20.9	12.6	8.37	1.66
পাবদ	20.8	12.5	8.33	1.66
ā-পারমাণবিক†				
হাইড্রোজেন	28.6	20.2	8.33	1.41
অক্সিজেন	29.1	20.8	8.33	1.39
নাইট্রোজেন	29.0	20.7	8.30	1.40
হাইড্রোজেন ক্লোরাইড	29.6	21.0	8.60	1.39
কাৰ্বন মনোঅক্সাইড	29.0	21.0	8.00	1.41
ā-পারমাণবিক †				
নাইট্রাস অক্সাইড	39.0	30.5	8.50	1.28
কাৰ্বন ড্ৰাইঅক্সাইড	37.5	29.0	8.50	1.29
হু-পারমাণবিক†				
ইথেন	53.2	44.6	8.60	1.19

উপাঞ্চা **IV**

ভৌত ধ্রুবক সমূহ (Physical Constants)

নামি	কৰী	প্রচলিত এককসমূহ	এম আই প্রম্প্রতিকে এককমমূহ
	102	এচালত এককসমূহ	অস আহ সমাভতে অক্ষ্যসমূহ
অভিকর্ষজ ত্বরণ	g	980.6 cm/s	9.806 m/s
পারমাণবিক ভর একক (¹² C	amu	$1.6606 \times 10^{-24} \text{ g}$	$1.6606 \times 10^{-27} \text{ kg}$
পরমাণুর ভরের 1/12 অংশ)	or u		
অ্যাভোগাড্রো ধ্রুবক	$N_{\rm A}$	6.022×10^{23}	$6.022 imes 10^{23}$
		particles/mol	particles/mol
বোর ব্যাসার্ধ	a _o	0.52918 с 5.2918 × 10 ⁻⁹ ст	$5.2918 \times 10^{-11} \text{ m}$
বোলৎস্মান ধ্রুবক	k	$1.3807 \times 10^{-16} \text{ erg/K}$	$1.3807 imes 10^{-23} \text{ J/K}$
ইলেকট্রনের আধান	e/m	1.758820×10^8 coulomb/g	$1.7588 \times 10^{11} \text{ C/kg}$
ও ভরের অনুপাত			
ইলেকট্রনের আধান	е	1.602176×10^{-19} coulomb 4.8033×10^{-19} esu	$1.60219 \times 10^{-19} \text{ C}$
ইলেকট্রনের নির্দিষ্ট ভর	m _e	9.109382 ×10 ⁻²⁸ g 0.00054859 u	9.10952 ×10 ⁻³¹ kg
ফ্যারাডের ধ্রুবক	F	96,487 coulombs/eq 23.06 kcal/volt. eq	96,487 C/mol e ⁻ 96,487 J/V.mol e ⁻
গাসে ধ্বক	R	$0.8206 \frac{\text{L atm}}{\text{L}}$	$8 3145 \frac{\text{k Pa dm}^3}{\text{m}^3}$
or ration		mol K	mol K
		$1.987 \frac{\text{cal}}{\text{mol k}}$	8.3145 J/mol.K
মোলার আয়তন (STP)	V_m	22.710981 L/mol	$22.710981 \times 10^{-3} \text{ m}^3/\text{mol}$ $22.710981 \text{ dm}^3/\text{mol}$
নিউটনের নির্দিষ্ট ভর	m _n	$1.674927 \times 10^{-24}~{\rm g}$ 1.008665 u	1.67495×10^{-27} kg
প্ল্যাঙ্ক ধ্রুবক	h	$6.6262 \times 10^{-27} \text{ ergs}$	$6.6262 \times 10^{-34} \text{ J s}$
প্রোটনের নির্দিষ্ট ভর	m_p	1.6726216 ×10 ⁻²⁴ g 1.007277 u	1.6726 ×10 ⁻²⁷ kg
রিডবার্গ ধ্রুক	$R_{_{\infty}}$	$3.289 \times 10^{15} \text{ cycles/s}$ $2.1799 \times 10^{-11} \text{ erg}$	$\begin{array}{l} 1.0974 \times 10^{7}\mathrm{m^{-1}} \\ 2.1799 \times 10^{-18}\mathrm{J} \end{array}$
আলোকের বেগ (শূন্য মাধ্যমে)	С	2.9979 ×10 ¹⁰ cm/s (186,281 miles/second)	$2.9979\times10^8~m/s$

 $\pi = 3.1416$ e = 2.71828 2.303 R=4.576 cal/mol $\,$ K = 19.15 J/mol K $\,$

2.303 RT (25°C তাপমাত্রায়) = 1364 cal/mol = 5709 J/mol

X এর মধ্যে = 2.303 log X

উপাজ্ঞা V

কিছু গুরুত্বপূর্ণ পরিবর্তন জনিত পদ সমূহ (Some Useful Conversion Factors)

ভর ও ওজনের সাধারণ একক 1 pound = 453.59 grams

1 pound = 453.59 grams = 0.45359 kilogram

1 kilogram = 1000 grams = 2.205 pounds

1 gram = 10 decigrams = 100 centigrams

= 1000 milligrams

1 gram = 6.022×10^{23} atomic mass units or u

1 atomic mass unit = 1.6606×10^{-24} gram

1 metric tonne = 1000 kilograms = 2205 pounds

আয়তনের সাধারণ একক 1 quart = 0.9463 litre 1 litre = 1.056 quarts

1 litre = 1 cubic decimetre = 1000 cubic centimetres = 0.001 cubic metre 1 millilitre = 1 cubic centimetre = 0.001 litre $= 1.056 \times 10^{-3}$ quart 1 cubic foot = 28.316 litres = 29.902 quarts = 7.475 gallons

শক্তির সাধারণ একক সমহ 1 joule = 1×10^7 ergs

```
1 thermochemical calorie**
                                  = 4.184 joules
                                  = 4.184 \times 10^7 \text{ ergs}
= 4.129 \times 10^{-2} litre-atmospheres
= 2.612 \times 10^{19} electron volts
1 \text{ ergs} = 1 \times 10^{-7} \text{ joule} = 2.3901 \times 10^{-8} \text{ calorie}
1 electron volt = 1.6022 \times 10^{-19} joule
                    = 1.6022 \times 10^{-12} \text{ erg}
                    = 96.487 kJ/mol†
1 litre-atmosphere = 24.217 calories
                         = 101.32 joules
                         = 1.0132 \times 10^9 \text{ ergs}
1 British thermal unit = 1055.06 joules
                             = 1.05506 \times 10^{10} \text{ ergs}
                              = 252.2 calories
```

দৈর্ঘ্যের সাধারণ একক সমূহ 1 inch = 2.54 centimetres (exactly) 1 mile = 5280 feet = 1.609 kilometres

1 vard = 36 inches = 0.9144 metre1 metre = 100 centimetres = 39.37 inches = 3.281 feet

- = 1.094 yards 1 kilometre = 1000 metres = 1094 yards = 0.6215 mile
- 1 Angstrom = 1.0×10^{-8} centimetre
 - = 0.10 nanometre
 - $= 1.0 \times 10^{-10}$ metre
 - $= 3.937 \times 10^{-9}$ inch

বল* এবং চাপের সাধারণ একক সমূহ

1 atmosphere = 760 millimetres of mercury = 1.013×10^5 pascals = 14.70 pounds per square inch 1 bar = 10^5 pascals 1 torr = 1 millimetre of mercury $1 \text{ pascal} = 1 \text{ kg/ms}^2 = 1 \text{ N/m}^2$ তাপমাত্রা এস আই পম্ধতিতে একক কেলভিন (K)

 $K = -273.15^{\circ}C$

K = C + 273.15F = 1.8(C) + 32 $^{\circ}C = \frac{^{\circ}F - 32}{1.8}$

* বল : 1 নিউটন (N) = 1 kg m/s², অর্থাৎ যখন 1 kg ভরের কোন বস্তুর উপর 1 সেকেন্ড ধরে বল প্রয়োগ করলে প্রতি সেকেন্ডে 1 m বেগ সৃষ্টি হয়। ** 1 ৫ জলের তাপমাত্রা 14.5°C হতে 15.5°C বৃদ্ধি করতে যে পরিমাণ তাপের প্রয়োজন হয়।

† মনে রাখো, প্রতি কণার অন্যান্য এককসমূহ এবং অবশ্যই 6.022 × 10²³ এর গণিতক কঠোরভাবে তুলনীয়।

রসায়ন

উপাঞ্চা VI

298 K উন্নতায় তাপগতীয় তথ্য সমূহ

পদার্থ	গঠন এনথ্যালপি Δ _f H ^θ / (kJ mol ⁻¹)	গিবস্ গঠন শক্তি ∆ _f G ⁰ / (kJ mol ⁻¹)	এনট্রিপি* S ⁰ /(J K ⁻¹ mol ⁻¹)
অ্যালুমিনিয়াম (Aluminiur	<i>n</i>)		
Al(s)	0	0	28.33
Al ³⁺ (aq)	- 524.7	-481.2	-321.7
$Al_2O_3(s)$	-1675.7	-1582.3	50.92
$Al(OH)_3(s)$	-1276		—
AlCl ₃ (s)	-704.2	-628.8	110.67
অ্যান্টিমনি (Antimony)			
SbH ₃ (g)	145.11	147.75	232.78
SbCl ₃ (g)	-313.8	-301.2	337.80
SbCl ₅ (g)	-394.34	-334.29	401.94
আর্সেনিক (Arsenic)			
As(s), gray	0	0	35.1
$As_2S_3(s)$	-169.0	-168.6	163.6
$AsO_4^{3-}(aq)$	-888.14	-648.41	-162.8
বেরিয়াম (Barium)			
Ba(s)	0	0	62.8
$Ba^{2+}(aq)$	-537.64	-560.77	9.6
BaO(s)	-553.5	-525.1	70.42
BaCO ₃ (s)	-1216.3	-1137.6	112.1
BaCO ₃ (aq)	-1214.78	-1088.59	-47.3
বোরন (Boron)			
B(s)	0	0	5.86
$B_2O_3(s)$	-1272.8	-1193.7	53.97
BF ₃ (g)	-1137.0	-1120.3	254.12
ব্রোমিন (Bromine)			
$Br_2(1)$	0	0	152.23
Br ₂ (g)	30.91	3.11	245.46
Br(g)	111.88	82.40	175.02
Br ⁻ (aq)	-121.55	-103.96	82.4
HBr(g)	-36.40	-53.45	198.70
$BrF_3(g)$	-255.60	-229.43	292.53
ক্যালসিয়াম (Calcium)			
Ca(s)	0	0	41.42
Ca(g)	178.2	144.3	154.88
Ca ²⁺ (aq)	-542.83	-553.58	-53.1

অজৈব পদার্থ (INORGANIC SUBSTANCES)

(ক্রমশ)

পরিশিষ্ট

পদার্থ	গঠন এনথ্যালপি $\Delta_{ m f} H^{ heta}/~({ m kJ~mol}^{-1})$	গিবস্ গঠন শক্তি $\Delta_{ m f}G^{0\!/}~(m kJ~mol^{-1})$	এনট্রপি* <i>S</i> ⁰ /(J K ⁻¹ mol ⁻¹)
ক্যালসিয়াম (Calcium) (ক্রম	r()		
CaO(s)	-635.09	-604.03	39.75
$Ca(OH)_2(s)$	-986.09	-898.49	83.39
$Ca(OH)_2(aq)$	-1002.82	-868.07	-74.5
$CaCO_3(s)$, calcite	-1206.92	-1128.8	92.9
$CaCO_3(s)$, aragonite	-1207.1	-1127.8	88.7
$CaCO_3(aq)$	-1219.97	-1081.39	-110.0
$CaF_2(s)$	-1219.6	-1167.3	68.87
$CaF_2(aq)$	-1208.09	-1111.15	-80.8
$CaCl_2(s)$	-795.8	-748.1	104.6
$CaCl_2(aq)$	-877.1	-816.0	59.8
$CaBr_2(s)$	-682.8	-663.6	130
$CaC_2(s)$	-59.8	-64.9	69.96
CaS(s)	-482.4	-477.4	56.5
$CaSO_4(s)$	-1434.11	-1321.79	106.7
CaSO ₄ (aq)	-1452.10	-1298.10	-33.1
কাৰ্বন (Carbon)**			
C(s), graphite	0	0	5.740
C(s), diamond	1.895	2.900	2.377
C(g)	716.68	671.26	158.10
CO(g)	-110.53	-137.17	197.67
$CO_2(g)$	-393.51	-394.36	213.74
$CO_{3}^{2-}(aq)$	-677.14	-527.81	-56.9
$CCl_4(1)$	-135.44	-65.21	216.40
$CS_2(l)$	89.70	65.27	151.34
HCN(g)	135.1	124.7	201.78
HCN(l)	108.87	124.97	112.84
সিরিয়াম (Cerium)			
Ce(s)	0	0	72.0
$Ce^{3+}(aq)$	-696.2	-672.0	-205
Ce ⁴⁺ (aq)	-537.2	-503.8	-301
ক্লোরিন (Chlorine			
$Cl_2(g)$	0	0	223.07
Cl(g)	121.68	105.68	165.20
Cl ⁻ (aq)	-167.16	-131.23	56.5
HCl(g)	-92 31	-95 30	186 91
HCl(aq)	-167.16	-131.23	56.5
তামা (Copper)			
Cu(s)	0	0	33.15
Cu ⁺ (aq)	71.67	49.98	40.6
$Cu^{2+}(aq)$	64 77	65 49	-99.6
$Cu_{\rm e}O(aq)$	-168.6	-146.0	93.14
$C_{\rm uO}({\rm s})$	_157.2	120.7	12.17
CuO(s)		-129.7	42.05
$CuSO_4(s)$	-//1.30		109
$CuSO_4.5H_2O(s)fff$	-22/9.7	-18//9.//	300.4

** জৈব যৌগের জন্যে একটি পৃথক সারণি পরে দেওয়া আছে।

245

(ক্রমশ)

পদার্থ	গঠন এনথ্যালপি $\Delta_{ m f} H^{ heta}/~({ m kJ~mol}^{-1})$	গিবস্ গঠন শক্তি $\Delta_{ m f}G^{0/}~(m kJ~mol^{-1})$	এন্ট্রেপি* S ⁰ /(J K ⁻¹ mol ⁻¹)
ডিউটোরিয়াম (Deuterium)	(ক্রমশ)		
$D_2(g)$	0	0	144.96
$D_2O(g)$	-249.20	-234.54	198.34
$D_2O(1)$	-294.60	-243.44	75.94
ফ্লোরিন (Fluorine)			
$F_2(g)$	0	0	202.78
F ⁻ (aq)	-332.63	-278.79	-13.8
HF(g)	-271.1	-273.2	173.78
HF(aq)	-332.63	-278.79	-13.8
হাইড্রোজেন (Hydrogen) (i	ডিউটোরিয়াম লক্ষ করো)		
$H_2(g)$	0	0	130.68
H(g)	217.97	203.25	114.71
$H^+(aq)$	0	0	0
$H_2O(l)$	-285.83	-237.13	69.91
$H_2O(g)$	-241.82	-228.57	188.83
$H_2O_2(1)$	-187.78	-120.35	109.6
$H_2O_2(aq)$	-191.17	-134.03	143.9
আয়োডিন (Iodine)			
$I_2(s)$	0	0	116.14
$I_2(g)$	62.44	19.33	260.69
I ⁻ (aq)	-55.19	-51.57	111.3
HI(g)	26.48	1.70	206.59
লৌহ (Iron)			
Fe(s)	0	0	27.28
$Fe^{2+}(aq)$	-89.1	-78.90	-137.7
Fe ³⁺ (aq)	-48.5	-4.7	-315.9
$Fe_3O_4(s)$, magnetite	-1118.4	-1015.4	146.4
$Fe_2O_3(s)$, haematite	-824.2	-742.2	87.40
FeS(s,a)	-100.0	-100.4	60.29
FeS(aq)	—	6.9	—
$FeS_2(s)$	-178.2	-166.9	52.93
লেড (Lead)			
Pb(s)	0	0	64.81
Pb ²⁺ (aq)	-1.7	-24.43	10.5
$PbO_2(s)$	-277.4	-217.33	68.6
$PbSO_4(s)$	-919.94	-813.14	148.57
$PbBr_2(s)$	-278.7	-261.92	161.5
$PbBr_2(aq)$	-244.8	-232.34	175.3
ম্যাগনেশিয়াম (Magnesium)		
Mg(s)	0	0	32.68
Mg(g)	147.70	113.10	148.65
$Mg^{2+}(aq)$	-466.85	-454.8	-138.1
MgO(s)	-601.70	-569.43	26.94
$MgCO_3(s)$	-1095.8	-1012.1	65.7
MgBr ₂ (s)	-524.3	-503.8	117.2

রসায়ন

পরিশিষ্ট

পদার্থ	গঠন এনথ্যালপি $\Delta_{ m r} H^{ m heta}/~({ m kJ~mol}^{-1})$	গিবস্ গঠন শক্তি $\Delta_{ m f}G^{0\!/}~(m kJ~mol^{-1})$	্রনট্রান্টার্শ S ⁶ /(J K ⁻¹ mol ⁻¹)
পারদ (Mercury) (ক্রমশ)			
Hg(1)	0	0	76.02
Hg(g)	61.32	31.82	174.96
HgO(s)	-90.83	-58.54	70.29
$Hg_2Cl_2(s)$	-265.22	-210.75	192.5
নাইট্রোজেন (Nitrogen)			
$N_2(g)$	0	0	191.61
NO(g)	90.25	86.55	210.76
$N_2O(g)$	82.05	104.20	219.85
$NO_2(g)$	33.18	51.31	240.06
$N_2O_4(g)$	9.16	97.89	304.29
$HNO_3(1)$	-174.10	-80.71	155.60
HNO ₃ (aq)	-207.36	-111.25	146.4
$NO_3^-(aq)$	-205.0	-108.74	146.4
NH ₃ (g)	-46.11	-16.45	192.45
NH ₃ (aq)	-80.29	-26.50	111.3
NH_4^+ (aq)	-132.51	-79.31	113.4
$NH_2OH(s)$	-114.2		
$HN_3(g)$	294.1	328.1	238.97
$N_2H_4(1)$	50.63	149.34	121.21
$NH_4NO_3(s)$	-365.56	-183.87	151.08
$NH_4Cl(s)$	-314.43	-202.87	94.6
$NH_4ClO_4(s)$	-295.31	-88.75	186.2
অক্সিজেন (Oxygen)			
$O_2(g)$	0	0	205.14
$O_3(g)$	142.7	163.2	238.93
OH ⁻ (aq)	-229.99	-157.24	-10.75
ফসফরাস (Phosphorus)			
P(s), white	0	0	41.09
$P_4(g)$	58.91	24.44	279.98
$PH_3(g)$	5.4	13.4	210.23
$P_4O_{10}(s)$	-2984.0	-2697.0	228.86
H ₃ PO ₃ (aq)	-964.8		_
$H_{3}PO_{4}(1)$	-1266.9	_	_
$H_3PO_4(aq)$	-1277.4	-1018.7	_
$PCl_3(1)$	-319.7	-272.3	217.18
PCl ₂ (g)	-287.0	-267.8	311.78
PCl _s (g)	-374.9	-305.0	364.6
- ১৩০ পটাশিয়াম (Potassium)			200
K(s)	0	0	64 18
K(g)	89 24	60 59	160 34
$K^{+}(aq)$	-252.38	-283 27	102.5
("")		203.27	102.0
KOH(s)	-424.76	-379.08	78.9
KOH(s) KOH(aq)	-424.76 -482.37	-379.08 -440.50	78.9 91.6

 $H_2S(aq)$

 $SF_6(g)$

-39.7

-1209

গঠন এনথ্যালপি এনট্রপি* গিবস্ গঠন শক্তি পদার্থ $S^{\Theta}/(J K^{-1} mol^{-1})$ $\Delta_{\rm f} H^{\theta} / (\rm kJ \ mol^{-1})$ $\Delta_{\rm f} G^{\Theta}$ (kJ mol⁻¹) পটাশিয়াম (Potassium) (ক্রমশ) KCl(s) -436.75 -409.14 82.59 KBr(s) -393.80 -380.66 95.90 -327.90 -324.89 106.32 KI(s) KClO₃(s) -397.73 -296.25 143.1 KClO₄(s) -432.75 -303.09 151.0 $K_2S(s)$ -380.7-364.0105 -471.5 -480.7190.4 $K_2S(aq)$ সিলিকন (Silicon) 0 0 Si(s) 18.83 -910.94 -856.64 41.84 SiO₂(s,a) সিলভার (Silver) 42.55 0 0 Ag(s) 105.58 77.11 72.68 Ag⁺(aq) $Ag_2O(s)$ -31.05 -11.20121.3 -100.37-96.90 107.1 AgBr(s) -15.98-26.86 155.2 AgBr(aq) AgCl(s) -127.07-109.7996.2 -54.12129.3 AgCl(aq) -61.58 AgI(s) -61.84-66.19 115.5 25.52 AgI(aq) 50.38 184.1 -124.39 -33.41 140.92 AgNO₃(s) সোডিয়াম (Sodium) 0 0 51.21 Na(s) Na(g) 107.32 76.76 153.71 Na⁺(aq) -240.12-261.91 59.0 -379.49 NaOH(s) -425.61 64.46 NaOH(aq) -470.11 -419.15 48.1 -411.15 -384.14 72.13 NaCl(s) -407.3 -393.1 115.5 NaCl(aq) -361.06 -348.9886.82 NaBr(s) -287.78-286.06 98.53 NaI(s) NaHCO₃(s) -947.7 -851.9 102.1 -1130.9 -1047.7136.0 $Na_2CO_3(s)$ সালফার (Sulphur) 0 0 31.80 S(s), rhombic S(s), monoclinic 0.33 0.1 32.6 $S^{2-}(aq)$ 33.1 85.8 -14.6248.22 $SO_2(g)$ -296.83 -300.19-395.72 -371.06256.76 $SO_3(g)$ $H_2SO_4(1)$ -813.99 156.90 -690.00 $H_2SO_4(aq)$ 20.1 -909.27-744.53 $SO_4^{2-}(aq)$ -909.27 20.1 -744.53-20.63205.79 $H_2S(g)$ -33.56

-27.83

-1105.3

রসায়ন

121

291.82

পরিশিষ্ট

পদার্থ	গঠন এনথ্যালপি A _f H ⁰ / (kJ mol ⁻¹)	গিবস্ গঠন শক্তি ∆ _f 6 ⁹ / (kJ mol⁻¹)	এন্ট্রন্টিপি* S ⁰ /(J K ⁻¹ mol ⁻¹)
টিন (Tin) (ক্রমশ)			
Sn(s), white	0	0	51.55
Sn(s), gray	-2.09	0.13	44.14
SnO(s)	-285.8	-256.9	56.5
$SnO_2(s)$	-580.7	-519.6	52.3
জিজ্ঞ্ব (Zinc)			
Zn(s)	0	0	41.63
$Zn^{2+}(aq)$	-153.89	-147.06	-112.1
ZnO(s)	-348.28	-318.30	43.64
Zn(g)	+130.73	+95.14	160.93

* জলে H⁺ আয়নের এনট্রপিকে 0-হিসাবে নির্ধারিত করে এই মানের সাপেক্ষে দ্রবণে অন্যান্য আয়নের এনট্রপি গণনা করা হয়, তাই ঋণাত্মক এনট্রপি বলতে জলে H⁺ আয়নের এনট্রপি অপেক্ষা কম এনট্রপিকে বোঝায়।

জৈব যৌগসমূহ (ORGANIC COMPOUNDS)

পদার্থ	দহন এলথ্যালপি	গঠন এনথ্যালপি	গিবস্ গঠন শক্তি	এনট্রপি
	$\Delta_{\rm c} H^{\Theta}$ / (kJ mol ⁻¹)	$\Delta_{\rm f} H^{\Theta}$ / (kJ mol ⁻¹)	$\Delta_{\rm f} G^{\Theta}$ / (kJ mol ⁻¹)	$S^{\Theta}/(J K^{-1} mol^{-1})$
হাইড্রোকার্বন (Hydrocarbons)				
${ m CH}_4({ m g}),$ মিথেন	-890	-74.81	-50.72	186.26
$\mathrm{C_2H_2(g)}$, ইথাইন (অ্যামিটিলিন)	-1300	226.73	209.20	200.94
$C_2H_4(g)$, ইথিন (ইথিলিন)	-1411	52.26	68.15	219.56
$C_2H_6(g)$, ইথেন	-1560	-84.68	-32.82	229.60
C ₃ H ₆ (g), প্রোপিন (প্রোপিলিন)	-2058	20.42	62.78	266.6
C ₃ H ₆ (g), সাইক্লোপ্রোপেন	-2091	53.30	104.45	237.4
C ₃ H ₈ (g), প্রোপেন	-2220	-103.85	-23.49	270.2
${ m C_4H_{10}(g)},$ বিউটেন	-2878	-126.15	-17.03	310.1
$C_5H_{12}(g)$, পেন্টেন	-3537	-146.44	-8.20	349
$\mathrm{C_6H_6(l)},$ বেঞ্জিন	-3268	49.0	124.3	173.3
$C_6H_6(g)$	-3302	_	_	_
$\mathrm{C}_{7}\mathrm{H}_{8}(\mathrm{l})$, টলুইন	-3910	12.0	113.8	221.0
$C_7H_8(g)$	-3953	—	—	_
$\mathrm{C}_{6}\mathrm{H}_{12}(\mathrm{l})$, সাইক্লোহেঞ্জেন	-3920	-156.4	26.7	204.4
$C_{6}H_{12}(g),$	-3953	—	—	—
C ₈ H ₁₈ (l), অক্টেন	-5471	-249.9	6.4	358
অ্যালকোহল এবং ফেনল (Alcohols and	l phenols)			
CH ₃ OH(l), মিথানল	-726	-238.86	-166.27	126.8
CH ₃ OH(g)	-764	-200.66	-161.96	239.81
$C_2H_5OH(l)$, ইথানল	-1368	-277.69	-174.78	160.7
$C_2H_5OH(g)$	-1409	-235.10	-168.49	282.70
$C_6H_5OH(s)$, ফেনল	-3054	-164.6	-50.42	144.0

(ক্রমশ)

পদার্থ	দহন এলথ্যালপি	গঠন এনথ্যালপি	গিবস্ গঠন শক্তি	এনট্রপি
	$\Delta_{\rm c} H^{\rm o}/~({\rm kJ~mol^{-1}})$	$\Delta_{\rm f} H^{\rm o}/~({\rm kJ~mol}^{-1})$	$\Delta_{\rm f} G^{\rm o}/({\rm kJ mol}^{\rm r})$	S ⁶ /(J K ⁻¹ mol ⁻¹)
কার্বক্সিলিক অ্যাসিড (Carboxylic acid)				
HCOOH(l), ফরমিক অ্যাসিড	-255	-424.72	-361.35	128.95
CH ₃ COOH(l), অ্যাসিটিক অ্যাসিড	-875	-484.5	-389.9	159.8
CH ₃ COOH (aq)	—	-485.76	-396.64	86.6
(COOH) ₂ (s), অক্সালিক অ্যাসিড	-254	-827.2	-697.9	120
$\mathrm{C_6H_5COOH}(\mathrm{s})$, বেঞ্জেইক অ্যাসিড	-3227	-385.1	-245.3	167.6
অ্যালডিহাইড (Aldehydes and ketones)				
HCHO(g), মিথানাল (ফরমালডিহাইড)	-571	-108.57	-102.53	218.77
CH ₃ CHO(l), ইথান্যাল অ্যাসিট্যালডিহাইড	-1166	-192.30	-128.12	160.2
CH ₃ CHO(g)	-1192	-166.19	-128.86	250.3
$\mathrm{CH}_3\mathrm{COCH}_3(\mathrm{l}),$ প্রোপানোন (অ্যাসিটোন)	-1790	-248.1	-155.4	200
শর্করা (Sugars)				
C ₆ H ₁₂ O ₆ (s), গ্লুকোজ	-2808	-1268	-910	212
$C_6H_{12}O_6(aq)$	—	—	-917	—
$\mathrm{C_6H_{12}O_6(s)},$ ফুকোজ	-2810	-1266	—	—
${ m C}_{12}{ m H}_{22}{ m O}_{11}({ m s})$, সুক্রোজ	-5645	-2222	-1545	360
নাইট্রোজেন ঘটিত যৌগ (Nitrogen com	pounds)			
$\mathrm{CO}(\mathrm{NH}_2)_2(\mathrm{s}),$ ইউরিয়া	-632	-333.51	-197.33	104.60
$C_6H_5NH_2(l)$, অ্যানিলিন	-3393	31.6	149.1	191.3
NH ₂ CH ₂ COOH(s), গ্লাইসিন	-969	-532.9	-373.4	103.51
$\mathrm{CH}_3\mathrm{NH}_2(\mathrm{g})$, মিথাইল অ্যামিন	-1085	-22.97	32.16	243.41

উপাঞ্চা VII

298 K উন্নতায় তড়িৎ রাসায়নিক সক্রিয়তার ক্রমানুযায়ী প্রমাণ বিভব

বিজারণ অর্ধ বিক্রিয়া	E ^θ /V	বিজারণ অর্ধ বিক্রিয়া	E ⁰ /V
$H_4XeO_6 + 2H^+ + 2e^- \longrightarrow XeO_3 + 3H_2O$	+3.0	$Cu^+ + e^- \longrightarrow Cu$	+0.52
$F_2 + 2e^- \longrightarrow 2F-$	+2.87	$NiOOH + H_2O + e^- \longrightarrow Ni(OH)_2 + OH^-$	+0.49
$O_3 + 2H^+ + 2e^- \longrightarrow O_2 + H_2O$	+2.07	$Ag_2CrO_4 + 2e^- \longrightarrow 2Ag + CrO_4^{2-}$	+0.45
$S_{3}O_{8}^{2-} + 2e^{-} \longrightarrow 2SO_{4}^{2-}$	+2.05	$O_2 + 2H_2O + 4e^- \longrightarrow 4OH^-$	+0.40
$Ag^+ + e^- \longrightarrow Ag^+$	+1.98	$\text{ClO}_4^- + \text{H}_2\text{O} + 2\text{e}^- \longrightarrow \text{ClO}_3^- + 2\text{OH}^-$	+0.36
$Co^{3+} + e^{-} \longrightarrow Co^{2+}$	+1.81	$[\operatorname{Fe}(\operatorname{CN})_6]^{3-} + e^- \longrightarrow [\operatorname{Fe}(\operatorname{CN})_6]^{4-}$	+0.36
$H_2O_2 + 2H^+ + 2e^- \longrightarrow 2H_2O_1$	+1.78	$Cu^{2+} + 2e^{-} \longrightarrow Cu$	+0.34
$Au^+ + e^- \longrightarrow Au$	+1 69	$Hg_2Cl_2 + 2e^- \longrightarrow 2Hg + 2Cl^-$	+0.27
$Pb^{4+} + 2e^{-} \longrightarrow Pb^{2+}$	+1.67	$AgCl + e^{-} \longrightarrow Ag + Cl^{-}$	+0.27
$2HClO + 2H^+ + 2e^- \longrightarrow Cl + 2HO$	+1.63	$Bi^{3+} + 3e^- \longrightarrow Bi$	+0.20
$Ce^{4+} + e^{-} \longrightarrow Ce^{3+}$	+1.61	$SO_4^{2-} + 4H^+ + 2e^- \longrightarrow H_2SO_3 + H_2O$	+0.17
$2HBrO + 2H^{+} + 2e^{-} \rightarrow Br + 2HO$	+1.60	$Cu^{2+} + e^{-} \longrightarrow Cu^{+}$	+0.16
$2\Pi BIO + 2\Pi + 2e \longrightarrow BI_2 + 2\Pi_2O$ $MnO^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4HO$	+1.51	$\mathrm{Sn}^{4+} + 2\mathrm{e}^{-} \longrightarrow \mathrm{Sn}^{2+}$	+0.15
$Mn^{3+} + a^{-} \rightarrow Mn^{2+}$	+1.51	$AgBr + e^- \longrightarrow Ag + Br^-$	+0.07
$V_{III} + e \longrightarrow V_{III}$	+1.31	$Ti^{4+} + e^- \longrightarrow Ti^{3+}$	0.00
$Au^{-} + 3e^{-} \longrightarrow Au^{-}$	+1.40	$2H^+ + 2e - \longrightarrow H_2$	0.0 সংজ্ঞা
$Cl_2 + 2e \longrightarrow 2Cl$	+1.36	- 2+	অনুসারে
$\operatorname{Cr}_2 \operatorname{O}_7 + 14\operatorname{H}^2 + 6e \longrightarrow 2\operatorname{Cr}^2 + /\operatorname{H}_2 \operatorname{O}^2$	+1.33	$Fe^{3\tau} + 3e^{-} \longrightarrow Fe$	-0.04
$O_3 + H_2O + 2e \longrightarrow O_2 + 2OH$	+1.24	$O_2 + H_2O + 2e^- \longrightarrow HO_2^- + OH^-$	-0.08
$O_2 + 4H' + 4e^- \longrightarrow 2H_2O$	+1.23	$Pb^{2+} + 2e^{-} \longrightarrow Pb$	-0.13
$\text{ClO}_4^- + 2\text{H}^+ + 2\text{e}^- \longrightarrow \text{ClO}_3^- + 2\text{H}_2\text{O}$	+1.23	$\ln^{+} + e^{-} \longrightarrow \ln$	-0.14
$MnO_2 + 4H^+ + 2e^- \longrightarrow Mn^{2+} + 2H_2O$	+1.23	$\operatorname{Sn}^2 + 2e \longrightarrow \operatorname{Sn}^2$	-0.14
$Pt^{2+} + 2e^- \longrightarrow Pt$	+1.20	$Agl + e^{-} \longrightarrow Ag + l^{-}$	-0.15
$Br_2 + 2e^- \longrightarrow 2Br^-$	+1.09	$N1^{2^+} + 2e \longrightarrow N1$	-0.23
$Pu^{4+} + e^- \longrightarrow Pu^{3+}$	+0.97	$\nabla^{3+} + e \longrightarrow \nabla^{2+}$	-0.26
$NO_3^- + 4H^+ + 3e^- \longrightarrow NO + 2H_2O$	+0.96	$\operatorname{Co}^{2^{+}} + 2e \longrightarrow \operatorname{Co}$	-0.28
$2Hg^{2+} + 2e^- \longrightarrow Hg_2^{2+}$	+0.92	$\ln^3 + 3e \longrightarrow \ln^3$	-0.34
$\text{ClO}^- + \text{H}_2\text{O} + 2\text{e}^- \longrightarrow \text{Cl}^- + 2\text{OH}^-$	+0.89	$11 + e \longrightarrow 11$	-0.34
$\mathrm{Hg}^{2+} + 2\mathrm{e}^{-} \longrightarrow \mathrm{Hg}$	+0.86	$PbSO_4 + 2e \longrightarrow Pb + SO_4$ $T^{3+} + e^{-} = e^{-}T^{2+}$	-0.36
$NO_3^- + 2H^+ + e^- \longrightarrow NO_2 + H_2O$	+0.80	$11 + e \longrightarrow 11$ $C^{+2+} + 2^{-} \longrightarrow C^{+}$	-0.37
$Ag^+ + e^- \longrightarrow Ag$	+0.80	$Ca + 2e \longrightarrow Ca$	-0.40
$Hg_2^{2+}+2e^-\longrightarrow 2Hg$	+0.79	$\ln^{+} e \longrightarrow \ln^{-}$	-0.40
$Fe^{3+} + e^- \longrightarrow Fe^{2+}$	+0.77	$Cr + e \longrightarrow Cr$ $Ee^{2^+} + 2e^- \longrightarrow Ee$	-0.41
$BrO^- + H_2O + 2e^- \longrightarrow Br^- + 2OH^-$	+0.76	$\Gamma e^{-} + 2e^{-} \longrightarrow \Gamma e^{+}$ $Im^{3+} + 2e^{-} \longrightarrow Im^{+}$	-0.44
$Hg_2SO_4 + 2e^- \longrightarrow 2Hg + SO_4^{2-}$	+0.62	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.44
$MnO_4^{-+} 2H_2O + 2e^{-} \longrightarrow MnO_2 + 4OH^{-}$	+0.60	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.40
$MnO_4^- + e^- \longrightarrow MnO_4^{2-}$	+0.56	$II^{4+} + e^{-} \longrightarrow II^{3+}$	-0.49
$I_2 + 2e^- \longrightarrow 2I^-$	+0.54	$Cr^{3+} + 3e^{-} \longrightarrow Cr$	-0.01
$I_{2}^{2} + 2e^{-} \longrightarrow 3I$	+0.53	$7n^{2+} + 2e^{-} \longrightarrow 7n$	-0.74
-, -, -, -, -, -, -, -, -, -, -, -, -, -	0.00		0.70

রসায়ন

বিজারণ অর্ধ বিক্রিয়া	Е ⁰ /V	বিজারণ অর্ধ বিক্রিয়া	<i>Е</i> ⁰ /V
$Cd(OH)_2 + 2e^- \longrightarrow Cd + 2OH^-$	-0.81	$La^{3+} + 3e^{-} \longrightarrow La$	-2.52
$2H_2O + 2e^- \longrightarrow H_2 + 2OH^-$	-0.83	$Na^+ + e^- \longrightarrow Na$	-2.71
$Cr^{2+} + 2e^{-} \longrightarrow Cr^{-}$	-0.91	$Ca^{2+} + 2e^{-} \longrightarrow Ca$	-2.87
$Mn^{2+} + 2e^{-} \longrightarrow Mn$	-1.18	$\mathrm{Sr}^{2+} + 2\mathrm{e}^{-} \longrightarrow \mathrm{Sr}$	-2.89
$V^{2+} + 2e^{-} \longrightarrow V$	-1.19	$Ba^{2+} + 2e^{-} \longrightarrow Ba$	-2.91
$Ti^{2+} + 2e^{-} \longrightarrow Ti$	-1.63	$Ra^{2+} + 2e^{-} \longrightarrow Ra$	-2.92
$Al^{3+} + 3e^{-} \longrightarrow Al$	-1.66	$Cs^+ + e^- \longrightarrow Cs$	-2.92
$U^{3+} + 3e^- \longrightarrow U$	-1.79	$Rb^+ + e^- \longrightarrow Rb$	-2.93
$\mathrm{Sc}^{3+} + 3\mathrm{e}^{-} \longrightarrow \mathrm{Sc}$	-2.09	$K^+ + e^- \longrightarrow K$	-2.93
$Mg^{2+} + 2e^{-} \longrightarrow Mg$	-2.36	$Li^+ + e^- \longrightarrow Li$	-3.05
$Ce^{3+} + 3e^{-} \longrightarrow Ce$	-2.48		

কিছু নির্দিষ্ট সমস্যাগুলোর উত্তরসমূহ

UNIT 1	UNIT	1
--------	------	---

1.17	~15	$5 \times 10^{-4} \mathrm{g}$, 1.25×10^{-5}	^{4}m							
1.18	(i)	4.8×10^{-3}	(ii)	2.34×10^{-10}	0 ⁵ (iii) :	8.008×10^{3}		(iv)	5.000×10^{2}
	(v)	6.0012								
1.19	(i)	2	(ii)	3	(iii) 4	4		(iv)	3
	(v)	4	(vi)	5						
1.20	(i)	34.2	(ii)	10.4	(iii) (0.0460		(iv)	2810
1.21	(a)	গুণানুপাত সূত্র	(b)	(i) (10 ⁶ n	nm, 10^{15} pm)				
				(ii) (10 ⁻⁶	kg, 10^6 ng)					
				(iii) (10 ⁻³	3 L, 10 ⁻³ dm ³)				
1.22	6.00	$0 \times 10^{-1} \mathrm{m} = 0.600 \mathrm{m}$								
1.23	(i)	B লিমিটিং বিকারক			((ii)	A লিমিটিং বি	বকারব	2	
	(iii)	স্টয়সিওমেট্রিক দ্রবণ-	না		((iv)	B লিমিটিং বি	কারক	5	
	(v)	A লিমিটিং বিকারক								
1.24	(i)	2.43×10^3g			((ii)	হাঁ			
	(iii)	হাইড্রোজেন অবিকৃত থ	ধাকবে;	5.72 × 1	0^2 g					
1.26	দশ ব	মায়তন								
1.27	(i)	$2.87 \times 10^{-11} m$		(ii)	1.515×10^{-1}	$^{-11}$ r	m	(iii)	2.53	365×10^{-2} kg
1.30	1.99	0265×10^{-23} g								
1.31	(i)	3		(ii)	4			(iii)	4	
1.32	39.9	$948 \mathrm{g} \mathrm{mol}^{-1}$								
1.33	(i)	$3.131 imes 10^{25}$ টি পর	মাণু	(ii)	13 টি পরমা	াণু		(iii)	7.82	$286 imes 10^{24}$ টি পরমাণু
1.34	স্থৃল	ৰ সংকেত CH, আনব জ	ছ র 26.	0 g mol^{-1}	, আনবিক স	ংকে	२ त्य C2H2			
1.35	0.94	g CaCO ₃								
1.36	8.40	g HCl								

UNIT 2

2.1	 (i) 1.099 × 10²⁷ টি ইলেকট্রন 	(ii) 5.48×10^{-7} kg, 9.65×10^{4} C
2.2	(i) 6.022 × 10 ²⁴ টি নিউট্ৰন	
	(ii) (a) 2.4088 × 10 ²¹ টি নিউট্ৰন	(b) $4.0347 \times 10^{-6} \text{ kg}$
	(iii) (a) 1.2044 × 10 ²² টি প্লোটন	(b) $2.015 \times 10^{-5} \text{ kg}$
2.3	7,6: 8,8: 12,12: 30,26: 50, 38	

253

2.4

2.5

2.40

(i) Cl

 $5.17 \times 10^{14} \text{ s}^{-1}, 1.72 \times 10^{6} \text{m}^{-1}$

(i) $1.988 \times 10^{-18} \text{ J}$ 2.6 (ii) $3.98 \times 10^{-15} \text{ J}$ 2.7 $6.0 imes 10^{-2} ext{ m}, ext{ 5.0} imes 10^9 ext{ s}^{-1}$ ଏବଂ $ext{ 16.66 m}^{-1}$ 2.8 2.012 × 10¹⁶ টি ফোটন 2.9 (i) $4.97 \times 10^{-19} \text{ J} (3.10 \text{ eV});$ (ii) 0.97 eV (iii) $5.84 \times 10^5 \,\mathrm{m \, s^{-1}}$ 2.10 494 kJ mol⁻¹ $7.18 \times 10^{19} \mathrm{s}^{-1}$ 2.11 $4.41 \times 10^{14} s^{-1}$, $2.91 \times 10^{-19} J$ 2.12 2.13 486 nm $8.72\times 10^{-20}J$ 2.14 2.15 15 D 2.16 (i) 8.72×10^{-20} J (ii) 1.3225 nm 2.17 $1.523 \times 10^{6} \, m^{-1}$ 2.08×10^{-11} ergs, 950 Å 2.18 2.19 3647Å $3.55\times 10^{-11}m$ 2.20 8967Å 2.21 2.22 Na⁺, Mg²⁺, Ca²⁺; Ar, S²⁻ এবং K⁺ (i) (a) $1s^2$ (b) $1s^2 2s^2 2p^6$; (c) $1s^2 2s^2 2p^6$ (d) $1s^2 2s^2 2p^6$ 2.23 n = 5 2.24 n = 3; l = 2; m, = -2, -1, 0, +1, +2 (যে কোন একটি মান) 2.25 (i) 29 টি প্লোটন 2.26 2.27 1, 2, 15 (i) *l* 2.28 m_l 0 0 -1,0,+11 -2,-1,0,+1,+22 (ii) $l = 2; m_1 = -2, -1, 0, +1, +2$ (iii) 2*s*, 2*p* 2.29 (a) 1s, (b) 3p, (c) 4d এবং (d) 4f (a), (c) এবং (e) সন্তব নয়। 2.30 (a) 16 টি ইলেকট্রন (b) 2 টি ইলেকট্রন 2.31 2.33 n = 2 to n = 18.72 × 10⁻¹⁸J প্রতি পরমাণু 2.34 $1.33 imes 10^9$ 2.35 2.36 0.06 nm (a) $1.3 \times 10^2 \, \text{pm}$ (b) $6.15 \times 10^7 \text{ pm}$ 2.37 2.38 1560 2.39 8

অধিক সংখ্যক α –কণা হালকা পরমাণুর পাতলা পাতকে ভেদ করে চলে যায় ফলে খুব কম সংখ্যক α –কণা বিক্ষিপ্ত হয়।

(ii) U

(iii) Be

রসায়ন

উত্তরমালা

2.41	আইসোটোপের ক্ষেত্রে, কোন একটি নি ভিন্ন ভিন্ন হয়।	দিস্টি মৌলের প্রোটন একই হয় কি	ন্ডু প্রদত্ত পারমাণবিক সংখ্যার জন্য ভরসংখ্যা
2.42	$^{81}_{35}$ Br		
2.43	$^{37}_{17}\text{Cl}^{-1}$		
2.44	${}^{56}_{26}{ m Fe}^{3+}$		
2.45	কসমিক রশ্মি > X–রশ্মি > অ্যাম্বার রং	> মাইক্রোওয়েভ > FM রেডিও	
2.46	$3.3 imes 10^6 \mathrm{J}$		
2.47	(a) $4.87 \times 10^{14} \text{ s}^{-1}$	(b) $9.0 \times 10^9 \mathrm{m}$	(c) $32.27 \times 10^{-20} \text{ J}$
	(d) 6.2 × 10 ¹⁸ কোয়ান্টা		
2.48	10		
2.49	$8.28 \times 10^{-10} \mathrm{J}$		
2.50	$3.45\times10^{-22}J$		
2.51	 (a) সূচনা তরঙ্গা দৈর্ঘ্য 652.46 nm 	(b) সূচনা কম্পাঙ্ক 4.598 ×10 ¹⁴ s ⁻¹	
	(c) নির্গত ফঠো ইলেকট্রনের গতিশা	ক্ত 9.29 ×10 ^{−20} J, ফটো ইলেকট্র	নর গতিবেগ 4.516 × 10 ⁵ ms ⁻¹
2.52	530.9 nm		
2.53	4.3 eV		
2.54	$7.6 \times 10^3 \mathrm{eV}$		
2.55	অবলোহত বণালা, 5		
2.56	433 pm		
2.57	455 pm		
2.58	494.5 ms ⁻¹		
2.59	332 pm		
2.60	$1.51 \times 10^{-27} \mathrm{m}$		
2.61	প্রকৃত মানাট আনশ্চয়তা মান থেকে ক	ম বলে নিণয় করা সম্ভব নয়।	
2.62	(v) < (ii) = (iv) < (vi) = (iii) < (i)		
2.63	4 <i>p</i>		
2.64	(i) $2s$	(ii) $4d$	(iii) 3 <i>p</i>
2.65	Si		
2.66	(a) 3	(b) 2	(c) 6
	(d) 4	(e) »lell	
2.67	16	UNIT 5	
5.1	2.5 bar		
5.2	0.8 bar		
5.4	70 g mol^{-1}		
5.5	$M_B = 4M_A$		
5.6	202.5 mL		
5.7	8.314×10^4P_a		
5.8	1.8 bar		
5.9	3g dm ⁻³		

5.10 1294.8 g mol⁻¹ 5.11 3/5 5.12 50 K 5.13 4.2154 × 10²³ টি ইলেকট্টন 5.14 1.90956 × 10⁶ বছর 5.15 56.025 bar 5.16 3811.1 kg

- 5.17 5.05 L
- 5.18 40 g mol⁻¹
- 5.19 0.8 bar

UNIT 6

- 6.1 (ii)
- 6.2 (iii)
- 6.3 (ii)
- 6.4 (iii)
- 6.5 (i)
- 6.6 (iv)
- 6.7 q = +701 Jw = -394 J, যেহেতু সিস্টেম কর্তৃক কৃতকার্য সম্পন্ন হয়েছে। $\Delta U = 307 \text{ J}$
- 6.8 –743.939 kJ
- 6.9 1.067 kJ
- 6.10 $\Delta H = -7.151 \text{ kJ mol}^{-1}$
- 6.11 314.8 kJ
- 6.12 $\Delta_r H = -778 \text{ kJ}$
- 6.13 46.2 kJ mol⁻¹
- 6.14 239 kJ mol⁻¹
- 6.15 326 kJ mol⁻¹
- 6.16 $\Delta S > 0$
- 6.17 2000 K
- 6.18 ΔΗ ঋণাত্মক (বন্ধন শস্তি নির্গত হয়) এবং ΔS ঋণাত্মক (অণুগুলোর মধ্যে বিশৃঙ্খলতা পরমাণুগুলোর তুলনায় কম)
- 6.19 0.164 kJ, বিক্রিয়াটি স্বতঃস্ফুর্ত নয়।
- $6.20 -5.744 \text{ kJ mol}^{-1}$
- 6.21 NO(g) অস্থায়ী, কিন্তু NO₂(g) উৎপন্ন হয়।
- 6.22 $q_{surr} = +286 \text{ kJ mol}^{-1}$ $\Delta S_{surr} = 959.73 \text{ J K}^{-1}$

UNIT 7

- 7.2 12.229 molL⁻¹
- 7.3 2.67×10^4

উত্তরমালা

7.5 (i) 4.4 × 10⁻⁴ (ii) 1.90 7.6 $1.59 imes 10^{-15}$ 7.8 $[N_2] = 0.0482 \text{ mol} L^{-1}$, $[O_2] = 0.0933 \text{ mol} L^{-1},$ $[N_2O] = 6.6 \times 10^{-21} \text{ molL}^{-1}$ 7.9 0.0352 mol NO এবং 0.0178mol Br, 7.10 $7.47 \times 10^{11} \ M^{-1}$ 7.11 4.0 $Q_{a} = 2.379 \times 10^{3}$ না, বিক্রিয়াটি সাম্যবস্থায় নেই। 7.12 7.14 0.44 H_2 এবং I_2 প্রত্যেকের গাঁঢ়ত্ব $0.068 \text{ mol} \mathrm{L}^{-1}$ 7.15 7.16 [I₂] = [Cl₂] = 0.167 মোলার, [ICl] = 0.446 মোলার 7.17 $[C_2H_6]_{eq} = 3.62 \text{ atm}$ 7.18 (i) [CH₃COOC₂H₅][H₂O] / [CH₃COOH][C₂H₅OH] (ii) 3.92 (iii) Q, এর মান K, থেকে কম, সুতরাং সাম্যবস্থায় পৌঁছাবে না। উভয়েরই 0.02molL⁻¹ 7.19 7.20 $[P_{CO}] = 1.739$ atm, $[P_{CO2}] = 0.461$ atm. 7.21 না, বিক্রিয়াটি সম্মুখমুখী হবে এবং অধিক বিক্রিয়াজাত পদার্থ উৎপন্ন হয়। 7.22 $3\times 10^{-4}\,molL^{-1}$ 7.23 0.149 7.24 a) - 35.0kJ, b) 1.365×10^{6} $[P_{H_2}]_{eq} = [P_{Br_2}]_{eq} = 2.5 \times 10^{-2} \text{bar}, [P_{HBr}] = 10.0 \text{ bar}$ 7.27 7.30 b) 120.48 7.31 $[H_2]_{eq} = 0.96 \text{ bar}$ $2.86\times 10^{-28}\ M$ 7.33 7.34 5.85x10⁻² 7.35 NO₂⁻, HCN, ClO₄⁻, HF, H₂O, HCO₃⁻, HS⁻ 7.36 $BF_{3}, H^{+}, NH_{4}^{+}$ 7.37 F-, HSO, -, CO, 2-7.38 NH₃, NH₄⁺, HCOOH 7.41 2.42 7.42 1.7 x 10⁻⁴M 7.43 $F = 1.5 \times 10^{-11}$, HCOO⁻= 5.6×10^{-11} , CN⁻= 2.08×10^{-6} [ফেনোলেট্ আয়ন]= $2.2 \times 10^{-6}, \alpha = 4.47 \times 10^{-5}$, সোডিয়াম ফেনোলিটের $\alpha = 10^{-8}$ 7.44 $[HS^{-}] = 9.54 \text{ x } 10^{-5}, 0.1 \text{ M HCl 표적(하 [HS^{-}] = } 9.1 \times 10^{-8} \text{M}, [S^{2-}] = 1.2 \times 10^{-13} \text{M}, 0.1 \text{ M HCl 표적(하 ম 적)}$ 7.45 $[S^{2-}]=1.09 \times 10^{-19}M$ 7.46 [অ্যাসিটেট-]=0.00093, pH=3.03 [আ)नोशन⁻] = 7.08×10^{-5} M, K_a = 5.08×10^{-7} , pK_a = 6.297.47 a) 2.52 b) 11.70 c) 2.70 d) 11.30 7.48 7.49 a) 11.65 b) 12.21 c) 12.57 c) 1.87

- 7.50 $pH = 1.88, pK_a = 2.70$
- 7.51 $K_{\rm b} = 1.6 \times 10^{-6}, \, \mathrm{pK}_{\rm b} = 5.8$

257

7 52	$\alpha = 6.53 \times 10^{-4} \text{ K} = 2.34 \times 10^{-5}$
7.52	a) 0.0018 b) 0.00018
7.55	$\alpha = 0.0054$
7.51	a) 1.48×10^{-7} M b) 0.063 c) 4.17×10^{-8} M d) 3.98×10^{-7}
7.56	a) 1.5×10^{-7} M b) 10^{-5} M c) 6.31×10^{-5} M d) 6.31×10^{-3} M
7.57	$[K^+] = [OH^-] = 0.05M, [H^+] = 2.0 \times 10^{-13}M$
7.58	$[Sr^{2+}] = 0.1581M, [OH^{-}] = 0.3162M, pH = 13.50$
7.59	lpha = 1.63 × 10 ⁻² , pH = 3.09, 0.01 M HCl এর উপস্থিতিতে $lpha$ = 1.32 × 10 ⁻³
7.60	${ m K_a}=2.09 imes 10^{-4}$ এবং আয়োনাইজেশন মাত্রা $=0.0457$
7.61	 pH = 7.97. আর্দ্র বিশ্লেষণ মাত্রা = 2.36 × 10 ⁻⁵
7.62	$K_{b} = 1.5 \times 10^{-9}$
7.63	$ m NaCl, KBr$ এর দ্রবণ প্রশম, $ m NaCN, m NaNO_2$ এবং $ m KF$ এর দ্রবণ ক্ষারীয় এবং $ m NH_4NO_3$ এর দ্রবণ আন্নিক
7.64	(a) অ্যাসিড দ্রবণে pH=1.94 (b) লবণের জলীয় দ্রবণের pH=2.87
7.65	pH = 6.78
7.66	a) 12.2 b) 7.00 c) 1.3
7.67	সিলভার ক্রোমেটের দ্রাব্যতা (S)= 0.65 × 10 ⁻⁴ M; Ag ⁺ এর মোলারিটি = 1.30 x 10 ⁻⁴ M CrO ₄ ²⁻ এর মোলারিটি
	$0.65 imes 10^{-4} { m M}$ বেরিয়াম ক্রোমেটের দ্রাব্যতা (S) = $1.1 imes 10^{-5}$ এবং ${ m Ba}^{2+}$ প্রত্যেকের মোলারিটি হল $1.1 imes 10^{-5} { m M}$ ।
	ফেরিক হাইড্রোক্সাইডের দ্রাব্যতা (S) = 1.39 × 10 ⁻¹⁰ M.
	Fe^{3+} এর মৌলারিটি = $1.39 imes 10^{-10}\mathrm{M}$
	$[{ m OH^-}]$ এর মোলারিটি = $4.17 imes 10^{-10}{ m M}$
	লেডক্লোরাইডের দ্রাব্যতা (S) = 1.59 × 10 ⁻² M
	Pb^{2+} এর মোলারিটি = $1.59 imes 10^{-2}\mathrm{M}$
	Cl- এর মোলারিটি = 3.18 × 10 ⁻² M
	মারকিউরাস আয়োডাইডের দ্রাব্যতা (S) = 2.24 × 10 ⁻¹⁰ M;
	$\mathrm{Hg_2^{2+}}$ এর মোলারিটি S = $2.24 imes 10^{-10} \mathrm{M}$ এবং I $^-$ এর মোলারিটি = $4.48 imes 10^{-10} \mathrm{M}$
7.68	সিলভার ক্রোমোটের দ্রাব্যতা অধিক এবং তাদের মোলারিটির অনুপাত হল = 91.9
7.69	অধ:ক্ষেপন হবে না।
7.70	নিম্নতর pH এ সিলভার বেনজোয়েটের দ্রাব্যতা 3.317 গুণ বেশী।
7.71	দ্রবণটির সর্বোচ্চ মোলারিটি হল $2.5 imes 10^{-9}{ m M}$
7.72	2.43 L জল
7.73	ক্যাডমিয়াম ক্লোরাইড দ্রবণের অধ:ক্ষেপন হবে।

INDEX

A

Absolute zero (পরমশ্ব্রা)	143
Accuracy (যথার্থতা)	13
Actinide series (এক্টিনাইড শ্রেণি)	83
Adiabatic (রুম্ধতাপীয়)	162
Alpha (α) particle scattering experiment (আলফা কণা বিচ্ছুকা	পরীক্ষা) 34
Anion (অ্যানায়ন)	88
Aqueous tension (জলীয় টান)	146
Arrhenius acids and bases (আরহেনিয়াসের অ্যাসিড ও ক্ষার	ক) 214
Atom (পরমাণু)	3,5,15
Atomic mass (পারমাণবিক ভর)	17
Atomic mass unit (পারমাণবিক ভর একক)	16
Atomic models (পরমাণু মডেল সমূহ)	32
Atomic number (পরমাণু ক্রমাঞ্চ)	35
Atomic orbitals (পারমাণবিক কক্ষক)	54
Atomic radius (পারমাণবিক ব্যাসার্ধ)	86,87
Atomic spectra (পারমাণবিক বর্ণালী)	44
Aufbau principle (আউফ্বাউ নীতি)	61
Average atomic mass (গড় পারমাণবিক ভর)	17
Avogadro constant (অ্যাভোগাড্রো ধ্রুবক)	18
Avogadro Law (অ্যাভোগাড্রো সূত্র)	15, 141
Azimuthal quantum number (দিগংশীয় বা গৌণ কোয়ান্টাম সংখ্যা)	55

B Balı

Balmer series (বামার শ্রেণি)	45
Base physical quantities (মূল ভৌত রাশি সমূহ)	7,8
Bohr Model of atom (বোরের পরমাণু মডেল)	46
Bohr radius (বোরের ব্যাসার্ধ)	47
Bond angle (বন্ধন কোণ)	108
Bond dissociation enthalpy (বন্ধন বিভাজন এনথ্যালপি)	177
Bond enthalpy (বন্ধন এনথ্যালপি) 108,118	, 177
Bond length (বন্ধন দৈর্ঘ্য) 107	7,129
Bond order (বন্ধন ক্রম) 109	, 129
Born-Haber cycle (বর্ণ-হেবার চক্র)	179
Boundary surface diagrams (সীমানা পৃষ্ঠচিত্র)	58
Boyle's law (বয়েলের সূত্র)	140
Boyle point (বয়েল বিন্দু)	152
Boyle temperature (বয়েল উন্নতা)	52
Bronsted –Lowry acids and bases (ব্রনস্টেড লাউরি অ্যাসিড ও ক্ষারক)	214
Buffer solution (বাফার দ্রবণ)	226

С

\sim \sim \sim \sim \sim	
Canal rays (ক্যানাল রাশ্ম)	32
Cathode rays (ক্যাথোড রশ্মি)	30
Cathode ray tube (ক্যাথোড রশ্মি নল)	30
Cation (ক্যাটায়ন)	88
Charles' law (চালর্সের সূত্র)	142
Chalcogens (চালকোজেন)	85
Chemical equilibrium (রাসায়নিক সাম্যাবস্থা)	193
Chemical properties (রাসায়নিক ধর্ম)	06
Chemical reactivity (রাসায়নিক সক্রিয়তা)	95

Combined gas law (গ্যাসের সংযোগ সূত্র)	145
Common ion effect (সমআয়ন প্রভাব)	224, 230
Compound (যৌগ)	5,6
Conjugate acid –base pair (অনুবন্ধী অ্যাসিড ক্ষারক যুগল)	215
Continuous spectrum (নিরবিচ্ছিন্ন বর্ণালী)	44
Covalent bond (সমযোজী বন্ধন)	102
Covalent radius (সমযোজী ব্যাসার্ধ)	87
Critical pressure (সংকট চাপ)	152
Critical temperature (সংকট উন্নতা)	152
Critical volume (সংকট আয়তন)	152
Closed system (বান্ধ সিস্টেম)	161

D

_	
Dalton's Atomic theory (ডালটনের পরমাণুবাদ)	16, 29
Dalton's law of partial pressure (ডালটনের অংশচাপ সূত্র) 146
Density (ঘনত্ব)	09
Deuterium (ডিউটেরিয়াম)	35
Deviation from ideal gas behaviour (আদর্শ গ্যাসের আচরণ থেকে বিয়ু	য়তি) 150
Diagonal relationship (কৌণিক সম্পৰ্ক)	94
Diatomic molecules (দ্বিপারমাণবিক অণু)	15
Dimensional analysis (মাত্রা বিশ্লেষণ)	13
Dipole moment (দ্বিমেরু-ভ্রামক)	11
Dipole-dipole force (দ্বিমেরু-দ্বিমেরু বল)	138
Dipole induced dipole forces (দ্বিমেরু-আবেশিত দ্বিমেরু বল	f) 138
Dispersion force (ডিসপারশান বল)	138
Dual behaviour of matter (পদার্থের দ্বৈত আচরণ)	49
Dynamic equilibrium (গতিশীল সাম্যাবস্থা)	192,196

E

Effective nuclear charge (কার্যকরী নিউক্লিয়ার আধান)	60
Electron (ইলেকট্রন)	30
Element (মৌল)	05
Electronegativity (অপরা তড়িৎ ধর্মীতা) বা তড়িৎ ঋণাত্মকতা	91
Electron gain enthalpy (ইলেকট্ৰন আসন্তি বা ইলেকট্ৰন গ্ৰহণ এনথ্যালপি)	90,10
Electromagnetic radiations (তড়িৎ চুম্বকীয় বিকিরণ)	37
Electromagnetic spectrum (তড়িৎ চুম্বকীয় বৰ্ণালী)	38
Electronic configuration (ইলেকট্রন বিন্যাস)	63,82
Elements d-block (d-ব্লক মৌল)	85
Elements <i>p</i> -block (<i>p</i> -ব্লক মৌল)	85
Elements f-block (f-ব্লক মৌল)	85
Elements s-block (s-ব্লক মৌল)	83
Empirical formula (স্থূল সংকেত)	19
Emission spectrum (নির্গমন বর্ণালী)	44
Enthalpy (এনথ্যালপি)	167
Enthalpy change during phase transformation (দশা পরিবর্তন জণিত এনথ্যালপির পরিবর্তন)	171
Enthalpy of atomization (পরমাণু গঠন এনথ্যালপি)	177
Enthalpy of combustion (দহন এনথ্যালপি)	176
Enthalpy of solution (দ্রবণ এনথ্যালপি)	180
Entropy (এনট্রপি)	182
Equation of state (অবস্থা সমীকরণ)	145
Equilibrium constant (সাম্য ধ্রুবক)	201

Equilibrium equation (সাম্য সমীকরণ)	199
Equilibrium mixture (সাম্য মিশ্রণ)	192
Equilibrium vapour pressure (সাম্যাব্যস্থা বাষ্পচাপ)	154
Exchange energy (বিনিময় শক্তি)	65
Excited state of atom (পরমাণুর উত্তেজিত অবস্থা)	59
Extensive property (পরিমাণগত বা ভর সাপেক্ষ ধর্ম)	168

F

Fajan's rule (ফাজানের নিয়ম)	112
First law of thermodynamics (তাপ গতিবিদ্যার প্রথম সূত্র)	168
Formal charge (কার্যকরী আধান)	104
Formula mass (সংকেত ভর)	17

G

Gas (গ্যাস)	4
Gas laws (গ্যাসের সূত্রাবলি)	140
Gay-Lussac's law of gaseous volume (গে-লুসাবের গ্যাস আয়তন সূত্র)) 15
Gay-Lussac's law, pressure temperature relationship (গে-লুসাকের সূত্র, চাপ উন্নতা সম্পর্ক,) 143
Gibbs energy (গিবস্ শক্তি)	184,186
Ground state of atom (পরমাণুর ভূমিস্তর)	59

H

85
50
175
203
201
62
120
131, 138
45
214

I

Ideal gas equation (আদর্শ গ্যাস সমীকরণ)	145
Intermolecular forces (আন্তরাণবিক বল)	137,139
Internal energy (আন্তর শক্তি)	162
Intensive property (অবস্থাগত বা ভর নিরপেক্ষ ধর্ম)	168
Ionic bond (আয়নীর বন্ধন)	106
Ionic equilibrium (আয়নীর সাম্যাবস্থা)	193, 212
Ionic product of water (জলের আয়নীর গুণফল)	217
Ionic radius (আয়নীয় ব্যাসার্ধ)	88
Ionization constant (আয়নায়ন ধ্রুবক)	219, 221
Ionization enthalpy (আয়নায়ন এনথ্যালপি)	88
Ionization of acids and bases (অ্যাসিড ও ক্ষারকের আয়নী ভবন)) 216
Isobar (আইসোবার)	143
Isocore (আইসোকোর)	143
Isoelectronic species (আইসো ইলেকট্রনিক অণু বা আয়ন)	88
Isolated system (নিঃসঙ্গ সিস্টেম)	162
Isotherm (সমোদ্ন)	141
Isotopes (সমস্থানিক)	35
IZ	

K

Kelvin temperature scale (উন্নতার কেলভিন স্কেল)	142
Kössel –Lewis approach (কোসেল-লুইস ধারণা)	101

L

Lanthanoid series (ল্যান্থানয়েড শ্রেণি)	82
Lattice enthalpy (জালক এনথ্যালপি)	107, 179
Law of chemical equilibrium (রাসায়নিক সাম্যবস্থার সূত্র)	198
Law of conservation of mass (ভরের নিত্যতা সূত্র)	14
Law of definite proportion (স্থির অনুপাত সূত্র)	15
Law of multiple proportions (গুণানুপাত সূত্র)	15
Law of Octaves (অফ্টক সূত্র)	75
Law of Triads (ত্রয়ীসূত্র)	75
Le Chatelier 's principle (লাশাতেঁলীয়ার নীতি)	209
Lewis acids and bases (লুইস অ্যাসিড ও ক্ষারক)	216
Lewis dot structure (লুইস ডট গঠন)	103
Lewis symbols (লুইস চিহ্ন)	101
Limiting reagent (লিমিটিং রিয়েজেন্ট)	21
Line spectrum (রেখা বর্ণালী)	45
Linear combination of atomic orbitals (LCAO) (পারমাণবিক কক্ষকসমূহের রৈখিক সমন্ব	a) 126
Liquid (তরল)	04
Liquid state (তরল অবস্থা)	154
Liquid–vapour equilibrium (তরল বাম্প সাম্য)	193
Liquifaction of gases (গ্যাসের তরলীকরণ)	152
London force (লন্ডনবল)	138

M

171	
Magnetic orbital quantum number (চৌম্বকীয় কোয়ান্টাম সাম্ধ্যা)	55
Mass (ভর)	09
Mass number (ভর সংখ্যা)	35
Mass per cent (ভর শতাংশ)	23
Matter (পদার্থ)	04
Measurement, English system (পরিমাপের ব্রিটিশ পম্বতি)	07
Measurement, Metric system (পরিমাপের মেট্রিক পম্বতি)	07
Measurement, Volume (আয়তন সংক্রান্ত গণনা)	09
Mendeleev's periodic law (মেন্ডেলিভের পর্যায়সূত্র)	79
Metallic radius (ধাতব ব্যাসার্ধ)	87
Metalloids (ধাতুকল্প)	86
Metals (ধাতু)	86
Mixture (মিশ্রণ)	5
Mixture heterogeneous (অসমসত্ত্ব মিশ্রণ)	5
Mixture homogeneous (সমসত্ত্ব মিশ্রণ)	5
Modern periodic law (আধুনিক পর্যায়সূত্র)	79
Molality (মোলালিটি)	24
Molar enthalpy of fusion (মোলার গলন এনথ্যালপি)	171
Molar enthalpy of vaporization (মোলার বাস্পীভবন এনথ্যালপি)	172
Molar mass (মোলার ভর)	18
Molarity (মোলারিটি)	23
Mole (মোল)	18
Mole fraction (মোল ভগ্নাংশ)	23
Molecular formula (আনবিক সংকেত)	19
Molecular mass (আনবিক ভর)	17
Molecular orbital theory (আনবিক কক্ষক তত্ত্ব)	125
Molecule (অণু)	3,5,15

Ν

National standards of measurements (জাতীয় মানক ব্যুরো)	7
Neutron (নিউট্রন)	32
Noble gases (নিষ্ক্ৰিয় গ্যাস)	85
Nodes (নোড/সংস্পন্দ)	57

রসায়ন

INDEX

Non-metals (অধাতু)	
Nucleons (নিউক্লিয়নস্)	
Nucleus (নিউক্লিয়াস)	

0	
Octet rule (অফ্টক নিয়ম)	102
Open system (মুক্ত সিস্টেম)	161
Orbit (কক্ষ)	35, 46
Orbitals (কক্ষক)	54, 82
Orbital overlap (কক্ষকের অভিলেপন)	118
Oxidation state (জারণ স্তর)	93

P

Particle nature (কণা ধর্ম)	39
Pauli's exclusion principle (পাউলির অপবর্জন নীতি)	62
Percentage composition (শতকরা সংযুতি)	18
Periodic groups (পর্যায়ক্রমিক শ্রেণি)	79
Periodic table long form (দীর্ঘ পর্যায়সারণি)	79
Periodic table periods (পর্যায়)	79
Periodicity of valence (যোজ্যতার পর্যায়বৃত্তি)	93
pH scale (pH স্কেল)	217
Photoelectric effect (আলোক তড়িৎ প্রভাব)	41
Physical properties (ভৌত ধর্ম)	06
pi bond (পাই বন্ধন)	120
Planck's quantum theory (প্লাঙ্কের কোয়ান্টাম তত্ত্ব)	39
Polyatomic molecules (বহু পারমাণবিক অণু)	15, 177
Precision (নির্ভুলতা)	13
Principal quantum number (মুখ্যকোয়ান্টাম সংখ্যা)	47,53
Protium (প্রোটিয়াম)	35
Proton (প্রোটন)	32
Pure substance (বিশুদ্ধ বস্তু)	05

Q

Quantum	(কোয়ান্টাম)	
Quantum	mechanics (কোয়ান্টাম বলবিদ্যা)	

R

IV	
Radioactive elements (তেজস্ক্রীয় মৌল)	33
Radioactivity (তেজস্ক্রীয়তা)	33
Reaction quotient (বিক্রিয়া কোশেন্ট)	206
Reference standard (তুলনামূলক মান)	11
Representative elements (প্রতিনিধি মৌল)	85
Resonance structures (সংস্পন্দন গঠন)	109
Rutherford model of atom (রাদার ফোর্ডের পরমাণু মডেল)	34
Rydberg constant (রিডবার্গ ধ্রুবক)	47

S

Schrödinger wave equation (স্রোডিঞ্জারের তরঙ্গা সমীকরণ)	53
Scientific notation (বৈজ্ঞানিক প্রতীক)	11
Screening effect (আবরনী প্রভাব)	90
Semi-metals (ধাতু সদৃশ)	86
Shell (কক্ষ)	82
Shielding effect (আবরনী ক্ষমতা/আচ্ছাদন প্রভাব)	90
Shielding of electrons (ইলেকট্রনের আবরণ)	60
SI base units (SI-একক)	07
Sigma bond (সিগমা বন্ধন)	120
Significant figures (তাৎপর্যপূর্ণ সংখ্যা)	12

SI system of units (এককের SI পদ্ধতি)	07
SI system prefixes (SI সিস্টেমের উপসর্গ)	09
SI unit of density (ঘনত্বের SI একক)	09
SI unit of mass (ভরের SI একক)	09
SI unit of temperature (উন্নতার SI একক)	10
SI unit of volume (আয়তনের SI একক)	09
Solid (কঠিন)	04
Solid-gas equilibrium (কঠিন-গ্যাস সাম্য)	194
Solid–liquid equilibrium (কঠিন-তরল সাম্য)	193
Solubility product constant (দ্রাব্যতা গুণফল ধ্রুবক)	228
Spectroscopy (বর্ণালী বীক্ষণ)	44
Spectrum (वर्गानी)	44
Speed of light (আলোর গতি)	38
Spin quantum number (ঘূর্ণন কোয়ান্টাম সংখ্যা)	56
Spontaneous process (স্বতঃস্ফূর্ত প্রক্রিয়া)	181
Standard ambient temperature and pressure (প্রমাণ পারিপার্শ্বিক চাপ ও উন্নতা)	144
Standard enthalpy of combustion (প্রমাণ দহন এনথ্যালপি)	176
Standard enthalpy of formation (প্রমাণ গঠন এনথ্যালপি)	173
State functions (অবস্থার অপেক্ষক)	162
State variables (অবস্থার চল রাশি)	162
Stoichiometry (স্টয়শিও মেট্রি)	20
Subatomic particles (অব পারমাণবিক কণা)	30
Sublevel (উপস্তর)	55
Subshell (উপকক্ষ)	55
Surface tension (পৃষ্ঠটান)	155
Surroundings (পরিবেশ বা পারিপার্শ্বিক)	161
System (সিস্টেম)	161

T

Temperature scales (উন্নতার স্কেল)	10
Thermal energy (তাপ শক্তি)	139
Thermal interactions (তাপীয় মিথস্ক্রিয়া)	139
Thermochemical equations (তাপ রাসায়নিক সমীকরণ)	168
Thermodynamic scale (তাপ গতিবিদ্যা সংক্রান্ত স্কেল)	142
Thermodynamic terms (তাপ গতিবিদ্যা সংক্রান্ত পদ সমূহ)	161
Thomson model (থমসনের মডেল)	33
Threshold frequency (সূচনা কম্পাঙ্ক)	41
Transition series (সন্ধিগত মৌলের শ্রেণি)	82
Tritium (ট্রিটিয়াম)	35

U

Unified mass (সমন্বিত ভর)	17
Universal gas constant (সার্বজনীন গ্যাস ধ্রুবক)	145

V

Valance bond theory (যোজ্যতা বন্ধন তত্ত্ব)	117
Valence electron (যোজন ইলেকট্রন)	63, 101
van der Waals forces (ভেনডার ওয়াল বল)	137
Vapour pressure (বাস্পচাপ)	154
Viscosity (সান্দ্রতা)	156
Visible light (দৃশ্যমান আলোক)	38
VSEPR theory (ভি এস ইপি আর তত্ত্ব)	112
W	

Wavenumber (তরঙ্গা সংখ্যা)	39
Weight (ওজন)	09

Notes

Logarithms

TABLE I

N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8 9
10	0000	0043	0086	0128	0170						5	9	13	17	21	26	30	34 38
						0212	0253	0294	0334	0374	4	8	12	16	20	24	28	32 36
11	0414	0453	0492	0531	0569						4	8	12	16	20	23	27	31 35
						0607	0645	0682	0719	0755	4	7	11	15	18	22	26	29 33
12	0792	0828	0864	0899	0934						3	7	11	14	18	21	25	$28\ 32$
						0969	1004	1038	1072	1106	3	7	10	14	17	20	24	27 31
13	1139	1173	1206	1239	1271	1000	1005	1007	1000	1 400	3	6	10	13	16	19	23	26 29
14	1401	1400	1502	1559	1504	1303	1335	1367	1399	1430	3		10	13	16	19	22	25 29
14	1461	1492	1523	1555	1584	1614	1644	1673	1703	1732	3	6	9 9	12	15 14	19	22 20	25 28 23 26
15	1761	1790	1818	1847	1875						3	6	9	11	14	17	20	23 26
						1903	1931	1959	1987	2014	3	6	8	11	14	17	19	$22\ 25$
16	2041	2068	2095	2122	2148	0175	0001	0007	0050	0070	3	6	8	11	14	16	19	22 24
17	0004	0000	0055	0000	0.405	2175	2201	2227	2253	2279	3	5	8	10	13	16	18	21 23
17	2304	2330	2355	2380	2405	2430	2455	2480	2504	2529	3	5 5	8	10	13 12	15	18 17	2023 2022
18	2553	2577	2601	2625	2648						2	5	7	9	12	14	17	19 21
						2672	2695	2718	2742	2765	2	4	7	9	11	14	16	18 21
19	2788	2810	2833	2856	2878	0000	0000	00.45	0007	0000	2	4	7	9	11	13	16	18 20
-						2900	2923	2945	2967	2989	2	4	6	8	11	13	15	17 19
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	2	4	6	8	11	13	15	17 19
21	3494	3443	3464	3483	3502	3524	3541	3560	3579	3598	2	4	6	8	10	12	14	15 17
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784	2	4	6	7	9	11	13	15 17
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962	2	4	5	7	9	11	12	14 16
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133	2	3	5	7	9	10	12	14 15
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298	2	3	5	7	8	10	11	13 15
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456	2	3	5	6	8	9	11	13 14
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609	2	3	5	6	8	9	11	12.14
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757	1	3	4	6	7	9	10	12 13
30	4771	1786	4800	4814	1820	1813	4857	4871	1886	1900	1	3	4	6	7	a	10	11 13
31	1014	1028	4049	4055	4020	1093	4007	5011	5024	5028	1	3	-	6	7	0	10	11 10
32	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172	1	3	4	5	7	8	9	11 12
33	5185	5198	5211	5224	5237	5250	5263	5276	5289	5302	1	3	1	5	6	8	a	10.12
34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428	1	3	4	5	6	8	9	10 12
07	5441	5450	5405	5 4 5 0	5400	5500	5514	5507	5500			0		-	~	_	~	10.11
35	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551		2	4	5	6	_	9	10 11
36	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670		2	4	5	6	7	8	10 11
37	5682	5694	5705	5/1/	5729	5740	5752	5763	5775	5786		2	3	э г	0	2	8	9 10
38	5011	5809	5821	5832	5055	5855	5866	5099	5888	5899 6010		2	3	5	6 5	7	8	9 10
33	5511	3322	5555	5544	3333	5500	3977	3900	3333	0010		2	5	-+	5	<i>'</i>	0	5 10
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117		2	3	4	5	6	8	9 10
41	6128	6138	6149	6160	6170	6180	6191	6201	6212	6222		2	3	4	5	6	7	8 9
42	6232	6243	6253	6263	6274	6284	6294	6304	6314	6325		2	3	4	5	6	-	8 9
43	6335	6345	6355	6365	6375	6385	6395	6405	6415	6425		2	3	4	5	6	7	8 9
	0433	0444	0454	0404	0474	0404	0493	0505	0010	0.022		2	5	+	5	0	-	0 9
45	6532	6542	6551	6561	6471	6580	6590	6599	6609	6618		2	3	4	5	6	7	8 9
46	6628	6637	6646	6656	6665	6675	6684	6693	6702	6712		2	3	4	5	6	7	7 8
47	6/21	0730	6739	6749	6758	6/67	6/76	6785	6794	6803		2	3	4	5	5	6	1 8
48	6812	6821	6830	6839	6848	6857	6866	6875	6884	6893		2	3	4	4	D	6	18
49	0902	0911	0920	0928	0937	0946	6955	0964	0972	0981	1	2	з	4	4	э	ю	1 8

Logarithms

TABLE 1 (Continued)

N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	1	2	3	3	4	5	6	7	8
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	1	2	3	3	4	5	6	7	8
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235	1	2	2	3	4	5	6	7	7
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316	1	2	2	3	4	5	6	6	7
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7396	1	2	2	3	4	5	6	6	7
55	7404	7412	7419	7497	7435	7443	7451	7459	7466	7474	1	2	2	3	4	5	5	6	7
56	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551	1	2	2	3	4	5	5	6	7
57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627	1	2	2	3	4	5	5	6	7
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701	1	1	2	3	4	4	5	6	7
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774	1	1	2	3	4	4	5	6	7
60	7799	7790	7706	7803	7810	7919	7925	7930	7830	7946	1	1	2	3	4	4	5	6	6
61	7853	7860	7768	7875	7882	7889	7896	7003	7910	7017	1	1	2	3	4	4	5	6	6
62	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987	1	1	2	3	3	4	5	6	6
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055	1	1	2	3	3	4	5	5	6
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122	1	1	2	3	3	4	5	5	6
07	0100	0100	0140	0140	9150	9100	0100	0170	0100	0100		,	0	0	0	4	_	-	
60	8129	8130	8142	8149	8156	8162	8169	8170	8182	8189		1	2	3	3	4	5	5	0
67	8195	8202	8209	8215	8222	8228	8235	8241	8248	8234		1	2	3	э 2	4	5	5	6
60	8201	8207	8274	8280	0207	8293	8299	8306	831Z	8319		1	2	3	э 2	4	5	5	6
60	8388	8395	8401	8407	8414	8420	8426	8/32	8/30	8445	1	1	2	2	3	4	4	5	6
0.5	0000	0000	0401	0407	0414	0420	0420	0402	0400	0445	1	1	2	2	5	т	-	5	0
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506	1	1	2	2	3	4	4	5	6
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567	1	1	2	2	3	4	4	5	5
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627		1	2	2	3	4	4	5	5
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686		1	2	2	3	4	4	5	5
14	8692	8698	8704	8710	8716	8722	8/2/	8133	8739	8745	1	1	2	2	з	4	4	э	э
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802	1	1	2	2	3	3	4	5	5
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859	1	1	2	2	3	3	4	5	5
77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915	1	1	2	2	3	3	4	4	5
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971		1	2	2	3	3	4	4	5
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025	1	1	2	2	3	3	4	4	5
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079	1	1	2	2	3	3	4	4	5
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133	1	1	2	2	3	3	4	4	5
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186	1	1	2	2	3	3	4	4	5
83	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238	1	1	2	2	3	3	4	4	5
84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289		1	2	2	3	3	4	4	5
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340	1	1	2	2	3	3	4	4	5
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390	1	1	2	2	3	3	4	4	5
87	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440	0	1	1	2	2	3	3	4	4
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489	0	1	1	2	2	3	3	4	4
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538	0	1	1	2	2	3	3	4	4
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586	0	1	1	2	2	3	3	4	4
91	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633	0	1	1	2	2	3	3	4	4
92	9638	9643	9647	9652	9657	9661	9666	9671	9675	9680	0	1	1	2	2	3	3	4	4
93	9685	9689	9694	9699	9703	9708	9713	9717	9722	9727	0	1	1	2	2	3	3	4	4
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773	0	1	1	2	2	3	3	4	4
95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818	0	1	1	2	2	3	3	4	4
96	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863	0	1	1	2	2	3	3	4	4
97	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908	0	1	1	2	2	3	3	4	4
98	9912	9917	9921	9926	9930	9934	9939	9943	9948	9952	0	1	1	2	2	3	3	4	4
99	9956	9961	9965	9969	9974	9978	9983	9987	9997	9996	0	1	1	2	2	3	3	3	4

AntiLogarithms

TABLE II

N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
00	1000	1002	1005	1007	1009	1012	1014	1016	1019	1021	0	0	1	1	1	1	2	2	2
.01	1023	1026	1028	1030	1033	1035	1038	1040	1042	1045	0	0	1	1	1	1	2	2	2
.02	1047	1050	1052	1054	1057	1059	1062	1064	1067	1069	0	0	1	1	1	1	2	2	2
.03	1072	1074	1076	1079	1081	1084	1086	1089	1091	1094	0	0	1	1	1	1	2	2	2
.04	1096	1099	1102	1104	1107	1109	1112	1114	1117	1119	0	1	1	1	1	2	2	2	2
.05	1122	1125	1127	1130	1132	1135	1138	1140	1143	1146	0	1	1	1	1	2	2	2	2
.06	1148	1151	1153	1156	1159	1161	1164	1167	1169	1172	0	1	1	1	1	2	2	2	2
.07	1175	1178	1180	1183	1186	1189	1191	1194	1197	1199	0	1	1	1	1	2	2	2	2
.08	1202	1205	1208	1211	1213	1216	1219	1222	1225	1227	0	1	1	1	1	2	2	2	3
.09	1230	1233	1236	1239	1242	1245	1247	1250	1253	1256	0	1	1	1	1	2	2	2	3
.10	1259	1262	1265	1268	1271	1274	1276	1279	1282	1285	0	1	1	1	1	2	2	2	3
.11	1288	1291	1294	1297	1300	1303	1306	1309	1312	1315	0	1	1	1	2	2	2	2	3
.12	1318	1321	1324	1327	1330	1334	1337	1340	1343	1346	0	1	1	1	2	2	2	2	3
.13	1349	1352	1355	1358	1361	1365	1368	1371	1374	1377	0	1	1	1	2	2	2	3	3
.14	1380	1384	1387	1390	1393	1396	1400	1403	1406	1409	0	1	1	1	2	2	2	з	3
.15	1413	1416	1419	1422	1426	1429	1432	1435	1439	1442	0	1	1	1	2	2	2	3	3
.16	1445	1449	1452	1455	1459	1462	1466	1469	1472	1476	0	1	1	1	2	2	2	3	3
.17	1479	1483	1486	1489	1493	1496	1500	1503	1507	1510	0	1	1	1	2	2	2	3	3
.18	1514	1517	1521	1524	1528	1531	1535	1538	1542	1545	0	1	1	1	2	2	2	3	3
.19	1549	1552	1556	1560	1563	1567	1570	1574	1578	1581	0	1	1	1	2	2	3	3	3
20	1585	1580	1592	1596	1600	1603	1607	1611	1614	1618	0	1	1	1	2	2	3	3	3
21	1622	1626	1629	1633	1637	1641	1644	1648	1652	1656	0	1	1	2	2	2	3	3	3
221	1660	1663	1667	1671	1675	1679	1683	1687	1690	1694	0	1	1	2	2	2	3	3	3
.23	1698	1702	1706	1710	1714	1718	1722	1726	1730	1734	0	1	1	2	2	2	3	3	4
.24	1738	1742	1746	1750	1754	1758	1762	1766	1770	1774	0	1	1	2	2	2	3	3	4
.25	1778	1782	1786	1791	1795	1799	1803	1807	1811	1816	0	1	1	2	2	2	3	3	4
.26	1820	1824	1828	1832	1837	1841	1845	1849	1854	1858	0	1	1	2	2	3	3	3	4
.27	1862	1866	1871	1875	1879	1884	1888	1892	1897	1901	0	1	1	2	2	3	3	3	4
.28	1905	1910	1914	1919	1923	1928	1932	1936	1941	1945	0	1	1	2	2	3	3	4	4
.29	1950	1954	1959	1963	1968	1972	1977	1982	1986	1991	0	1	1	2	2	3	3	4	4
.30	1995	2000	2004	2009	2014	2018	2023	2028	2032	2037	0	1	1	2	2	3	3	4	4
.31	2042	2046	2051	2056	2061	2065	2070	2075	2080	2084	0	1	1	2	2	3	3	4	4
.32	2089	2094	2099	2104	2109	2113	2118	2123	2128	2133	0	1	1	2	2	3	3	4	4
.33	2138	2143	2148	2153	2158	2163	2168	2173	2178	2183	0	1	1	2	2	3	3	4	4
.34	2188	2193	2198	2203	2208	2213	2218	2223	2228	2234	1	1	2	2	3	3	4	4	5
.35	2239	2244	2249	2254	2259	2265	2270	2275	2280	2286	1	1	2	2	3	3	4	4	5
.36	2291	2296	2301	2307	2312	2317	2323	2328	2333	2339	1	1	2	2	3	3	4	4	5
.37	2344	2350	2355	2360	2366	2371	2377	2382	2388	2393	1	1	2	2	3	3	4	4	5
.38	2399	2404	2410	2415	2421	2427	2432	2438	2443	2449		1	2	2	3	3	4	4	5
.39	2455	2460	2466	2472	2477	2483	2489	2495	2500	2506	1	1	2	2	3	3	4	5	5
.40	2512	2518	2523	2529	2535	2541	2547	2553	2559	2564		1	2		3	4	4	5	5
.41	2570	25/6	2582	2588	2594	2600	2606	2612	2618	2624		1	2	2	3	4	4	с Е	5
1.42	2030	2030	2042	2049	2000	2001	2007	2013	2019	2000	1	1	∠ 2	2	3	4 /	4	5	6
4.3	2092	2090	2767	2710	2710	2786	2729	2790	2805	2812		1	∠ 2	3	3	+ 4	4	5	6
45	2818	2825	2831	2838	2844	2851	2858	2864	2871	2877	1	1	2	3	3	4	5	5	6
.46	2884	2891	2897	2904	2911	2917	2924	2931	2938	2944		1	2	3	3	4	5	5	6
.47	2951	2958	2965	2972	2979	2985	2992	2999	3006	3013	1	1	2	3	3	4	5	5	6
.48	3020	3027	3034	3041	3048	3055	3062	3069	3076	3083	1	1	2	3	3	4	5	6	6
40	3090	3097	3105	3112	3110	3126	3133	3141	3148	3155	1	1	2	3	3	4	5	6	6
. 15	0000	5007	5100	0112	5115	5120	5100		5110		1	1	2	0	0			0	0

AntiLogarithms

Ν n .50 3162 3170 3236 3243 .52 3311 3319 .53 .54 3467 3475 .55 3548 3556 3631 3639 .56 .57 3802 3811 .58 3890 3899 3945 3954 .59 3981 3990 .60 .61 4074 4083 4130 4140 4150 42S6 .62 4266 4276 .63 .64 .65 4467 4477 .66 .67 4742 4753 .68 4786 4797 .69 4898 4909 4966 4977 .70 5012 5023 9 11 .71 5129 5140 5200 5212 10 11 .72 5248 5260 10 11 .73 5370 5383 10 11 5495 5508 10 12 .74 5623 5636 10 12 .75 5754 5768 .76 5834 5848 11 12 .77 5888 5902 11 12 6026 6039 6109 6124 6138 11 13 6166 6180 6252 6266 11.13 .80 6310 6324 12 13 .81 6457 6471 6546 6561 12.14 6607 6622 6699 6714 12 14 .82 6761 6776 6855 6871 .83 .84 6918 6934 7015 7031 13 15 13 15 .85 .86 7244 7261 13 15 7413 7430 7516 7534 14 16 .87 .88 7586 7603 14 16 7762 7780 7870 7889 14 16 .90 7943 7962 9 11 15 17 .91 8128 8147 8241 8260 15 17 .92 8318 8337 15 17 8511 8531 8630 8650 .93 10 12 16 18 .94 16 18 17 19 .95 8913 8933 10 12 .96 9120 9141 17 19 .97 9333 9354 17 20 .98 9550 9572 18 20 .99 9772 9795 18 20

TABLE II (Continued)