

"আমরা, ভারতের জনগণ, ভারতকে সার্বভৌম, সমাজতান্ত্রিক, ধর্মনিরপেক্ষ, গণতান্ত্রিক, সাধারণতন্ত্ররূপে গড়ে তুলতে এবং তার সকল নাগরিকই যাতে সামাজিক, অর্থনৈতিক ও রাজনৈতিক, ন্যায়বিচার, চিন্তা, মতপ্রকাশ, বিশ্বাস, ধর্ম এবং উপাসনার স্বাধীনতা, সামাজিক প্রতিষ্ঠা অর্জন ও সুযোগের সমতা প্রতিষ্ঠা এবং তাদের সকলের মধ্যে ব্যক্তির মর্যাদা এবং জাতীয় ঐক্য ও সংহতি সুনিশ্চিতকরণের মাধ্যমে তাদের মধ্যে যাতে ভ্রাতৃত্বের ভাব গড়ে ওঠে তার জন্য সত্যনিষ্ঠার সঙ্গো শপথ গ্রহণ করে, আমাদের গণপরিষদে আজ, ১৯৪৯ সালের ২৬ নভেম্বর, এতদ্বারা এই সংবিধান

Constitution of India Part IV A (Article 51 A)

Fundamental Duties

- (a) to abide by the Constitution and respect its ideals and institutions, the National Flag and the National Anthem;
- (b) to cherish and follow the noble ideals which inspired our national struggle for freedom;
- (c) to uphold and protect the sovereignty, unity and integrity of India;
- (d) to defend the country and render national service when called upon to do so;
- (e) to promote harmony and the spirit of common brotherhood amongst all the people of India transcending religious, linguistic and regional or sectional diversities; to renounce practices derogatory to the dignity of women;
- (f) to value and preserve the rich heritage of our composite culture;
- (g) to protect and improve the natural environment including forests, lakes, rivers, wildlife and to have compassion for living creatures;
- (h) to develop the scientific temper, humanism and the spirit of inquiry and reform;
- (i) to safeguard public property and to abjure violence;
- (j) to strive towards excellence in all spheres of individual and collective activity so that the nation constantly rises to higher levels of endeavour and achievement;
- *(k) who is a parent or guardian, to provide opportunities for education to his child or, as the case may be, ward between the age of six and fourteen years.
- Note: The Article 51A containing Fundamental Duties was inserted by the Constitution (42nd Amendment) Act, 1976 (with effect from 3 January 1977).

*(k) was inserted by the Constitution (86th Amendment) Act, 2002 (with effect from 1 April 2010).

জাতীয় শিক্ষা গবেষণা ও প্রশিক্ষণ পর্ষদ, নতুন দিল্লি। **অনুবাদ ও অভিযোজন** রাজ্য শিক্ষা গবেষণা ও প্রশিক্ষণ পর্ষদ, ত্রিপুরা সরকার।

© এন সি ই আর টি কর্তৃক সর্বস্বত্ব সংরক্ষিত পদার্থবিদ্যা একাদশ শ্রেণির পাঠ্যবই (এন সি ই আর টি-র Physics Part-II পাঠ্যবইয়ের ২০১৭ সালের অনূদিত সংস্করণ)

প্রকাশক : অধিকর্তা, রাজ্য শিক্ষা গবেষণা ও প্রশিক্ষণ পর্যদ ত্রিপুরা

> প্রচ্ছদ ও অক্ষর বিন্যাস লক্ষ্মণ দেবনাথ, শিক্ষক মনতোষ সাহা রাণা বণিক পীযূষ পাল

:

প্ৰথম প্ৰকাশ : মাৰ্চ, ২০১৯ পুনৰ্মুদ্ৰণ : মাৰ্চ, ২০২০

মূ**ল্য : ১**২০.০০ (একশত কুড়ি) টাকা মাত্র

মুদ্রক: সত্যযুগ এমপ্লয়িজ কো-অপারেটিভ ইন্ডাস্ট্রিয়াল সোসাইটি লিমিটেড ১৩ প্রফুল্ল সরকার স্ট্রিট, কলকাতা-৭২

এন সি ই আর টি অনুমোদিত প্রথম বাংলা সংস্করণ

মিকা

২০০৬ সাল থেকে রাজ্য শিক্ষা গবেষণা ও প্রশিক্ষণ পর্যদ প্রথম থেকে অন্টম শ্রেণি পর্যন্ত প্রাথমিক ও উচ্চপ্রাথমিক স্তরের পাঠ্যপুস্তকের মুদ্রণ ও প্রকাশের দায়িত্ব পালন করে আসছে।

রাজ্যের বিদ্যালয়স্তরে উন্নত ও সমৃদ্ধতর পাঠ্যক্রম চালু করার লক্ষ্যে ত্রিপুরা রাজ্য শিক্ষা দপ্তরের প্রচেস্টায় প্রথম থেকে অস্টম, নবম ও একাদশ শ্রেণির জন্য ২০১৯ শিক্ষাবর্ষ থেকে জাতীয় শিক্ষা গবেষণা ও প্রশিক্ষণ পর্ষদের (এন সি ই আর টি) পাঠ্যপুস্তকসমূহ গ্রহণ করার সিদ্ধান্ত নেওয়া হয়।

বাংলা বিষয় ছাড়া অন্যান্য বিষয়গুলোর জন্য জাতীয় শিক্ষা গবেষণা ও প্রশিক্ষণ পর্ষদের প্রকাশিত পুস্তকগুলোর অনূদিত ও অভিযোজিত সংস্করণ ২০১৯ সালে প্রথম প্রকাশ করা হয় এবং এ বছর ওইসব পুস্তকগুলোর পুনর্মুদ্রণ করা হল। পাশাপাশি দশম ও দ্বাদশ শ্রেণির বাংলা বিষয় ছাড়া অন্যান্য বিষয়গুলোর জন্য জাতীয় শিক্ষা গবেষণা ও প্রশিক্ষণ পর্ষদের প্রকাশিত পুস্তকগুলোর অনূদিত ও অভিযোজিত সংস্করণ ২০২০ শিক্ষাবর্ষে প্রথম প্রকাশ করা হয়। এখানে উল্লেখ্য যে, বাংলা বিষয়ে পাঠ্যপুস্তক রচনা ও প্রকাশনার দায়িত্বও রাজ্য শিক্ষা গবেষণা ও প্রশিক্ষণ পর্যদের প্রকাশিক স্র্যন্ত আসছে।

বিশাল এই কর্মকাণ্ডে যেসব শিক্ষক-শিক্ষিকা, অধ্যাপক-অধ্যাপিকা, শিক্ষাবিদ, অনুবাদক, অনুলেখক, মুদ্রণকর্মী ও শিল্পীরা আমাদের সঙ্গে থেকে নিরলসভাবে অক্লান্ত পরিশ্রমে এই উদ্যোগ বাস্তবায়িত করেছেন তাদের সবাইকে সকৃতজ্ঞ ধন্যবাদ জানাচ্ছি।

প্রকাশিত এই পাঠ্যপুস্তকটির উৎকর্ষ ও সৌন্দর্য বৃদ্ধির জন্য শিক্ষানুরাগী ও গুণীজনের মতামত ও পরামর্শ বিবেচিত হবে।

আগরতলা মার্চ, ২০২০ **উত্তম কুমার চাকমা** অধিকর্তা রাজ্য শিক্ষা গবেষণা ও প্রশিক্ষণ পর্ষদ ত্রিপুরা

ড. অর্ণব সেন, সহঅধ্যাপক, এন ই আর আই ই (এন সি ই আর টি), শিলং ড. অরূপ কুমার সাহা, সহঅধ্যাপক, আর আই ই (এন সি ই আর টি), ভুবনেশ্বর

পাঠ্যপুস্তকটি অনুবাদে যাঁরা সহায়তা করেছেন :

শ্রী সুবীর কুমার দেবনাথ, অবসরপ্রাপ্ত সহকারী প্রধান শিক্ষক

- শ্রী পরিমল মজুমদার, অবসরপ্রাপ্ত প্রধান শিক্ষক (ভারপ্রাপ্ত)
- শ্রী মলয় ভৌমিক, প্রধান শিক্ষক
- শ্রী দিব্যেন্দু বিকাশ সেন, শিক্ষক
- শ্রী স্বপন মজুমদার, রাস্ট্রপতি পুরস্কার প্রাপ্ত শিক্ষক
- শ্রী অমল চন্দ্র নাথ, শিক্ষক
- শ্রী পঙ্কজ কুমার দাস, শিক্ষক
- শ্রী সঞ্জয় দেবনাথ, শিক্ষক
- শ্রী শীর্ষেন্দু চৌধুরী, শিক্ষক
- শ্রীমতি সবিতা ভৌমিক, শিক্ষিকা

ভাষা-পরিমার্জনায়

শ্রী ইন্দুমাধব চক্রবর্তী, প্রাক্তন শিক্ষক শ্রী বিশ্বনাথ রায়, শিক্ষক শ্রী প্রবুম্বসুন্দর কর, শিক্ষক শ্রী সুধীর কান্তি ভূষণ, প্রাক্তন শিক্ষক শ্রীমতি শুক্লা সিংহ, শিক্ষিকা

প্রাক্কথন

জাতীয় পাঠ্যক্রমের রূপরেখা (২০০৫)-এর নির্দেশ অনুযায়ী, শিশুদের স্কুলজীবন ও স্কুলের বাইরের জীবনের মধ্যে একটি বিশেষ সম্পর্ক থাকা খুব প্রয়োজন। তার কারণ, শিশুদের শিক্ষা যদি শুধুমাত্র স্কুল এবং পাঠ্যবইয়ের গণ্ডির মধ্যে সীমিত থাকে, তাহলে সেইসব শিশুদের স্কুল, বাড়ি এবং সম্প্রদায়— এই তিন জায়গার শিক্ষায় একটি বড়ো ফাঁক থাকার সম্ভাবনা রয়ে যায়। মূলত এই শূন্যস্থানটাকে পূরণ করার লক্ষ্যেই জাতীয় পাঠ্যক্রমের রূপরেখার উপর ভিত্তি করে নতুন পাঠ্যক্রম ও নতুন ধরনের পাঠ্যবই তৈরি করার উদ্যোগ নেওয়া হয়েছে। এর ফলে শিশুদের মুখস্থ করা এবং চারদেয়ালের মধ্যে তীব্রভাবে আবন্ধ করে বিভিন্ন বিষয়ে শিক্ষার প্রবণতা বন্ধ হবে বলে মনে করা হচ্ছে। পাশাপাশি এটাও আশা করা হচ্ছে যে, এই পরিবর্তন জাতীয় শিক্ষানীতির (১৯৮৬) শিশুকেন্দ্রিক শিক্ষার লক্ষ্যকে উল্লেখযোগ্যভাবে এগিয়ে নিয়ে যাবে।

তবে এই ধরনের প্রচেন্টার সাফল্য অনেকটাই নির্ভর করছে স্কুলের প্রধান শিক্ষক এবং অন্যান্য শিক্ষক/শিক্ষিকাদের উপরে, যাঁরা শিশুদের শিখন সম্পর্কে প্রশ্ন করতে এবং বিভিন্ন কাজে শিশুদের কল্পনাশন্তির প্রয়োগ করতে উৎসাহিত করবেন। আমাদের এটা মনে রাখা খুব জরুরি, শিশুরা যদি সময়, স্থান এবং স্বাধীনভাবে কাজ করার সুযোগ পায়, তাহলে বড়োদের কাছ থেকে প্রাপ্ত জ্ঞান নিয়ে তারা নতুন অনেক কিছু সৃষ্টি করতে পারবে। একমাত্র পাঠ্যবই পড়েই পরীক্ষায় পাস করা যায় - মূলত এই ধারণার ফলেই শিক্ষার অন্যান্য দিকগুলো সর্বদা উপেক্ষিত হয়ে থাকে। আমাদের ভুলে গেলে চলবে না, শিশুদের মধ্যে সৃজনশীলতার বিকাশ তখনই সম্ভব, যখন আমরা ওদের এই গোটা শিখন প্রক্রিয়ার কেবলমাত্র গ্রহীতা না ভেবে একটা পূর্ণ অংশীদার মনে করব।

তবে এই লক্ষ্যপূরণ করতে গেলে স্কুলের দৈনন্দিন কার্যসূচি ও ব্যবস্থাপনায় অনেক ধরনের পরিবর্তন আনা অনিবার্য। স্কুলের দৈনন্দিন সময় সূচি যেমন নমনীয় হওয়া উচিত, ঠিক তেমনই বার্ষিক কার্যসূচি এমনভাবে তৈরি হওয়া প্রয়োজন যাতে শিক্ষাদানের দিনগুলোর সংখ্যায় কোনো পরিবর্তন না আসে। তবে বাস্তবে এই নতুন পাঠ্যবই শিশুদের কতটুকু কাজে লাগবে, ওদের স্কুলজীবন কতটা সমৃদ্ধ করবে কিংবা ওদের স্কুলজীবনকে দুর্বিষহ করে তুলবে না, সবটাই নির্ভর করছে শিক্ষক/শিক্ষিকারা কী পদ্ধতি অবলম্বন করে এই বইটি স্কুলে পড়াবেন এবং কীভাবে সেই পড়ার মৃল্যায়ন করবেন তার উপর। বিগত দিনগুলোর ন্যায় শিশুদের যাতে পাঠ্যবইয়ের বোঝা বইতে না হয়, এই নতুন পাঠ্যক্রম তৈরি করার সময় এই ব্যাপারে বিশেষ নজর দেওয়া হয়েছে। তার জন্য শিক্ষাদানের প্রদন্ত সময় এবং শিশুদের মানসিক বিকাশের কথা মাথায় রেখে প্রতিটি স্তরের পাঠ্যবইয়ে অন্তর্ভুক্ত শিক্ষার বিষয়বস্তুগুলো এক নতুন দৃষ্টিভঞ্চি নিয়ে পুনর্গঠন করা হয়েছে। এই প্রচেষ্টাকে আরো এগিয়ে নিয়ে যাবার জন্য এই পাঠ্যবইয়ের মাধ্যমে শিশুদের নানারকম প্রশ্ন করা, নতুন বিষয় নিয়ে ভাবনা-চিন্তা, তর্ক-বিতর্ক, ছোটো ছোটো গ্রুপ বানিয়ে আলোচনা করা এবং হাতে-কলমে শিক্ষা এইসব কিছুর উপর গুরুত্ব আরোপ করা হয়েছে।

পাঠ্যবই উন্নয়ন কমিটির দায়িত্বপ্রাপ্ত সকল ব্যক্তিবর্গ যাঁরা কঠোর পরিশ্রম করে এই বইটি রূপায়ন করেছেন তাঁদেরকে এন সি ই আর টি প্রশংসা জানাচ্ছে। এই কমিটির কার্যকলাপকে সঠিক পথে চালিত করার জন্য বিজ্ঞান ও গণিত বিষয়ের উপদেন্টা কমিটির চেয়ারপার্সন অধ্যাপক জে ভি নারলিকর এবং এই পাঠ্য বইয়ের মুখ্য উপদেন্টা অধ্যাপক এ ডব্লিও যোশী মহোদয়গণের প্রতি আন্তরিক কৃতজ্ঞতা এবং ধন্যবাদ জ্ঞাপন করছি। এই পাঠ্যবই পুনর্গঠনের পিছনে বহু শিক্ষক/শিক্ষিকার অবদান অনস্বীকার্য।

আমরা সেইসব স্কুলের প্রধান শিক্ষকদেরও বিশেষভাবে ধন্যবাদ জানাচ্ছি। এই পাঠ্যবই তৈরির ক্ষেত্রে যেসব প্রতিষ্ঠান এবং সংগঠন তাঁদের বহুমূল্য সম্পদ, উপাদান এবং লোকবল নিয়ে কাজ করার অনুমতি দিয়ে উদার মনের পরিচয় দিয়েছেন, তাঁদের সবার প্রতি আমরা বিশেষভাবে কৃতজ্ঞতা স্বীকার করছি এবং ধন্যবাদ জানাচ্ছি। মানব সম্পদ উন্নয়ন মন্ত্রকের (এম এইচ আর ডি) চেয়ারপার্সন অধ্যাপক মৃণাল মিরি এবং অধ্যাপক জি পি দেশপান্ডের তত্ত্ববধানে মাধ্যমিক এবং উচ্চতর শিক্ষা বিভাগ দ্বারা নিযুক্ত জাতীয় পর্যবেক্ষণ সমিতির সদস্যদের বহুমূল্য সময় ও অবদানের জন্য পর্যদের পক্ষ থেকে তাঁদের বিশেষ ধন্যবাদ জ্ঞাপন করছি। নিজেদের প্রকাশনা এবং ব্যবস্থাপনার গুণগত মান সংস্কারের কাজে নিরস্তর নিয়োজিত থাকা এন সি ই আর টি কর্তৃপক্ষ সর্বদা পাঠকদের মতামত এবং পরামর্শকে স্বাগত জানায়, যাতে ভবিষ্যতে পাঠ্যবই সংশোধনী প্রক্রিয়াগুলো সফলভাবে সম্পন্ন হতে পারে।

নিউ দিল্লি ২০ ডিসেম্বর ২০০৫ অধিকর্তা রাষ্ট্রীয় শিক্ষা গবেষণা এবং প্রশিক্ষণ পরিষদ (এন সি ই আর টি)

TEXTBOOK DEVELOPMENT COMMITTEE

CHAIRPERSON, ADVISORY GROUP FOR TEXTBOOKS IN SCIENCE AND MATHEMATICS

J.V. Narlikar, *Emeritus Professor*, Chairman, Advisory Committee, Inter University Centre for Astronomy and Astrophysics (IUCAA), Ganeshkhind, Pune University, Pune

CHIEF ADVISOR

A.W. Joshi, *Professor*, Honorary Visiting Scientist, NCRA, Pune (Formerly at Department of Physics, University of Pune)

Members

Anuradha Mathur, PGT, Modern School, Vasant Vihar, New Delhi

Chitra Goel, *PGT*, Rajkiya Pratibha Vikas Vidyalaya, Tyagraj Nagar, Lodhi Road, New Delhi

Gagan Gupta, Reader, DESM, NCERT, New Delhi

H.C. Pradhan, *Professor*, Homi Bhabha Centre of Science Education, Tata Institute of Fundamental Research, V.N. Purav Marg, Mankhurd, Mumbai

N. Panchapakesan, *Professor* (Retd.), Department of Physics and Astrophysics, University of Delhi, Delhi

P.K. Srivastava, Professor (Retd.), Director, CSEC, University of Delhi, Delhi

P.K. Mohanty, PGT, Sainik School, Bhubaneswar

P.C. Agarwal, *Reader*, Regional Institute of Education, NCERT, Sachivalaya Marg, Bhubaneswar

R. Joshi, Lecturer (S.G.), DESM, NCERT, New Delhi

S. Rai Choudhary, *Professor*, Department of Physics and Astrophysics, University of Delhi, Delhi

S.K. Dash, Reader, DESM, NCERT, New Delhi

Sher Singh, PGT, NDMC Navyug School, Lodhi Road, New Delhi

S.N. Prabhakara, PGT, DM School, Regional Institute of Education, NCERT, Mysore

Thiyam Jekendra Singh, Professor, Department of Physics, University of Manipur, Imphal

V.P. Srivastava, Reader, DESM, NCERT, New Delhi

Member-Coordinator

B.K. Sharma, Professor, DESM, NCERT, New Delhi

ACKNOWLEDGEMENTS

The National Council of Educational Research and Training acknowledges the valuable contribution of the individuals and organisations involved in the development of Physics textbook for Class XI. The Council also acknowledges the valuable contribution of the following academics for reviewing and refining the manuscripts of this book: Deepak Kumar, Professor, School of Physical Sciences, Jawaharlal Nehru University, New Delhi; Pankaj Sharan, Professor; Jamia Millia Islamia, New Delhi; Ajoy Ghatak, Emeritus Professor, Indian Institute of Technology, New Delhi; V. Sundara Raja, Professor; Sri Venkateswara University, Tirupati, Andhra Pradesh; C.S. Adgaonkar, *Reader (Retd)*, Institute of Science, Nagpur, Maharashtra; D.A. Desai, Lecturer (Retd), Ruparel College, Mumbai, Maharashtra; F.I. Surve, Lecturer, Nowrosjee Wadia College, Pune, Maharashtra; Atul Mody, Lecturer (SG), VES College of Arts, Science and Commerce, Chembur, Mumbai, Maharashtra; A.K. Das, PGT, St. Xavier's Senior Secondary School, Delhi; Suresh Kumar, PGT, Delhi Public School, Dwarka, New Delhi; Yashu Kumar, PGT, Kulachi Hansraj Model School, Ashok Vihar, Delhi; K.S. Upadhyay, PGT, Jawahar Navodaya Vidyalaya, Muzaffar Nagar (U.P.); I.K. Gogia, PGT, Kendriya Vidyalaya, Gole Market, New Delhi; Vijay Sharma, PGT, Vasant Valley School, Vasant Kunj, New Delhi; R.S. Dass, Vice Principal (Retd), Balwant Ray Mehta Vidya Bhawan, Lajpat Nagar, New Delhi and Parthasarthi Panigrahi, PGT, D.V. CLW Girls School, Chittranjan, West Bengal.

The Council also gratefully acknowledges the valuable contribution of the following academics for the editing and finalisation of this book: A.S. Mahajan, Professor (*Retd*), Indian Institute of Technology, Mumbai, Maharashtra; D.A. Desai, *Lecturer* (*Retd*), Ruparel College, Mumbai, Maharashtra; V.H. Raybagkar, *Reader*, Nowrosjee Wadia College, Pune, Maharashtra and Atul Mody, *Lecturer* (SG), VES College of Arts, Science and Commerce, Chembur, Mumbai, Maharashtra.

The council also acknowledges the valuable contributions of the following academics for reviewing and refining the text in 2017: A.K. Srivastava, DESM, NCERT, New Delhi; Arnab Sen, NERIE, Shillong; L.S. Chauhan, RIE, Bhopal; O.N. Awasthi (*Retd.*), RIE, Bhopal; Rachna Garg, DESM, NCERT, New Delhi; Raman Namboodiri, RIE, Mysuru; R.R. Koireng, DCS, NCERT, New Delhi; Shashi Prabha, DESM, NCERT, New Delhi; and S.V. Sharma, RIE, Ajmer.

Special thanks are due to M. Chandra, *Professor and Head*, DESM, NCERT for her support.

The Council also acknowledges the efforts of Deepak Kapoor, *Incharge*, Computer Station, Inder Kumar, *DTP Operator*; Saswati Banerjee, *Copy Editor*; Abhimanu Mohanty and Anuradha, *Proof Readers* in shaping this book.

The contributions of the Publication Department in bringing out this book are also duly acknowledged.

মুখবন্ধ

এক দশকেরও সময় পূর্বে, জাতীয় শিক্ষানীতির (NPE-1986) ভিত্তিতে জাতীয় শিক্ষা গবেষণা ও প্রশিক্ষণ পর্ষদ (NCERT), অধ্যাপক টি ভি রামকৃয়াণ, এফ. আর. এস. এর সভাপতিত্বে একদল জ্ঞানী সহযোগী লেখকের সহায়তায় একাদশ ও দ্বাদশ শ্রেণির পদার্থবিদ্যা বিষয়ে পাঠ্যপুস্তক প্রকাশ করে। এই পুস্তকগুলোকে শিক্ষক ও ছাত্রসমাজ সমানরৃপে সাদরে গ্রহণ করেছিল। বাস্তবে এই পুস্তকগুলো একটি মাইল ফলক তথা নতুন ধারার দিশারীরূপে প্রতিভাত হয়েছে, তথাপি পাঠ্যপুস্তক বিশেষ করে বিজ্ঞানের বইয়ের বিকাশ, পরিবর্তনীয় উপলব্ধি, প্রয়োজনীয়তা, পুনর্নিবেশ তথা শিক্ষার্থী, শিক্ষাবিদ এবং সমাজের অভিজ্ঞতার দৃষ্টিিতে এক গতিশীল প্রক্রিয়া। বিদ্যালয় শিক্ষার জন্য জাতীয় পাঠ্যক্রম এর রূপরেখা - 2000 এর উপর ভিত্তি করে সংশোধিত পাঠ্যক্রম এর মতো পদার্থবিদ্যার বই-এর আরেক সংস্করণ প্রফেসর সুরেশ চন্দ্রের নেতৃত্বে প্রকাশিত হয় যা এতদিন পর্যস্ত চলে আসছে। সম্প্রতি এন সি ই আর টি জাতীয় পাঠ্যক্রম এর রূপরেখা, 2005 (NCF-2005) প্রকাশিত করে এবং বিদ্যালয় স্তরে পাঠ্যসুচি নবীকরণের প্রক্রিয়ার সময় পাঠ্যক্রমের সে অনুসারে সংশোধন করা হয়েছে। উচ্চতর মাধ্যমিক স্তরের পাঠ্যসুচি এই অনুসারে বিকশিত হয়েছিল।

একাদশ শ্রেণির পাঠ্যপুস্তকে দুইভাগে মোট 15 টি অধ্যায় আছে। প্রথম ভাগে আটটি অধ্যায় এবং দ্বিতীয় ভাগে পরবর্তী সাতটি অধ্যায় আছে। বর্তমানে এই বইটি পাঠ্যপুস্তক উন্নয়ন দলের একটি নতুন প্রচেস্টার ফসল এবং শিক্ষার্থীরা পদার্থবিদ্যার সৌন্দর্য এবং যুক্তিগুলোকে গ্রহণ করবে, এই আশা করে। উচ্চ মাধ্যমিকের পর শিক্ষার্থীরা পদার্থবিদ্যার অধ্যয়ন বজায় রাখতে পারে আবার নাও রাখতে পারে, কিন্ডু আমরা মনে করি তারা অন্য কোনো বিষয় বা শাখা যেমন অর্থ ব্যবস্থা, প্রশাসন, সমাজ বিজ্ঞান, পরিবেশ, কারিগরী বিদ্যা, প্রযুক্তি বিদ্যা, জীববিদ্যা বা চিকিৎসাবিদ্যা এর যে-কোনো একটি নিয়ে অগ্রসর হোক না কেন পদার্থবিদ্যার চিন্তন পদ্ধতির উপযোগিতা তারা অনুভব করবে। আর যে সকল শিক্ষার্থীরা পদার্থবিদ্যা নিয়ে এই স্তরের পরে অধ্যয়ন বজায় রাখবে, এই বইয়ের মধ্যে বিভিন্ন উল্লিখিত বিষয়বস্তুগুলো নিশ্চিতরূপে তাদের সুদৃঢ় ভিত্তি প্রদান করবে।

পদার্থবিদ্যা হল, বিজ্ঞান এবং প্রযুক্তিবিদ্যার মোটামুটি সব শাখাগুলোকে বুঝতে প্রয়োজনীয় ভিত্তি স্বরূপ। এটা খুব আকষর্ণীয় যে অন্যান্য শাখা যেমন অর্থনীতি, বাণিজ্য এবং আচরণগত বিজ্ঞানের ক্ষেত্রে পদার্থবিদ্যার চিস্তা ধারণার ব্যবহার ক্রমবর্ধমান। আমরা এই বিষয়ে অবগত যে মৌলিক পদার্থবিদ্যার কিছু সাধারণ নীতি প্রায়ই ধারণাগতভাবে জটিল। আমরা এই বইয়ে ধারণাগত সঙ্গতি আনার চেন্টা করেছি। বিষয়ের কাঠিন্যতাকে উপেক্ষা না করে শিক্ষণ কৌশল এবং সহজ সরল ভাষা ব্যবহার করা আমাদের চেন্টার মূল বিষয় ছিল। পদার্থবিদ্যার প্রকৃতি এরূপ যে উহাতে নির্দিন্ট ন্যূনতম কিছু গণিতের ব্যবহার আবশ্যক। আমরা যতদুর পর্যন্ত সম্ভব গাণিতিক সূত্রগুলোর যৌন্তিক কায়দায় বিকশিত করার চেন্টা করেছি।

পদার্থবিদ্যার ছাত্ররা এবং শিক্ষকরা নিশ্চয়ই উপলব্ধি করেন পদার্থবিদ্যা বিষয়টি কেবল স্মৃতিতে রাখাই নয় অনুধাবনেরও প্রয়োজন। মাধ্যমিক থেকে উচ্চ মাধ্যমিক এবং এরও উচ্চস্তরের পদার্থবিদ্যায় মূলত 4 টি উপাদান : (a) গণিতের পর্যাপ্ত সুদৃঢ় ভিত্তি (b) পরিভাষাগত শব্দাবলি এবং শর্তাবলি যার সাধারণ ইংরেজি অর্থ সম্পূর্ণ ভিন্নও হতে পারে (c) নতুন জটিল ধারণা এবং (d) পরীক্ষামূলক ভিত। আমরা আমাদের চারপাশের পরিবেশের যথার্থ বিবরণের উন্নতি সাধনে এবং আমাদের পর্যবেক্ষণ সমূহকে পরিমেয় রাশিমালার আকারে প্রকাশ করতে চাই, তাই পদার্থবিদ্যায় গণিতের একান্ত প্রয়োজন। পদার্থবিদ্যা, কণাসমূহের নতুন নতুন ধর্মাবলির আবিষ্কার করে এবং প্রতিটি কণার একটি করে নামকরণ করে। এই নামগুলো সাধারণত ইংরেজি, লাটিন অথবা গ্রিক ভাষা হতে চয়ন করা হয়েছে, কিন্ডু পদার্থবিদ্যা এদেরকে সম্পূর্ণ ভিন্ন অর্থ দিয়েছে। এটা বোঝার জন্য তুমি ক্ষমতা, বল, শক্তি, আধান, স্পিন এবং অন্যান্য শব্দগুলোকে যে-কোনো নির্ভরযোগ্য ইংরেজি অভিধানে দেখতে পারো এবং তাদের আভিধানিক অর্থের সঞ্চো পদার্থবিদ্যার অর্থের তুলনা করতে পারে। কণাসমূহের আচরণ ব্যাখ্যা করতে

পদার্থবিদ্যা জটিল এবং প্রায়ই রহস্যময় ধারণার অবতারণা করে। পরিশেষে মনে রাখতে হবে যে, সমগ্র পদার্থবিদ্যা পর্যবেক্ষণ ও পরীক্ষার ভিত্তির ওপর দাঁড়িয়ে আছে, যা ব্যতিত কোনো তত্ত্ব পদার্থবিদ্যার পরিধিতে গৃহীত হবে না।

এই বইয়ের কিছু বৈশিষ্ট্য আছে এবং আমরা আন্তরিকভাবে আশা করি যে, এগুলো ছাত্রছাত্রীদের কাছে বইটির উপযোগিতা বাড়াবে। অধ্যায়ের বিষয়বস্তুর উপর দ্রুততার সঙ্গো নিরীক্ষণের জন্য প্রতিটি অধ্যায়ের শেষে সারাংশ দেয়া হয়েছে। এরপর ভেবে দেখার বিষয় সমূহ দেওয়া হয়েছে যা বিদ্যার্থীদের মনে উৎপন্ন সম্ভাব্য ভ্রান্ত ধারণার নিরসনে, অধ্যায়ের কোনো নির্দিষ্ট বিবৃতি/নীতির অন্তর্নিহিত অর্থ অনুধাবনে এবং লস্ব জ্ঞানের ব্যবহারের ক্ষেত্রে প্রয়োজনীয় সতর্কতার দিকে ইঞ্চািত করবে। এগুলো কিছু চিন্তন-উদ্দীপক প্রশ্ন জাগিয়ে তোলে যা একজন শিক্ষার্থীকৈ পদার্থবিদ্যার বাইরের জীবনকেও ভাবতে শেখায়। এসব বিষয়গুলোর উপর মনোনিবেশ করতে এবং এগুলো নিয়ে চিন্তা করতে শিক্ষার্থীরা আনন্দ পাবে। এছাড়া, বিষয়বস্তু সমূহের স্পন্টীকরণের জন্য এবং প্রাত্যহিক বাস্তব জীবনের পরিস্থিতিতে এসব ধারণাগুলোর প্রয়োগকে ব্যাখ্যা করতে ব্যাপক সংখ্যক সমাধানকৃত উদাহরণকে অন্তর্ভুক্ত করা হয়েছে। পদার্থবিদ্যা বিষয়টির ক্রমিক উন্নয়নের উদ্দীপনাকে প্রকাশ করতে কখনো-কখনো ঐতিহাসিক পরিপ্রেক্ষিতে অন্তর্ভুক্ত করা হয়েছে। অনেক অধ্যায়ে হয়তো এই উদ্দেশ্যে অথবা কিছু বিষয়বস্তু, যেগুলোতে শিক্ষার্থাদের অতিরিক্ত মনোযোগ দেওয়া আবশ্যক, সেগুলোর কিছু বিশেষ বৈশিষ্ট্যকে দৃন্টিগোচর করার জন্য, বাক্সে রাখা হয়েছে। বইয়ের শেষে, বইতে ব্যবহৃত মুখ্য শব্দসমূহের একটি বিষয়সূচি দেওয়া হয়েছে।

পদার্থবিদ্যার বিশেষ প্রকৃতিতে ধারণাগত উপলব্ধি ছাড়াও নির্দিষ্ট প্রচলিত জ্ঞানসমূহ, মূল গাণিতিক সূত্রাবলি, পম্বতিও কৌশল, গুরুত্বপূর্ণ প্রাকৃতিক ধ্রুবক সমূহের সংখ্যাগত মান এবং অতিক্ষুদ্র থেকে অতিবৃহৎ পাল্লার মধ্যে পরিমাপের এককের বিভিন্ন পম্বতিসমূহ অন্তর্ভুক্ত। ছাত্রছাত্রীদের সমৃন্ধ করার জন্য এই বইয়ের শেষের দিকে পরিশিষ্ট A-1 থেকে A-9 এ প্রয়োজনীয় সূত্রাবলি, পম্বতি, কৌশল এবং ডাটাবেস দেওয়া হল। আবার কিছু কিছু অধ্যায় শেষে প্রদন্ত পরিশিষ্টগুলোতে অতিরিক্ত তথ্যসমূহ বা এ অধ্যায়ে আলোচিত বিষয়সমূহের প্রয়োগের উল্লেখ করা আছে।

ব্যাখ্যামূলক চিত্রগুলো দেওয়ার সময় বিশেষ নজর দেওয়া হয়েছে। স্পন্টতা বৃদ্ধির জন্য চিত্রগুলোকে দুটি রঙে অঞ্চন করা হয়েছে। প্রত্যেকটি অধ্যায়ের শেষে প্রচুর সংখ্যায় অনুশীলনী দেওয়া হয়েছে। তাদের মধ্যে কিছু কিছু দৈনন্দিন জীবনে ঘটমান পরিস্থিতির সঙ্গে সম্পর্কযুক্ত। ছাত্রছাত্রীদেরকে এগুলো সমাধান করার জন্য অনুপ্রাণিত করতে হবে, এভাবে অভ্যাসের ফলে তারা দেখবে যে এগুলো অত্যধিক শিক্ষামূলক। তাছাড়া কিছু অতিরিক্ত অনুশীলনী দেওয়া হয়েছে যেগুলো তুলনামূলকভাবে অধিক চিন্তনীয়। এগুলোর উত্তর এবং সমাধান করার জন্য কিছু কিছু ক্ষেত্রে ঈজিতগুলোও দেওয়া হয়েছে যেগুলো তুলনামূলকভাবে অধিক চিন্তনীয়। এগুলোর উত্তর এবং সমাধান করার জন্য কিছু কিছু ক্ষেত্রে ঈজিতগুলোও দেওয়া হয়েছে। সম্পূর্ণ বইয়ে S I একক ব্যবহার করা হয়েছে। পদার্থবিদ্যার উদ্দেশ্য সাধনের লক্ষ্যে এবং নির্ধারিত পাঠ্যসূচি/পাঠ্যক্রমের অংশ হিসাবে দ্বিতীয় অধ্যায়ে "একক এবং পরিমাপনের" একটি বিস্তৃত বিবরণ দেওয়া হয়েছে। একটি দীর্ঘ বরুরেখার দৈর্ঘ্যের পরিমাপের মতো একটি সহজ ক্ষেত্র অসুবিধাগুলোকে বক্সে আবন্ধ বিষয়ের মাধ্যমে তুলে ধরা হয়েছে। বর্তমানে গ্রহণযোগ্য সংজ্ঞাগুলোকে প্রকাশ করার জন্য এবং বর্তমানে সম্ভবপর বিভিন্ন পরিমাপনের উচ্চমাত্রার নির্ভূলতাকে সূচিত করার জন্য S I মূল এককের সারণি এবং এর সঞ্চো সম্পর্কিত অন্যান্য এককগুলো দেওয়া হয়েছে। এখানে প্রদন্ত সাংখ্যিক মানগুলো মনে রাখার প্রয়োজন নেই অথবা পরীক্ষাতে জিজ্ঞাসা করা হবে না।

ছাত্রছাত্রী, শিক্ষক-শিক্ষিকা এবং সাধারণ জনগণের মধ্যে একটি ধারণা বম্বমূল আছে যে, মাধ্যমিক থেকে উচ্চমাধ্যমিক স্তরের বিষয়বস্তুর কাঠিন্যতে একটি তীব্র ফারাক রয়েছে। একটু চিস্তা করলেই বুঝা যায় যে, বর্তমান শিক্ষা ব্যবস্থায় এমন হওয়ারই কথা। মাধ্যমিক স্তর পর্যন্ত শিক্ষা ব্যবস্থা একটি সাধারণ শিক্ষা ব্যবস্থা যেখানে শিক্ষার্থীগণকে প্রাথমিক স্তরে কতগুলো বিষয় সম্পর্কে শিক্ষা লাভ করতে হয়, যেমন বিজ্ঞান, সমাজবিজ্ঞান, গণিত, ভাষা। উচ্চতর মাধ্যমিক এবং এর পরবর্তী স্তরে পছন্দ মতো উদ্যোগক্ষেত্রে পেশাগত পারদর্শিতা অর্জন করতে হয়। তোমরা এটাকে নিম্নের অবস্থার সক্ষো তুলনা করতে পারো। শিশুরা রাস্তার গলিতে বা ঘরের বাইরে (বা ভেতরে) ছোটো জায়গায় ক্রিকেট বা ব্যাডমিন্টন খেলে। তারপর তাদের মধ্য থেকে কেউ কেউ পর পর স্কুল টিম, জেলা স্তরের টিম, রাজ্য ভিত্তিক টিম হয়ে জাতীয় টিমে সেই খেলা খেলতে চায়। প্রতি পর্যায়ে অবশ্যই ক্রমান্বয়ে বেশি প্রতিযোগিতার সম্মুখীন হতেই হয়। কোনো শিক্ষার্থী যদি বিজ্ঞান, সাহিত্য, ভাষা, সংগীত, কলা, বাণিজ্য, অর্থশাস্ত্র, স্থাপত্যবিদ্যা এক্ষেত্রগুলো নিয়ে পড়তে চায় বা তারা যদি খেলোয়াড় বা ফ্যাশন ডিজাইনার হতে চায় তবে তাদেরকে কঠোর পরিশ্রম করতে হবে।

এই বইটি অনেকের স্বতঃস্ফূর্ত এবং নিয়মিত সাহায্যের ফলে সম্পূর্ণ করা সম্ভব হয়েছে। পাঠ্যপুস্তক উন্নয়নে গঠিত দল, ড. ভি এইচ রায়বাগকারের কাছে, চার নম্বর অধ্যায়ে তাঁর বক্সের বিষয়গুলো ব্যবহারের অনুমতি প্রদানের জন্য এবং ড. এফ আই সার্ভের কাছে, 15 নং অধ্যায়ে তাঁর দুটি বক্সের বিষয়গুলো ব্যবহারের অনুমতির জন্য কৃতজ্ঞ। বিজ্ঞান শিক্ষার উন্নতির জন্য রাষ্ট্রীয় প্রচেস্টার এক অংশ হিসেবে আমাদেরকে এই পাঠ্যপুস্তক তৈরি করার কাজ অর্পণের জন্য জাতীয় শিক্ষা গবেষণা ও প্রশিক্ষণ পর্যদের অধিকর্তার কাছেও আমরা কৃতজ্ঞতা ব্যক্ত করছি। এন সি ই আর টি এর বিজ্ঞান ও গণিত শিক্ষা বিভাগের প্রধান আমাদের এই উদ্যমকে যে-কোনো ভাবে সহায়তার ক্ষেত্রে তৎপর ছিলেন। বিগত কয়েক বছর যাবৎ পূর্বের পাঠ্যপুস্তকের উন্নতিকল্পে শিক্ষক-শিক্ষিকা, ছাত্রছাত্রী এবং বিষয় বিশেষজ্ঞদের কাছ থেকে বিভিন্ন শিক্ষামূলক পরামর্শ আন্তরিকভাবে পাওয়া গেছে। এন সি ই আর টি কে যাঁরা যাঁরা পরামর্শ দিয়েছেন তাঁদের সকলের কাছে আমরা কৃতজ্ঞ। আমরা প্রথম পাঙুলিপির ওপর চর্চা এবং পরিমার্জনের জন্য আয়োজিত সম্পাদন কর্মশালা এবং সমীক্ষা কর্মশালার সদস্যদের প্রতিও কৃতজ্ঞতা প্রকাশ করছি। আমরা সভাপতি এবং ওনার লেখকমণ্ডলী যাঁদের দ্বারা 1988 সালে পাঠ্যপুস্তক লেখা হয়েছিল যা 2002 এর সংস্করণে এবং বর্তমান পাঠ্যপুস্তক বিকাশ করার ক্ষেত্রে মূল ভিত্তি এবং সহায়িকারুপে সাহায্য করেছিল, তাদেরকে ধন্যবাদ জানাই। কখনো-কখনো আগের সংস্করণের সারবত্তা অংশগুলো যেগুলো বিশেষ করে শিক্ষার্থী, শিক্ষক-শিক্ষিকা দ্বারা প্রশংসিত হয়েছে, ভবিষ্যৎ প্রজন্মের শিক্ষার্থীদের উপকারের জন্য এই পাঠ্যপুস্তকে গ্রহণ করে রেখে দেওয়া হয়েছে। আমরা শ্রদ্ধেয় পাঠকবৃন্দ, বিশেষত ছাত্রছাত্রী এবং শিক্ষক-শিক্ষিকাদের থেকে প্রয়োজনীয় পরামর্শ এবং তাঁদের মতামতকে স্বাগত জানাচ্ছি। আমরা আমাদের তরুণ পাঠক-পাঠিকাদেরকে পদার্থবিদ্যার রোমাঞ্চকর কার্যক্ষেত্রে আনন্দময় সফরের জন্য শুভেচ্ছা জানাচ্ছি।

> এ ডব্লু যোশী মুখ্য পরামর্শদাতা পাঠ্যপুস্তক উন্নয়ন কমিটি

পদার্থ বিদ্যা (প্রথম ভাগ)-এর বিষয়সমূহ অধ্যায় : প্রথম প্রাকৃতিক জগৎ 1 অধ্যায় : দ্বিতীয় একক এবং পরিমাপ 16 অধ্যায় : তৃতীয় সরলরেখা বরাবর গতি 39 অধ্যায় : চতুর্থ সমতলীয় গতি 65 অধ্যায় : পঞ্জম গতীয় সূত্রাবলি 89 অধ্যায় : ষষ্ঠ কাৰ্য, শক্তি ও ক্ষমতা 114 অধ্যায় : সপ্তম কণা সংস্থা এবং আবর্ত গতি 141 অধ্যায় : অফ্টম মহাকৰ্ষ 183 পরিশিস্ট 207 উত্তরমালা 223

অধ্যায় : নবম

কঠিন পদার্থের যান্ত্রিক ধর্মাবলি

9.1	ভূমিকা	235
9.2	কঠিন পদার্থের স্থিতিস্থাপক আচরণ	236
9.3	পীড়ন এবং বিকৃতি	236
9.4	হুকের সূত্র	238
9.5	পীড়ন-বিকৃতি লেখ চিত্র	238
9.6	স্থিতিস্থাপক গুণাঙ্কসমূহ	239
9.7	পদার্থের স্থিতিস্থাপক ধর্মের ব্যবহার	244

অধ্যায় : দশম

প্রবাহীর যান্ত্রিক ধর্মাবলি

10.1	ভূমিকা	250
10.2	চাপ	250
10.3	ধারারেখ বা শান্ত প্রবাহ	257
10.4	বার্নোলির নীতি	258
10.5	সান্দ্রতা	262
10.6	রেনল্ডস্ সংখ্যা	264
10.7	পৃষ্ঠটান	265

অধ্যায় : একাদশ

পদার্থের তাপীয় ধর্মাবলি

11.1	ভূমিকা	278
11.2	তাপমাত্রা ও তাপ	278
11.3	তাপমাত্রার পরিমাপ	279
11.4	আদর্শ গ্যাস সমীকরণ ও পরম তাপমাত্রা	279
11.5	তাপীয় প্রসারণ	280
11.6	আপেক্ষিক তাপ ধারকত্ব	284
11.7	ক্যালোরিমিতি	285
11.8	অবস্থার পরিবর্তন	286
11.9	তাপ সঞ্জালন	290
11.10	নিউটনের শীতলীকরণ সূত্র	296

অধ্যায় : দ্বাদশ

তাপগতিবিদ্যা

12.1	ভূমিকা	303
12.2	তাপীয় সাম্যাবস্থা	304
12.3	তাপগতিবিদ্যার শূন্যতম সূত্র	305
12.4	তাপ, অন্তঃশন্তি এবং কার্য	306
12.5	তাপগতিবিদ্যার প্রথম সূত্র	307
12.6	আপেক্ষিক তাপ ধারকত্ব	308
12.7	তাপগতীয় অবস্থা চলরাশি এবং অবস্থার সমীকরণ	309
12.8	তাপগতীয় প্রক্রিয়া	310
12.9	তাপ ইঞ্জিন	313
12.10	হিমায়ক এবং তাপীয় পাম্প	313
12.11	তাপগতিবিদ্যার দ্বিতীয় সূত্র	314
12.12	প্রত্যাবর্তক এবং অপ্রত্যাবর্তক প্রক্রিয়া	315
12.13	কার্নো ইঞ্জিন	316

অধ্যায় : ত্রয়োদশ

গতীয় তত্ত্ব

13.1	ভূমিকা	323
13.2	পদার্থের আণবিক প্রকৃতি	323
13.3	গ্যাসের আচরণ	325
13.4	আদর্শ গ্যাসের গতিতত্ত্ব	328
13.5	শক্তির সমবিভাজনের সূত্র	332
13.6	আপেক্ষিক তাপ ধারকত্ব	333
13.7	গড় মুক্ত পথ	335

অধ্যায় : চতুর্দশ

কম্পন 341 14.1 ভূমিকা 341 14.2 পর্যায়বৃত্ত এবং দোলগতি 342 14.3 সরল দোলগতি 344 14.4 সরল দোলগতি এবং সমবৃত্তীয় গতি 346 14.5 সরল দোলগতি এবং সমবৃত্তীয় গতি 348 14.6 সরল দোলগতির ক্ষেত্র বলের সূত্র 349 14.7 সরল দোলগতির ক্ষেত্র শস্তি 350

14.8	সরল দোলগতি সম্পাদনকারী কিছু সংস্থা	352
14.9	অবমন্দিত সরল দোলগতি	355
14.10	পরবশ দোলন এবং অনুনাদ	357

অধ্যায় : পঞ্জদশ

15.1	ভূমিকা	367
15.2	তির্যক তরঙ্গা ও অনুদৈর্ঘ্য তরঙ্গা	369
15.3	চলতরঙ্গো সরণ সম্পর্ক	370
15.4	চলতরঙ্গের দ্রুতি	373
15.5	তরঙ্গের উপরিপাতনের নীতি	376
15.6	তরঙ্গের প্রতিফলন	378
15.7	স্বরকম্প	382
15.8	ডপলার ক্রিয়া	384
উত্তরমাল	1	395
BIBLIO	BIBLIOGRAPHY	
জ্ঞাতব্য বি	ৱাতব্য বিশেষ শব্দসমূহ	

শিক্ষক-শিক্ষিকাদের জন্য লক্ষনীয় বিষয়াবলি

এই পাঠ্যক্রমকে শিক্ষার্থীকেন্দ্রিক করার জন্য, শিক্ষার্থীদেরকে সরাসরি এই শিক্ষণ পম্বতিতে অংশগ্রহণ এবং পারস্পরিক আলোচনা করা উচিত। প্রতি সপ্তাহে একবার অথবা প্রতি ছয় শ্রেণি পাঠে অন্তত একটি শ্রেণি পাঠে এই রকম সেমিনার এবং পারস্পরিক আলোচনা সভার আয়োজন প্রয়োজন। অংশগ্রহণকারী শিক্ষার্থীগণের মধ্যে আলোচনা পর্যালোচনা করার জন্য, এই পুস্তকের কিছু বিশেষ বিশেষ অংশের উল্লেখ করে কিছু পরামর্শ নীচে দেওয়া হল।

ছাত্রছাত্রীদেরকে পাঁচ থেকে ছয়টি দলে ভাগ করা যেতে পারে। যদি আবশ্যিক হয় তবে এই দলগুলোর সদস্য পদ সম্পূর্ণ শিক্ষণ বৎসর পর্যন্ত ক্রমাবর্তন করা যেতে পারে। আলোচনার বিষয়বস্তু বোর্ডে বা কাগজে লিখে উপস্থাপন করতে হবে। শিক্ষার্থীদেরকে নির্দেশ দেওয়া হবে, প্রদত্ত কাগজে দেওয়া প্রশ্নগুলোর উত্তর অথবা প্রতিক্রিয়া কাগজে লিখে রাখতে। এরপর এগুলো নিয়ে নিজ নিজ দলে আলোচনা করতে হবে এবং সংশোধন অথবা মন্তব্য ওই সব কাগজে লিখতে হবে। এইগুলো নিয়ে একই শ্রেণি পাঠে অথবা বিভিন্ন শ্রেণি পাঠে আলোচনা করা যেতে পারে। এই লিখিত পৃষ্ঠাসমূহকে মূল্যায়ন করা যেতে পারে।

এই পুস্তক থেকে তিনটি সম্ভাব্য বিষয়কে আমরা প্রস্তাব করি। বস্তুত প্রথম দুইটি প্রস্তাবিত বিষয়গুলো খুবই সাধারণ তথা পূর্বের চার বা এর অধিক শতাব্দী ধরে বিজ্ঞানের বিকশিত হওয়ার সঙ্গে সম্পর্কযুক্ত। শিক্ষার্থী এবং শিক্ষক শিক্ষিকারা এমন অনেক বিষয় নিয়ে ভাবনা চিন্তা করতে পারেন।

1. এমন ধারণা যা সভ্যতাকে বদলে দিয়েছে (Ideas that Changed Civilization)

ধরে নাও, মানব জাতি ধীরে ধীরে বিলুপ্তির পথে এগোচ্ছে। ভবিষ্যৎ প্রজন্ম বা অন্য গ্রহাদি থেকে আগন্ডুকদের উদ্দেশ্যে কোনো বার্তা ছেড়ে যেতে হবে। প্রসিদ্ধ পদার্থবিদ আর.পি ফিন্ম্যান পরবর্তি প্রজন্মের জন্য নীচের বার্তাটি ছেড়ে যেতে চেয়েছিলেন। "পদার্থ পরমাণর সমন্বয়ে গঠিত।"

গণাম গরশানুর পদর্বে গাঁহত।

একজন ছাত্রী এবং কলা বিষয়ের শিক্ষক নীচের বার্তা ছেড়ে যেতে চেয়েছেন :

"জল বিদ্যমান যতক্ষণ, মানব জাতির অস্তিত্ব থাকবে ততক্ষণ।"

আরেকজন ব্যক্তি ভাবল, এটা এমন হওয়া উচিত : "গতির জন্য চাকার ধারণা"।

তোমরা প্রত্যেক ভবিষ্যৎ প্রজন্মের জন্য কী কী বার্তা ছেড়ে যেতে চাও - তা লিখ। এরপর এইগুলো নিয়ে নিজেদের দলে আলোচনা কর এবং তোমাদের ভাবনায় যদি পরিবর্তন হয়, তবে এতে যোগ করো বা সংশোধন করো। এইগুলো তোমার শিক্ষকের কাছে দাও এবং যে-কোনো আলোচনার জন্য এতে অংশগ্রহণ করো।

2. লঘুকরণ (Reductionism)

গ্যাসের গতীয় তত্ত্ব "বৃহতের সঞ্চো ক্ষুদ্রতর", "ম্যাক্রার সঞ্চো মাইক্রোর" সম্পর্ক স্থাপন করে। একটি গ্যাস এমন একটি সংস্থা যা এর গঠনগত উপাদান, অণুগুলোর সঙ্গো সম্পর্কযুক্ত। উপাদানগুলোর বিভিন্ন বৈশিষ্ট্যের উপর ভিত্তি করে কোনো সংস্থাকে এইভাবে বর্ণনা করাকেই সাধারণত লঘুকরণ বা Reductionism বলে। এটি কোনো একটি গোষ্ঠির পৃথক পৃথক উপাদানগুলোর সরল ও আনুমানিক আচরনের সাহায্যে ওই গোষ্ঠিটির আচরনকে ব্যাখ্যা করে। এই পান্ধতির ক্ষেত্রে স্থূলদর্শী (Macroscopic) পর্যবেক্ষণ এবং অতি সূক্ষ্মদর্শী (microscopic) ধর্মাবলির মধ্যে একটি পারস্পরিক নির্ভরতা থাকবে। এই পান্ধতিটি কি ব্যবহারযোগ্য ?

পদার্থবিজ্ঞান ও রসায়ণবিজ্ঞান ছাড়া অন্য বিষয়েও এই পম্বতিগত ধারণাগুলোর কিছু সীমাবন্ধতা থাকে। একটি ক্যানভাসের চিত্রিত ছবিকে, এতে ব্যবহৃত বিভিন্ন রাসায়নিক পদার্থের ধর্মাবলি এবং চিত্রের সমন্বয় হিসাবে ভাবা যেতে পারে না। বাস্তবিকে ইহা গঠনগত উপাদানগুলোর সমষ্টি থেকে বেশি কিছু হয়ে ওঠে।

প্রশ্ন : তুমি কী এমন কোনো ক্ষেত্র ভাবতে পারো যেখানে এই পম্থা ব্যবহৃত হয়েছে?

এমন একটি সংস্থার সংক্ষেপে উল্লেখ করো যেখানে গঠনগত উপাদানগুলোর পদের মাধ্যমে এটাকে সম্পূর্ণভাবে বর্ণনা করা যায়। অন্য একটি উদাহরণ দাও যেখানে ইহা সম্ভবপর নয়। দলের অন্যান্যদের সঙ্গো এই নিয়ে আলোচনা করো এবং তোমার মতামত দাও। এইগুলো তোমার শিক্ষককে দাও এবং এর সঙ্গো সম্পর্কিত আলোচনায় অংশগ্রহণ করো।

3. তাপের আণবিক ব্যাখ্যা (Molecular approach to heat)

নিচের ক্ষেত্রে কী ঘটবে তোমরা ভেবে আলোচনা করো। একটি আবন্ধ পাত্র ছিদ্রযুক্ত প্রাচীর দ্বারা দুইটি অংশে বিভক্ত করা হল। একটি অংশ নাইট্রোজেন গ্যাস (N₂) এবং অপর অংশটি CO₂ গ্যাস দ্বারা পূর্ণ করা হল। গ্যাসগুলো এক পাশ থেকে অপর পাশে ব্যপিত হবে। প্রশ্ন 1 : উভয় গ্যাস কি একই হারে ব্যপিত হবে ? যদি না হয়, তবে কোন্টির ব্যাপন বেশি হবে। কারণ দেখাও।

প্রশ্ন 2 : চাপ ও উয়্নতা কি অপরিবর্তিত থাকবে ? যদি না হয়, তবে উভয় ক্ষেত্রে কী কী পরিবর্তিত হবে ? কারণ দেখাও।

তোমার উত্তর লিপিবম্ধ করো। এই নিয়ে দলের অন্যান্যদের সঙ্গে আলোচনা করো এবং সংশোধন করো অথবা মন্তব্য যোগ করো। এইগুলো শিক্ষককে দাও এবং আলোচনায় অংশগ্রহণ করো।

ছাত্রছাত্রী এবং শিক্ষক শিক্ষিকারা দেখতে পাবে, এই রকম সেমিনার ও আলোচনা করার ফলে শুধুমাত্র পদার্থবিজ্ঞানে সহায়ক হয় এমন নয়, বিজ্ঞান ও সমাজ বিজ্ঞান বিষয়েও অভাবনীয় বোঝাপড়ার সৃষ্টি হয়। এটা শিক্ষার্থীদের অনেক পরিপক্কতা আনে।

কঠিন পদার্থের যান্ত্রিক ধর্মাবলি (Mechanical Properties of Solids)

9.1 ভূমিকা

- 9.2 কঠিন পদার্থের স্থিতিস্থাপক আচরণ
- 9.3 পীড়ন এবং বিকৃতি
- **9.4** হুকের সূত্র
- 9.5 পীড়ন-বিকৃতি লেখচিত্র
- 9.6 স্থিতিস্থাপক গুণাজ্ঞসমূহ
- 9.7 পদার্থের স্থিতিস্থাপক ধর্মের ব্যবহার

সারাংশ ভেবে দেখার বিষয়সমূহ অনুশীলনী অতিরিক্ত অনুশীলনী

9.1 ভূমিকা (INTRODUCTION)

সপ্তম অধ্যায়ে আমরা বস্তুর আবর্তন নিয়ে পড়েছি এবং বুঝতে পেরেছি যে বস্তুর মধ্যস্থ ভরের বিন্যাসের উপর কিভাবে বস্তুর গতি নির্ভর করে। আমরা দৃঢ় বস্তুর সরল পরিস্থিতিগুলোর মধ্যেই আমাদেরকে সীমাবন্দ্ব রেখেছি। দৃঢ়বস্তু বলতে বোঝায় একটি শক্ত কঠিন বস্তু যার নির্দিষ্ট আকার ও আকৃতি রয়েছে। কিন্তু বাস্তবে বস্তুকে প্রসারিত করা যায়, সংকুচিত করা যায় এবং বাঁকানোও যায়। এমনকি একটি দৃঢ় ইস্পাতের দণ্ডে যথেষ্ট উচ্চমানের বাহ্যিক বল প্রয়োগের ফলে বিকৃত হতে দেখা যায়। এ থেকে বোঝা যায় যে, কঠিন বস্তুও প্রকৃত দৃঢ় নয়।

কঠিন পদার্থের নির্দিন্ট আকার ও আকৃতি রয়েছে। বস্তুর আকার ও আকৃতি পরিবর্তনের জন্য বলের প্রয়োজন। একটি স্প্রিং-এর একপ্রান্ত স্প্রিং-এর দুপ্রান্তে ধরে যদি মৃদুভাবে টানা যায় তাহলে স্প্রিং-এর দৈর্ঘ্য সামান্য বৃদ্ধি পায় এবং টান ছেড়ে দিলে, এটি আবার এর আগের আকার ও আকৃতি ফিরে পায়। বস্তুর যে বৈশিস্ট্যের জন্য প্রযুক্ত বাহ্যিক বল অপসারণের পর বস্তু তার আগের আকার ও আকৃতি ফিরে পায়, তাকে বস্তুর স্থিতিস্থাপকতা বলে এবং বাহ্যিক বলের প্রভাবে বস্তুতে যে বিকৃতি ঘটে তাকে স্থিতিস্থাপক বিকৃতি বলে। কিন্তু, তুমি যদি আঠা বা কাদামাটির পিঙে বল প্রয়োগ করো, তাহলে এগুলোর কিন্তু পূর্বের আকৃতিতে ফিরে যাবার কোনো প্রবণতা দেখা যায় না এবং এদের স্থায়ী বিকৃতি ঘটে। এধরনের বস্তুকে বলে নমনীয় (plastic) এবং এই ধর্মকে বলে নমনীয়তা (plasticity)। পুটিং (আঠা) এবং কাদামাটির দলা হল আদর্শ নমনীয় বস্তুর উদাহরণ।

বস্তুর স্থিতিস্থাপক ধর্ম প্রযুক্তিগত পরিকল্পনায় (Engineering Design) গুরুত্বপূর্ণ ভূমিকা পালন করে। উদাহরণস্বরূপ, দালানবাড়ির নকশা তৈরির সময় ইস্পাত এবং কংক্রিটের মতো বস্তুর স্থিতিস্থাপক ধর্ম সম্পর্কে জ্ঞান খুব গুরুত্বপূর্ণ। সেতু, মোটরগাড়ি এবং রোপওয়ে (ropeway) ইত্যাদির নকশা তৈরির ক্ষেত্রেও এটা খাটে। কেউ প্রশ্ন করতে পারে, আমরা কি এমন একট বিমানের নকশা তৈরি করতে পারি যা খুবই হালকা কিন্তু খুবই মজবৃত ? আমরা কি এমন কোনো কৃত্রিম অঙ্গা বানাতে পারি যা হাল্ধা কিন্তু শক্তিশালী ? কেন রেলপথের 'I' এর মতো নির্দিন্ট আকৃতি থাকে ? কাচ ভঙ্গার, কিন্তু পিতল ভঙ্গার নয় - কেন ? অপেক্ষাকৃত সাধারণ মানের ওজন বা বল ক্রিয়াশীল হয়ে বিভিন্ন কঠিন বস্তুর কীভাবে বিকৃতি ঘটায় তার অনুসম্থানের মধ্য দিয়ে এসব প্রশ্নের উত্তর খোঁজা শুরু হয়। এই অধ্যায়ে আমরা কঠিন বস্তুর স্থিতিস্থাপক এবং যান্ত্রিক ধর্ম সম্বন্ধে জানব যা থেকে এ ধরনের অনেক প্রশ্নের উত্তর খুঁজে পাওয়া যাবে।

9.2 কঠিন পদার্থের স্থিতিস্থাপক আচরণ (ELASTIC BEHAVIOUR OF SOLIDS)

আমরা জানি যে, কঠিন পদার্থের প্রতিটি পরমাণু অথবা অণু নিকটবর্তী পরমাণু বা অণু দ্বারা বেফিত থাকে। এগুলো আন্তঃআণবিক বা আন্তঃ পারমাণবিক বল দ্বারা পরস্পরের সঙ্গে আবন্ধ এবং স্থির সাম্য অবস্থায় থাকে। যখন কঠিনের বিকৃতি ঘটে তখন পরমাণু বা অণুগুলো তাদের সাম্য অবস্থান থেকে সরে গিয়ে আন্তঃপারমাণবিক বা আন্তঃআণবিক দূরত্বের পরিবর্তন ঘটায়। যখন বিকৃতিকারী বল সরিয়ে নেওয়া হয়, তখন আন্তঃপারমাণবিক বল তাদেরকে আবার পূর্বের অবস্থানে ফিরিয়ে নিয়ে আসে। এভাবে বস্তু পুনরায় পূর্বের আকার এবং আকৃতি ফিরে পায়। এই পুনরুন্দ্বারকারী বিশেষ কৌশল একটি স্থিং-বল মডেলের সাহায্যে সহজেই দেখানো যায় (চিত্র 9.1)। এখানে বলগুলো পরমাণুকে এবং স্থিংগুলো আন্তঃপারমাণবিক বলকে প্রকাশ করে।

চিত্র 9.1 কঠিন পদার্থের স্থিতিস্থাপক ধর্মের ব্যাখ্যার জন্য স্প্রিং-বল মডেল।

তুমি যদি কোনো একটি বলকে তার সাম্য অবস্থান থেকে বিচ্যুত করতে চেস্টা করো তাহলে স্প্রিং ব্যবস্থা বলটিকে তার পূর্বের অবস্থানে ফিরিয়ে আনতে চেস্টা করে। তাই কঠিন পদার্থের স্থিতিস্থাপক ধর্ম পদার্থের আণুবীক্ষণিক আকৃতি দ্বারা বিশ্লেষণ করা যায়। ইংরেজ পদার্থবিদ রবার্ট হুক (1635 - 1703 A.D) স্প্রিং-এর উপর একটি পরীক্ষা করেন এবং দেখেছিলেন যে বস্তুর দৈর্ঘ্যের পরিবর্তন (elongation) বস্তুতে প্রযুক্ত ভার বা বলের সমানুপাতিক। 1676 সালে উনি স্থিতিস্থাপকতার সূত্র উপস্থাপন করেন, যাকে হুকের সূত্র বলা হয়। আমরা এ সূত্র সম্পর্কে অনুচ্ছেদ 9.4 -এ পড়ব। বয়েলের সূত্রের মতো এই সূত্রটিও বিজ্ঞানের শুরুর দিকের পরিমাপগত সম্পর্কের মধ্যে একটি। প্রযুক্তিগত পরিকল্পনার ক্ষেত্রে বিভিন্ন ভারের অধীনে পদার্থের ধর্ম জানার জন্য এ সূত্রটি বিশেষ উপযোগী।

9.3 পীড়ন এবং বিকৃতি (STRESS AND STRAIN)

যখন কোনো বস্তুতে এমনভাবে বল প্রয়োগ করা হয় যে, বলপ্রয়োগের ফলেও বস্তুটি স্থির সাম্যে থাকে, বস্তুর বিকৃতি কম হবে না বেশি হবে তা নির্ভর করে বস্তুর উপাদানের প্রকৃতি এবং বিকৃতিকারী বলের মানের উপর। কিছু বস্তুতে বিকৃতি থাকলেও দৃশ্যত তা লক্ষণীয় নয়। কোনো বস্তুতে যখন বিকৃত বল ক্রিয়াশীল হয়, বস্তুতে তখন একটি প্রত্যানয়ক বলের উদ্ভব হয়। এই প্রত্যানয়ক বলের মান প্রযুক্ত বলের মানের সমান কিন্তু দিক বিপরীত। প্রতি একক ক্ষেত্রফলে ক্রিয়াশীল প্রত্যানয়ক বলকে পীড়ন বলে। যদি প্রযুক্ত বল *F* এবং বস্তুর প্রস্থচ্ছেদের ক্ষেত্রফল *A* হয়,

তাহলে পীড়নের মান = F/A (9.1) পীড়নের SI একক হল N m⁻² অথবা পাস্কাল (Pa) এবং এর মাত্রাগত সূত্র হলো [ML⁻¹T⁻²].

বাহ্যিক বলের প্রভাবে কোনো কঠিন বস্তুর মাত্রার পরিবর্তন তিন উপায়ে হতে পারে। চিত্র 9.2 এ দেখানো হয়েছে। চিত্র 9.2(a) এ একটি চোঙকে প্রস্থচ্ছেদের লম্ব বরাবর দুটি সমমানের বল দ্বারা টানা হল। এক্ষেত্রে প্রতি একক ক্ষেত্রফলে প্রত্যানয়ক বলকে প্রসার্য পীড়ন বলে। প্রযুক্ত বলের অধীনে চোঙটি যদি সংকুচিত হয়, তাহলে প্রতি একক ক্ষেত্রফলের প্রত্যানয়ক বলকে সংকোচন পীড়ন বলে। প্রসারণ বা সংকোচন পীড়নকে অনুদৈর্য্য পীড়নও বলা হয়।

উভয়ক্ষেত্রেই চোঙের দৈর্ঘ্যের পরিবর্তন হয়। বস্তুর (এক্ষেত্রে সিলিন্ডার) দৈর্ঘ্যের পরিবর্তন ΔL এবং প্রকৃত দৈর্ঘ্য L এর অনুপাতকে অনুদৈর্ঘ্য বিকৃতি বলে।

মনুদৈর্ঘ্য বিকৃতি =
$$\frac{\Delta L}{L}$$
 (9.2)

সুতরাং, দুটি সমমানের বিপরীতমুখী বিকৃতিকারী বল চোঙের প্রস্থচ্ছেদের সঙ্গো সমান্তরালভাবে প্রয়োগ করা হলে (চিত্র9.2(b) তে দেখানো হয়েছে) চোঙের দুই বিপরীতপৃষ্ঠের মধ্যে আপেক্ষিক সরণ ঘটে। প্রযুক্ত স্পার্শক বলের প্রভাবে প্রতি একক ক্ষেত্রফলে উৎপন্ন প্রত্যানয়ক বলকে স্পার্শক বা কৃন্তন বিকৃতি (tangential অথবা shearing stress) বলে।

রবার্ট হুক (Robert Hooke) (1635 – 1703 A.D.)

রবার্ট হুক ইংল্যান্ডের আইল অফ্ ওয়াইটের (Isle of wight) ফেশওয়াটারে 1635 খ্রিস্টাব্দের 18 ই জুলাই জন্মগ্রহণ করেন। উনি ছিলেন সপ্তদশ শতকের খুব মেধাবী এবং বহুমুখী প্রতিভাসম্পন্ন একজন ইংরেজ বিজ্ঞানী। তিনি অক্সফোর্ড বিশ্ববিদ্যালয়ে পড়াশুনা করেছিলেন কিন্ডু স্নাতক হতে পারেন নি। তথাপি তিনি ছিলেন একজন অত্যস্ত প্রতিভাশালী আবিষ্কারক, বৈজ্ঞানিক যন্ত্রাদির প্রস্তুতকারক এবং ভবনের নকশাকার ছিলেন। উনি বয়েলিয়ান (Boylean) বায়ু পাম্প নির্মাণে রবার্ট বয়েলের সহযোগী ছিলেন। 1662 খ্রিস্টাব্দে উনি সদ্য প্রতিষ্ঠিত রয়েল সোসাইটির গবেষণা তত্ত্বাবধায়ক হিসাবে নিযুক্ত হয়েছিলেন। 1665 খ্রিস্টাব্দে উনি গ্রেসাম কলেজের জ্যামিতির অধ্যাপক হিসাবে নিযুক্ত হয়েছিলেন। সেখানে তিনি তাঁর জ্যোতির্বিদ্যা সংক্রান্ত পর্যবেক্ষণ সম্পন্ন করেছিলেন। উনি গ্রেগোরিয়ান প্রতিফলক দুরবীন তৈরি করেছিলেন; ট্রাপিজিয়ামে পঞ্চম তারকা তথা কালপুরুষ নামক উজ্জ্বল তারকামগুলীতে তারকাগুচ্ছ আবিষ্কার করেছিলেন, যা পরবর্তীতে উনবিংশ শতাব্দীতে গ্রহগুলোর আবর্তন হার নির্ণয়ে ব্যবহৃত হয়েছিলে; গ্রহাদির গতির বর্ণনায় ব্যস্তবর্গের সূত্রের বিবৃতি দিয়েছিলেন; যা পরবর্তীতে নিউটন সংশোধন করেছিলেন ইত্যাদি। উনি রয়্যাল সোসাইটির

ফেলো নির্বাচিত হয়েছিলেন এবং সোসাইটির সচিব হিসাবেও 1667 থেকে 1682 পর্যন্ত দায়িত্ব পালন করেছিলেন। মাইক্রোগ্রাফিয়ায় বর্ণিত তাঁর ধারাবাহিক পর্যবেক্ষণে তিনি আলোর তরঙ্গাতত্ত্বের প্রস্তাব করেন এবং কর্কের গবেষণার ফলস্বরূপ জৈবিক প্রসঞ্জো কোশ শব্দটি প্রথমবার ব্যবহার করেন। রবার্ট হুক স্থিতিস্থাপকতার সূত্রের আবিষ্কারক পদার্থবিদ হিসাবে সর্বাধিক পরিচিত : ইউ টি টেনসিও, সিক ভিস্ (এটি একটি ল্যাটিন বাক্য যার অর্থ হল, যতটুকু বল ততটুকু বিকৃতি)। এটি স্থিতিস্থাপক বস্তুর পীড়ন এবং বিকৃতির উপলব্ধি এবং অধ্যয়নের মৌলিক ভিত্তি।

প্রযুক্ত তির্যক বলের প্রভাবে চোঙের বিপরীতপৃষ্ঠের মধ্যে আপেক্ষিক সরণ হয় Δx (চিত্র : 9.2(b))। এর ফলে সৃষ্ট বিকৃতিকে বলে কৃন্তন বিকৃতি এবং একে দুটি পৃষ্ঠের আপেক্ষিক সরণ Δx এবং চোঙের দৈর্ঘ্য L এর অনুপাতের মাধ্যমে প্রকাশ করা হয়।

কৃন্তন বিকৃতি =
$$\frac{\Delta x}{L}$$
 = tan θ (9.3)

যেখানে *θ* হল চোঙের উল্লস্থ অবস্থান (চোঙের প্রাথমিক অবস্থান) থেকে কৌণিক সরণ। সাধারণত, *θ* খুব ক্ষুদ্র হওয়ায় tan *θ* এর মান প্রায় *θ* এর সমান হয় (tan *θ* ≈ *θ*)। (উদাহরণস্বরূপ যদি *θ* = 10° হয়, তাহলে *θ* এবং tan *θ* এর মানের মধ্যে পার্থক্য হয় 1% বা শতকরা 1 ভাগ)। যখন একটি বইকে হাত দিয়ে চাপ দিয়ে অনুভূমিকভাবে ধাক্কা দেওয়া হয়, চিত্র 9.2 (c) এ দেখানো হয়েছে, তখন এ ধরনের বিকৃতি দেখা যায়।

সুতরাং, কৃন্তন বিকৃতি =
$$\tan \theta \approx \theta$$
 (9.4)

চিত্র 9.2 (d) তে কোনো তরলের ভেতর একটি নিরেট গোলককে উচ্চচাপের অধীনে রাখলে গোলকটির সকল পার্শ্বই সুযমভাবে সংকুচিত হয়। প্রযুক্ত বল বস্তুর পৃষ্ঠের প্রতিটি বিন্দুতে লম্বভাবে ক্রিয়াশীল হবে এবং বলা হবে যে বস্তুটি উদস্থৈতিক সংকোচনের অধীন। এতে বস্তুটির জ্যামিতিক আকারের পরিবর্তন না হয়ে এর আয়তন হ্রাস পায়।

বস্তুতে একটি অভ্যন্তরীণ প্রত্যানয়ক বলের উদ্ভব হয় যা তরল মাধ্যম কর্তৃক প্রযুক্ত বলের সমান কিন্তু বিপরীত (তরল মাধ্যম থেকে বের করে আনলে বস্তুটি তার প্রকৃত আকার এবং আয়তন পুনরায় ফিরে পায়)। এক্ষেত্রে প্রতি একক ক্ষেত্রফলে ক্রিয়াশীল আভ্যন্তরীণ প্রত্যানয়ক বলকে **উদ্স্থৈতিক পীড়ন** বলে এবং এর মান উদ্স্থৈতিক চাপের (প্রতি একক ক্ষেত্রফলে প্রযুক্ত বল) সমান।

উদ্স্থৈতিক চাপের (hydraulic pressure) ফলে সৃষ্ট বিকৃতিকে আয়তন বিকৃতি বলে এবং একে প্রকাশ করা হয় আয়তন পরিবর্তন (ΔV) এবং প্রাথমিক আয়তনের (V) অনুপাতের মাধ্যমে

আয়তন বিকৃতি =
$$\frac{\Delta V}{V}$$
 (9.5)

যেহেতু বিকৃতি হল পরিবর্তিত মাত্রা এবং প্রকৃত মাত্রার অনুপাত, তাই এর কোনো একক নেই এবং এটি মাত্রাহীন রাশি।

9.4 হুকের সূত্র (HOOKE'S LAW)

চিত্র (9.2) এ বর্ণিত পরিস্থিতি অনুযায়ী পীড়ন ও বিকৃতির ভিন্ন ভিন্ন রূপ হতে পারে। ক্ষুদ্র বিকৃতির ক্ষেত্রে পীড়ন এবং বিকৃতি পরস্পরের সমানুপাতিক। এটিই হুকের সূত্র।

সুতরাং, পীড়ন ∞ বিকৃতি পীড়ন = $k \times$ বিকৃতি (9.6) যেখানে k হল সমানুপাতিক ধ্রুবক এবং একে স্থিতিস্থাপক গুণাঙ্ক বলে।

হুকের সূত্রটি একটি পরীক্ষালব্ধ সূত্র এবং এটি প্রায় সকল পদার্থের ক্ষেত্রেই প্রযোজ্য। তথাপি কিছু পদার্থ রয়েছে যেগুলো এ রৈখিক সম্পর্কটি প্রদর্শন করে না।

9.5 পীড়ন-বিকৃতি লেখ চিত্র (STRESS-STRAIN CURVE)

প্রসার্য - পীড়নের অধীনে প্রদন্ত বস্তুর পীড়ন ও বিকৃতির সম্পর্ক পরীক্ষামূলকভাবে প্রতিষ্ঠা করা যায়। প্রসার্য ধর্মের একটি প্রমাণ পরীক্ষায় পরীক্ষাধীন চোঙ বা তারকে প্রযুক্ত বল দ্বারা প্রসারিত করা হয়। তারের দৈর্ঘ্যের খুব ক্ষুদ্র পরিবর্তন এবং ঐ পরিবর্তনের জন্য প্রয়োজনীয় প্রযুক্ত বল নথিভুক্ত করা হল। ধাপে ধাপে প্রযুক্ত বল বৃদ্ধি করা হল এবং দৈর্ঘ্যের পরিবর্তন লিপিবন্ধ করা হল। পীড়ন (বা প্রতি একক ক্ষেত্রফলে প্রযুক্ত বলের মানের সমান) এবং সৃষ্ট বিকৃতির মধ্যে লেখ অংকন করা হল। কোনো একটি ধাতুর জন্য এ ধরনের একটি আদর্শ লেখ চিত্র 9.3 এ দেখানো হয়েছে। সংকোচন এবং কৃন্তন পীড়নের জন্যও অনুরূপ লেখ পাওয়া যেতে পারে। পীড়ন-বিকৃতি লেখ বিভিন্ন পদার্থের ক্ষেত্রে বিভিন্ন হয়। ভার বৃদ্ধির সঙ্গে সজো প্রদন্ত পদার্থের কিরুপ বিকৃতি ঘটে এই লেখগুলো আমাদের তা বুঝতে সাহায্য করে। চিত্র থেকে আমরা দেখতে পাই O বিন্দু থেকে A বিন্দু পর্যন্ত লেখটি সরলরৈখিন। এ অংশটি হুকের সৃত্র মেনে চলে। প্রযুক্ত বল সরিয়ে নিলে বস্তু পুনরায় তার পূর্বের মাত্রা ফিরে পায়। এ অংশে কঠিন পদার্থটি স্থিতিস্থাপক বস্তুর ন্যায় আচরণ করে।

চিত্র 9.3 একটি ধাতুর আদর্শ পীড়ন-বিকৃতি লেখ।

লেখ-এর A থেকে B পর্যন্ত অংশে পীড়ন এবং বিকৃতি সমানুপাতিক নয়। তা সত্বেও প্রযুক্ত ভার সরিয়ে নিলে বস্তু তার প্রাথমিক মাত্রায় ফিরে আসে। লেখচিত্রে B বিন্দুটিকে বলে নতিবিন্দু (yield point) (একে আবার স্থিতিস্থাপক সীমাও বলে) এবং এ বিন্দুতে সংশ্লিষ্ট পীড়নকে বস্তুর নতি পীড়ন (ক) বলে।

এরপর ভার যদি আরো বৃদ্ধি করা হয়, তাহলে উৎপন্ন পীড়ন নতি পীড়নকে ছাড়িয়ে যায়, তখন পীড়নের অল্প পরিবর্তনেও বিকৃতি দ্রুতহারে বাড়তে থাকে। B এবং D এর মধ্যবর্তী অংশে এ বিষয়টি পরিলক্ষিত হয়। ধরা যাক B ও D এর মধ্যবর্তী C একটি বিন্দু যেখানে ভার সরিয়ে নিলেও বস্তু তার পূর্বের মাত্রা ফিরে পায় না।এক্ষেত্রে পীড়ন শূন্য হলেও বিকৃতি শূন্য হয় না। পদার্থের তখন স্থায়ী বিকৃতি ঘটে। এ বিকৃতিকে বলে নমনীয় বিকৃতি (plastic deformation)। D বিন্দুটি হল পদার্থের সর্বোচ্চ প্রসারণ পীড়ন (tensile strength (σ_u))। এই বিন্দুর পরবর্তী অংশে প্রযুক্ত বলের মান কমালেও অতিরিক্ত বিকৃতি সৃষ্টি হয় এবং E বিন্দুতে তারটি ছিঁড়ে যায়। যদি চরম সামর্থ্য (ultimate strength) এবং অসহ বিন্দু (fracture point) D এবং E কাছাকাছি হয় তাহলে বস্থুটিকে ভঙ্গুর বলা হয়।

পূর্বে বলা হয়েছে, পীড়ন-বিকৃতি লেখ বিভিন্ন পদার্থে বিভিন্ন হয়। উদাহরণস্বরূপ, রবারকে দৈর্ঘ্য বরাবর অনেক টানার পরও এটি তার প্রাথমিক আকৃতিতে ফিরে আসে। চিত্র 9.4 এ হৃৎপিণ্ডে উপস্থিত ধমনীর স্থিতিস্থাপক কলার পীড়ন-বিকৃতি লেখ দেখানো হয়েছে। লক্ষ করার বিষয় হল, স্থিতিস্থাপক সীমা অনেক বিস্তৃত হওয়া সত্ত্বেও বেশির ভাগ

চিত্র 9.4 হৃৎপিণ্ড থেকে রক্ত সংবহনকারী ধমনীর স্থিতিস্থাপক কলার পীড়ন-বিকৃতি লেখ।

অংশেই পদার্থ হুকের সূত্র মেনে চলে না।

দ্বিতীয়ত এক্ষেত্রে সুনির্দিস্ট কোনো নমনীয় (plastic) অঞ্চল নেই। ধমনীর কলা, রাবার ইত্যাদি যাদের অধিক বিকৃতির জন্য টানা যেতে পারে, তাদেরকে **ইলাস্টোমার (elastomers)** বলে।

9.6 স্থিতিস্থাপক গুণাঙ্কসমূহ (ELASTIC MODULI)

কাঠামোগত এবং উৎপাদন প্রকৌশল নকশায় (manufacturing engineering designs) পীড়ন-বিকৃতি লেখচিত্রের স্থিতিস্থাপক সীমার মধ্যে সমানুপাতিক অঞ্চলের (চিত্র : 9.3 এ OA অংশ) অধিক গুরুত্ব রয়েছে। পীড়ন এবং বিকৃতির অনুপাতকে স্থিতিস্থাপক গুণাঙ্ক বলে এবং এটি পদার্থের একটি বৈশিষ্ট্য।

9.6.1 ইয়ং গুণাজ্ক (Young's Modulus)

পরীক্ষামূলক পর্যবেক্ষণে দেখা গেছে যে, পীড়ন সংকোচনশীল বা প্রসারণশীল যাই হোক না কেন, প্রদত্ত বস্তুতে সৃষ্ট বিকৃতির মান একই হয়। প্রসারণশীল (বা সংকোচনশীল) পীড়ন (σ)এবং অনুদৈর্ঘ্য বিকৃতির (ε)অনুপাতকে **ইয়ং গুণাঙ্ক** বলে এবং একে Y চিহ্ন দিয়ে লেখা হয়।

$$Y = \frac{\sigma}{\varepsilon} \tag{9.7}$$

সমীকরণ (9.1) এবং (9.2) থেকে আমরা পাই,

$$Y = (F/A)/(\Delta L/L)$$

= (F × L)/(A × \Delta L) (9.8)

যেহেতু, বিকৃতি একটি মাত্রাহীন রাশি, সুতরাং ইয়ং গুণাঙ্ক এবং পীড়নের একক একই হয়। অর্থাৎ Nm⁻² অথবা পাস্কাল (Pa)। সারণি 9.1 এ বিভিন্ন পদার্থের ইয়ং গুণাঙ্ক এবং নতি শক্তি ঘনত্বের মান দেওয়া হয়েছে।

সারণি 9.1 এর তথ্য থেকে দেখা যায় যে, ধাতুর ইয়ং গুণাঙ্কের মান বেশি। সুতরাং এ পদার্থগুলোর দৈর্ঘ্যের অল্প পরিবর্তনের জন্য বেশি মানের বল প্রয়োজন। 0.1 cm² প্রস্থচ্ছেদের ক্ষেত্রফলযুক্ত একটি ইস্পাতের তারের 0.1% দৈর্ঘ্য বৃদ্ধির জন্য 2000 N বল প্রয়োজন। একই প্রস্থচ্ছেদের ক্ষেত্রফলযুক্ত অ্যালুমিনিয়াম, পিতল এবং তামার তারে একই পরিমাণ বিকৃতি উৎপন্ন করতে প্রয়োজনীয় বলের পরিমাণ হল যথাক্রমে 690 N, 900 N এবং 1100 N । এ থেকে বোঝা যায় যে, ইস্পাতের স্থিতিস্থাপকতা তামা, পিতল এবং অ্যালুমিনিয়াম থেকে

পদার্থ	যনত্ব $ ho$ (kg m^3)	ইয়ং গুণাঙ্ক Y (10 ⁹ N m ²)	চুড়ান্ত শক্তি ঘনত্ব $\sigma_{ m u}~(10^6~{ m N~m^{-2}})$	নতি শক্তি ঘনত্ব $\sigma_{ m v}(10^{6}~{ m N~m}^{2})$
অ্যালুমিনিয়াম	2710	70	110	95
তামা	8890	110	400	200
লোহা (পেটা)	7800-7900	190	330	170
ইস্পাত	7860	200	400	250
বাক	2190	65	50	—
কংক্রিট	2320	30	40	
কাঠ	525	13	50	—
হাড়	1900	9.4	170	—
পলিস্টিরিন	1050	3	48	—

সারণি 9.1 কিছু পদার্থের ইয় গুণাঙ্ক, স্থিতিস্থাপক সীমা এবং প্রসার্য শক্তিঘনত্ব (tensile strengths)

পদার্থগুলোকে সংকুচিত করে পরীক্ষা করা হয়েছে।

240

বেশি। এ কারণেই কাঠামোগত পরিকল্পনায় এবং ভারী কাজে ব্যবহৃত যন্ত্রাদি নির্মাণে ইস্পাত ব্যবহার করা হয়। এর চেয়ে বরং কাঠ, হাড়, কংক্রিট এবং কাচের ইয়ং গুণাজ্ঞ কম।

উদাহরণ 9.1 কাঠামোয় ব্যবহৃত একটি ইস্পাতের দণ্ডের ব্যাসার্ধ 10 mm এবং 1.0 m । 100 kN মানের বল দণ্ডটিকে দৈর্ঘ্য বরাবর প্রসারিত করে। দণ্ডটির (a) পীড়ন, (b) দৈর্ঘ্য বৃদ্ধি এবং (c) বিকৃতির গণনা করো। ইস্পাতের ইয়ং গুণাঙ্ক দেওয়া আছে 2.0×10¹¹ N m⁻².

উত্তর ধরি, দণ্ডটির একপ্রান্ত একটি ক্ল্যাম্পের সাহায্যে আটকানো এবং অন্যপ্রান্তে দণ্ডটির দৈর্ঘ্যের সমান্তরালে *F* বল প্রয়োগ করা হল।

সুতরাং, দণ্ডের পীড়ন =
$$\frac{F}{A} = \frac{F}{\pi r^2}$$

= $\frac{100 \times 10^3 \text{ N}}{3.14 \times (10^{-2} \text{ m})^2}$
= $3.18 \times 10^8 \text{ N m}^{-2}$

দৈর্ঘ্যের বৃদ্ধি,

$$\Delta L = \frac{(F/A)L}{Y}$$

$$= \frac{(3.18 \times 10^8 \text{ N m}^{-2})(1\text{m})}{2 \times 10^{11} \text{ N m}^{-2}}$$

$$= 1.59 \times 10^{-3} \text{ m}$$

$$= 1.59 \text{ mm}$$
দেঙের বিকৃতি হবে,
বিকৃতি হবে,
বিকৃতি হবে,

$$= (1.59 \times 10^{-3} \text{ m})/(1\text{m})$$

$$= 1.59 \times 10^{-3}$$

$$= 0.16 \%$$

 উদাহরণ 9.2 উভয়ে 3.0 mm ব্যাসবিশিষ্ট একটি তামার তার এবং একটি ইস্পাতের তারের দৈর্ঘ্যে যথাক্রমে 2.2 m এবং 1.6 m । তামার তারের একপ্রান্ত ইস্পাতের তারের একপ্রান্তের সঞ্চো যোগ করে ভার প্রয়োগ করলে মোট দৈর্ঘ্য বৃদ্বি হয় 0.70 mm । প্রযুক্ত ভারটির পরিমাণ নির্ণয় করো।

উত্তর তামা এবং ইস্পাতের তারদ্বয় একটি প্রসার্য্য পীড়নের অধীন কারণ তাদের টান (*W* ভারের সমান) একই এবং উভয়ের একই প্রস্থচ্ছেদ *A*। সমীকরণ (9.7) থেকে পাই, পীড়ন = বিকৃতি × ইয়ং গুণাঙ্ক। সুতরাং, *W*/*A* = Y_c × ($\Delta L_c/L_c$) = Y_s × ($\Delta L_s/L_s$) নিম্নলিখিত *c* এবং *s* যথাক্রমে তামা এবং ইস্পাতকে সূচিত করছে। অথবা, $\Delta L_c / \Delta L_s = (Y_s / Y_c) \times (L_c / L_s)$ দেওয়া আছে, $L_c = 2.2 \text{ m}, L_s = 1.6 \text{ m},$ সারণি 9.1 থেকে $Y_c = 1.1 \times 10^{11} \text{ Nm}^{-2}$, এবং

 $Y_s = 2.0 \times 10^{11} \, {\rm Nm^{-2}}.$ $\Delta L_c/\Delta L_s = (2.0 \times 10^{11}/1.1 \times 10^{11}) \times (2.2/1.6) = 2.5.$ মোট দৈর্ঘ্য বৃদ্ধি হল —

$$\Delta L_c + \Delta L_s = 7.0 \times 10^{-4} \,\mathrm{m}$$

উপরের সমীকরণ সমাধান করে পাওয়া যায়,

 $\Delta L_c = 5.0 \times 10^{-4} \, {
m m}$, এবং $\Delta L_s = 2.0 \times 10^{-4} \, {
m m}$. সুতরাং,

$$W = (A \times Y_c \times \Delta L_c)/L_c$$

= $\pi (1.5 \times 10^{-3})^2 \times [(5.0 \times 10^{-4} \times 1.1 \times 10^{11})/2.2]$
= 1.8×10^2 N

উদাহরণ 9.3 সার্কাসে প্রদর্শিত মানব পিরামিডের সমস্ত প্রতিমিত ওজন মাটিতে পিঠের উপর ভর দিয়ে শোয়া মৃল প্রদর্শনকারীর পায়ের ওপর থাকে (চিত্র 9.5 এ দেখানো হয়েছে)। সার্কাস প্রদর্শনকারী সকল ব্যক্তি, টেবিল, ফলক প্রভৃতির সম্মিলিত ভর হল 280 kg । পিরামিডের নীচে পিঠের ওপর ভর দিয়ে থাকা প্রদর্শনকারীর ভর হল 60 kg । নীচে থাকা প্রদর্শনকারীর প্রত্যেক উরুর হাড়ের দৈর্ঘ্য 50 cm এবং কার্যকরি ব্যাসার্ধ 2.0 cm । অতিরিস্তু ভারের জন্য প্রত্যেকটি উরুর হাড়ের কতটুকু সংকোচন ঘটে নির্ণয় করো।

চিত্র 9.5 সার্কাসে প্রদর্শিত মানব পিরামিড।

উত্তর সকল প্রদর্শনকারী, টেবিল এবং ফলক ইত্যাদির

মোট ভর = 280 kg

মাটিতে শোয়া মূল প্রদর্শনকারীর ভর 🛛 = 60 kg

পিরামিডের নীচে থাকা প্রদর্শনকারীর বহন করা মোট ভর = 280 - 60 = 220 kg

এই আশ্রিত ভরের ওজন = 220 kg wt. = 220 × 9.8 N = 2156 N. নিষ্পাদকের (performer) প্রত্যেক উরুর হাড় (Thighbone) উপর

আরোপিত ওজন =½ (2156) N=1078 N.

সারণি 9.1 এ হাড়ের ইয়ং গুণাঞ্চ্ক দেওয়া আছে,

 $Y = 9.4 \times 10^9 \,\mathrm{N} \,\mathrm{m}^{-2}.$

প্রতিটি ঊরুর হাড়ের দৈর্ঘ্য, L = 0.5 m

উরুর হাড়ের ব্যাসার্ধ = 2.0 cm

সুতরাং, ঊরুর হাড়ের প্রস্থচ্ছেদের ক্ষেত্রফল

 $A = \pi \times (2 \times 10^{-2})^2 \,\mathrm{m}^2 = 1.26 \times 10^{-3} \,\mathrm{m}^2.$

সমীকরণ (9.8) ব্যবহার করে প্রতিটি উরুর হাড়ের সংকোচন (ΔL) গণনা করা যায়,

 $\Delta L = [(F \times L)/(Y \times A)]$

$$= [(1078 \times 0.5)/(9.4 \times 10^9 \times 1.26 \times 10^{-3})]$$

 $= 4.55 \times 10^{-5} \,\mathrm{m} = 4.55 \times 10^{-3} \,\mathrm{cm}.$

এ পরিবর্তনটি খুবই কম ! উরুর হাড় আংশিক হ্রাস হল, ΔL/L = 0.000091 অথবা 0.0091%.

9.6.2 তারের উপাদানের ইয়ং গুণাঙ্ক নির্ণয় (Determination of Young's Modulus of the Material of a Wire)

তারের উপাদানের ইয়ং গুণাঙ্ক নির্ণয় করার জন্য একটি বিশেষ পরীক্ষাব্যবস্থা চিত্র 9.6 এ দেখানো হয়েছে। একটি দৃঢ় স্থির অবলম্বন থেকে দুটো সমান দৈর্ঘ্য এবং সমান ব্যাসার্ধের সোজা তারকে পাশাপাশি ঝুলানো হয়। 'A' তারটিতে (একে তুল্য তার বলা হয়) একটি মিলিমিটার মূল স্কেল M এবং ওজন রাখার একটি পাত্র আটকানো থাকে। সুযম প্রস্থচ্ছেদের তার B (পরীক্ষাধীন তার) তেও জানা ভরের ওজন রাখার জন্য একটি পাত্র থাকে। পরীক্ষাধীন তার B -এর নিম্নপ্রান্তে একটি সূচকের সাথে একটি ভার্নিয়ার স্কেল V এবং মূলস্কেল M এর সাথে যুক্ত করা হয়। পাত্রে রাখা ওজনের প্রভাবে পরীক্ষাধীন তার প্রসার্য পীড়নের অধীনে নিম্নমুখী বল অনুভব করে। তারের দৈর্ঘ্য বৃদ্বি ভার্নিয়ার ব্যবস্থার সাহায্যে মাপা হয়। ঘরের তাপমাত্রার পরিবর্তনের ফলে দৈর্ঘ্যের পরিবর্তনে প্রতিপূরণ করার জন্য নির্দেশক তারটি ব্যবহার করা হয়, যেহেতু তাপমাত্রার পরিবর্তনের জন্য নির্দেশক তারের দৈর্ঘ্যে পরিবর্তনের সঙ্গে পরীক্ষাধীন তারের সমমানের দৈর্ঘ্যের পরিবর্তন হয়। (তাপমাত্রার এ ধরনের প্রভাব সম্পর্কে আমরা একাদশ অধ্যায়ে পড়ব)।

চিত্র 9.6 তারের উপাদানের ইয়ং গুণাঙ্ক নির্ণয়ের ব্যবস্থা।

পরীক্ষাধীন এবং নির্দেশক তার দুটিতেই প্রাথমিকভাবে ছোটোমানের ভার চাপানো হল যাতে তার দুটি সোজা থাকে এবং এ অবস্থায় ভার্নিয়ারের পাঠ নেওয়া হল। এরপর পরীক্ষাধীন তারে প্রসার্য পীড়ন সৃষ্টি করার জন্য তারটিতে ভারের মান ধীরে ধীরে বৃদ্ধি করা হল এবং আবার ভার্নিয়ার পাঠ নেওয়া হল। দুটো ভার্নিয়ার পাঠের পার্থক্য থেকে তারটির দৈর্ঘ্য বৃদ্ধি পাওয়া যায়। ধরা যাক, তারটির প্রাথমিক ব্যাসার্ধ এবং দৈর্ঘ্য যথাক্রমে *r* এবং *L*।তাহলে তারটির প্রস্থচ্ছেদের ক্ষেত্রফল হবে π*r*²।ধরা যাক, *M* মানের ভর তারটিতে Δ*L* দৈর্ঘ্য বৃদ্ধি করলো। সুতরাং প্রযুক্ত বলের মান হবে *Mg*, যেখানে *g* হল অভিকর্ষজ ত্বরণ। সমীকরণ (9.8) থেকে পরীক্ষাধীন তারের উপাদানের ইয়ং গুণাঙ্কের মান পাওয়া যায়.

$$Y = \frac{\sigma}{\varepsilon} = \frac{Mg}{\pi r^2} \cdot \frac{L}{\Delta L}$$
$$= Mg \times L/(\pi r^2 \times \Delta L)$$
(9.9)

9.6.3 কৃন্তন গুণাজ্ক (Shear Modulus)

কৃন্তন পীড়ন এবং কৃন্তন বিকৃতির অনুপাতকে পদার্থের কৃন্তন গুণাঙ্ক বলে।একে *G* দ্বারা প্রকাশ করা হয়।একে *দৃঢ়তা গুণাঙ্কও (modulus* of rigidity) বলে।

 $G = \phi$ ন্তন পীড়ন (σ_s) / কৃন্তন বিকৃতি $G = (F/A)/(\Delta x/L)$ $= (F \times L)/(A \times \Delta x)$ (9.10) একইভাবে, সমীকরণ (9.4) থেকে $G = (F/A)/\theta$

$$= F/(A \times \theta) \tag{9.11}$$

কৃন্তন পীড়নকে নীচের সমীকরণের দ্বারাও প্রকাশ করা যায়,

$$\sigma_{\rm s} = G \times \theta \tag{9.12}$$

কৃন্তন গুণাঙ্কের SI একক হল N m⁻² বা Pa । কিছু পদার্থের দৃঢ়তা গুণাঙ্কের মান সারণি 9.2 তে দেওয়া হয়েছে। দেখা যাচ্ছে যে, সাধারণত কৃন্তন গুণাঙ্কের (দৃঢ়তা গুণাঙ্ক) মান ইয়ং গুণাঙ্কের চেয়ে কম হয়। বেশির ভাগ পদার্থের ক্ষেত্র *G* ≈ *Y*/3.

সারণি 9.2 কিছু পদার্থের দৃঢ়তা গুণাঙ্কের মান

পদার্থ	$G(10^9 \mathrm{Nm^{-2}})$
	Al GFa)
অ্যালুমিনিয়াম	25
পিতল	36
তামা	42
কাচ	23
লোহা	70
সীসা	5.6
নিকেল	77
ইস্পাত	84
টাংস্টেন	150
কাঠ	10

উদাহরণ 9.4 50 cm দৈর্ঘ্য এবং 10 cm বেধ বিশিষ্ট একটি বর্গাকার সীসার ফলকে 9.0 × 10⁴ N মানের কৃত্তন বল (ফলকটির সরু পৃষ্ঠে) প্রয়োগ করা হয়। নীচের প্রান্তটি মেঝের সঙ্গে দৃঢ়ভাবে আটকানো। উপরের প্রান্তটির কতটুকু সরণ হবে?

উত্তর

সীসার ফলকটি স্থির এবং সরু পৃষ্ঠের সমান্তরালে বল প্রয়োগ করা হয়েছে (চিত্র 9.7)।

যে পৃষ্ঠের সমান্তরালে বল প্রয়োগ করা হয়েছে, সে পৃষ্ঠের ক্ষেত্রফল হল —

 $A = 50 \text{ cm} \times 10 \text{ cm}$

চিত্র 9.7

আমরা জানি, কৃস্তন বিকৃতি = ($\Delta x/L$)= পীড়ন /G সুতরাং, সরন $\Delta x = ($ পীড়ন × L)/G = (1.8×10^6 N m⁻² × 0.5m)/(5.6×10^9 N m⁻²) = 1.6×10^{-4} m = 0.16 mm

9.6.4 আয়তন বিকৃতি গুণাঙ্ক (Bulk Modulus)

9.3 অনুচ্ছেদে আমরা দেখেছি যে, কোনো বস্তু প্রবাহীতে নিমজ্জিত অবস্থায় হাইড্রলিক বা উদ্স্থৈতিক পীড়ন অনুভব করে (উদ্স্থৈতিক পীড়নের মান উদ্স্থৈতিক চাপের সমান)। এতে বস্তুর আয়তন হ্রাস পায়। এভাবে আয়তন হ্রাসে বস্তুতে যে ধরনের বিকৃতি সৃষ্টি হয়, তাকে আয়তন বিকৃতি বলে। হাইড্রলিক পীড়ন এবং হাইড্রলিক বিকৃতি অনুপাতকে আয়তন *বিকৃতি গুণাঙ্ক* (bulk modulus) বলে। একে *B* দিয়ে লেখা হয়।

$$B = -p/(\Delta V/V) \tag{9.13}$$

ঋণাত্মক চিহ্ন নির্দেশ করছে যে, চাপ বৃদ্ধির সঙ্গো সঙ্গো আয়তন হ্রাস পায়। অর্থাৎ, যদি p ধনাত্মক হয়, তাহলে ΔV ঋণাত্মক হয়। সুতরাং সাম্যে থাকা কোনো সংস্থায় আয়তন বিকৃতি গুণাঙ্ক B সর্বদা ধনাত্মক হয়। আয়তন বিকৃতি গুণাঙ্কের SI একক এবং চাপের SI একক একই। অর্থাৎ, N m⁻² অথবা Pa । সারণি 9.3 তে কিছু পদার্থের আয়তন বিকৃতি গুণাঙ্কের মান দেওয়া হয়েছে।

আয়তন বিকৃতি গুণাঙ্কের অন্যোন্যককে **সংনম্যতা** বলে এবং একে *k* দিয়ে প্রকাশ করা হয়। প্রতি একক চাপ বৃদ্ধিতে আয়তনের ভগ্নাংশিক পরিবর্তনই হল **সংনম্যতা**।

$$k = (1/B) = -(1/\Delta p) \times (\Delta V/V) \tag{9.14}$$

242

সারণি 9.3	কিছু পদার্থের (common) আয়তন বিকৃতি গুণা	ঙকর
	মান	

পদার্থ	<i>B</i> (10 ⁹ N m ⁻² অথবা GPa)
কঠিন	
অ্যালুমিনিয়াম	72
পিতল	61
তামা	140
কাচ	37
লোহা	100
নিকেল	260
ইস্পাত	160
তরল	
জল	2.2
ইথানল	0.9
কাৰ্বন ডাই সালফাইড	1.56
গ্নিসারিন	4.76
পারদ	25
গ্যাস	
বায়ু (STP তে)	1.0×10^{-4}

সারণি 9.3 থেকে দেখা যায় যে, তরল থেকে কঠিন পদার্থের আয়তন বিকৃতি গুণাঙ্কের মান বেশি। আবার গ্যাস (বায়ু) থেকে তরলের আয়তন বিকৃতি গুণাঙ্কের মান বেশি। সুতরাং, কঠিন পদার্থ কম সংকোচনশীল, সেখানে গ্যাসীয় পদার্থের সংকোচনশীলতা বেশি। গ্যাস কঠিনের চেয়ে প্রায় মিলিয়ন গুণ বেশি সংকোচনশীল ! গ্যাসের সংনম্যতা বেশি, যা চাপ এবং তাপমাত্রার সাথে পরিবর্তিত হয়। কঠিনের অসংনম্যতার কারণ হল কাছাকাছি পরমাণুগুলোর দৃঢ় সংযোজন। তরলেও কাছাকাছি অণুগুলো পরস্পরের সঙ্গে আবন্ধ থাকে, কিন্ডু তরলের অণুগুলোর বন্ধন কঠিনের মতো দৃঢ় নয়। গ্যাসের অণুগুলি পরস্পরের সঙ্গো খুব দুর্বলভাবে আবন্ধ।

বিভিন্ন প্রকার পীড়ন, বিকৃতি, স্থিতিস্থাপক গুণাঙ্ক এবং পদার্থের প্রয়োগ সাধ্য অবস্থা একনজরে সারণি 9.4 এ দেখানো হয়েছে।

উদাহরণ 9.5 ভারত মহাসাগরের গড় গভীরতা প্রায় 3000 m। মহাসাগরের তলদেশে জলের আংশিক সংনমন Δ*V/V* গণনা করো। দেওয়া আছে, জলের আয়তন বিকৃতি গুণাঞ্চ 2.2 × 10⁹ N m⁻²। (ধরে নাও, g = 10 m s⁻²)।

উত্তর 3000 m জলস্তরের দ্বারা নীচের স্তরে প্রযুক্ত চাপ, $p = h\rho g = 3000 \text{ m} \times 1000 \text{ kg m}^{-3} \times 10 \text{ m s}^{-2}$ $= 3 \times 10^7 \text{ kg m}^{-1} \text{ s}^{-2}$ $= 3 \times 10^7 \text{ N m}^{-2}$ আংশিক সংকোচন $\Delta V/V$ হল,

 $\Delta V/V =$ পীড়ন/ $B = (3 \times 10^7 \,\mathrm{N \, m^{-2}})/(2.2 \times 10^9 \,\mathrm{N \, m^{-2}})$ = 1.36 × 10⁻² বা 1.36 %

পীড়নের	পীড়ন	বিকৃতি	পরিব	ৰ্তন	স্থিতিস্থাপক	গুণাঙ্কের	পদার্থের
প্রকার			আকার	আয়তন	গুণাঙ্ক	নাম	অবস্থা
প্রসারক বা	সমান এবং বিপরীত মানের	বলের অভিমুখের	হ্যা	না	$Y = (F \times L)/$	ইয়ং গুণাঙ্ক	কঠিন
সংনমক	দুটি বল বিপরীত পৃষ্ঠের	সমান্তরালে দৈর্ঘ্যের			$(A \times \Delta L)$		
	সঙ্গে লম্ব ($\sigma \!=\! F\!/\!A)$	সংকোচন বা প্রসারণ					
		(∆L/L) (অনুদৈর্ঘ্য পীড়ন)					
কৃন্তন	সমান এবং বিপরীত মানের	বিশুদ্ধ কৃন্তন, $ heta$	হ্যা	না	$G = (F \times \theta) / \mathbf{A}$	কৃন্তন	কঠিন
	দুটি বল দুটি বিপরীত পৃষ্ঠের					গুণাঙ্ক	
	সঙ্গে সমান্তরাল।						
	(প্রতিক্ষেত্রে বল অর্থাৎ বস্তুর						
	মোট বল এবং মোট টর্ক শূন্য						
	হয়ে যায়। (o _s = F/A)						
উদ্স্থৈতিক	পৃষ্ঠতলের সর্বত্র বল লম্ব,	আয়তন পরিবর্তন	না	হ্যা	$B = -p/(\Delta V/V)$	আয়তন	কঠিন, তরল
(হাইড্রলিক)	প্রতি একক ক্ষেত্রফলে প্রযুক্ত	(সংকোচন বা প্রসারণ)				বিকৃতি	এবং গ্যাস।
	বল (চাপ) সর্বত্র একই।	$(\Delta V/V)$				গুণাঙ্ক।	

সারণি 9.4 পীড়ন, বিকৃতি এবং বিভিন্ন স্থিতিস্থাপক গুণাঙ্ক

9.6.5 পয়সনের অনুপাত (POISSON'S RATIO)

ইয়ং গুণাঙ্ক পরীক্ষায় (9.6.2 বিভাগে ব্যাখ্যা করা হয়েছে) যত্নসহকারে পর্যবেক্ষণ করলে দেখা যায় যে, তারটির প্রস্থচ্ছেদও (অথবা ব্যাসও) সামান্য হ্রাসপ্রাপ্ত হয়। প্রযুক্ত বলের লম্ব এ বিকৃতিকে পার্শ্বীয় বিকৃতি বলে। সাইমন পয়সন (Simon Poisson) চিহ্নিত করেন যে, স্থিতিস্থাপক সীমার মধ্যে, পার্শ্বীয় বিকৃতি, অনুদৈর্ঘ্য বিকৃতির সমানুপাতিক। **একটি প্রসারিত তারে পার্শ্বীয় বিকৃতি ও অনুদৈর্ঘ্য বিকৃতির** অনুপাতকে পয়সনের অনুপাত বলে। যদি তারের মূল ব্যাস d এবং পীড়নে তারের ব্যাসের সংকোচন Δd হয়, তবে পার্শ্বীয় বিকৃতি হল $\Delta d/d$ । যদি তারটির মূল দৈর্ঘ্য L এবং পীড়নের অধীনে তারটির প্রসারণ ΔL হয়, তবে অনুদৈর্ঘ্য পীড়ন হল $\Delta L/L$ । তখন পয়সনের অনুপাতটি দুটি বিকৃতির অনুপাত; এটি একটি বিশুদ্ধে সংখ্যা এবং এর কোনো মাত্রা বা একক নেই। এর মান কেবল উপাদানের প্রকৃতির উপর নির্ভর করে। স্টীলের ক্ষেত্রে এর মান 0.28 এবং 0.30 এর মধ্যে এবং অ্যালুমিনিয়াম সংকর ধাতুর জন্য এটি প্রায় 0.33।

9.6.6 একটি প্রসারিত তারে স্থিতিস্থাপক স্থিতিশক্তি (Elastic Potential Energy in a Stretched Wire)

একটি তারকে একটি প্রসারক পীড়নে রাখা হলে আন্ত-আণবিক বলের বিরুদ্ধে কার্য সম্পাদিত হয়। এই কার্য তারের মধ্যে স্থিতিস্থাপক স্থিতিশস্তি হিসেবে সঞ্চিত হয়। যখন মূল দৈর্ঘ্য L এবং প্রস্থচ্ছেদের ক্ষেত্রফল A বিশিষ্ট একটি তারে এর দৈর্ঘ্য বরাবর বিকৃতি সৃষ্টিকারী বল F প্রয়োগ করা হয়, ধরো এতে তারটির প্রসারণ l হয়। তখন 9.8 নং সমীকরণ থেকে আমরা পাই, $F = YA \times (l/L)$ । এখানে Y হল তারটির উপাদানের ইয়ং গুণাজ্ঞ। এখন ক্ষুদ্রাতিক্ষুদ্র দৈর্ঘ্য প্রসারণ dl এর জন্য কৃতকার্য d $W = F \times dl$ বা YAldl/L। অতএব, তারটির দৈর্ঘ্য L থেকে L + lঅর্থাৎ l = 0 থেকে l = l পর্যন্ত বৃদ্ধির জন্য মোট কৃতকার্য

$$W = \int_{0}^{l} rac{YAl}{L} dl = rac{YA}{2} imes rac{l^2}{L}$$
 $W = rac{1}{2} imes Y imes \left(rac{l}{L}
ight)^2 imes AL$
 $= rac{1}{2} imes \vee \vee sixts গুণাজ্ঞ imes (বিকৃতি)^2 imes of other o$

এই কার্য তারটিতে স্থিতিস্থাপক স্থিতিশক্তি (U) হিসেবে সঞ্চিত থাকে। অতএব, তারটির প্রতি একক আয়তনে স্থিতিস্থাপক স্থিতিশক্তি

$$u = \frac{1}{2} \times \boldsymbol{\sigma} \boldsymbol{\varepsilon}$$
(9.15)

9.7 পদার্থের স্থিতিস্থাপক ধর্মের ব্যবহার (APPLICATIONS OF ELASTIC BEHAVIOUR OF MATERIALS)

আমাদের দৈনন্দিন জীবনে পদার্থের স্থিতিস্থাপক ধর্ম এক গুরুত্বপূর্ণ ভূমিকা পালন করে। সকল ধরনের প্রকৌশলগত নকশায় (engineering design) পদার্থের স্থিতিস্থাপক ধর্মের সুনির্দিষ্ট জ্ঞান থাকা দরকার। উদাহরণস্বর্প, কোনো দালানবাড়ির নকশা তৈরির সময় এর থাম (column), কড়িকাঠ (beam) প্রভৃতির কাঠামোগত বিন্যাসে ব্যবহৃত পদার্থের শক্তি সম্পর্কে জ্ঞান থাকা দরকার। তুমি কখনো ভেবেছো কি সেতু তৈরিতে ভারবহন ইত্যাদির জন্য ব্যবহৃত কড়িকাঠগুলোর প্রস্থচ্ছেদ ইংরেজি I আকৃতির হয় কেন ? বালির স্তুপ বা পাহাড় পিরামিড আকৃতির হয় কেন ? এখানে উদ্ভাবিত ধারণাগুলোর ভিত্তিতে গড়ে ওঠা পরিকাঠামোগত কারিগরিবিদ্যার (Structural Engineering) অধ্যয়ন থেকে এ প্রশ্বগুলোর উত্তর পাওয়া যেতে পারে।

কোনো ভারী বস্তুকে এক জায়গা থেকে অন্য জায়গায় নিয়ে যেতে অথবা উপরে উঠাতে ব্যবহৃত ক্রেনে (কপিকল) ভারি বস্তুটিকে আটকানোর জন্য একটি মোটা ধাতব দড়ি থাকে। কপিকল এবং মোটর ব্যবহার করে দড়িটিকে উপরে টানা হয়। ধরা যাক, আমরা এখন একটি ক্রেন (কপিকল) তৈরি করতে চাই যার 10 টন বা 10 মেট্রিক টন (1 মেট্রিক টন = 1000 kg) ভার ওঠানোর ক্ষমতা আছে। ইস্পাতের দড়িটি কতটুকু মোটা হবে ? আমরা অবশ্যই চাইব যে ভার যেন দড়িটিকে স্থায়ীভাবে বিকৃত করতে না পারে। সুতরাং (দড়ির) প্রসারণ, স্থিতিস্থাপিক সীমা অতিক্রম করতে পারবে না। সারণি 9.1 থেকে আমরা দেখতে পাই নরম বা হালকা লোহার পরাভব শক্তিঘনত্ব (yield strength- S_y) প্রায় 300 × 10⁶ N m⁻² । সুতরাং, দড়িটির প্রস্থচ্ছেদের ন্যূনতম ক্ষেত্রফল

$$A \ge W/S_y = Mg/S_y$$
(9.16)
= (10⁴ kg × 9.8 m s⁻²)/(300 × 10⁶ N m⁻²)
= 3.3 × 10⁻⁴ m²

যা প্রায় 1 cm ব্যাসার্ধবিশিষ্ট গোলাকার প্রস্থচ্ছেদের দড়ির অনুরূপ। সাধারণত, নিরাপত্তার জন্য ভারে এক বড়ো মার্জিন (ভারের প্রায় দশ গুণ) দেওয়া হয়। তাই প্রায় 3 cm ব্যাসার্ধের একটি মোটা দড়ি ব্যবহার করা হয় (recommended)। এরূপ ব্যাসার্ধের একটি একক তার বাস্তবে একটি দৃঢ় দণ্ড হবে। সুতরাং, নির্মাণে সুবিধা, নমনীয়তা এবং শক্তি বৃদ্ধির জন্য অনেকগুলো সরু তারকে একসঙ্গো করে মোটা দড়িটি তৈরি করা হয়, যা অনেকটা চুলের বিনুনির মতো। একটি সেতুকে এমনভাবে তৈরি করা হয় যাতে সেটি চলমান যানবাহন, বায়বীয় বল এবং এর নিজের ওজন সহ্য করতে পারে। একইভাবে, বিল্ডিং তৈরিতে স্তম্ভ (column) এবং কড়িকাঠের ব্যবহার খুব সাধারণ। উভয়ক্ষেত্রেই ভারের অধীন কড়িকাঠের (beam-এর) বেঁকে যাওয়ার সমস্যা অতিক্রম করাই হচ্ছে মৌলিক উদ্দেশ্য। কড়িকাঠ খুব বেশি বাঁকবে না বা ভেঙে যাবে না। ধরা যাক, একটি বিমের দুপ্রাস্ত আটকানো এবং মধ্যপ্রাস্ত থেকে একটি ভার ঝুলানো আছে। (চিত্র 9.8)। *l* দৈর্ঘ্য, *b* প্রস্থ এবং *d* বেধের একটি দন্ডের মধ্যবিন্দু থেকে *W* ভার প্রয়োগ করলে দন্ডটির ঝুলে যাওয়ার পরিমান,

$$\delta = W l^3 / (4bd^3Y) \tag{9.17}$$

চিত্র 9.8 দুপ্রান্তে ঠেস দেওয়া একটি বিমের (beam) মধ্যবিন্দুতে ভার চাপানো।

ইতিমধ্যে আমরা যা শিখেছি তার প্রয়োগ করে এবং স্বল্প কলনবিদ্যার প্রয়োগের মাধ্যমে আমরা এ সম্পর্কটি প্রতিষ্ঠা করতে পারি। সমীকরণ 9.17 থেকে আমরা দেখতে পাই যে, প্রদন্ত ভারের জন্য বিমের বেঁকে যাওয়া রোধ করতে উচ্চমানের ইয়ং গুণাঙ্ক বিশিষ্ট পদার্থ ব্যবহার করতে হবে। একই উপাদানের ক্ষেত্রে বেঁকে যাওয়া রোধ করার জন্য কড়িকাঠটির প্রস্থ *b* এর পরিবর্তে বেধ *d* বৃদ্ধি করাটা বেশি কার্যকরী, যেহেতু δ শুধু *d*⁻³ এবং *b*⁻¹ এর সমানুপাতিক। (অবশ্যই বর্ধিত দৈর্ঘ্য *l* যতটুকু সম্ভব ছোটো হওয়া প্রয়োজন)। ভারটি সঠিক জায়গায় না থাকলে গভীরতা বৃদ্ধির সঞ্চো বিমটি চিত্র 9.9(b) (যানবাহন চলাচলকারী সেতৃতে এ ব্যবস্থাটি করা কঠিন) এর মতো বেঁকে যেতে পারে। উপরের প্রক্রিয়াটিকে বলে বাকলিং (buckling)। এটি এড়ানোর সহজ উপায় হল চিত্র 9.9(c) তে দেখানো প্রস্থচ্ছেদ্বীয় আকার। এরূপ গঠন বৃহৎ মানের ভার বহনের ক্ষেত্রে বেঁকে যাওয়া রোধ করার জন্য যথেস্ট বেধ সম্পন্ন পৃষ্ঠতলের যোগান দেয়। এ ধরনের গঠন শন্তির অপচয় না করে বিমের ওজন কমিয়ে দেয় এবং একইসঙ্গে খরচও কমায়।

বিল্ডিং এবং সেতু নির্মাণে স্তম্ভের (pillars) ব্যবহার খুবই প্রচলিত। গোলাকার প্রান্তযুক্ত স্তম্ভ [চিত্র 9.10(a)] বন্টিত প্রান্তযুক্ত স্তম্ভ [চিত্র 9.10(b)] থেকে কম ভার বহন করতে সক্ষম। সেতু অথবা দালানবাড়ির সুনির্দিষ্ট

একটি বিমের (beam) বিভিন্ন প্রস্থচ্ছেদীয় আকার।(a) একটি দন্ডের আয়তাকার অংশ; (b) একটি পাতলা দন্ড এবং এর বক্রাকৃতি; (c) সচরাচর ব্যবহৃত ভার বহনকারী দন্ডের অংশ।

নক্শা তৈরিতে সেটি কি শর্তে কাজ করবে, ব্যবহৃত উপকরণের খরচ, দীর্ঘস্থায়িত্ব এবং নির্ভরযোগ্যতা প্রভৃতি বিষয় বিবেচনা করা হয়।

পৃথিবীতে একটি পর্বতের সর্বোচ্চ উচ্চতা প্রায় 10 km হয় কেন, এ প্রশ্নের উত্তর পাথরের স্থিতিস্থাপক ধর্মের উপর ভিত্তি করেও পাওয়া

চিত্র 9.10 পিলার অথবা স্তন্ত : (a) গোলাকার প্রান্তযুক্ত স্তন্ত, (b) বন্টিত প্রান্তযুক্ত স্তন্ত।

যায়। পর্বতের নিম্নদেশে সংকোচন সুযম না হওয়ায় পাথরে কৃন্তন পীড়ন উদ্ভব হয়, ফলে পাথরের চলন শুরু হয়। চূড়ায় থাকা সমস্ত পদার্থের জন্য উদ্ভূত পীড়ন সংকট কৃন্তন পীড়নের চেয়ে কম হওয়া উচিত, যে পীড়নে পাথর চলতে বা গড়াতে শুরু করে। h উচ্চতার পর্বতের পাদদেশে পর্বতের ওজনের জন্য প্রতি একক ক্ষেত্রফলে বল hpg, যেখানে p হল পর্বতের উপাদানের ঘনত্ব এবং g হল অভিকর্যজ ত্বরণ। পর্বতের পাদদেশের উপাদান লম্ব অভিমুখে এ বল অনুভব করে এবং পর্বতের পার্শ্বদেশ এ বল থেকে মুক্ত থাকে। সুতরাং এটি চাপ অথবা আয়তন সংকোচনের ঘটনা নয়। সেখানে একটি কৃন্তন উপাংশ রয়েছে, যা প্রায় h
hog -র সমান। এখন, একটি বিশেষ পাথরের জন্য স্থিতিস্থাপক সীমা হল 30 × 10⁷ N m⁻²। একে h
hog -র সমান এবং ho = 3 × 10³ kg m⁻³ ধরে পাই, $h
ho g=30 imes10^7\,{
m N\,m^{-2}}$ অথবা,

 $h = 30 \times 10^7 \,\mathrm{N\,m^{-2}/(3 \times 10^3 \,\mathrm{kgm^{-3} \times 10 \,m\,s^{-2})}} = 10 \,\mathrm{km}$

যা মাউন্ট এভারেস্টের উচ্চতার চেয়ে বেশি!

সারাংশ

- পীড়ন হল প্রতি একক ক্ষেত্রফলে প্রযুক্ত প্রত্যানয়ক বল এবং বিকৃতি হল মাত্রার আংশিক পরিবর্তন। সাধারণত, তিন ধরনের পীড়ন রয়েছে (a) প্রসার্য পীড়ন — অনুদৈর্ঘ্য পীড়ন (টানের সঙ্গে যুক্ত) অথবা সংকোচক পীড়ন (সংকোচনের সঙ্গো যুক্ত)। (b) কৃন্তন পীড়ন, এবং (c) উদস্থৈতিক পীড়ন।
- বিকৃতি কম হলে, অনেক পদার্থের ক্ষেত্রে পীড়ন বিকৃতির সমানুপাতিক হয়। এটি হুকের সূত্র নামে পরিচিত। সমানুপাতিক ধ্রুবকটিকে স্থিতিস্থাপক গুণাঙ্ক বলে। তিন প্রকার স্থিতিস্থাপক গুণাঙ্ক যথা - ইয়ং গুণাঙ্ক, কৃন্তন গুণাঙ্ক এবং আয়তন বিকৃতি গুণাঙ্কের সাহায্যে বিকৃতি বলের প্রভাবে বস্তুর স্থিতিস্থাপক আচরণ ব্যাখ্যা করা যায়। প্রাকৃতিক রাবার (elastomers) নামে এক ধরনের কঠিন পদার্থ আছে। যেগুলো হুকের সূত্র মেনে চলে না।
- 3. বস্তু যখন সংকোচন অথবা প্রসারণের অধীনে থাকে, হুকের সূত্রের রূপ হয় —

$$F/A = Y\Delta L/I$$

যেখানে, $\Delta L/L$ হল বস্তুর প্রসারণ বা সংকোচন বিকৃতি। *F* হল বিকৃতি সৃষ্টিকারী প্রযুক্ত বলের মান। *A* হল প্রস্থচ্ছেদের ক্ষেত্রফল যাতে *F* বল (*A* তে লম্ব) প্রয়োগ করা হয়েছে এবং *Y* হল বস্তুর ইয়ং গুণাঙ্ক। পীড়ন হল *F*/A.

4. উপর এবং নীচের পৃষ্ঠের সঙ্গে একজোড়া সমান্তরাল বল প্রয়োগ করলে কঠিনের এরূপ বিকৃতি ঘটে যে, উপরের পৃষ্ঠ নীচের পৃষ্ঠের সাপেক্ষে পাশের দিকে সরে যায়। উপরের পৃষ্ঠের অনুভূমিক সরণ △L উল্লম্ব দৈর্ঘ্য L এর সঙ্গে লম্ব। এই ধরনের বিকৃতিকে বলে কৃন্তন বিকৃতি এবং সংশ্লিষ্ট পীড়নকে বলে কৃন্তন পীড়ন। এধরনের পীড়ন শুধুমাত্র কঠিনের ক্ষেত্রেই সম্ভব।

এ ধরনের বিকৃতির ক্ষেত্রে হুকের সূত্রের রূপটি হল —

$$F/A = G \times \Delta L/A$$

যেখানে ΔL হল প্রযুক্ত বল F এর অভিমুখে বস্তুর একপ্রান্তের সরণ এবং G হল কৃন্তন গুণাঞ্চন।

5. চারপাশে থাকা তরল বা বায়বীয় পদার্থ (fluid) দ্বারা চাপ (stress) প্রয়োগের ফলে যখন কোনো বস্তুর উদ্স্থৈতিক সংকোচন হয়, সেক্ষেত্রে হুকের সূত্রের রুপটি হয়,

$$p = B\left(\Delta V/V\right)$$

যেখানে *p* হল তরল বা বায়বীয় (fluid) পদার্থের জন্য বস্তুতে চাপ (উদ্স্থৈতিক পীড়ন) △*V/V* (আয়তন বিকৃতি) হল ঐ চাপের প্রভাবে বস্তুর আয়তনের পরম আংশিক পরিবর্তন এবং *B* হল বস্তুর আয়তন বিকৃতি গুণাঙ্ক।

ভেবে দেখার বিষয়সমূহ (POINTS TO PONDER)

- ছাদ থেকে ঝুলানো একটি তারের অপরপ্রান্ত থেকে ঝুলানো (F) ওজনের প্রভাবে তারটিতে টান সৃষ্টি হচ্ছে। তারের উপর ছাদ কর্তৃক প্রযুক্ত বল, ওজন F এর সমান এবং বিপরীত। সুতরাং, তারের যে-কোনো প্রস্থচ্ছেদ A তে টান হল F, 2F নয়। সুতরাং, প্রসার্য পীড়ন যা প্রতি একক ক্ষেত্রফলে টানের সমান তা F/A এর সমান।
- 2. পীড়ন-বিকৃতি লেখচিত্রের শুধুমাত্র রৈখিক অংশে হুকের সূত্র প্রযোজ্য।
- 3. যেহেতু কঠিনের দৈর্ঘ্য এবং আকৃতি রয়েছে তাই ইয়ং গুণাঙ্ক এবং কৃন্তন গুণাঙ্ক শুধুমাত্র কঠিনের ক্ষেত্রেই প্রযোজ্য।
- 4. কঠিন, তরল এবং গ্যাস সকল পদার্থেরই আয়তন বিকৃতি গুণাঙ্ক আছে। যখন একটি বস্তুর প্রত্যেক অংশ সুষম পীড়নের অধীনে থাকে, বস্তুটির আকার অপরিবর্তনীয় থাকে এবং এটি বস্তুর আয়তন পরিবর্তনকে নির্দেশ করে।
- 5. ধাতুর ইয়ং গুণাঙ্কের মান সংকর ধাতু এবং প্রাকৃতিক রবার (elastomers) থেকে অনেক বেশি। অধিক মানের ইয়ং গুণাঙ্ক বিশিষ্ট পদার্থের দৈর্ঘ্যের ক্ষুদ্র পরিবর্তনের জন্য অধিক মানের বলের প্রয়োজন হয়।

- 6. দৈনন্দিন জীবনে আমাদের মনে হয়, যে পদার্থের প্রসারণ বেশি, সেই পদার্থ বেশি স্থিতিস্থাপক। কিন্তু এ ধারণাটি ভুল। বাস্তবে ভার প্রয়োগে যে পদার্থের প্রসারণ কম, সে পদার্থকে বেশি স্থিতিস্থাপক ধরা হয়।
- 7. সাধারণত কোনো একটি অভিমুখে প্রযুক্ত বিকৃতি বল অন্য আরেকটি অভিমুখেও বিকৃতি সৃষ্টি করতে পারে। এ পরিস্থিতিতে পীড়ন এবং বিকৃতির মধ্যে সমানুপাতিকতার সম্পর্ক শুধুমাত্র একটি স্থিতিস্থাপক ধ্রুবক দ্বারা প্রকাশ করা যায় না। উদাহরণস্বরূপ, একটি তারের অনুদৈর্ঘ্য বিকৃতি ঘটলে তারটিতে অল্প পরিমাণে পার্শ্বীয় মাত্রারও পরিবর্তন হয়, যা অন্য আরেকটি স্থিতিস্থাপক গুণাঙ্ক দ্বারা প্রকাশ করা হয় (একে পয়সনের অনুপাত বলে)।
- 8. যেহেতু, বলের মতো পীড়নের কোনো নির্দিষ্ট আরোপিত অভিমুখ নেই, তাই পীড়ন ভেক্টর রাশি নয়। পদার্থের কোনো অংশের একটি নির্দিষ্ট পার্শ্বে ক্রিয়াশীল বলের একটি নির্দিষ্ট অভিমুখ থাকে।

অনুশীলনী

- 9.1 4.7 m দৈর্ঘ্য এবং 3.0 × 10⁻⁵ m² প্রস্থচ্ছেদের ক্ষেত্রফলবিশিন্ট একটি ইস্পাতের তারে এবং 3.5 m দৈর্ঘ্য এবং 4.0 × 10⁻⁵ m² প্রস্থচ্ছেদের ক্ষেত্রফলবিশিন্ট একটি তামার তারে একই ভারের অধীনে সমপরিমাণ প্রসারণ ঘটল। ইস্পাত এবং তামার তারের ইয়ং গুণাঞ্চের অনুপাত কত ?
- 9.2 চিত্র 9.11 এ একটি বস্তুর পীড়ন-বিকৃতি লেখচিত্র দেখানো হয়েছে। বস্তুটির (a) ইয়ং গুণাঞ্চ্ব এবং (b) পরাভব (yield) পীড়নের আসন্ন মান নির্ণয় করো।

9.3 চিত্র 9.12 তে A এবং B বস্তুর জন্য পীড়ন-বিকৃতি লেখচিত্র দেখানো হয়েছে।

চিত্র 9.12

লেখচিত্রগুলো একই স্কেলে আঁকা হয়েছে।

- (a) কোন্ বস্তুটির ইয়ং গুণাঙ্কের মান বেশি ?
- (b) দুটি বস্তুর মধ্যে কোন্টি বেশি শক্তিশালী ?
- 9.4 নীচের বিবৃতি দুটো যত্ন সহকারে পড়ো এবং যদি এটি সত্য অথবা মিথ্যা হয়, তাহলে তা কারণসহ উল্লেখ করো।
 - (a) রবারের ইয়ং গুণাঙ্ক ইস্পাতের চেয়ে বেশি;
 - (b) কৃন্তন গুণাঙ্কের সাহায্যে একটি কুণ্ডলীর টান নির্ণয় করা যায়।
- 9.5 0.25 cm ব্যাসের দুটো ভারযুক্ত তার, যেগুলোর একটি ইস্পাতের তৈরি এবং অপরটি পিতলের, যা 9.13 নং চিত্রে দেখানো হয়েছে। ভারযুক্ত ইস্পাতের এবং পিতলের তারের অংশের দৈর্ঘ্য যথাক্রমে 1.5 m এবং 1.0 m । ইস্পাত এবং পিতলের তারের দৈর্ঘ্যের বৃদ্ধি গণনা করো।

- 9.6 একটি অ্যালুমিনিয়ামের ঘনকের প্রতিটি ধারের দৈর্ঘ্য 10 cm । ঘনকের একটি পৃষ্ঠ একটি খাড়া দেওয়ালের সঙ্গে দৃঢ়ভাবে আটকানো। ঘনকের বিপরীত পৃষ্ঠের সঙ্গে 100 kg ভর সংযুক্ত আছে। অ্যালুমিনিয়ামের কৃন্তন গুণাঙ্ক 25 GPa। এই পৃষ্ঠের উল্লম্ব বিচ্যুতি কত ?
- 9.7 হালকা স্টিলের তৈরি চারটি একই রকম ফাঁপা চোঙাকৃতি স্তম্ভ (column) 50,000 kg ভরের একটি কাঠামোর ভারবহন করছে। প্রতিটি স্তম্ভের অন্ত এবং বহির্ব্যাসার্ধ যথাক্রমে 30 এবং 60 cm । ভারবন্টন সুষম ধরে নিয়ে প্রতিটি স্তম্ভের সংকোচনশীল বিকৃতি গণনা করো।
- 9.8 15.2 mm × 19.1 mm আয়তাকার প্রস্থচ্ছেদবিশিষ্ট এক টুকরো তামাকে 44,500 N বল দ্বারা টানার ফলে শুধুমাত্র স্থিতিস্থাপক বিকৃতি ঘটল। এক্ষেত্রে সৃষ্ট বিকৃতির পরিমাণ গণনা করো।
- 9.9 1.5 cm ব্যাসার্ধবিশিষ্ট একটি ইস্পাতের তার স্কী এলাকায় (ski area) একটি চেয়ার লিফ্ট (Chairlift) কে বহন করছে। সর্বোচ্চ পীড়ন যদি 10⁸ N m⁻² অতিক্রম না করে, তাহলে তারটি সর্বোচ্চ কতটুকু ভার বহন করতে সক্ষম হবে ?
- 9.10 15 kg ভরের একটি দৃঢ় দণ্ড প্রতিটি 2.0 m দীর্ঘ এরুপ তিনটি তার দিয়ে প্রতিসমভাবে ঝুলানো। দণ্ডটির দুইপ্রান্তে রয়েছে তামার তার এবং মাঝখানে রয়েছে লোহার তার। প্রতিটির টান (tension) সমান হলে তারগুলোর ব্যাসের অনুপাত নির্ণয় করো।
- 9.11 1.0 m দৈর্ঘ্যের একটি অপ্রসারিত ইস্পাতের তারে 14.5 kg ভর বেঁধে তারটিকে একটি উল্লম্ব বৃত্তপথে ঘুরানো হচ্ছে। বৃত্তের নিম্নপ্রান্তে তারটির কৌণিক বেগ 2 rev/s । তারটির প্রস্থচ্ছেদের ক্ষেত্রফল 0.065 cm²। তারের বিকৃতি নির্ণয় করো যখন ভর গতিপথের নিম্ন বিন্দুতে থাকে।
- 9.12 নিম্নলিখিত তথ্য থেকে জলের আয়তন বিকৃতি গুণাঞ্চ্ব নির্ণয় করো : প্রাথমিক আয়তন = 100.0 litre, চাপের বৃদ্ধি = 100.0 atm (1 atm = 1.013 × 10⁵ Pa), অন্তিম আয়তন = 100.5 litre । স্থির তাপমাত্রায় জল এবং বায়ুর আয়তন বিকৃতি গুণাঙ্কের তুলনা করো । অনুপাত এত বেশি কেন সহজ ভাষায় ব্যাখ্যা করো ।
- 9.13 80.0 atm চাপবিশিষ্ট গভীরতায় জলের ঘনত্ব নির্ণয় করো। দেওয়া আছে, পৃষ্ঠতলের ঘনত্ব 1.03 × 103 kg m⁻³?
- 9.14 10 atm উদ্স্থৈতিক চাপ প্রয়োগের ফলে একটি কাঁচ ফলকের (glass slab) আয়তনের আংশিক পরিবর্তন গণনা করো।

- 9.15 7.0 × 10⁶ Pa উদ্স্থৈতিক চাপ প্রয়োগে 10 cm বাহুবিশিষ্ট একটি কঠিন তামার ঘনকের আয়তন সংকোচন নির্ণয় করো।
- 9.16 এক লিটার জলকে 0.10% পর্যন্ত সংকুচিত করতে চাপের কতটুকু পরিবর্তন করতে হবে ?

অতিরিক্ত অনুশীলনী (Additional Exercises)

9.17 চিত্র 9.14 এ দেখানো হীরার একক কেলাস দিয়ে তৈরি একটি নেহাই, যা অতি উচ্চচাপে থাকা বস্তুর ধর্ম জানার জন্য ব্যবহৃত হয়। নেহাই এর সরু প্রান্তের সমতল মুখের ব্যাস 0.50 mm এবং চওড়া প্রান্তে 50,000 N সংকোচক বল প্রয়োগ করা হল। নেহাই এর আগায় (tip) চাপ কত হবে ?

চিত্র 9.15

- 9.19 1.0 m দীর্ঘ এবং 0.50 × 10⁻² cm² প্রস্থচ্ছেদের ক্ষেত্রফল বিশিষ্ট একটি হালকা ইস্পাতের তারকে দুটি থামের (pillars) মধ্যে অনুভূমিকভাবে রেখে স্থিতিস্থাপক সীমার মধ্যে টান টান অবস্থায় রাখা হল। 100 g ভরের একটি বস্তুকে তারটির মধ্যবিন্দু থেকে ঝুলানো হলে মধ্যবিন্দুর অবনমন নির্ণয় করো।
- 9.20 প্রতিটি 6.0 mm ব্যাসের 4 টি রিভেট দ্বারা দুটি ধাতব পাতের প্রান্তে জুড়ে দেওয়া হল। যদি রিভেটের কৃন্তন পীড়ন 6.9 × 10⁷ Pa এর বেশি না হয় তাহলে রিভেটের পাতে সর্বোচ্চ টান কত হবে? ধরে নাও প্রতিটি রিভেটকে এক চতুর্থাংশ ভার বহন করতে হবে।
- 9.21 মেরিনা খাত প্রশান্ত মহাসাগরে রয়েছে, এবং এক জায়গায় এটি জলপৃষ্ঠ থেকে 11 km নীচে রয়েছে। খাতের সর্বনিম্ন বিন্দুতে চাপ প্রায় 1.1 × 10⁸ Pa । 0.32 m³ প্রাথমিক আয়তনবিশিষ্ট একটি ইস্পাতের বলকে সমুদ্রের জলে ফেললে এটি খাতের নীচে পড়ল। তলদেশে পৌঁছালে বলটির আয়তনের কি পরিবর্তন হয় ?

অধ্যায় : দশম

প্রবাহীর যান্ত্রিক ধর্মাবলি (Mechanical Properties of Fluids)

10.1 ভূমিকা	(INTRODUCTION)
-------------	----------------

এ অধ্যায়ে আমরা তরল ও গ্যাসীয় পদার্থের কিছু সাধারণ ধর্মাবলি সম্পর্কে জানব। তরল ও গ্যাসীয় পদার্থ প্রবাহিত হতে পারে, তাই তাদেরকে প্রবাহী (fluid) বলে। মূলত এই ধর্মের সাহায্যে আমরা তরল ও গ্যাসীয় পদার্থকে কঠিন পদার্থ থেকে পৃথক করি।

আমাদের সবদিকে প্রবাহী উপস্থিত। পৃথিবী বায়ু দ্বারা আবৃত এবং পৃষ্ঠতলের তিনভাগের দুভাগ জলদ্বারা পরিবেস্টিত। জল কেবলমাত্র আমাদের অস্তিত্বের জন্যই প্রয়োজনীয় নয়, প্রত্যেক স্তন্যপায়ী প্রাণীদের দেহ প্রধানত জল দ্বারা গঠিত। উদ্ভিদ সহ প্রাণীদেহের সমস্ত প্রক্রিয়াগুলো সম্পাদনের মাধ্যম হল প্রবাহী। তাই প্রবাহীর আচরণ এবং বৈশিস্ট্য জানা খুবই গুরুত্বপূর্ণ।

প্রবাহী কীভাবে কঠিন থেকে পৃথক ? তরল ও গ্যাসীয় পদার্থের মধ্যে সাধারণ বিষয়টি কী ? কঠিন পদার্থের মতো প্রবাহীর নিজস্ব আকৃতি নেই। কঠিন ও তরল পদার্থের নির্দিষ্ট আয়তন আছে, কিন্তু গ্যাসীয় পদার্থকে যে পাত্রে রাখা হয় সে পাত্রের সম্পূর্ণ আয়তন দখল করে। আগের অধ্যায়ে আমরা শিখেছি যে কঠিন পদার্থের আয়তনকে পীড়ন প্রয়োগে পরিবর্তন করা যায়। কঠিন, তরল এবং গ্যাসীয় পদার্থের আয়তন তার উপর ক্রিয়াশীল পীড়ন বা চাপের উপর নির্ভরশীল। যখন আমরা কঠিন ও তরলের নির্দিষ্ট আয়তনের কথা বলি, তখন আমরা বায়ুমণ্ডলীয় চাপে আয়তনের কথা বুঝি। গ্যাসের সঙ্গে তরলের পার্থক্য বা গ্যাসের সঙ্গে কঠিনের পার্থক্য হল, যখন আমরা বাহ্যিক প্রযুক্ত চাপের পরিবর্তন করি তখন কঠিন ও তরলের আয়তনের পরিবর্তন অনেকটাই কম হয়। অন্যভাবে বলা যায় কঠিন ও তরলের সংন্ম্যতা (compressibility) গ্যাসের তুলনায় অনেক কম।

কৃন্তুন পীড়ন কঠিন পদার্থের আয়তন ঠিক রেখে তার আকৃতির পরিবর্তন করতে পারে। প্রবাহীর মূল বৈশিস্ট্য হল তারা কৃন্তুন পীড়নকে খুব কম বাধা দেয় এবং খুব কম পরিমাণ কৃন্তুন পীড়নের জন্য তাদের আকৃতিরর পরিবর্তন হয়। কঠিন পদার্থের কৃন্তুন পীড়নের তুলনায় প্রবাহীর কৃন্তুন পীড়নের মান দশ লক্ষ ভাগের এক ভাগ।

10.2 하여 (PRESSURE)

যখন একটি সুচ দ্বারা আমাদের চামড়াতে চাপ দেওয়া হয় তখন এটা চামড়া ভেদ করে ভেতরে যায়, কিন্তু যখন একটি বড় ক্ষেত্রফলবিশিন্ট ভোতা বস্তু দ্বারা (যেমন চামচের পেছন দিক) চামড়াতে একই বল প্রয়োগে চাপ দেওয়া হয় তখন চামড়া অক্ষত থাকে। যদি একজন ব্যান্তির বুকের উপর দিয়ে একটি হাতি হেঁটে যায় তাহলে ঐ ব্যক্তির বুকের হাড় ফেঁটে যায়।

10.1	ভূমিকা
10.2	চাপ
10.3	ধারারেখ বা শান্ত প্র
10.4	বার্নোলির নীতি
10.5	সান্দ্রতা
10.6	রেনল্ডস্ সংখ্যা
10.7	পৃষ্ঠটান
	সারাংশ
	ভেবে দেখার বিষয়
	অনুশীলনী
	অতিরিক্ত অনুশীলনী
	পরিশিষ্ট

বাহ

নমূহ

প্রবাহীর যান্ত্রিক ধর্মাবলি

কিন্তু সার্কাস খেলায় প্রদর্শনকারীদের বুকের উপর একটি বড়ো কিন্তু হালকা কাঠের তন্তুা বিছিয়ে তার উপর দিয়ে হাতি হেঁটে গেলেও এধরনের দুর্ঘটনা ঘটে না। এধরনের দৈনন্দিন অভিজ্ঞতা থেকে আমরা নিশ্চিত যে প্রযুক্ত বল এবং প্রযুক্ত বলের প্রভাবযুক্ত ক্ষেত্রফল, উভয়েই গুরুত্বপূর্ণ। প্রযুক্ত বলের প্রভাবিত ক্ষেত্রফল যদি ক্ষুদ্র হয় তবে সে বলের প্রভাব বেশি হয়। এ ধারণাই হল চাপ।

একটি বস্তুকে যখন কোনো স্থির প্রবাহীতে নিমজ্জিত করা হয় তখন ওই প্রবাহী কর্তৃক নিমজ্জিত বস্তুর তলের উপর একটি বল প্রযুক্ত হয়। এই বল সর্বদা বস্তুর তলের সঙ্গে লম্ব হয়। ইহা এজন্য হয় যে, যদি কোনো তলের সঙ্গে সমান্তরালভাবে কোনো বলের উপাংশ থাকে তবে নিউটনের তৃতীয় সূত্রানুযায়ী ওই তলও প্রবাহীর উপর সমান্তরালভাবে বল প্রয়োগ করে। এই বলের প্রভাবে প্রবাহীটি তলের সমান্তরালে প্রবাহিত হয়। যেহেতু প্রবাহী স্থির, তাই এ ঘটনা ঘটে না। তাই স্থির প্রবাহী কর্তৃক প্রবাহী সংলগ্ন তলে বল লম্বভাবে প্রযুক্ত হয়। ইহাকে চিত্র 10.1(a) তে দেখানো হয়েছে।

কোনো একটি বিন্দুতে প্রবাহী কর্তৃক প্রযুক্ত লম্ব বলকে পরিমাপ করা যায়। চাপ পরিমাপের একটি আদর্শ নমুনার যন্ত্রকে 10.1(b) নং চিত্রে দেখানো হয়েছে। ইহা একটি বায়ুশূন্য প্রকোষ্ঠ যার মধ্যে একটি স্প্রীং আছে এবং ইহা অংশাঙ্কিত করা আছে, যা পিস্টনের উপর প্রযুক্ত বল পরিমাপ করতে ব্যবহৃত হয়। এ যন্ত্রটিকে প্রবাহীর অভ্যন্তরে একটি বিন্দুতে স্থাপন করা হয়। প্রবাহী কর্তৃক পিস্টনের উপর প্রযুক্ত অন্তর্মুখী বল বর্হিমুখী স্প্রীং এর বল দ্বারা প্রতিমিত হয় এবং পরিমিত হয়।

চিত্র 10.1 (a) বিকারে নিমজ্জিত বস্তুর উপর বা দেওয়ালের উপর তরল কর্তৃক প্রযুক্ত বল দেওয়ালের প্রত্যেক বিন্দুতে অঙ্কিত লম্ব বরাবর।(b) চাপ পরিমাপের একটি আদর্শ যন্ত্র।

যদি A ক্ষেত্রফলবিশিষ্ট পিষ্টনের উপর প্রযুক্ত বলের মান F হয় তবে একক ক্ষেত্রফলে প্রযুক্ত বলকে গড়চাপ P_{av} বলে।

$$P_{av} = \frac{F}{A} \tag{10.1}$$

মূলত পিষ্টনের ক্ষেত্রফলকে যথাসম্ভব ক্ষুদ্র নেওয়া হয়। এভাবে সীমাস্ত মানে চাপ এর সংজ্ঞা হল

$$P = \lim_{\Delta A \to 0} \frac{\Delta F}{\Delta A} \tag{10.2}$$

চাপ হল একটি স্কেলার রাশি। পাঠকদের ইহা মনে করিয়ে দিতে চাই যে, ইহা হল, যে ক্ষেত্রফল বিবেচনা করা হয়েছে তার লম্ব বরাবর বলের উপাংশ এবং ইহা (ভেক্টর) বল নয় যা সমীকরণ (10.1) এবং (10.2)-এ লবে উল্লেখ করা হয়েছে। চাপের মাত্রা হল [ML⁻¹T⁻²] । SI পম্বতিতে ইহার একক হল N m⁻²। ফ্রান্সের বিজ্ঞানী ব্ল্যাইসি পাস্কাল-এর (Blaise Pascal -1623-1662) সম্মানে এই এককের নাম দেওয়া হয়েছে পাস্কাল। যিনি প্রবাহীর চাপ নিয়ে সর্বপ্রথম কাজ করেছেন। চাপের আরেকটি প্রচলিত একক হল অ্যাটমস্স্ফিয়ার (atm), অর্থাৎ সমুদ্রপৃষ্ঠে বায়ুমণ্ডল যে চাপ প্রয়োগ করে (1 atm = 1.013 × 10⁵ Pa)।

প্রবাহীর বর্ণনায় আরেকটি অপরিহার্য রাশি হল ঘনত্ব ho । যদি mভরের প্রবাহী V আয়তন দখল করে তবে ঘনত্ব

$$\rho = \frac{m}{V} \tag{10.3}$$

ঘনত্বের মাত্রা হল [ML⁻³]। ইহার SI পম্ধতিতে একক হল kg m⁻³। ইহা হল একটি ধনাত্মক স্কেলার রাশি। একটি তরল অধিকতর অসংনম্য এবং তাই বিভিন্ন চাপে তার ঘনত্ব একই থাকে। অন্যদিকে গ্যাস বিভিন্ন চাপে ঘনত্বের বিশাল পরিবর্তন প্রদর্শন করে।

4°C (277 K) তাপমাত্রায় জলের ঘনত্ব হল $1.0 \times 10^3 \, {
m kg m^{-3}}$ । কোনো একটি বস্তুর আপেক্ষিক ঘনত্ব হল বস্তুর ঘনত্ব এবং 4°C তাপমাত্রায় জলের ঘনত্বের অনুপাত। ইহা হল মাত্রাহীন ধনাত্মক স্কেলার রাশি। উদাহরণ হিসাবে, অ্যালুমিনিয়ামের আপেক্ষিক ঘনত্ব হল 2.7 এবং ইহার ঘনত্ব হল $2.7 \times 10^3 \, {
m kg m^{-3}}$ । কিছু সাধারণ প্রবাহীর ঘনত্বকে 10.1 নং সারণিতে দেওয়া হল।

সারণি 10.1 STP* তে কিছু সাধারণ প্রবাহীর ঘনত্ব :

প্রবাহী	ρ (kg m^{-s})		
জল	1.00×10^{3}		
সমুদ্র জল	$1.03 imes 10^3$		
পারদ (মার্কারী)	13.6×10^{3}		
ইথাইল অ্যালকোহল	0.806×10^{3}		
সম্পূর্ণ রক্ত	1.06×10^{3}		
বায়ু	1.29		
অক্সিজেন	1.43		
হাইড্রোজেন	$9.0 imes 10^{-2}$		
আন্তঃনাক্ষত্রিক দেশ	$\approx 10^{-20}$		

^{*} STP বলতে প্রমাণ তাপমাত্রা (0ºC) এবং 1 atm চাপ বুঝায়।

উদাহরণ 10.1 10 cm² ক্ষেত্রফলবিশিষ্ট দুটি উরুঅস্থি (thigh bones, femurs) 40 kg ভরের মানব শরীরের উপরাংশকে ধরে রেখেছে। উরুঅস্থির উপর প্রযুক্ত গড় চাপের মান বের করো।

উত্তর উরুঅস্থির মোট প্রস্থচ্ছেদের ক্ষেত্রফল, $A = 2 \times 10 \text{ cm}^2 = 20 \times 10^{-4} \text{ m}^2$ ।তাদের উপর প্রযুক্ত বল $F = 40 \text{ kg wt} = 400 \text{ N} (g = 10 \text{ m s}^{-2} ধরে নিয়ে)। এই বল উল্লম্বভাবে নিম্নাভিমুখে উরুঅস্থির উপর ক্রিয়াশীল।সুতরাং, গড় চাপ হল$

$$P_{av} = \frac{F}{A} = 2 \times 10^5 \text{ N m}^{-2}$$

10.2.1 পাস্কালের সূত্র (Pascal's Law)

ফ্রান্সের বিজ্ঞানী ব্লেইসি পাস্কাল লক্ষ্য করেছিলেন যে একই গভীরতায় অবস্থিত স্থির প্রবাহীর সকল বিন্দুতে চাপ এর মান একই থাকে। এই ঘটনাকে নিম্নলিখিত সহজভাবে বর্ণনা করা যায়।

চিত্র 10.2 পাস্কালের সুত্রের প্রমাণ। ABC-DEF হল স্থির তরলের অভ্যন্তরে অবস্থিত একটি উপাদান। এই উপাদানটির আকৃতি একটি সমকোণাকৃতি প্রিজমের মতো। এই উপাদানটি ক্ষুদ্রাকৃতি যাতে করে অভিকর্ষের প্রভাবকে উপেক্ষা করা যায়; কিন্তু একে বড়ো করে দেখানো হয়েছে ভালোভাবে বোঝার জন্য।

চিত্র 10.2 তে স্থির তরলের অভ্যন্তরস্থ একটি উপাদানকে দেখানো হয়েছে। ABC-DEF উপাদানটির আকৃতি সমকোণাকৃতি প্রিজমের মতো। নীতি অনুযায়ী এই প্রিজমাকৃতি উপাদানটি খুবই ছোটো নেওয়া হয়েছে যাতে করে ধরে নেওয়া যায় যে, উপাদানটির প্রতিটি অংশ তরলের উপরিতল থেকে একই গভীরতায় আছে এবং ফল হিসেবে এই সমস্ত অংশে মহাকর্ষীয় প্রভাব একই হয়। কিন্তু স্পন্টভাবে বোঝার জন্য আমরা উপাদানটিকে বড়ো করে দেখালাম। উপরের আলোচনা অনুযায়ী তরলের অন্যান্য অংশ কর্তৃক এই উপাদানের উপর প্রযুক্ত বলগুলি লম্বভাবে উপাদানটির উপর ক্রিয়াশীল। এভাবে উপাদানটির উপর প্রবাহীর অন্যান্য অংশ কর্তৃক লম্ব বলগুলো F_a, F_b এবং F_c এবং এই বলগুলোর জন্য চাপগুলো P_a, P_b এবং P_c প্রযুক্ত হয় যথাক্রমে BEFC, ADFC এবং ADEB ক্ষেত্রফলগুলোর উপর। এই ক্ষেত্রফলগুলোকে A_a, A_b এবং A_c চিহ্নিত করা হয়েছে (চিত্র 10.2 নং এ দেখানো হয়েছে)। এখন

 $egin{array}{lll} F_{
m b}\sin\theta = F_{
m c}, & F_{
m b}\cos\theta = F_{
m a} & ($ সাম্যাবস্থায়) $A_{
m b}\sin\theta = A_{
m c}, & A_{
m b}\cos\theta = A_{
m a} & ($ জ্যামিতি অনুযায়ী) এইভাবে,

$$\frac{F_b}{A_b} = \frac{F_c}{A_c} = \frac{F_a}{A_a}; \qquad P_b = P_c = P_a$$
(10.4)

সুতরাং, স্থির প্রবাহীর মধ্যে চাপ একই মানে সর্বদিকে প্রযুক্ত হয়। ইহা পুনরায় আমাদেরকে স্মরণ করে দেয় যে অন্যান্য প্রকারের পীড়নের মতো চাপও একটি ভেক্টর রাশি নয়।ইহার জন্য দিক নির্দিষ্ট করে দেওয়া যায় না।একটি স্থির (আবন্ধ) প্রবাহীর অভ্যন্তরে যে কোনো ক্ষেত্রফলের উপর চাপ লম্বভাবে ক্রিয়া করে এবং এটি ক্ষেত্রটির বিন্যাসের উপর নির্ভরশীল হয় না।

এখন সমান প্রস্থচ্ছেদবিশিষ্ট অনুভূমিক দণ্ডাকৃতি একটি তরল উপাদান কল্পনা করি। দণ্ডাকৃতি তরল উপাদানটি সাম্যাবস্থায় আছে। এর দুটি প্রান্তে অনুভূমিকভাবে ক্রিয়াশীল বল দুটি পরস্পরকে অবশ্যই প্রশমিত করে বা দুপ্রান্তের ক্রিয়াশীল চাপ পরস্পর সমান হয়। ইহা প্রমাণ করে যে, সাম্যাবস্থায় থাকা কোনো তরলের একই তলের সকল বিন্দুতে চাপ এর মান সমান। ধর কোনো প্রবাহীর বিভিন্ন অংশে চাপের মান সমান নয়, তাহলে প্রবাহীতে একটি লব্ধি বল থাকবে যা প্রবাহীতে প্রবাহ সৃষ্টিকরবে। সুতরাং প্রবাহের অনুপস্থিতিতে প্রবাহীর চাপ অবশ্যই সর্বত্র সমান হবে। চাপের পার্থক্যের জন্য বায়ু প্রবাহিত হয়।

10.2.2 গভীরতার সঙ্গে চাপের পরিবর্তন (Variation of Pressure with Depth)

একটি পাত্রে একটি প্রবাহী স্থিরাবস্থায় আছে। 10.3 নং চিত্রে 1 নং বিন্দু, 2 নং বিন্দু অপেক্ষা h উচ্চতায় অবস্থিত। 1 নং এবং 2 নং বিন্দুতে চাপ যথাক্রমে P_1 এবং P_2 । A প্রস্থচ্ছেদ ক্ষেত্রফলবিশিষ্ট এবং h উচ্চতার চোঙাকৃতি প্রবাহী উপাদান বিবেচনা করো। যেহেতু প্রবাহী স্থির অবস্থায় আছে, তাই অনুভূমিক লব্ধি বল অবশ্যই শূন্য হবে এবং উল্লম্ব লব্ধি বলগুলো প্রবাহী উপাদানের ওজনকে অবশ্যই প্রশমিত করবে। উল্লম্ব বরাবর ক্রিয়াশীল বলগুলি হল উপরের তলে ক্রিয়াশীল নিন্নমুখী বল (P_1A) এবং নীচের তলে ক্রিয়াশীল উর্ধ্বমুখী বল (P_2A) । যদি চোঙাকৃতি তলের ওজন mg হয় তবে

$$(P_2 - P_1)A = mg (10.5)$$

যদি প্রবাহীর ভর ঘনত্ব ρ হয় তাহলে প্রবাহীর ভর $m = \rho V = \rho h A$ তাই,

$$P_2 - P_1 = \rho g h \tag{10.6}$$

চাপের পার্থক্য নির্ভর করে দুটি বিন্দু 1 এবং 2 এর মধ্যে উল্লম্ব দূরত্ব (*h*) প্রবাহীর ভর ঘনত্ব ρ এবং অভিকর্ষজ ত্বরণ *g* এর উপর। উপরের আলোচনায় উল্লিখিত বিন্দু 1 নং কে যদি প্রবাহীর (ধর জলের) উপরের তলে স্থানান্তরিত করা হয় তবে P₁ পরিবর্তিত হবে বায়ুমণ্ডলীয় চাপ (P_a) দ্বারা এবং আমরা P₂ কে P দ্বারা পরিবর্তন করি তাহলে (10.6) নং সমীকরণ থেকে পাই,

$$P = P_a + \rho g h \tag{10.7}$$

এভাবে তরলের নির্দিষ্ট গভীরতায় চাপ *P* মুক্ত পৃষ্ঠের চাপ অপেক্ষা ρ*gh* পরিমাণ বেশি। *h* গভীরতায় এই অতিরিস্তু চাপ *P* – *P*_a কে বলা হয়, ঐ বিন্দুতে **'গজ চাপ' (gauge pressure**)।

সমীকরণ (10.7) এ প্রদন্ত চরম চাপের রাশিমালায় চোঙের ক্ষেত্রফল অনুপস্থিত। তাই তরল স্তম্ভের উচ্চতাই গুরুত্বপূর্ণ এবং তরলের প্রস্থচ্ছেদের ক্ষেত্রফল, ভূমির ক্ষেত্রফল বা তরল পাত্রের আকৃতি গুরুত্বপূর্ণ নয়। একই গভীরতার একটি অনুভূমিক তলের প্রত্যেক বিন্দুতে তরলের চাপ সমান। এই ফলাফলকে উদ্**স্থেতিক কৃট (hydrostatic paradox)** এর সাহায্যে উপলব্ধি করা যায়। বিভিন্ন আকৃতির তিনটি পাত্র A, B এবং C নেওয়া হল (চিত্র 10.4 এ দেখানো হয়েছে)। পাত্র তিনটি নীচের দিকে একটি অনুভূমিক নল দ্বারা পরস্পর যুক্ত। জল দ্বারা পূর্ণ করলে পাত্র তিনটির জলতল একই থাকে যদিও তারা বিভিন্ন আয়তনের জল ধারণ করে। ইহা এজন্যই হয় যেহেতু প্রতিটিপাত্রের তলদেশ একই চাপযুক্ত।

চিত্র 10.4 উদ্স্থৈতিক কৃট এর সচিত্র বর্ণনা। তিনটি পাত্র A, B এবং C একই উচ্চতায় বিভিন্ন আয়তনের তরল ধারণ করে আছে।

 উদাহরণ 10.2 জলাশয়ের জলতলের 10 m গভীরে অবস্থিত সাতারুর উপর ক্রিয়াশীল চাপের মান কত ?

উত্তর এখানে,

h = 10 m এবং ρ = 1000 kg m⁻³ ৷ ধরো, g = 10 m s⁻² সমীকরণ (10.7) থেকে

$$P = P_{a} + \rho g h$$

$$= 1.01 \times 10^{5} \,\mathrm{Pa} + 1000 \,\mathrm{kg} \,\mathrm{m}^{-3} \times 10 \,\mathrm{m} \,\mathrm{s}^{-2} \times 10 \,\mathrm{m}$$

- $= 2.01 \times 10^5 \,\mathrm{Pa}$
- $\approx 2 \text{ atm}$

এক্ষেত্রে জলতল থেকে চাপের 100% বৃদ্ধি হয়। 1 km গভীরে এই চাপের বৃদ্ধি 100 atm হয়। ডুবুজাহাজের নকশা (গঠন) এর্প করা হয় যাতে প্রচুর চাপ সহ্য করতে পারে।

10.2.3 বায়ুমণ্ডলীয় চাপ এবং গজ চাপ (Atmospheric Pressure and Gauge Pressure)

কোনো বিন্দুতে বায়ুমঙলীয় চাপ হল ঐ বিন্দু থেকে বায়ুমঙলের সর্বোচ্চ উচ্চতা পর্যন্ত একক ক্ষেত্রফল বিশিষ্ট বায়ুস্তন্তের ওজন। সমুদ্রপৃষ্ঠে এর মান 1.013 × 10⁵ Pa (1 atm)। ইতালির বিজ্ঞানী ইতাগেলিস্টা টরিসেলি (Evangelista Torricelli -1608–1647) সর্বপ্রথম বায়ুমঙলীয় চাপ পরিমাপের একটি পন্দ্বতি উদ্ভাবন করেছিলেন। একমুখ বন্থ একটি সরুনলের মধ্যে পারদ ভর্তি করে একটি পারদপূর্ণ পাত্রে উল্টিয়ে রাখা হয় (চিত্র 10.5 a)। এই যন্ত্রটির নাম পারদ ব্যারোমিটার। সরুনলের পারদস্তন্তের উপর খালিস্থানে শুধু পারদবাম্প থাকে; যার চাপ খুবই কম। তাই একে উপেক্ষা করা যায়। নলের ভেতর একই তলে থাকা A বিন্দুর চাপ অবশ্যই B বিন্দুর চাপের সমান হবে। B তে চাপ = বায়ুমগুলের চাপ P_a.

 $P_{\rm a} = \rho g h$ (10.8) যেখানে ρ হল পারদের ঘনত্ব এবং *h* হল নলের ভেতর পারদস্তন্তের উচ্চতা। সমুদ্রপৃষ্ঠে এই পরীক্ষায় ব্যারোমিটারের পারদস্তন্তের উচ্চতা 76 cm পাওয়া যায়, যা বায়ুমণ্ডলীয় চাপের সমতুল্য (1 atm)। 10.8 নং

253

সমীকরণে ho এর মান বসিয়েও এই মান পাওয়া যায়। চাপের মান সাধারণত cm পারদ বা mm পারদ (Hg) দিয়ে প্রকাশ করা হয়। টরিসেলির নামানুসারে 1 mm পারদ স্তন্তের চাপকে এক টর (1 টর) বলা হয়।

1 টর = 133 Pa.

mm পারদ এবং টর, মেডিসিন এবং শারীরবিদ্যায় ব্যবহৃত হয়। আবহবিদ্যায় (meteorology) প্রচলিত একক হল বার বা মিলিবার। 1 বার = 10⁵ Pa

চাপের পার্থক্য পরিমাপের একটি উপযোগী যন্ত্র হল একটি খোলামুখ ম্যানোমিটার। এতে একটি U-নলে উপযুক্ত তরল নেওয়া হয়। কম চাপের পার্থক্য পরিমাপের জন্য কম ঘনত্বের তরল যেমন তেল এবং বেশি চাপের পার্থক্য পরিমাপের জন্য বেশি ঘনত্বের তরল যেমন পারদ নেওয়া হয়। নলটির একটি প্রান্ত বায়ুমণ্ডলে খোলা থাকে এবং অন্য প্রান্তটি যে সংস্থার চাপ মাপতে হবে এর সঙ্গে যুক্ত থাকে [চিত্র 10.5 (b)]। A বিন্দু এবং B বিন্দুর চাপ (P) পরস্পর সমান। আমরা সাধারণত গজচাপ পরিমাপ করি যা 10.8 সমীকরণে $P - P_a$ দ্বারা প্রকাশ করা হয়েছে, এটি ম্যানোমিটারের উচ্চতা h এর সমানুপাতিক।

প্রবাহীপূর্ণ U-নলের দুই দিকে একই তলে চাপের মান সমান। তরলের ক্ষেত্রে চাপ ও উম্বতার পরিবর্তনের বিস্তীর্ণ পাল্লায় ঘনত্বের খুবই সামান্য

Fig 10.5 (a) পারদ ব্যারোমিটার

(b) খোলামুখ নলযুক্ত ম্যানোমিটার

পরিবর্তন হয়, তাই এক্ষেত্রে আমরা তরলের ঘনত্বকে স্থির ধরে নিই। অন্যদিকে গ্যাসের ক্ষেত্রে চাপ ও উম্বতার পরিবর্তনের জন্য ঘনত্বের উল্লেখযোগ্য পরিবর্তন ঘটে। এজন্য গ্যাসের তুলনায় তরলকে অধিক অসংনম্য ধরা হয়।

 উদাহরণ 10.3 সমুদ্রপৃষ্ঠে বায়ুর ঘনত্ব 1.29 kg/m³। বায়ুমণ্ডলের উচ্চতার সঞ্চো বায়ুর ঘনত্ব অপরিবর্তিত থাকে ধরে নিয়ে বায়ুমণ্ডলের উচ্চতা বের করো।

উত্তর 10.7 নং সমীকরণ ব্যবহার করে

 $\rho gh = 1.29 \text{ kg m}^{-3} \times 9.8 \text{ m} \text{ s}^2 \times h \text{ m} = 1.01 \times 10^5 \text{ Pa}$

 $\therefore h = 7989 \,\mathrm{m} \approx 8 \,\mathrm{km}$

বাস্তবে বায়ুমণ্ডলে উচ্চতা বৃষ্ণির সঙ্গো বায়ুর ঘনত্ব হ্রাস পায়। একই ঘটনা g এর মানের ক্ষেত্রেও হয়। বায়ুমণ্ডলের বিস্তার বায়ুর ক্রমহ্রাসমান ঘনত্বের সঙ্গো প্রায় 100 km পর্যন্ত বিস্তৃত হয়। আমাদের এটাও মনে রাখা দরকার — সমুদ্রপৃষ্ঠে বায়ুমণ্ডলের চাপ সর্বদা 760 mm পারদ চাপের সমান হয় না। পারদ স্তম্ভের উচ্চতা 10 mm বা তার বেশি হ্রাস পাওয়া ঝড়ের সম্ভাবনা নির্দেশ করে।

উদাহরণ 10.4 একটি সমুদ্রের 1000 m গভীরে (a) পরম চাপের মান কত ? (b) গজ চাপ কত ? (c) ঐ গভীরতায় থাকা একটি ডুবোজাহাজের একটি 20 cm × 20 cm ক্ষেত্রফলের জানালার উ পর ক্রিয়াশীল বলের মান বের করো। ডুবোজাহাজের ভেতরের চাপকে সমুদ্রপৃষ্ঠের বায়ুমগুলীয় চাপে রাখার ব্যবস্থা করা হয়। (সমুদ্রজলের ঘনত্ব 1.03×10³ kg m⁻³, g = 10 m s⁻².)

উত্তর এখানে $h = 1000 \,\mathrm{m}$ এবং $\rho = 1.03 \times 10^3 \,\mathrm{kgm^3}$.

(a) 10.6 নং সমীকরণ ব্যবহার করে, পরম চাপ

 $P = P_a + \rho g h$

 $= 1.01 \times 10^{5} \, \text{Pa}$

$$+ 1.03 \times 10^{3} \text{ kg m}^{-3} \times 10 \text{ m s}^{-2} \times 1000 \text{ m}$$

 $= 104.01 \times 10^{5} \text{ Pa}$

 ≈ 104 atm

- (b) গজ চাপ, $P - P_a = \rho g h = P_g$ $P_g = 1.03 \times 10^3 \text{ kg m}^{-3} \times 10 \text{ ms}^2 \times 1000 \text{ m}$ $= 103 \times 10^5 \text{ Pa}$ $\approx 103 \text{ atm}$
- (c) ডুবোজাহাজের বাইরের চাপ P = P_a + ρgh এবং ভেতরের চাপ P_a । সুতরাং, ডুবোজাহাজের জানালায় ক্রিয়াশীল চাপ হল গজ চাপ, P_g = ρgh । যেহেতু জানালার ক্ষেত্রফল A = 0.04 m², তাই এতে প্রযুক্ত বল

 $F = P_{a}A = 103 \times 10^{5} \text{Pa} \times 0.04 \text{ m}^{2} = 4.12 \times 10^{5} \text{ N}$

10.2.4 হাইড্রোলিক যন্ত্রাদি (Hydraulic Machines)

একটি পাত্রে রাখা প্রবাহীতে ক্রিয়াশীল চাপের পরিবর্তন হলে কী ঘটে, চলো তা আমরা জানব। একটি পিন্টনযুক্ত অনুভূমিক চোঙাকৃতি পাত্র নিলাম যার তিনটি ভিন্ন বিন্দুতে তিনটি উল্লম্ব নল যুক্ত আছে। উল্লম্ব নলগুলোতে থাকা তরল স্তম্ভের উচ্চতা অনুভূমিক চোঙের চাপকে নির্দেশ করছে। এই উচ্চতা অবশ্যই তিনটি নলের ক্ষেত্রে সমান। যদি আমরা পিন্টনটিতে ধাক্কা দিই, তাহলে উল্লম্ব নলগুলো দিয়ে তরল উপরের দিকে উঠে এবং সকলে একই উচ্চতায় থাকে।

চিত্র 10.6 (a) পাত্র মধ্যস্থ প্রবাহীর যে-কোনো অংশে যখনই বাহ্যিক চাপ প্রযুক্ত হয়, এটি সবদিকে সমভাবে সঞ্চালিত হয়।

এথেকে বোঝা যায় যে, চোঙাকৃতি তরলস্তন্তের চাপ বৃদ্ধি করলে তা সমানভাবে চারিদিকে ছড়িয়ে পড়ে। আমরা বলতে পারি, যখন কোনো পাত্রে থাকা প্রবাহীর কোনো অংশে বাহ্যিক চাপ প্রয়োগ করা হয় তখন ওই চাপের মান না কমে প্রবাহীর সমস্তদিকে ছড়িয়ে পড়ে। এটা হল প্রবাহীর চাপ সঞ্চালন সম্পর্কিত পাস্কালের সূত্র। দৈনন্দিন জীবনে এর অনেক ব্যবহার আছে।

পাক্ষালের সূত্রের উপর ভিত্তি করে অনেক যন্ত্র যেমন হাইড্রোলিক লিফ্ট, হাইড্রোলিক ব্রেক ইত্যাদি কাজ করে। এসকল যন্ত্রে চাপ সঞ্চালনের কাজে প্রবাহী ব্যবহার করা হয়। 10.6 নং চিত্রে প্রদর্শিত হাইড্রোলিক লিফ্ট এ দুটি পিস্টন পরস্পর থেকে নির্দিন্ট ব্যবধানে থাকে। এই ব্যবধান একটি তরল দ্বারা পূর্ণ থাকে। A_1 ক্ষেত্রফলবিশিন্ট একটি ছোটো পিস্টন দ্বারা তরলের উপর সরাসরি F_1 বল প্রয়োগ করা হয়। এতে সৃন্ট চাপ P

 = ^{F₁}/_{A₁} তরলের মধ্য দিয়ে সঞ্চালিত হয়ে বড়ো চোঙাকৃতি পাত্রে থাকা বড়ো পিস্টনের A₂ক্ষেত্রফলের উপর ক্রিয়া করে এবং মোট (P × A₂) উর্ধ্বমুখী ঘাত সৃষ্টি করে। তাই এই পিস্টনটি বেশি বল প্রয়োগ করতে (যেমন প্ল্যাটফর্মে রাখা গাড়ী বা ট্রাক এর মতো ভারি বস্তুকে তুলতে)

আর্কিমিডিসের নীতি (Archemedes' Principle)

প্রবাহীতে থাকা বস্তুকে প্রবাহী আংশিকভাবে ধরে রাখে। কোনো একটি বস্তুকে আংশিক বা সম্পূর্ণভাবে একটি স্থির প্রবাহীতে নিমজ্জিত করা হলে, প্রবাহী বস্তুর সংস্পর্শ তলে চাপ প্রয়োগ করে। গভীরতা বৃদ্ধির সঙ্গো চাপ বৃদ্ধি পায় বলে বস্তুর উপরের তলে প্রযুক্ত চাপ অপেক্ষা নীচের তলে বেশি চাপ প্রযুক্ত হয়। এই সকল বলগুলোর লস্বিবল ঊর্ধ্বমুখী ক্রিয়াশীল হয় এবং তাকে প্লবক বল (Buoyant force) বলে। ধরো একটি চোঙাকৃতি বস্তুকে একটি স্থির প্রবাহীতে নিমজ্জিত করা হল। চোঙাকৃতি বস্তুটির উপরের তলে প্রযুক্ত নিম্নমুখী বল অপেক্ষা নিম্নতলে প্রযুক্ত উর্ধ্বমুখী বলের মান বেশি হয়। প্রবাহী দারা বস্তুর উপর প্রযুক্ত লস্বি উধ্বর্মুখী বল বা প্লবক বল (P₂-P₁) × A । আমরা 10.4 নং সমীকরণে দেখেছি যে, (P₂-P₁)A = ρghA । এখন hA হল নিমজ্জিত কঠিন বস্তুর আয়তন এবং ρhA হল কঠিনের সমআয়তন প্রবাহীর ভর। (P₂-P₁)A = mg । সুতরাং প্রযুক্ত ঊর্ধ্বমুখী বল অপসারিত প্রবাহীর ওজনের সমান।

এই ফলাফল বস্তুর আকারের উপর নির্ভর করে না, এখানে আমরা সুবিধার জন্য চোঙাকৃতি বস্তু নিয়েছি। ইহাই হল আর্কিমিডিসের নীতি। সম্পূর্ণ নিমজ্জিত বস্তুর ক্ষেত্রে বস্তু দ্বারা অপসারিত প্রবাহীর আয়তন বস্তুর নিজস্ব আয়তনের সমান। নিমজ্জিত বস্তুর ঘনত্ব প্রবাহীর ঘনত্ব অপেক্ষা বেশি হলে বস্তুটি ডুবে যাবে, কারণ বস্তুর ওজন উর্ধ্বমুখী ঘাত অপেক্ষা বেশি। যদি বস্তুর ঘনত্ব প্রবাহীর ঘনত্ব অপেক্ষা কম হয় তবে বস্তুটি প্রবাহীতে আংশিক নিমজ্জিত অবস্থায় ভাসবে। প্রবাহীতে এই নিজ্জিত আয়তন গণনা করার জন্য, ধরো বস্তুর আয়তন V_g এবং এর একটি ভগ্নাংশ আয়তন V_p প্রবাহীতে নিমজ্জিত থাকে। তাহলে উর্ধ্বমুখী বল যা অপসারিত প্রবাহীর ওজনের ($\rho_{\rm rg}V_p$) সমান তা অবশ্যই বস্তুর ওজনের সমান হতে হবে। অর্থাৎ, $\rho_{\rm s}gV_{\rm s} = \rho_{\rm rg}V_p$ বা $\rho_{\rm s}/\rho_{\rm f} = V_p/V_{\rm s}$ ভাসমান বস্তুর আপাত ওজন হল শূন্য।

এ নীতিকে সংক্ষেপে বলা যায় : প্রবাহীতে আংশিক বা সম্পূর্ণ নিমজ্জিত বস্তুর ওজন হ্রাস বস্তু কর্তৃক অপসারিত প্রবাহীর ওজনের সমান।

255

পারে। এই বিশাল বলের মান $F_2 = PA_2 = \frac{F_1A_2}{A_1}$ । A_1 পিস্টনে প্রযুক্ত এই বল পরিবর্তিত হয়ে প্ল্যাটফর্মকে উঠাতে বা নামাতে পারে। এভাবে প্রযুক্ত বল $\frac{A_2}{A_1}$ গুণ বাড়ে এবং এই গুণককে বলে যন্ত্রটির যান্ত্রিক সুবিধা। নীচের উদাহরণটি এ ধারণাকে স্পন্ট করবে।

চিত্র 10.6 হাইড্রোলিক লিফ্টের মূল নীতি বর্ণনার জন্য চিত্র, যন্ত্রটি ভারী বস্তুকে উপরে তোলার কাজে ব্যবহৃত হয়।

 উদাহরণ 10.5 দুটি বিভিন্ন ক্ষেত্রফলবিশিন্ট সূচবিহীন জলপূর্ণ সিরিঞ্জকে একটি জলপূর্ণ রাবার টিউবের দুপ্রান্তে শক্তভাবে আটকানো হল। ছোটো ও বড়ো পিস্টনের ব্যাস যথাক্রমে 1.0 cm এবং 3.0 cm। (a) যখন ছোটো পিস্টনে 10 N বল প্রয়োগ করা হয় তখন বড়ো পিস্টনে প্রযুক্ত বল কত ? (b) যদি ছোটো পিস্টনকে 6.0 cm ভেতরের দিকে প্রবেশ করানো হয়, তবে বড়ো পিস্টনটি বাইরের দিকে কতদুর সরবে ?

উত্তর (a) যেহেতু সমস্ত প্রবাহীর মধ্য দিয়ে চাপ অপরিবর্তিত মানে সঞ্জালিত হয়, তাই

$$F_2 = \frac{A_2}{A_1} F_1 = \frac{\pi \left(3/2 \times 10^{-2} \, m\right)^2}{\pi \left(1/2 \times 10^{-2} \, m\right)^2} \times 10 \, N$$

= 90 N

আর্কিমিডিস (287–212 B.C.) Archimedes

আর্কিমিডিস ছিলেন একজন বিখ্যাত দার্শনিক, গণিতজ্ঞ, বিজ্ঞানী এবং প্রকৌশলী (engineer)। তিনি catapult (প্রচলিত অর্থে গুলতি) আবিষ্কার করেন এবং পুলি ও লিভারের একটি পম্বতির উদ্ভাবন করেন যার সাহায্যে ভারী বস্তুকে নাড়াচাড়া করা যায়। তাঁর নিজ রাজ্য সিরাকাস (Syracuse) এর রাজা হিরো টু (Hiero II) তাঁকে বললেন যে উনার সোনার মুকুটকে না নন্ট করে বলতে হবে যে মুকুটের মধ্যে অন্য কোনো সস্তা সংকর ধাতু মিশ্রিত আছে কিনা। তিনি যখন তাঁর বাথটবে অবগাহন

করতে নামলেন তখন তিনি তাঁর আপাত ওজন হ্রাস উপলব্ধি করেছিলেন এবং এথেকেই তিনি এই সমস্যার সমাধান করেছিলেন। কথিত আছে যে, ওই সময় তিনি উৎফুল্ল হয়ে সিরাকাস এর রাস্তা দিয়ে বিবস্ত্র অবস্থায় ''ইউরেকা ইউরেকা'' চিৎকার করে দৌড়াচ্ছিলেন। ''ইউরেকা ইউরেকার'' অর্থ হল ''আমি পেয়ে গেছি, আমি পেয়ে গেছি।''

(b) জলকে সম্পূর্ণ অসংনম্য ধরা যায়। ছোটো পিস্টন কর্তৃক ভেতরের দিকে অতিক্রান্ত আয়তন বড়ো পিস্টন কর্তৃক বাইরের দিকে অতিক্রান্ত আয়তনের সমান হয়।

$$L_{1} A_{1} = L_{2} A_{2}$$
$$L_{2} = \frac{A_{1}}{A_{2}} L_{1} = \frac{\pi (1/2 \times 10^{-2} \text{ m})^{2}}{\pi (3/2 \times 10^{-2} \text{ m})^{2}} \times 6 \times 10^{-2} \text{ m}$$

 $\simeq 0.67 \times 10^{-2} \,\mathrm{m} = 0.67 \,\mathrm{cm}$

বিশেষ দ্রন্টব্য যে বায়ুমণ্ডলীয় চাপ দুই পিস্টনের ক্ষেত্রেই সমানভাবে প্রযোজ্য এবং এক্ষেত্রে একে উপেক্ষা করা হয়েছে।

উদাহরণ 10.6 একটি গাড়ী উত্তোলক যন্ত্রে (car lift) সংকুচিত বায়ু একটি 5.0 cm ব্যাসার্ধবিশিষ্ট পিস্টনের উপর F₁ বল প্রয়োগ করে। এই চাপ সঞ্চালিত হয়ে 15 cm ব্যাসার্ধবিশিষ্ট দ্বিতীয় একটি পিস্টনে পড়ে (চিত্র 10.6)। যদি উত্তোলিত গাড়ীর ভর 1350 kg হয়, তবে F₁ এর মান বের করো। এ কাজটি সম্পাদন করতে কত চাপ প্রয়োজন? (g=9.8 ms⁻²).

উত্তর যেহেতু চাপ মান অপরিবর্তিতভাবে সমস্ত তরলে সঞ্চালিত হয়, তাই

$$\begin{split} F_1 &= \frac{A_1}{A_2} F_2 = \frac{\pi (5 \times 10^{-2} \text{ m})^2}{\pi (15 \times 10^{-2} \text{ m})^2} \ (1350 \text{ kg} \times 9.8 \text{ m s}^{-2}) \\ &= 1470 \text{ N} \\ &\approx 1.5 \times 10^3 \text{ N} \\ & \text{এই বল সৃষ্টিকারী বায়ু চাপের মান} \end{split}$$

$$P = \frac{F_1}{A_1} = \frac{1.5 \times 10^3 \,\mathrm{N}}{\pi \left(5 \times 10^{-2}\right)^2 \,\mathrm{m}} = 1.9 \times 10^5 \,\mathrm{Pa}$$

এই মান মোটামুটি বায়ুচাপের দ্বিগুণ। মোটরগাড়িতে (automobiles) হাইড্রোলিক ব্রেক ও একই নীতিতে কাজ করে। যখন আমরা পা দ্বারা নিয়ন্ত্রক পিস্টনে একটি ক্ষুদ্র বল প্রয়োগ করি, তখন সে পিস্টনটি নিয়ন্ত্রক চোঙের ভেতর সরে যায় এবং এক্ষেত্রে

উৎপন্ন চাপ ব্রেকওয়েলের মধ্য দিয়ে সঞ্চালিত হয়ে বড়ো পিস্টনে প্রযুক্ত হয়। এভাবে সৃষ্ট একটি বড়ো মানের বল বড়ো পিস্টনে প্রযুক্ত হয়ে পিস্টনটিকে নীচের দিকে ধাক্বা দেয়, ফলে ব্রেক সো প্রসারিত হয়ে ব্রেক লাইন বরাবর ধাক্বা দেয়। এভাবে পাদানিতে (pedal) প্রযুক্ত ক্ষুদ্রমানের বল বৃহৎ মানে পরিবর্তিত হয়ে চাকাকে মন্দীভূত করে। এই প্রক্রিয়ার একটি গুরুত্বপূর্ণ উপকারিতা হল যে পাদানিতে প্রযুক্ত চাপ চারটি চাকার সঙ্গে যুক্ত সবগুলি চোঙের মধ্য দিয়ে সঞ্চালিত হয়, ফলে সবগুলো চাকায় সমপরিমাণ ব্রেকিং-এর প্রভাব পড়ে।

10.3 ধারারেখ প্রবাহ (STREAMLINE FLOW)

এখন পর্যন্ত আমরা স্থির প্রবাহী সম্পর্কে অধ্যয়ন করেছি। গতিশীল প্রবাহীর অধ্যয়ন প্রবাহীর গতিবিদ্যা (fluid dynamics) হিসাবে পরিচিত। যখন কোনো একটি জলের টেপকে ধীরে ছাড়া হয়, প্রথমদিকে জলের প্রবাহ সুযম থাকে কিন্তু জলের বহির্গমন বেগ বৃদ্বি পেলে জলপ্রবাহ সুযম থাকে না। প্রবাহীর গতির আলোচনায় আমরা নির্দিন্ট সময়ে গতিপথের একটি নির্দিন্ট বিন্দুতে প্রবাহীর বিভিন্ন কণাগুলোতে কী হয় তা লক্ষ করবো। যদি কোনো বিন্দুকে অত্রিক্রম করার সময় প্রবাহীর প্রতিটি কণার সময়ের সঙ্গে গতিবেগ একই থাকে তবে সে প্রবাহীর প্রতিটি কণার সময়ের সঙ্গে গতিবেগ একই থাকে তবে সে প্রবাহীর প্রিকটি কণার গমরে সঙ্গে গতিবেগ একই থাকে তবে সে প্রবাহীর প্রতিটি কণার সময়ের সঙ্গে গতিবেগ একই থাকে তবে সে প্রবাহীরে স্থির প্রবাহী বলে। এর অর্থ এই নয় যে, প্রবাহীর বিভিন্ন বিন্দুতে গতিবেগ একই হবে। একটি কণার গতিবেগ প্রবাহীর একবিন্দু থেকে অন্যবিন্দুতে অবস্থান পরিবর্তনের সঙ্গে সঙ্গে পরিবর্তন হতে পারে। এর অর্থ হল অন্য কোনো একটি বিন্দুতে প্রবাহী কণার বেগ বিভিন্ন হতে পারে, কিন্ডু আন্যান্য কণাগুলো প্রবাহীর ঐ নির্দিন্ট বিন্দুকে অত্রিক্রম করার সময় একই আচরণ করবে। প্রত্যেক কণা একটি সুয্বম পথ বরাবর অত্রিক্রম করবে এবং কোনো একটি কণা অন্য কণার পথকে অত্রিক্রম করবে না।

চিত্র 10.7 ধারারেখ প্রবাহের অর্থ (a) একটি প্রবাহী কণার বিশেষ (typical) গতিপথ ; (b) ধারারেখ প্রবাহ অঞ্জল।

শান্ত প্রবাহের অধীন কণাগুলোর গতিপথ হল ধারারেখ (streamline)। এর সংজ্ঞা এভাবে দেওয়া যায় যে ইহা হল একপ্রকার বর্রুপথ যার যে-কোনো বিন্দুতে স্পর্শক ওই বিন্দুতে প্রবাহীর বেগের দিক্ নির্দেশ করে। 10.7 (a) চিত্রে প্রদর্শিত একটি কণার বেগ নেওয়া হল, সময়ের সঙ্গে প্রবাহীর একটি কণা কীভাবে গতিশীল হয় তা বব্রুপথটি বর্ণনা করে। PQ বক্রপথটি হল প্রবাহিত প্রবাহীর স্থায়ী নকশা; যা বর্ণনা করে যে প্রবাহী কীভাবে প্রবাহিত হয়। দুটি ধারারেখ কখনোই পরস্পরকে ছেদ করে না, যদি তারা তা করে, তাহলে ওই বিন্দুতে আগত একটি প্রবাহী কণা একপথে বা অন্যপথে যেতে পারবে এবং প্রবাহী আর শান্ত থাকবে না। সুতরাং শান্ত প্রবাহে, প্রবাহের নকশা সময়ের সঞ্চো অপরিবর্তিত থাকে ৷ আমরা খুব কাছাকাছি প্রবাহী রেখাগুলোকে কীভাবে অঙ্কন করবো ? যদি আমরা প্রবাহিত প্রতিটি কণার প্রবাহরেখা দেখতে চাই তবে তাকে সসীম সন্তত রেখাগুচ্ছ দ্বারা প্রকাশ করবো। প্রবাহীর গতি অভিমুখের সঙ্গে লম্ব কয়েকটি তল কল্পনা করি। যেমন চিত্র 10.7 (b) এর তিনটি বিন্দু P, Q এবং R তে দেখানো হয়েছে। তলগুলোকে এভাবে ধরা হয়েছে যে তাদের সীমানাগুলো সমজাতীয় ধারারেখা দ্বারা সীমাবন্ধ। এর অর্থ হল উল্লিখিত P, R এবং Q তলগুলোর মধ্যদিয়ে অতিক্রান্ত প্রবাহী কণার সংখ্যা সমান। যদি এই তিন বিন্দু P, Q এবং R তে কল্পিত তলগুলোর ক্ষেত্রফল যথাক্রমে $A_{\mathrm{p}}A_{\mathrm{R}}$ এবং A_{Q} হয় এবং কণার দ্রুতি $v_{
m p}, v_{
m R}$ এবং $v_{
m O}$ হয় তবে ক্ষুদ্র সময় অবকাশ Δt তে $A_{
m p}$ তলের মধ্য দিয়ে অতিক্রান্ত প্রবাহীর ভর $\Delta m_{
m p}$ হল $(
ho_{
m p}A_{
m p}v_{
m p}\,\Delta t)$ । একইভাবে ক্ষুদ্র সময় Δt তে $A_{
m R}$ ক্ষেত্রফল দিয়ে অতিক্রান্ত প্রবাহীর ভর $\Delta m_{
m R}$ হল $ho_{
m R} A_{
m R} v_{
m R} \Delta t$ এবং $A_{
m O}$ ক্ষেত্রফলের মধ্য দিয়ে অতিক্রান্ত প্রবাহীর ভর $\Delta m_{
m o}$ হল $ho_{
m o}A_{
m o}v_{
m o}\,\Delta t$ । এই তিনক্ষেত্রেই প্রবাহিত প্রবাহীর ভর একই হয়।

সুতরাং,

$$\rho_{\rm p}A_{\rm p}v_{\rm p}\Delta t = \rho_{\rm R}A_{\rm R}v_{\rm R}\Delta t = \rho_{\rm Q}A_{\rm Q}v_{\rm Q}\Delta t \tag{10.9}$$
অসংনম্য প্রবাহীর প্রবাহের ক্ষেত্রে

ρ_P = ρ_R = ρ_Q সুতরাং 10.9 নং সমীকরণ থেকে

 $A_{\rm P} v_{\rm P} = A_{\rm R} v_{\rm R} = A_{\rm Q} v_{\rm Q}$

(10.10)

এই সমীকরণকে বলা হয় ধারাবাহিকতার সমীকরণ (equation of continuity) এবং ইহা অসংনম্য প্রবাহীর প্রবাহের ক্ষেত্রে ভরের সংরক্ষণের বিবৃতি।

সাধারণভাবে, Av=ধ্রুবক

(10.11)

Av কে বলা হয় আয়তন ফ্লাক্স বা প্রবাহের হার এবং এর মান সমস্ত নলব্যা পী ধুবক থাকে। এভাবে নলের সরু অংশে যেখানে প্রবাহীরেখাগুলো কাছাকাছি থাকে, সেখানে প্রবাহীর গতিবেগ বৃদ্ধি পায় আবার নলের স্ফীত অংশে প্রবাহীর গতিবেগ হ্রাস পায়। চিত্র 10.7b থেকে এটা স্পফ্ট যে $A_{\rm R} > A_{\rm Q}$ বা $v_{\rm R} < v_{\rm Q}$ এবং প্রবাহীর বেগ R থেকে Q এর দিকে যাওয়ার সময় বৃদ্ধি পায়। এটা অনুভূমিক নলে চাপের পার্থক্যের জন্য হয়। প্রবাহীর কম গতিবেগের জন্য শান্তপ্রবাহ অর্জিত হয়। এইবেগ একটা নির্দিষ্ট সীমা অতিক্রম করলে প্রবাহী শান্ত থেকে অশান্ত হয়ে পড়ে, এই সীমাস্থ বেগকে বলে সন্ধিবেগ (Critical velocity)। যখন দুতগতি সম্পন্ন প্রবাহ কোনো পাথরের মধ্যে পড়ে, তখন ছোটো ছোটো ঘূর্ণির ফেনা তৈরি হয় যাদেরকে আমরা সাদা জলের ধারা (White water rapids) বলি।

চিত্র 10.8 এ আদর্শ ধারারেখ প্রবাহকে দেখানো হয়েছে। উদাহরণ হিসাবে, 10.8(a) নং চিত্রে স্তরিত প্রবাহ দেখানো হয়েছে।

10.4 বার্নোলির নীতি (BERNOULLI'S PRINCIPLE)

প্রবাহীর প্রবাহ হল একটি জটিল প্রক্রিয়া। কিন্তু শস্তির সংরক্ষণ সূত্র ব্যবহার করে আমরা শান্ত প্রবাহ বা ধারারেখ প্রবাহের কিছু গুরুত্বপূর্ণ বৈশিষ্ট্য পেতে পারি।

ধরি একটি প্রবাহী একটি অসম প্রস্থচ্ছেদ বিশিষ্ট নলের মধ্য দিয়ে প্রবাহিত হচ্ছে। 10.9 নং চিত্রে প্রদর্শিত নলটির বিভিন্ন অংশ বিভিন্ন উচ্চতায় অবস্থিত। এখন ধরি একটি অসংনম্য তরল শান্তপ্রবাহে নলটির মধ্য দিয়ে প্রবাহিত হচ্ছে। ইহার বিভিন্ন বিন্দুতে বেগ, ধারাবাহিকতার সমীকরণ অনুসারে অবশ্যই বিভিন্ন হবে। এই ত্বরণের জন্য একটি বলের প্রয়োজন যা চারিদিকের তরল দ্বারা সৃষ্টি হয়, তারজন্য প্রবাহীর বিভিন্ন অংশে চাপের অবশ্যই পার্থক্য থাকতে হবে। বার্নোলির সমীকরণ হল একটি সাধারণ সমীকরণ যা নলের দুটি বিন্দুতে চাপের পার্থক্যের সঙ্গে বেগের পার্থক্য (গতিশক্তির পার্থক্য) এবং উচ্চতার পার্থক্যের (স্থিতিশক্তির পার্থক্য) সম্পর্ক প্রকাশ করে। 1738 খ্রিস্টাব্দে সুইস্ পদার্থ বিজ্ঞানী ডেনিয়্যাল বার্নোলি এই সম্পর্কটি উদ্ভাবন করেন।

ଥবাহীর দুটি অঞ্জল, 1 (অর্থাৎ BC) এবং 2 (অর্থাৎ DE) বিবেচনা করি। ধরি প্রথমে প্রবাহী B এবং D এর মধ্যে অবস্থিত। একটি অতি ক্ষুদ্র সময় Δt তে প্রবাহীটি গতিশীল হবে। ধরি B তে প্রবাহীর বেগ v_1 এবং D তে বেগ v_2 , তাহলে প্রথমে B তে থাকা প্রবাহী $v_1\Delta t$ দূরত্ব অতিক্রম করে C তে পৌছবে ($v_1\Delta t$ এর মান এত ক্ষুদ্র যে আমরা BC অংশকে সমপ্রস্থচ্ছেদযুক্ত ধরে নিতে পারি)। একই Δt সময় অবকাশে D তে থাকা প্রবাহী $v_2\Delta t$ দূরত্ব অতিক্রম করে E তে পৌঁছাবে। উল্লিখিত আবন্ধ অঞ্চল দুটির সম্মুখ সমতল প্রস্থচ্ছেদের ক্ষেত্রফল $A_1 \otimes A_2$ তে ক্রিয়াশীল চাপ হল যথাক্রমে P_1 এবং P_2 । বামপ্রান্ডের BC অংশের প্রবাহীর উপর কৃতকার্য হল $W_1 = P_1A_1(v_1\Delta t) = P_1\Delta V$ । যেহেতু দুইপ্রান্তে একই আয়তন ΔV প্রবাহিত হবে (ধারাবাহিকতার সমীকরণ অনুযায়ী), তাই DE প্রান্ডের প্রবাহী দ্বারা কৃতকার্য $W_2 = P_2A_2(v_2\Delta t) = P_2\Delta V$; বা প্রবাহীর উপর কৃতকার্য হল $-P_2\Delta V$ । তাই প্রবাহীর উপর মোট কৃতকার্য হল

 $W_1 - W_2 = (P_1 - P_2) \Delta V$

এই কার্যের একটি অংশ গতিশস্তিতে পরিবর্তিত হবে এবং অন্য অংশটি অভিকর্ষীয় স্থিতিশস্তিতে পরিবর্তিত হবে। যদি প্রবাহীর ঘনত্ব ρ হয় এবং $\Delta m = \rho A_1 v_1 \Delta t = \rho \Delta V$ ভরের প্রবাহী Δt সময়ে নলের মধ্য দিয়ে প্রবাহিত হয়, তাহলে অভিকর্ষীয় স্থিতিশস্তির পরিবর্তন

 $\Delta U = \rho g \Delta V (h_2 - h_1)$ গতিশস্তির পরিবর্তন

$$\Delta K = \left(\frac{1}{2}\right) \rho \,\Delta V \left(v_2^2 - v_1^2\right)$$

আমরা এই আয়তনের প্রবাহীর উপর কার্যশক্তির উপপাদ্য প্রয়োগ (অধ্যায়-6) করে পাই,

$$(P_1 - P_2) \Delta V = \left(\frac{1}{2}\right) \rho \,\Delta V (v_2^2 - v_1^2) + \rho g \Delta V (h_2 - h_1)$$

এখন আমরা প্রতিটি পদকে ΔV দ্বারা ভাগ করে পাই,

$$(P_1 - P_2) = \left(\frac{1}{2}\right) \rho (v_2^2 - v_1^2) + \rho g (h_2 - h_1)$$

উপরের পদগুলোকে সাজিয়ে লিখে পাই,

ডেনিয়েল বার্নৌলি (Daniel Bernoulli) (1700–1782)

"ডেনিয়েল বার্নৌলি" ছিলেন একজন সুইস বিজ্ঞানী ও গণিতজ্ঞ যিনি "লিওনার্ড ইউলার" কে সঙ্গো নিয়ে দশবার গণিতের "একাডেমি অফ্ ফ্রেন্স" সম্মান লাভ করেছিলেন। তিনি চিকিৎসাবিজ্ঞান নিয়েও অধ্যয়ন করেছিলেন এবং কিছুদিনের জন্য সুইজারল্যান্ডের ব্যাসিলে শারীর সংস্থানবিদ্যা (anatomy) ও উদ্ভিদবিদ্যার (botany) অধ্যাপক হিসাবে কাজ করেছিলেন। তাঁর সর্বাপেক্ষা পরিচিত কাজ ছিল প্রবাহী গতিবিদ্যা — যে বিষয়টিতে তিনি একটিমাত্র নীতি : "শক্তির সংরক্ষণ সূত্র" থেকে প্রতিষ্ঠা করেছিলেন। তাঁর একাজে যুক্ত ছিল কলনবিদ্যা, সম্ভাবনা তত্ত্ব (probability), তারের কম্পনের সূত্র (theory of vibrating strings) এবং প্রায়োগিক গণিত (applied দিন্দিক প্রদার্থবিদ্যার জনক বলা হয়।

mathematics)। তাকে গাণিতিক পদার্থবিদ্যার জনক বলা হয়।

$$P_{1} + \left(\frac{1}{2}\right)\rho v_{1}^{2} + \rho g h_{1} = P_{2} + \left(\frac{1}{2}\right)\rho v_{2}^{2} + \rho g h_{2}$$

ইহাই হল **বার্নোলির সমীকরণ**।এখানে উল্লিখিত অঞ্চল 1 এবং 2 হল প্রবাহীর নল বরাবর যে-কোনো দুটি অঞ্চল, তাই সমীকরণটিকে সাধারণভাবে লেখা যায়

$$P + \left(\frac{1}{2}\right)\rho v^2 + \rho g h = \mbox{space of } q \mbox{(10.13)}$$

চিত্র 10.9 একটি অসম প্রস্থচ্ছেদ বিশিষ্ট নলের মধ্য দিয়ে আদর্শ প্রবাহীর প্রবাহ। Δt সময়ে v₁Δt দৈর্ঘ্য বিশিষ্ট অংশ হতে প্রবাহী v₂Δt দৈর্ঘ্যের অংশে পৌঁছে।

বার্নোলির সম্পর্কটিকে ভাষায় প্রকাশ করলে দাঁড়ায় : ধারারেখ

প্রবাহের ক্ষেত্রে চাপ (P), একক আয়তনে গতিশক্তি $\left(\frac{\rho v^2}{2}\right)$ এবং একক আয়তনের স্থিতিশক্তির (ρgh) যোগফল ধ্রুবক থাকে।

শক্তির সংরক্ষণ সূত্র প্রয়োগের ক্ষেত্রে মনে রাখতে হবে, আমরা ধরে নিয়েছি ঘর্ষণের ফলে শস্তির অপচয় হয় না। কিন্ডু প্রকৃতপক্ষে যখন প্রবাহ প্রবাহিত হয়, অভ্যন্তরীণ ঘর্ষণের জন্য কিছু শস্তির অপচয় হয়। প্রবাহী মাধ্যমের প্রবাহের সময় বিভিন্ন স্তরগুলো বিভিন্ন গতিবেগে গতিশীল হয় বলে এটা সৃষ্টি হয়। এই স্তরগুলো একে অপরের উপর ঘর্ষণবল প্রয়োগ করে, তার ফলে শস্তির অপচয় হয়। প্রবাহীর এই ধর্মকে বলে সান্দ্রতা এবং ইহাকে পরবর্তী অনুচ্ছেদে বিশদভাবে আলোচনা করা হয়েছে। এই অপচয়ী শস্তি প্রবাহীতে তাপশস্তিতে রূপান্তরিত হয়। এভাবে বার্নোলির সমীকরণটি আদর্শ এবং শূন্য সান্দ্রতাবিশিন্ট প্রবাহী বা অসান্দ্র প্রবাহীর ক্ষেত্রে প্রযোজ্য। বার্নোলির উপপাদ্যের আরেকটি

সীমাবন্ধতা হল যে প্রবাহীকে অবশ্যই অসংনম্য প্রবাহী হতে হবে, কারণ

এক্ষেত্রে প্রবাহীর স্থিতিস্থাপক শক্তিকে গণনাতে আনা হয়নি। বাস্তবে এর অনেক ব্যবহারিক উপযোগিতা আছে এবং কম সান্দ্রতা বিশিষ্ট অসংনম্য প্রবাহীর বিভিন্ন প্রকার আচরণ ব্যাখ্যা করতে ব্যবহৃত হয়। আবার অশান্ত বা বিক্ষুব্ধ প্রবাহীর ক্ষেত্রেও বার্নোলির উপপাদ্য প্রযোজ্য হয় না কারণ এক্ষেত্রে বেগ ও চাপের মান সময়ের সঙ্গো সঙ্গো অনবরত পরিবর্তিত হয়।

যখন একটি প্রবাহী স্থির থাকে অর্থাৎ তার বেগ সর্বত্র শূন্য হয়, তখন বার্নোলির সমীকরণটি দাঁড়ায়

$$P_{1} + \rho g h_{1} = P_{2} + \rho g h_{2}$$
$$(P_{1} - P_{2}) = \rho g (h_{2} - h_{1})$$

(10.12)

ইহা (10.6) নং সমীকরণের সদৃশ।

10.4.1 নির্গমন বেগ : টরিসেলির সূত্র (Speed of Efflux: Torricelli's Law)

নির্গমন (efflux) কথার অর্থ হল প্রবাহীর বহিঃগমন। টরিসেলি আবিষ্কার করেছিলেন, কোনো খোলা ট্যাংক থেকে যে বেগে প্রবাহী নির্গত হয় তা অবাধে পতনশীল বস্তুর সূত্রের সঙ্গো সামঞ্জস্যপূর্ণ। ধর একটি ট্যাংক ρ ঘনত্বের তরল দিয়ে পূর্ণ করে, পাত্রের তলদেশ থেকে y_1 উচ্চতায় এর গায়ে একটি ছিদ্র করা হল (চিত্র 10.10)। তরলের y_2 উচ্চতায় খোলা পৃষ্ঠে বায়ুর চাপ হল P। ধারাবাহিকতার সমীকরণ (সমীকরণ 10.10) থেকে পাই

$$v_1 A_1 = v_2 A_2$$
$$v_2 = \frac{A_1}{A_2} v_1$$

বা,

চিত্র 10.10 টরিসেলির সূত্র।বার্নোলির উপপাদ্যের প্রয়োগ হিসাবে পাত্রের দেয়ালে ছিদ্র দিয়ে v, বেগে প্রবাহীর বেগ। যদি পাত্রটির উপরের তলটি খোলা থাকে তবে v₁ = √2 g h.

চিত্র 10.11 ভেঞ্জুরিমিটার যন্ত্রের চিত্র

$$P_{1} - P_{2} = \rho_{m}gh = \frac{1}{2} \rho v_{1}^{2} \left[\left(\frac{A}{a} \right)^{2} - 1 \right]$$

সুতরাং, নলের প্রশস্ত অংশে তরলের বেগ

$$v_{1} = \sqrt{\left(\frac{2\rho_{m}gh}{\rho}\right)} \left(\left(\frac{A}{a}\right)^{2} - 1\right)^{-\gamma^{2}}$$
(10.17)

এই মিটারযন্ত্রের বহুল ব্যবহারিক প্রয়োগ আছে. অটো মোবাইলের কার্বোরেটরে ভেঞ্জুরিনালী (সরু মুখনল) দিয়ে বায়ু খুব দ্রুতবেগে প্রবাহিত হয়। ঐ সময় সরু নলমুখে চাপ হ্রাস পায় এবং পেট্রোল (গ্যাসোলিন) চুষিত হয়ে (sucked up) নির্দিষ্ট কক্ষে সঠিকভাবে বায়ুর সঙ্গো মিশ্রিত হয়ে দহনের জন্য প্রয়োজনীয় জ্বালানী হিসাবে নির্গত হয়। ফিল্টার পাম্প বা অ্যাসপাইরেটর, বুনসেন বার্নার, অটোমাইজার এবং (চিত্র 10.12) সুগন্ধি বা কীটনাশক ছড়ানোর কাজে ব্যবহৃত স্প্রেয়ার যন্ত্র এই নীতিতে কাজ করে।

চিত্র 10.12 স্প্রে-গান যন্ত্র, পিস্টন উচ্চগতির বায়ুতে বল প্রয়োগ করে, ফলে পাত্রের গলায় চাপ হ্রাস পায়।

যদি ট্যাংকের প্রস্থচ্ছেদের ক্ষেত্রফল A_2 এর মান ছিদ্রের প্রস্থচ্ছেদ অপেক্ষা অনেক বেশি হয় $(A_2 >> A_1)$, তাহলে আমরা প্রবাহীর শীর্ষকে প্রায় স্থির ধরতে পারি অর্থাৎ $v_2 = 0$ । এখন 1 ও 2 নং বিন্দুতে বার্নোলির সমীকরণ ব্যবহার করে ছিদ্রে চাপ $P_1 = P_a$ (বায়ুমণ্ডলীয় চাপ), ধরে নিয়ে 10.12 নং সমীকরণ থেকে

$$P_a + \frac{1}{2} \rho v_1^2 + \rho g y_1 = P + \rho g y_2$$

 $y_2 - y_1$ কে h ধরে আমরা পাই

$$v_1 = \sqrt{2g h + \frac{2(P - P_a)}{\rho}}$$
 (10.14)

যখন $P >> P_a$ এবং 2 g h কে উপেক্ষা করা গেলে, নির্গমন বেগকে আধারের চাপ দ্বারা নির্ণয় করা যায়। এ ধরনের অবস্থা রকেট উৎক্ষেপণে ব্যবহৃত হয়। অন্যভাবে বলা যায় যদি পাত্রটি বায়ুমণ্ডলে খোলা থাকে, তাহলে $P = P_a$ এবং

 $v_1 = \sqrt{2 g h}$ (10.15)

ইহা হল বিনা বাধায় পতনশীল বস্তুর গতিবেগের সমীকরণ (10.15) এবং একে **টেরিসেলির সূত্র** বলে।

10.4.2 ভেঞ্জুরিমিটার (Venturi-meter)

অসংনম্য প্রবাহীর প্রবাহবেগ পরিমাপ করার একটি যন্ত্রের নাম হল ভেঞ্জুরিমিটার। চিত্র 10.11তে দেখানো এই যন্ত্রে প্রশস্ত ব্যাসযুক্ত লম্বা নলের মাঝের স্থান সামান্য সংকুচিত থাকে। U-আকৃতি বিশিষ্ট একটি ম্যানোমিটার ও ইহার সঙ্গো যুক্ত থাকে, যার একপ্রাস্ত ভেঞ্জুরিমিটার নলের প্রশস্ত অংশের সঙ্গো যুক্ত এবং অন্যপ্রাস্ত নলের সংকুচিত অংশের সঙ্গে যুক্ত (চিত্র 10.11)। ম্যানোমিটারটি ρ_m ঘনত্বের তরল দ্বারা পূর্ণ। নলের A প্রস্থচ্ছেদ বিশিষ্ট প্রশস্ত অংশে প্রবাহিত তরলের বেগ v_1 এবং a প্রস্থচ্ছেদ বিশিষ্ট সংকুচিত অংশে বেগ v_2 এর মান ধারাবাহিকতার সমীকরণ 10.10 নং এর সাহায্যে পাওয়া যায়, যার মান হল

$$v_2 = \frac{A}{a}v_1$$
। এখন বার্নোলির সমীকরণ ব্যবহার করে পাই,

$$P_{1}^{+} \frac{1}{2} \rho v_{1}^{2} = P_{2}^{+} \frac{1}{2} \rho v_{1}^{2} (A/a)^{2}$$

$$\therefore P_{1}^{-} P_{2}^{-} = \frac{1}{2} \rho v_{1}^{2} \left[\left(\frac{A}{a} \right)^{2} - 1 \right]$$
(10.16)

এই চাপের পার্থক্যের জন্য U নলের সরু প্রান্তের সঞ্চো যুক্ত নলের মধ্য দিয়ে তরলের উচ্চতা অন্যপ্রান্ত থেকে উপরে থাকে। এই উচ্চতার পার্থক্য h থেকে চাপের পার্থক্যের পরিমাপ পাওয়া যায়।

উদাহরণ 10.7 রক্তের বেগ : একটি অচেতন কুকুরের বড়ো
ধমনীতে রক্তের প্রবাহকে ভেঞ্চুরিমিটার যন্ত্রের সাহায্যে দিক
পরিবর্তন করা হল। ভেঞ্চুরিমিটার যন্ত্রের প্রশস্ত অংশের
প্রস্থচ্ছেদের ক্ষেত্রফল ধমনীর ক্ষেত্রফলের সমান যার মান A
= 8 mm²। সরু অংশের ক্ষেত্রফল a = 4 mm²। ধমনীতে
চাপের হ্রাস 24 Pa হলে ধমনীতে রক্তের বেগ কত ?

উত্তর রক্তের ঘনত্বকে 10.1 নং টেবিল থেকে নেওয়া হয় যার মান

1.06 × 10³ kg m³। ক্ষেত্রফলদ্বয়ের অনুপাত $\left(rac{A}{a}
ight)$ =2।(10.17) নং সমীকরণ ব্যবহার করে পাই

$$v_1 = \sqrt{\frac{2 \times 24 \text{Pa}}{1060 \text{ kgm}^{-3} \times (2^2 - 1)}} = 0.125 \text{ ms}^{-1}$$

10.4.3 রক্তপ্রবাহ এবং হৃদস্পন্দন স্তব্ধ (Blood Flow and Heart Attack)

ধমনীতে রক্তপ্রবাহকে বার্নৌলির নীতির সাহায্যে ব্যাখ্যা করা যায়। ভেতরের দেওয়ালে প্ল্যাক (plaque-ফ্যাটজাতীয় দ্রব্য) জমা হওয়ার কারণে ধমনী সংকুচিত হয়ে যায়। এই সংকুচিত ধমনীর মধ্য দিয়ে রক্ত প্রবাহিত করতে হৃদপিণ্ডের অতিরিক্ত ক্রিয়াশীলতা প্রয়োজন হয়ে পড়ে। এসকল অঞ্জলে রক্ত প্রবাহের বেগ বৃদ্ধি পায় যা ধমনীর অভ্যন্তরের রক্তচাপকে কমিয়ে দেয়, ফলে বাহ্যিক চাপে ধমনী বন্ধ হয়ে যেতে পারে। এই ধমনীগুলোকে খোলার জন্য হৃদপিও অধিকতর চাপ প্রয়োগ করে এবং অতিরিক্ত বলে রক্ত চলাচল করে। রক্ত তীব্রবেগে এই খোলামুখ দিয়ে বাইরে প্রবাহিত হওয়ার ফলে অভ্যন্তরীণ চাপ পুনরায় হ্রাস পায় এবং একই কারণে পুনরায় ধমনী নন্ট হয়। ফল হিসাবে হৃদপিঙ স্তব্ধ (heart attack) হয়ে যেতে পারে।

10.4.4 গতিশীল উত্তোলক (লিফ্ট) (Dynamic Lift)

গতিশীল উত্তোলক (লিফ্ট) হল একটি বস্তুর উপর ক্রিয়াশীল বল। যেমন উড়োজাহাজের ডানা, একটি হাইড্রোফোয়েল বা স্পিনিং বলের প্রবাহীর মধ্য দিয়ে গতি। ক্রিকেট, টেনিস, বেসবল বা গলফ-এর মতো খেলায় আমরা লক্ষ্য করি যে, একটি ঘূর্ণনযুক্ত বল (spinning ball) বায়ুর মধ্য দিয়ে যাওয়ার সময় অধিবৃত্তাকার পথ থেকে বিচ্যুতি ঘটে। এই বিচ্যুতিকে আংশিকভাবে বার্নৌলির নীতির সাহায্যে ব্যাখ্যা করা যায়।

- (i) ঘূর্ণনহীন বলের গতি (Ball moving without spin) : প্রবাহী সাপেক্ষে ঘূর্ণনহীন বলের চারিদিকের ধারারেখকে চিত্র 10.13(a) তে দেখানো হয়েছে। ধারারেখগুলোর সাদৃশ্যতা থেকে ইহা স্পন্ট যে বলের উপরের এবং নীচের অনুরূপ বিন্দুগুলোতে প্রবাহীর (বায়ুর) বেগ সমান, ফলে চাপের পার্থক্য শূন্য হয়। তাই বলের উপর বায়ু কোনো ঊর্ধ্বমুখী বা নিম্নমুখী বল (Force) প্রয়োগ করে না।
- (ii) ঘূর্ণনযুক্ত বলের গতি (Ball moving with spin) : একটি ঘূর্ণনশীল চলমান বল তার সঙ্গের বায়ুকে টেনে নিয়ে যায়। যদি বলের পৃষ্ঠতল বেশি অমসৃণ হয় তাহলে বেশি পরিমাণ বায়ুকে সঙ্গে টেনে নিয়ে যাবে। একইসঙ্গে ঘূর্ণন ও চলনযুক্ত বলের ক্ষেত্রে ধারারেখগুলোকে চিত্র 10.13(b) তে দেখানো হয়েছে। বলটি সামনের দিকে গতিশীল এবং তার সাপেক্ষে বায়ু পেছনের দিকে গতিশীল। সুতরাং বলের সাপেক্ষে ইহার উপরের বায়ুর বেগ বেশি এবং নীচের বায়ুর বেগ কম। এভাবে ধারারেখগুলো উপরের দিকে ঘন সন্নিবিন্ট হয় এবং নীচের দিকে ধারারেখগুলোর ঘনত্ব হ্রাস পায়।

এভাবে সৃষ্ট গতিবেগের পার্থক্যের ফলে উপরের এবং নীচের তলের মধ্যে চাপের পার্থক্য সৃষ্টি হয়। ফলে লন্ধি বল উধ্বর্মুখী হয় এবং বলের উপর ক্রিয়া করে। ঘূর্ণনের জন্য সৃষ্ট এই গতিশীল লিফ্টকে ম্যাগনাস এফেক্ট বা ম্যাগনাস ক্রিয়া বলে।

চিত্র 10.13 (a) স্থির গোলকের ক্ষেত্রে প্রবাহী ধারারেখভাবে অতিক্রম করছে, (b) একটি ঘড়ির কাঁটার দিক্ বরাবর ঘুরস্ত গোলকের চারিদিকে ধারারেখগুলো। (c) বিমানের পাখার সাথে বায়ুপ্রবাহ।

262

এরোফয়েল বা বিমানের পাখার উপর উত্তোলক বল : চিত্র 10.13 (c) তে একটি এরোফয়েলকে দেখানো হয়েছে যা একটি কঠিন আকৃতি বিশিষ্ট। যখন বিমান বায়ুর মধ্য দিয়ে অনুভূমিকভাবে গতিশীল হয় তখন একটি উধ্বর্মুখী গতীয় উত্তোলন পায়। বিমানের পাখাগুলোর ক্ষেত্রফল অনেকটা এরোফয়েলের অনুরূপ হয় যার চিত্র 10.13 (c) তে দেখানো হয়েছে, যার চারিদিকে ধারারেখা থাকে। যখন এই এরোফয়েলগুলো বায়ুর বিরুদ্ধে গতিশীল হয়, তখন প্রবাহের গতির সাপেক্ষে পাখাগুলোর সজ্জা এরূপ হয় যাতে পাখার নীচের অঞ্চলের তুলনায় উপরের অঞ্চলের ধারারেখাগুলো বেশি ঘন সন্নিবিষ্ট হয়। নীচের অঞ্চলের তুলনায় উপরের অঞ্চলের প্রবাহবেগ বেশি হয়। এর ফলে একটি উর্ধ্বমুখী বলের জন্য বিমানের ডানার গতীয় উত্তোলন ঘটে যা বিমানের ওজনকে প্রতিমিত করে। নিন্মের উদাহরণটি ইহাকে ব্যাখ্যা করে।

উদাহরণ 10.8 একটি পূর্ণ ভারবাহী বোয়িং (Boeing) উড়োজাহাজের ভর 3.3 × 10⁵ kg।এর সম্পূর্ণ পাখার ক্ষেত্রফল হল 500 m²। একটি নির্দিন্ট উচ্চতা বরাবর এর বেগ হল 960 km/h। (a) বিমানটির পাখার নীচের ও উপরের তলে ক্রিয়াশীল চাপের পার্থক্য বের করো। (b) বিমানের পাখার নীচের বায়ুর বেগের সাপেক্ষে উপরের বায়ুর বেগের কত আংশিক বৃদ্বি হয় তা বের করো (বায়ুর ঘনত্ব ρ = 1.2 kg m⁻³)।

উত্তর (a) চাপের পার্থক্যের জন্য সৃষ্ট ঊর্ধ্বমুখী বল দ্বারা বিমানের ওজন প্রশমিত হয়।

 $\Delta P \times A = 3.3 \times 10^5 \,\mathrm{kg} \times 9.8$

 $\Delta P = (3.3 \times 10^5 \text{ kg} \times 9.8 \text{ m s}^{-2}) / 500 \text{ m}^2$ = 6.5 × 10³ Nm⁻²

(b) 10.12 নং সমীকরণে আমরা উপরের এবং নীচের তলের উচ্চতার সামান্য পার্থক্যকে উপেক্ষা করেছি। তাদের মধ্যে চাপের পার্থক্য হল

$$\Delta P = \frac{\rho}{2} \left(\upsilon_2^2 - \upsilon_1^2 \right)$$

যেখানে v_2 এবং v_1 হল যথাক্রমে উপরের তলের উপর দিয়ে এবং নীচের তলের নীচ দিয়ে প্রবাহিত বায়ুর বেগ।

$$(v_2 - v_1) = \frac{2\Delta P}{\rho(v_2 + v_1)}$$

 $v_{av} = (v_2 + v_1)/2 = 960 \text{ km/h} = 267 \text{ m s}^{-1}$,
ধরে নিয়ে আমরা পাই.

$$(v_2 - v_1) / v_{\mathrm{av}} = \frac{\Delta P}{\rho v_{\mathrm{av}}^2} \approx 0.08$$

সুতরাং, বিমানের উপরের বায়ুর বেগ নীচের বায়ু অপেক্ষা মাত্র ৪ % বেশি হয়।

10.5 সান্দ্রতা (VISCOSITY)

অধিকাংশ প্রবাহীই আদর্শ নয় এবং তাদের গতিতে কিছু বাধার সৃষ্টি হয়। প্রবাহীর গতিতে বাধা সৃষ্টি হয় অভ্যন্তরীণ ঘর্ষণের জন্য যা কঠিন পদার্থ কোনো তলের উপর দিয়ে গতিশীল হওয়ার সময় যে ঘর্ষণ বল কাজ করে তার অনুরুপ। ইহাকে বলা হয় সান্দ্রতা (viscosity)। এই বল তখনই কাজ যখন তরলের বিভিন্ন তলের মধ্যে আপেক্ষিক গতি থাকে। ধরো আমরা একটি তরল যেমন তেল নিলাম যা দুটি কাচের তলের মধ্যে আবন্ধ [চিত্র 10.14 (a)]। নীচের তলটি স্থির এবং উপরের তলটি নীচের স্থির তলটির সাপেক্ষে v বেগে গতিশীল। যদি তেলকে মধু দ্বারা প্রতিস্থাপিত করা হয় তবে ঐ প্লেটটিকে একই বেগে গতিশীল করতে একটি বেশি মানের বলের প্রয়োজন। তাই আমরা বলি মধু হল তেল অপেক্ষা বেশি সান্দ্র। তলের সঙ্গে সংস্পর্শে থাকা তরলের বেগ তলের বেগের সমান। তাই উপরের তলের সঙ্গে সংস্পর্শে থাকা তরল স্তর v বেগে গতিশীল থাকে এবং নীচের স্থির তলের সঙ্গে সংস্পর্শে থাকা তরল স্তর স্থির থাকে। তরল স্তরগুলোর বেগ সুষমভাবে নীচের তল থেকে (শৃন্য বেগ) উপরের তলে (v বেগ) বৃদ্ধি পেতে থাকে। যে-কোনো তরলস্তরের ক্ষেত্রে তার উপরের স্তর তাকে সামনের দিকে টানে এবং নীচের স্তর পেছনের দিকে টানে। এভাবে স্তরগ্রলোর মধ্যে লব্দি বল সুষ্টি হয়। এধরনের প্রবাহকে বলে স্তরিত (laminar) প্রবাহ। কোনো একটি বইকে সমতল টেবিলের উপর রেখে তার উপরের পৃষ্ঠে একটি সমান্তরাল বল প্রয়োগ করলে তার পৃষ্ঠাগুলোতে যা হয় তেমনি, তরলের স্তরগুলোও একে অপরের উপর দিয়ে পিছলে যায়। যখন একটি প্রবাহী একটি নলের মধ্য দিয়ে প্রবাহিত হয়, তখন নলের অক্ষ বরাবর তরলের বেগ সর্বোচ্চ এবং যত নলের দেওয়ালের দিকে যাওয়া যায় ততই ধীরে ধীরে কমতে কমতে দেওয়াল সংলগ্ন স্তরে এই বেগ শূন্য হয়। চিত্র 10.14 (b) তে চোঙাকৃতি নলের ভেতরের তলে এই বেগ ধ্রবক থাকে।

এই গতির জন্য নির্দিন্ট মুহুর্তে তরলের একটি অংশের আকৃতি ABCD এর মতো এবং একটি ক্ষুদ্র সময় (Δt) পর ইহার আকৃতি AEFD এর মতো হয়। এই সময় অবকাশে তরলটিতে একটি কৃন্তন বিকৃতি $\Delta x/l$ সৃন্টি হয়। একটি প্রবাহিত প্রবাহীতে বিকৃতি সময়ের সঙ্গে সঙ্গে বৃন্দি পেতে থাকে। কঠিনের মধ্যে পীড়ন বিকৃতির উপর নির্ভরশীল হয় কিন্তু পরীক্ষার সাহায্যে দেখা যায় যে, প্রবাহীর ক্ষেত্রে পীড়ন বিকৃতির উপর নির্ভর না করে বিকৃতি পরিবর্তনের হার অর্থাৎ $\Delta x/(l \Delta t)$ বা v/lএর উপর নির্ভর করে। প্রবাহীর সান্দ্রতাঙ্ককে (উচ্চারণ 'ইটা') কৃন্তন পীড়ন ও বিকৃতির হারের অনুপাত হিসাবে সংজ্ঞায়িত করা হয়।

where,
$$\eta = \frac{F/A}{v/l} = \frac{Fl}{vA}$$
 (10.18)

(b) চিত্র 10.14 (a) একটি তরলস্তর দুটি সমান্তরাল কাচফলকের মধ্যে আবদ্ধ আছে, যেখানে নীচের কাচফলকটি স্থির এবং উপরের ফলকটি v বেগে ডানদিকে গতিশীল। (b) নলের মধ্য দিয়ে সান্দ্র প্রবাহের বেগ বণ্টন।

সান্দ্রতাঙ্গ্ন (η) এর একক হল পয়সলি (Pl) । এর অন্যান্য এককগুলো হল N s m⁻² বা Pa s । সান্দ্রতাঙ্গ্বের মাত্রা হল [ML⁻¹T⁻¹] । সাধারণত ঘন তরল যেমন আলকাতরা, রস্তু, গ্লিসারিন ইত্যাদি অপেক্ষা পাতলা তরল যেমন জল, অ্যালকোহল ইত্যাদি কম সান্দ্রতা বিশিষ্ট হয় । কিছু সাধারণ তরলের সান্দ্রতাঙ্গ্বের মান 10.2 নং সারণিতে দেখানো হয়েছে । আমরা রস্তু ও জলের দুটি ঘটনা উল্লেখ করব যা তোমাদের আকর্ষণীয় লাগবে । সারণি 10.2 থেকে দেখা যাচ্ছে যে রস্তু হল জল অপেক্ষা বেশি ঘন (বেশি সান্দ্র) । আবার 0 °C থেকে 37 °C পর্যন্ত সীমার মধ্যে রস্তের আপেক্ষিক সান্দ্রতা (η/η_{জল}) ধ্রুবক থাকে ৷ তাপমাত্রা বৃদ্ধির সঙ্গে সঙ্গো

উদাহরণ 10.9 একটি দড়ির সাহায্যে 0.010 kg ভরের একটি বস্তুকে (ভরহীন ও ঘর্ষণহীন) পুলির উপর দিয়ে ঝুলানো হল। দড়িটির অপর প্রান্তে 0.10 m² ক্ষেত্রফলবিশিস্ট একটি ধাতব ব্লক লাগানো আছে (চিত্র 10.15)। 0.30 mm পুরু একটি পাতলা তরলের সরকে ব্লক এবং টেবিলের মধ্যে রাখা হল। যখন ছাড়া হল ব্লকটি ডানদিকে 0.085 m s⁻¹ স্থিরবেগে গতিশীল হল। তরলটির সান্দ্রতাজ্ঞ্ব বের করো।

উত্তর দড়ির টানের জন্য ধাতব ব্লকটি ডানদিকে সরবে। টানের মান *m* ভরের ঝুলন্ড বস্তুর ওজনের সমান। সুতরাং কৃন্তন বল $F = T = mg = 0.010 \text{ kg} \times 9.8 \text{ m s}^{-2} = 9.8 \times 10^{-2} \text{ N}$ তরলের কৃন্তন পীড়ন $= F/A = \frac{9.8 \times 10^{-2}}{0.10} \text{ N/m}^2$ বিকৃতির হার $= \frac{v}{l} = \frac{0.085}{0.30 \times 10^{-3}}$ $\eta = \frac{916 \text{ y}}{100}$

$$= \frac{(9.8 \times 10^{-2} \text{ N}) (0.30 \times 10^{-3} \text{ m})}{(0.085 \text{ m s}^{-1}) (0.10 \text{ m}^2)}$$
$$= 3.46 \times 10^{-3} \text{ Pa s}$$

সারণি 10.2 কিছু প্রবাহীর সান্দ্রতাজ্ঞ

প্রবাহী	T(°C)	সান্দ্রতাঙ্ক (mPl)				
জল	20	1.0				
	100	0.3				
রন্ত	37	2.7				
মেশিন অয়েল	16	113				
	38	34				
গ্লিসারিন	20	830				
মধু	_	200				
বায়ু	0	0.017				
	40	0.019				

10.5.1 স্টোক্সের সূত্র :

যখন একটি বস্তু একটি প্রবাহীর মধ্য দিয়ে পড়ে, তখন ইহা তার সঙ্গো থাকা প্রবাহী স্তরকে টেনে নিয়ে যায়। প্রবাহীর বিভিন্ন স্তরের মধ্যে আপেক্ষিক গতির সৃষ্টি হয়। ফলে বস্তুটি একটি মন্দনক বল অনুভব করে। বৃষ্টিবিন্দুর পড়া এবং ঝুলন্ত দোলক পিঙ্চের গতি হল এ ধরনের গতির সাধারণ উদাহরণ। এটা দেখা গেছে যে, সান্দ্র বল বস্তুর বেগের

263

সমানুপাতিক এবং গতির বিপরীত অভিমুখী। অন্য যে রাশিগুলোর উপর এই বল F নির্ভর করে তারা হল প্রবাহীর সান্দ্রতাঙ্ক n এবং গোলকের (বস্তুর) ব্যাসার্ধ *a*। ইংরেজ বিজ্ঞানী স্যার জর্জ জি. স্টোক্স (1819– 1903) স্পন্টভাবে সান্দ্রতাজনিত টান *F* কে এভাবে প্রকাশ করেন

F=6 πη av (10.19) ইহাই স্টোক্সের সূত্র। আমরা স্টোক্সের সূত্রটি প্রতিষ্ঠা করব না।

এই সূত্রটি হল মন্দিত বলের একটি সুন্দর উদাহরণ যা বেগের সঙ্গে সমানুপাতিক। এখন একটি সান্দ্র মাধ্যমের ভেতর দিয়ে পড়ন্ত বস্তুর উপর এর প্রভাব সম্পর্কে আমরা পড়ব। আমরা বায়ুতে একটি বৃফিবিন্দুর কথা বিবেচনা করি। প্রথমে অভিকর্যের জন্য ইহার বেগ বৃদ্ধি পায়। বেগ বৃদ্ধির সঙ্গে সঙ্গে বাধাজনিত বল ও বৃদ্ধি পেতে থাকে। পরিশেষে যখন সান্দ্রতাজনিত মন্দনক বল এবং প্লবক বলের যোগফল বস্তুর উপর ক্রিয়াশীল অভিকর্ষজ বলের সমান হয় তখন লব্দ্বি বল শূন্য হয় এবং এরপর বস্তুতে আর ত্বরণ থাকে না। তারপর গোলকটি (বৃফিবিন্দুটি) স্থিরবেগে অবতরণ করতে থাকে। এভাবে সাম্যবস্থায় প্রাস্তিক বেগের (terminal velocity) মান v_i লেখা যায়

 $6\pi\eta av_{t} = (4\pi/3) a^{3} (\rho - \sigma)g$

যেখানে ho এবং σ হল যথাক্রমে গোলকের এবং প্রবাহীর ভর ঘনত্ব। সুতরাং আমরা পাই

 $v_{\rm t} = 2a^2 \left(\rho - \sigma\right)g / (9\eta)$ (10.20)

সুতরাং প্রান্তিকবেগ v_{t} এর মান গোলকের ব্যাসার্ধের বর্গের সমানুপাতিক এবং প্রবাহী মাধ্যমের সান্দ্রতাঙ্কের ব্যাস্তানুপাতিক।

তোমরা পুনরায় 6.2 উদাহরণকে এই প্রসঙ্গে বিবেচনা করতে পারো।

উদাহরণ 10.10 20°C উয়তায় রাখা একটি তেলপূর্ণ ট্যাঙ্কের মধ্যে 2.0 mm ব্যাসার্ধবিশিষ্ট একটি তামার বল 6.5 cm s⁻¹ প্রান্তিক বেগ নিয়ে পড়ছে। 20°C উয়তায় তেলের সান্দ্রতাঙ্ক গণনা করো।(তেলের ঘনত্ব 1.5 ×10³ kg m⁻³, তামার ঘনত্ব 8.9 × 10³ kg m⁻³)।

উত্তর দেওয়া আছে v_t=6.5 × 10⁻² ms⁻¹, a = 2 × 10⁻³ m, g = 9.8 ms⁻², ρ = 8.9 × 10³ kg m⁻³, σ = 1.5 × 10³ kg m⁻³. এখন (10.20) নং সমীকরণ থেকে পাই,

$$\eta = \frac{2}{9} \times \frac{(2 \times 10^{-3})^2 \text{ m}^2 \times 9.8 \text{ m} \text{ s}^{-2}}{6.5 \times 10^{-2} \text{ m} \text{ s}^{-1}} \times 7.4 \times 10^3 \text{ kg m}^{-3}$$
$$= 9.9 \times 10^{-1} \text{ kg m}^{-1} \text{ s}^{-1}$$

পদার্থবিদ্যা

10.6 রেনল্ডস্ সংখ্যা (REYNOLDS NUMBER)

যখন প্রবাহীর প্রবাহের হার বেশি হয় তখন প্রবাহ আর স্তরিত (laminar) থাকে না এবং তা অশান্ত (turbulent) হয়ে পড়ে। অশান্ত বা বিক্ষুব্ধ প্রবাহে গতিপথের যে-কোনো বিন্দুতে প্রবাহীর বেগ সময়ের সঙ্গো খুব দুত গতিতে এলোমেলোভাবে পরিবর্তিত হয়। এক্ষেত্রে ঘূর্ণিপাকের মতো কিছু ঘূর্ণনগতি সৃষ্টি হয়। দ্রুতগতি সম্পন্ন প্রবাহী এর গতিপথে কোনো বাধা পেলে বিক্ষুব্ধ প্রবাহের সৃষ্টি হয় [চিত্র 10.8 (b)]। স্তুপীকৃত কাঠের দহন থেকে সৃষ্ট ধোঁয়া, সমুদ্র স্রোত ইত্যাদি হল বিক্ষুব্ধ প্রবাহের উদাহরণ। বায়ুমণ্ডলের বিক্ষুব্ধ প্রবাহের ফলে তারারা ঝিকিমিকি করে। গাড়ী, বিমান এবং নৌকা দ্বারা নিঃসৃত বায়ু এবং জলের প্রবাহ ও বিক্ষুব্ধ প্রবাহের উদাহেরণ।

অসবোর্ন রেনল্ডস্ (1842–1912) লক্ষ করলেন যে, কম হারে প্রবাহিত সান্দ্র তরলের ক্ষেত্রে বিক্ষুব্ধ প্রবাহ কম হয়। তিনি মাত্রাহীন একটি সংখ্যাকে সংজ্ঞায়িত করেন, যার মান থেকে মোটামুটিভাবে বলা যায় যে, প্রবাহটি বিক্ষুব্ধ কিনা। এই সংখ্যাকে বলা হয় **রেনল্ডস্ সংখ্যা** R_1 ।

$$R_{a}^{e} = \rho v d/\eta \tag{10.21}$$

যেখানে ρ হল v বেগে প্রবাহিত প্রবাহীর ঘনত্ব, d হল নলের ব্যাস এবং η হল প্রবাহীর সান্দ্রতাজ্ঞ্ব। R_{e} হল একটি মাত্রাবিহীন সংখ্যা। তাই যে-কোনো একক পম্বতিতে এর মান সমান থাকে। দেখা গেছে ধারারেখ বা শান্ত প্রবাহের ক্ষেত্রে R_{e} এর মান 1000 বা তার কম। প্রবাহ বিক্ষুব্ধ বা অশান্ত হয় যখন $R_{e} > 2000$ । R_{e} এর মান 1000 ও 2000 এর মধ্যবর্তী হলে প্রবাহ অস্থির হয়। জ্যামিতিকভাবে অনুরূপ প্রবাহের বেলায় R_{e} এর যে সংকট মানের জন্য বিক্ষুব্ধ প্রবাহ শুরু হয় বিভিন্ন প্রবাহীর বেলায় তার মান সমান এবং এই মানকে সংকট রেনল্ডস্ সংখ্যা বলে। উদাহরণস্বরূপ ভিন্ন ঘনত্ব এবং ভিন্ন সান্দ্রতাবিশিষ্ট তেল ও জলকে একই আকার ও আকৃতির নলের মধ্য দিয়ে পাঠালে একই R_{e} মানের জন্য তরল দুটিতে বিক্ষুব্ধ প্রবাহ সৃষ্টি হয়। এই ঘটনাকে ব্যবহার করে ক্ষুদ্র পরিসরে একটি মডেল তৈরি করা যায়, যার সাহায্যে প্রবাহীর প্রবাহের বৈশিষ্ট্য অধ্যয়ন করা যায়। জাহাজ, ডুবোজাহাজ, রেসিংকার এবং বিমানের নকশা প্রস্তুতির কাজে এটা খুবই উপযোগী।

সুতরাং $R_{
m c}$ হল আভ্যন্তরীণ বল (জাড্য বল অর্থাৎ গতিশীল প্রবাহীর ভর বা গতিপথে বাধাপ্রদানকারী বস্তুর জাড্য বল) ও সান্দ্রতাজনিত বলের অনুপাত।

একটি নলে প্রবাহীর যে সর্বোচ্চ বেগের জন্য ধারারেখ প্রবাহ বজায় থাকে, সেই সর্বোচ্চ বেগকে প্রবাহীটির সন্ধি বেগ (Critical Velocity) বলে। সমীকরণ 10.21 থেকে পাওয়া যায় :

সন্ধিবেগ, $V_c = R_e \times \eta / (\rho \times d)$

বিক্ষুব্ধতার কারণে সাধারণত গতিশস্তির তাপশস্তিররূপে অপচয় হয়। রেসিংকার এবং বিমানের আকৃতিগত গঠন এমন করা হয় যাতে

বিক্ষুস্থতা কম হয়। পরীক্ষা-নিরীক্ষা এবং প্রচেস্টা ও ভুলের (trial and error) নীতির ভিত্তিতে এ ধরনের যানবাহনের নকশা তৈরি করা হয়। অন্যদিকে কখনো কখনো ঘর্ষণের মতো বিক্ষুব্ধতার প্রয়োজন আছে। বিক্ষুব্ধতা মিশ্রণে সহায়তা করে এবং ভর, ভরবেগ এবং শস্তির সঞ্চালনের হারকে ত্বরাম্বিত করে। রামাঘরে ব্যবহৃত মিক্সার এর ব্লেডগুলো বিশুদ্ধ প্রবাহ সৃষ্টি করে এবং ঘন দুধের সরবত (milk shake) ও ডিমের সমঘনত্বের লেই প্রস্তুত করে।

উদাহরণ 10.11 1.25 cm ব্যাসের একটি টেপ থেকে জল 0.48 L/min হারে পড়ছে। জলের সান্দ্রতাজ্ঞ 10⁻³ Pas। কিছু সময় বাদে প্রবাহের হার বৃষ্ধি পেয়ে 3 L/min হয়। উভয় প্রকার প্রবাহ হারের বৈশিষ্ট্য উল্লেখ করো।

উত্তর ধরি প্রবাহীর বেগ v এবং টেপটির ব্যাস $d = 1.25 ext{ cm}$ । প্রতি সেকেন্ডে টেপ দিয়ে বের হওয়া জলের আয়তন

 $Q = v \times \pi d^2 / 4$ $v = 4 Q / d^2 \pi$ এখন আমরা রেনল্ডস্ নাম্বার বের করব, যা হল $R_e = 4 \rho Q / \pi d \eta$ $= 4 \times 10^3 \text{kgm}^3 \times Q / (3.14 \times 1.25 \times 10^2 \text{m} \times 10^3 \text{Pas})$ $= 1.019 \times 10^8 \text{ m}^{-3} \text{ s} Q$ (যহেতু প্রথমে $Q = 0.48 \text{ L} / \text{min} = 8 \text{ cm}^3 / \text{s} = 8 \times 10^{-6} \text{ m}^3 \text{ s}^{-1}$, আমরা পাই, $R_e = 815$ (যহেতু এর মান 1000 অপেক্ষা কম, তাই প্রবাহটি হল স্থির বা শান্ত প্রবাহ। কিছু সময় পর $Q = 3 \text{ L} / \text{min} = 50 \text{ cm}^3 / \text{s} = 5 \times 10^{-5} \text{ m}^3 \text{ s}^{-1}$, বসিয়ে পাই, $R_e = 5095$ (যহেতু $R_e > 1000$, তাই এই প্রবাহ বিক্ষুব্ধ। অমি প্রয়াধ্ব বেয়িরে একটি প্রবীক্ষার সাধ্যমে শ্বাজ প্রেকে বিক্ষর্প্র

তুমি ওয়াশ বেসিনে একটি পরীক্ষার মাধ্যমে শান্ত থেকে বিক্ষুব্ধ প্রবাহে পরিবর্তন নির্ণয় করতে পার।

10.7 পৃষ্ঠটান (SURFACE TENSION)

তোমরা অবশ্যই লক্ষ করেছ যে, জল এবং তেল মিশ্রিত হয় না, জল আমাদের সকলকে ভিজিয়ে দেয় কিন্তু হাঁসকে ভিজায় না; পারদ কাচকে ভিজায় না কিন্তু জল কাঁচে লেগে থাকে, অভিকর্ষ থাকা সত্ত্বেও তেল সলতে বেয়ে উপরে উঠে যায়, মাটি থেকে রস এবং জল গাছের পাতার অগ্রভাগে বেয়ে উঠে, শুকনো অবস্থায় বা জলে ডোবানো অবস্থায় রঙ করার তুলির আঁশগুলো একত্রে আটকে থাকে না, কিন্তু যখন ডোবানো থেকে তোলা হয় তখন সূচালো ডগা তৈরি করে। এসবগুলো এবং আরো এধরনের অনেক অভিজ্ঞতা আছে যারা তরলের মুক্ত পৃষ্ঠের সঙ্গো যুক্ত। যেহেতু তরলের নির্দিষ্ট আকার নেই কিন্তু নির্দিষ্ট আয়তন আছে, তাই 265

তাদেরকে কোনো পাত্রে ঢালা হলে তারা সে পাত্রের মুক্ত তলের আকার লাভ করে। এই মুক্ত তলগুলো কিছু অতিরিক্ত শক্তি অর্জন করে। এই ঘটনাকে পৃষ্ঠটান বলা হয় এবং ইহা শুধুমাত্র তরলের ক্ষেত্রেই প্রযোজ্য, কারণ গ্যাসের কোনো মুক্ততল থাকে না। চলো আমরা এখন এই ঘটনা বুঝতে চেম্টা করি।

10.7.1 পৃষ্ঠশক্তি (Surface Energy)

তরলের অণুগুলোর পারস্পরিক আকর্ষণের জন্য তরল একত্রে অবস্থান করে। তরলের অভ্যন্তরে থাকা একটি অণুর কথা বিবেচনা করি। আন্তঃ আণবিক ব্যবধান এরুপ হয় যাতে ঐ অণুর সর্বদিকে থাকা অণুগুলো দ্বারা সে আকর্ষিত হয় [চিত্র 10.16(a)]। এই আকর্ষণ বলের ফলে ঐ অণুতে ঋণাত্মক স্থিতিশক্তি সৃষ্টি হয়, যার মান নির্ভর করে ঐ নির্দিষ্ট অণুর চতুর্দিকের অণু সংখ্যা এবং তাদের বিন্যাসের উপর। কিন্ডু সকল অণুগুলোর গড় স্থিতিশক্তির মান সমান হয়। এই বক্তব্যের সত্যতা এই ঘটনা দ্বারা প্রতিষ্ঠিত হয় যে সমস্ত অণু সমষ্টিকে (তরল) পরস্পর থেকে বিচ্ছিন্ন করে দূরে সরিয়ে দিয়ে বাষ্ণায়ণ বা বাচ্পীভবন সম্পন্ন করতে হয়। বাষ্পীভবনের জন্য প্রচুর তাপশস্তির প্রয়োজন, জলের ক্ষেত্রে এর মান 40 kJ/mol.

এখন তরলের পৃষ্ঠ তলের কাছাকাছি একটি অণুকে কল্পনা করলাম চিত্র 10.16(b)। এক্ষেত্রে শুধুমাত্র নীচের অর্ধাংশের চারিদিকে তরল অণু অবস্থিত। এজন্য ঐ অণুটির কিছু পরিমাণ ঋণাত্মক স্থিতিশস্তির সৃষ্টি হয়। কিন্তু এর মান চারিদিকে অণু দ্বারা বেষ্টিত বা সম্পূর্ণভাবে নিমজ্জিত অণুর তুলনায় বেশি হয়। এর মান চারিদিকে বেষ্টিত অণুর তুলনায় প্রায় দ্বিগুণ হয়। তাই অন্যান্য অণুগুলোর তুলনায় মুক্ত তলে থাকা অণুগুলোর কিছু অতিরিস্তু শস্তি থাকে। এভাবে বাহ্যিক শর্তসাপেক্ষে তরল তার পৃষ্ঠতলকে ন্যূনতম করতে চায়। পৃষ্ঠতলের ক্ষেত্রফল বৃদ্ধির জন্য শস্তির প্রয়োজন। পৃষ্ঠতলে সংক্রান্ত অধিকাংশ ঘটনাবলি এই তত্ত্বের সাহায্যে বোঝা যায়। পৃষ্ঠতলে অবস্থিত অণুর কত শস্ত্রি প্রয়োজন ? এর মান মোটামুটিভাবে কোনো তরল থেকে একে সম্পূর্ণ মুস্ত করতে যে শস্তির প্রয়োজন তার অর্ধেক অর্থাৎ বাস্সীভবনের জন্য প্রয়োজনীয় শস্তির অর্ধেক।

অবশেষে পৃষ্ঠতল বলতে কী বুঝায় ? যেহেতু একটি তরল অসংখ্য চলমান অণু দ্বারা গঠিত তাই তরলের কোনো সুনির্দিন্ট নিখুঁত পৃষ্টতল থাকতে পারে না। আমরা যদি, চিত্র 10.16 (c) তে প্রদর্শিত দিক্ বরাবর Z = 0থেকে আণবিক দুরত্বের কয়েক গুণ দূরত্বে যাই, তবে তরলের অণুর ঘনত্ব খুব দ্বুত হ্রাস পেয়ে শূন্য হয়।

10.7.2 পৃষ্ঠশক্তি এবং পৃষ্ঠটান (Surface Energy and Surface Tension)

আমরা আলোচনা করেছি যে তরলের পৃষ্ঠতলের সঙ্গে একপ্রকার অতিরিক্ত

তরলের অভ্যন্তরে ও পৃষ্ঠতলে অবস্থিত অণুগুলোর রুপরেখা ও বলের প্রতিসাম্য (a) তরলের অভ্যন্তরে অবস্থিত অণু। অন্যান্য অণুগুলোর জন্য নির্দিন্ট অণুতে ক্রিয়াশীল বল দেখানো হয়েছে। তীরচিহ্নের দিক্ আকর্ষণ বা বিকর্ষণকে নির্দেশ করে,(b) পৃষ্ঠতলে অবস্থিত একটি অণুর উপরোক্ত অনুরূপ অবস্থা, (c) আকর্ষণজনিত বল (A) ও বিকর্ষণজনিত বল (R) এর সাম্য।

শক্তি জড়িত। তাই অন্যান্য রাশি যেমন আয়তনকে ঠিক রেখে তরলপৃষ্ঠের ক্ষেত্রফল আরো বৃম্ধি করতে (ছড়াতে) বাড়তি অতিরিক্ত শক্তির প্রয়োজন। এটা বুঝতে হলে, একটা পাতলা তরলের সর নিলাম যা বাধাহীনভাবে সমান্তরাল নির্দেশকের ভেতর চলাচল করতে পারে চিত্র (10.17)।

চিত্র 10.17 প্রসারিত পাতলা সর (a) সরটি সাম্যবস্থায় অবস্থিত (b) পাতলা সরটি অতিরিক্ত প্রসারিত অবস্থায় আছে।

এখন সরু দণ্ডকে অল্প দূরত্ব *d* পরিমাণ প্রসারিত করা হল। যেহেতু পৃষ্ঠতলের ক্ষেত্রফল বৃদ্ধি পায় তাই এই সংস্থার শক্তিও বৃদ্ধি পায়; অর্থাৎ অভ্যন্তরীণ বলের বিরুদ্ধে কিছু কাজ করতে হয়। ধরি, অভ্যন্তরীণ বলের মান F এবং এই প্রযুক্ত বলের দ্বারা কৃতকার্য F·d = Fd. শক্তি সংরক্ষণ সূত্র অনুসারে, এটি সরে (film) অতিরিক্ত শক্তি হিসেবে সঞ্চিত থাকে। যদি প্রতি একক ক্ষেত্রফলে সরের পৃষ্ঠশক্তি *S* হয়, তবে অতিরিক্ত ক্ষেত্রফল হবে 2*dl*। একটি তরল সরের দুটি পৃষ্ঠ থাকে ফলে অতিরিক্ত শক্তির পরিমাণ —

S(2dl) = Fd	(10.23)
-------------	---------

বা,
$$S = Fd/2dl = F/2l$$
 (10.24)

এই রাশি *S* হল পৃষ্ঠটানের মান।ইহা হল তরলের বিভদতলের প্রতি একক ক্ষেত্রফলের পৃষ্ঠশক্তি বা তরল দ্বারা চলনক্ষম সরু দণ্ডের প্রতি একক দৈর্ঘ্যের উপর ক্রিয়াশীল বলকেও পৃষ্ঠটান বলে। এখন পর্যন্ত আমরা একটি তরলের পৃষ্ঠতল নিয়েই আলোচনা করেছি। আরো সহজভাবে তরল পৃষ্ঠতলের সঙ্গে অন্য একটি তরল পৃষ্ঠতলের বা কঠিন পৃষ্ঠতলের স্পর্শককে বিবেচনা করা প্রয়োজন। সেক্ষেত্রে পৃষ্ঠশন্তির মান উভয় পার্শ্বতলের বস্তুর উপাদানের উপর নির্ভর করে। উদাহরণ হিসাবে বলা যায় — যদি উপাদানগুলোর অণুগুলো পরস্পরকে আকর্ষণ করে তাহলে পৃষ্ঠশন্তি হ্রাস পায় অন্যদিকে যদি তারা পরস্পরকে বিকর্ষণ করে তবে পৃষ্ঠশন্তি হ্রাস পায় অন্যদিকে যদি তারা পরস্পরকে যায় পৃষ্ঠশন্তি হল দুটি ভিন্ন উপাদানের বস্তুর সংস্পর্শ তলের শন্তি এবং এর মান উপাদানদ্বয়ের উপর নির্ভরশীল।

উপরের আলোচনা থেকে আমরা নিম্নলিখিত পর্যবেক্ষণে পৌঁছাতে পারি।

- (i) একটি তরলের কোনো তলের সঙ্গে অন্য যে-কোনো পদার্থের সংস্পর্শতলের প্রতি একক দৈর্ঘ্যে ক্রিয়াশীল বলকে (বা একক ক্ষেত্রফলের পৃষ্ঠশক্তিকে) বলে পৃষ্ঠটান, ইহা হল সেই পরিমাণ অতিরিস্তু শস্তি যা অভ্যন্তরে থাকা অণুর তুলনায় পৃষ্ঠতলে থাকা অণুর মধ্যে বেশি থাকে।
- (ii) সীমানার পার্শ্ববর্তী অন্ততলে যে কোনো একটি বিন্দুতে আমরা একটি রেখা অঙ্কণ করতে পারি এবং আমরা কল্পনা করতে পারি যে, মুক্তপৃষ্ঠে ওই রেখার প্রতি একক দৈর্ঘ্যের উপর লম্বভাবে উভয়দিকে দুটি সমান ও বিপরীতমুখী পৃষ্ঠটানজনিত বল *S* ক্রিয়াশীল হয়। এই রেখাটি সাম্যবস্থায় থাকে। আরো সুনির্দিষ্টভাবে বললে, ওই তলে পরমাণু বা অণুর একটি রেখা কল্পনা করি, বামদিকের পরমাণুগুলো এই রেখাকে তাদের দিকে টানে এবং ডানদিকের পরমাণুগুলো তাদের দিকে টানে। এই টানের অধীনে রেখাটি সাম্যবস্থায় থাকে। যদি রেখাটি সত্যিসত্যিই বিভেদতলের সীমারেখার সমাপ্তি নির্দেশ করে চিত্র 10.16 (a) এবং (b), তাহলে শুধুমাত্র অভ্যন্তরের দিক্ বরাবর একক দৈর্ঘ্যে ক্রিয়াশীল বল *S* ক্রিয়াশীল থাকে।

সারণি 10.3 তে বিভিন্ন তরলের পৃষ্ঠটানের মান দেওয়া আছে। পৃষ্ঠটানের মান তাপমাত্রার উপর নির্ভরশীল। সান্দ্রতার মতো তরলের পৃষ্ঠটান ও সাধারণত তাপমাত্রা বৃদ্ধির সঙ্গো হ্রাস পেতে থাকে।

সারণি 10.3	কিছু তরলের	উল্লিখিত	তাপমাত্রায়	পৃষ্ঠটান	এবং
	বাষ্পীভবনের	তাপ :			

তরল	তাপমাত্রা (°C)	পৃষ্টটান	বাষ্পীভবনের তাপ
		(N/m)	(kJ/mol)
হিলিয়াম	-270	0.000239	0.115
অক্সিজেন	-183	0.0132	7.1
ইথানল	20	0.0227	40.6
জল	20	0.0727	44.16
পারদ	20	0.4355	632

একটি তরল একটি কঠিন তলে লেগে থাকবে যদি তরল ও কঠিন পদার্থের মধ্যবর্তী পৃষ্ঠশক্তির মান কঠিন ও বায়ু এবং তরল ও বায়ুর মধ্যবর্তী পৃষ্ঠশক্তির মানের যোগফলের চেয়ে কম হয়। এখন কঠিন পৃষ্ঠতল ও তরল তলের মধ্যবর্তী সংশক্তি বল আছে। পরীক্ষার সাহায্যে ইহাকে সরাসরি পরিমাপ করা যায় যা 10.18 নং চিত্রের সাহায্যে দেখানো হয়েছে। একটি সমতল উল্লম্ব কাচের প্লেটকে একটি সাধারণ তুলাযন্ত্রের এক বাহু হিসাবে ব্যবহার করা হল যার নীচে একটি পাত্রে যে-কোনো তরল রাখা হল। এই প্লেটটির সমান ওজনের বাটখারা অন্যপাত্রে চাপিয়ে দিয়ে এভাবে তুলাযন্ত্রটিতে সাম্য প্রতিষ্ঠা করা হল যাতে প্লেটটির নীচের অনুভূমিক তলটি তরলের তলটির উপরে থাকে। পাত্রটিকে সামান্য উপরে তোলা হল যাতে করে তরলের উপরিতল কাচ প্লেটকৈ স্পর্শ করে এবং পৃষ্ঠটানের জন্য সামান্য নীচে টেনে নামায়। কাচের প্লেটটি তরল থেকে মুক্ত না হওয়া পর্যন্ত বাটখারা যোগ করা হতে থাকে।

চিত্র 10.18 পৃষ্টটানের পরিমাপ।

ধরি অতিরিস্তু যে বাটখারা প্রয়োজন হয়েছে তার মান *W*। এখন 10.24 নং সমীকরণ এবং তার আলোচনা থেকে তরল ও বায়ুর সংস্পর্শতলে ক্রিয়াশীল পৃষ্ঠটান যেখানে *m* হল অতিরিক্তু ভর এবং *l* হল প্লেটটির ধারের দৈর্ঘ্য। প্রত্যয় (subscript)-'la' দ্বারা দৃঢ়ভাবে বোঝানো হচ্ছে যে তরল ও বায়ুর স্পর্শতিলে পৃষ্ঠটান কাজ করে।

10.7.3 স্পর্শকোণ (Angle of Contact)

অন্য কোনো মাধ্যমের সংস্পর্শ তলের কাছে থাকা তরল পৃষ্ঠ সাধারণত বাঁকা থাকে। তরলতলের স্পর্শবিন্দুতে অঙ্কিত স্পর্শক এবং তরল মধ্যস্থ কঠিন তলের মধ্যবর্তী কোণকে বলে স্পর্শকোণ। একে ' θ 'দ্বারা প্রকাশ করা হয়। এর মান বিভিন্ন তরল ও কঠিন যুগ্মের স্পর্শতলের জন্য আলাদা আলাদা হয়। θ এর মান নির্ধারণ করে যে, কোনো একটি নির্দিন্ট কঠিন তলে তরল ছড়িয়ে পড়বে না কি তার উপর বিন্দু সৃষ্টি করবে। উদাহরণ হিসাবে বলা যায়, পদ্মপাতার উপর জলবিন্দু বা ফোঁটা সৃষ্টি করে চিত্র 10.19 (a) কিন্তু একটি পরিষ্কার প্লাস্টিকের উপর ছড়িয়ে পড়ে 10.19(b)।

আমরা তিনটি আন্তঃতলে তিন প্রকার আন্তঃতলীয় টান বিবেচনা করলাম। ধরি, তরল-বায়ু, কঠিন-বায়ু এবং কঠিন-তরলের মধ্যবর্তী টানগুলো যথাক্রমে $S_{\rm la}$, $S_{\rm sa}$ এবং $S_{\rm sl}$, চিত্র 10.19 (a) এবং (b)। স্পর্শরেখা বরাবর তিনটি মাধ্যমের ভেতর পৃষ্ঠশক্তির মান অবশ্যই সাম্যবস্থায় থাকবে। 10.19(b) চিত্র থেকে নিম্নলিখিত সমীকরণটিকে খুব সহজেই নির্ণয় করা যায়। $S_{\rm la}\cos\theta + S_{\rm sl} = S_{\rm sa} \tag{10.26}$

স্পর্শকোণটি একটি স্থৃলকোণ হয় যদি $S_{_{
m sl}}>S_{_{
m la}},$ যা দেখা যায় জল-পাতার অন্তর্বর্তী তলে। আবার এই স্পর্শকোণের মান সূক্ষ্মকোণ হবে যদি $S_{\rm sl} < S_{
m la}$, যেমন জল প্লাস্টিকের অর্ন্তবর্তী তলে দেখা যায়। যখন heta এর মান স্থূলকোণ হয়, তখন তরলের অণুগুলো নিজেদের মধ্যে প্রবল বলে আকর্ষণ করে এবং কঠিনের অণুগুলোর সঙ্গে আকর্ষণ বল দুর্বল হয়, যার ফলে তরল-কঠিন এর স্পর্শতল সৃষ্টি করতে প্রচুর শক্তির প্রয়োজন হয়, তাই তরলের অণুগুলো কঠিনকে ভেজায় না। মোম বা তৈলান্তু তলের উপর জলের বেলায় একই ঘটনা ঘটে এবং যে-কোনো তলের উপর পারদের বেলায়ও ইহা হয়। অন্যদিকে যদি তরলের অণুগুলো কঠিনের অণুগুলোকে প্রবলভাবে আকর্ষণ করে তবে ইহা S , কে হ্রাস করে এবং ফলহিসাবে $\cos \theta$ এর মান বৃদ্ধি পেতে পারে বা θ এর মান হ্রাস পেতে পারে। এক্ষেত্রে hetaহল সুক্ষ্মকোণ। যখন জল কাচের উপর বা প্লাস্টিকের উপর থাকে তখন এরুপ ঘটনা ঘটে এবং যে-কোনো কিছুর উপর কেরোসিন তেলের ক্ষেত্রেও একই ঘটনা ঘটে (ইহা ছড়িয়ে পড়ে)। সাবান, ডিটারজেন্ট এবং ধুয়ে পরিষ্কারের কাজে ব্যবহৃত যে-কোনো পদার্থ ভেজানোর উপাদান হিসাবে ব্যবহৃত হয়। যখন তাদেরকে যুক্ত করা হয় স্পর্শকোণের মান এত ছোটো হয় যে তারা অনেক ভেতরে প্রবেশ করতে পারে এবং অধিকতর কার্যকরি হয়। অন্যদিকে জল ও তন্তুর মধ্যে স্পর্শকোণ বৃদ্ধি করার জন্য জল নিরোধক বস্তু বা সংস্থাকে যোগ করা হয়।

10.7.4 বিন্দু ও বুদবুদ (Drops and Bubbles)

পৃষ্ঠটানের ফলে মুক্ত তরলবিন্দু এবং বুদবুদের আকৃতি গোলাকার হয়, যদি অভিকর্যের আকর্ষণ বলকে উপেক্ষা করা হয়। তোমরা অবশ্যই দুতগতিসম্পন্ন স্প্রে বা জেট থেকে নির্গত পরিস্কার ক্ষুদ্র বিন্দু গঠন হতে দেখেছ এবং আমরা আমাদের শৈশবে অনেকেই সাবান বুদবুদকে উড়িয়েছি। বিন্দু এবং বুদবুদগুলো কেন গোলাকার হয়? কী ঘটনা সাবানের বুদবুদকে স্থির রাখে?

আমরা অনেকবার বলে আসছি যে একটি তরল ও বায়ুর বিভেদতলে শক্তি থাকে, তাই নির্দিষ্ট আয়তনের জন্য কম শক্তিসম্পন্ন পৃষ্ঠতলের ক্ষেত্রফল কম। গোলকের এই ধর্ম আছে। যদিও এটা আমাদের এই পাঠ্যসূচীর আওতার বাইরে, তাসত্ত্বেও আমরা পরীক্ষা করে দেখতে পারি যে এক্ষেত্রে একটি গোলক অন্ততপক্ষে একটি ঘনক থেকে অধিক উপযোগী। সুতরাং অভিকর্ষ বল এবং অন্যান্য বলকে (যেমন বায়ুর বাধা) উপেক্ষা করলে তরল বিন্দুর আকৃতি গোলাকার হবে।

পৃষ্ঠটানের আরেকটি গুরুত্বপূর্ণ ফলাফল হল এই যে, একটি গোলাকার তরল বিন্দুর মধ্যবর্তী চাপ তার বাহ্যিক চাপ অপেক্ষা বেশি চিত্র 10.20(a) হয়।ধরো, একটি r ব্যাসার্ধের গোলীয় ফোঁটা সাম্যবস্থায় আছে। যদি তার ব্যাসার্ধ ∆r পরিমাণ বৃদ্ধি করা হয়, তাহলে প্রয়োজনীয় অতিরিস্ত পৃষ্ঠশস্তি হল

$$[4\pi (r + \Delta r)^2 - 4\pi r^2] S_{l_2} = 8\pi r \,\Delta r \,S_{l_2} \tag{10.27}$$

যদি বুদ্বুদ্টি সাম্যবস্থায় থাকে তাহলে এই শক্তিক্ষয় বুদবুদটির ভেতর ও বাইরের চাপের পার্থক্য $(P_i - P_o)$ এর জন্য আয়তন বৃদ্ধির ফলে শক্তিদ্বারা প্রশমিত হয়। এক্ষেত্রে কৃতকার্য হল

$$W = (P_{i} - P_{o}) 4\pi r^{2} \Delta r \tag{10.28}$$

$$\therefore (P_{i} - P_{o}) = (2 S_{ia}/r)$$
(10.29)

সাধারণত তরল-গ্যাস বিভেদতলের উত্তল দিকের চাপ অবতল দিকের চাপ অপেক্ষা বেশি হয়।উদাহরণ হিসাবে একটি তরলের অভ্যন্তরে বায়ুর বুদবুদের অভ্যন্তরের চাপ বেশি হয় চিত্র 10.20 (b)।

চিত্র 10.20 r ব্যাসার্ধ্য বিশিষ্ট বিন্দু, গহুর এবং বুদবুদ।

চিত্র10.20 (c) তে দেখানো একটি বায়ুর বুদবুদ, একটি বিন্দু এবং একটি গহুর থেকে পৃথক; এর মধ্যে দুটি আন্তঃতল আছে। উপরের যুক্তি প্রয়োগ করে বুদবুদের ক্ষেত্রে

$$(P_{\rm i} - P_{\rm o}) = (4 S_{\rm ia}/r) \tag{10.30}$$

এ কারণেই সম্ভবত সাবানের বুদবুদ তৈরি করার সময় জোরে ফুঁ দিতে হয়, তবে খুব জোরে নয়, ভেতরে অল্প পরিমাণ অতিরিক্ত বায়ুর চাপ প্রয়োজন !

10.7.5 কৈশিক উত্থান (Capillary Rise)

তরল ও বায়ুর বক্র বিভেদতলে চাপের পার্থক্যের ফলস্বরূপ একটি উল্লেখযোগ্য ঘটনা হলো অভিকর্ষ বলকে উপেক্ষা করে জল সূক্ষ্ম নল বেয়ে উপরে উঠে যাওয়া। ল্যাটিন ভাষায় ক্যাপিলা (capilla) শব্দের

চিত্র 10.21 কৈশিক উত্থান (a) জলে ডুবস্ত অবস্থায় সরু নলের চিত্র।(b) বিভেদতলের বিবর্ধিত চিত্র।

অর্থ হল চুল; যদি নলটি চুলের ন্যায় সরু হয় তাহলে নল বেয়ে তরলের উত্থান খুব বেশি হয়। এটা দেখার জন্য ধরি একটি a ব্যাসার্ধবিশিষ্ট বৃত্তাকার প্রস্থচ্ছেদের সরু কৌশিক নলকে জলপূর্ণ একটি পাত্রে উল্লম্বভাবে রাখা হল (চিত্র 10.21)। জল ও কাচের মধ্যবর্তী স্পর্শকোণ হল সূক্ষ্ম কোণ, তাই কৈশিক নলে জলের তল হল অবতল। এর অর্থ হল শীর্ষতলের দুদিকে চাপের পার্থক্য বর্তমান। একে এভাবে প্রকাশ করা যায়

$$(P_i - P_o) = (2S/r) = 2S/(a \sec \theta)$$

$$(P_i - P_o) = (2S/a) \cos \theta$$
(10.31)

এভাবে নলের ভেতর, বক্রতলে (বায়ু জল বিভেদতল) জলের চাপের মান বায়ুমণ্ডলীয় চাপ অপেক্ষা কম হয়। 10.21(a) চিত্রে দুটি বিন্দু A এবং B নিলাম। তাদের চাপ অবশ্যই সমান হবে এবং এর মান হল

 $P_{o} + h \rho g = P_{i} = P_{A}$ (10.32) যেখানে ρ হল জলের ঘনত্ব এবং h কে বলা হয় কৈশিক উত্থান [চিত্র 10.21(a)] । (10.31) নং এবং (10.32) নং সমীকরণ থেকে পাই $h \rho g = (P_{i} - P_{o}) = (2S \cos \theta)/a$ (10.33)

উপরিউক্ত আলোচনা এবং (10.28) এবং (10.29) নং সমীকরণ থেকে এটা স্পন্ট যে তরলের কৈশিক উত্থান হয় পৃষ্ঠটানের জন্য। 'a' এর ক্ষুদ্র মানের জন্য ইহার মান বেশি হয়। সাধারণত সরু কৈশিক নলের জন্য এই উত্থানের মান কয়েক সেমি পর্যন্ত হয়। উদাহরণস্বরূপ যদি a =0.05 cm হয়, জলের পৃষ্ঠটানের মান ব্যবহার করে (সারণি 10.3) আমরা পাই

> $h = 2S/(\rho g a)$ = $\frac{2 \times (0.073 \text{ N m}^{-1})}{(10^3 \text{ kg m}^{-3}) (9.8 \text{ m s}^{-2})(5 \times 10^{-4} \text{ m})}$ = $2.98 \times 10^{-2} \text{ m} = 2.98 \text{ cm}$

লক্ষ করার বিষয় হল, যদি তরলের বক্রতল উত্তল হয়, যেমন পারদের ক্ষেত্রে, অর্থাৎ যদি cos heta ঋণাত্মক হয় তাহলে সমীকরণ (10.33) ব্যবহার করে এটা পরিষ্কার যে নলের ভেতর তরলের উচ্চতা পাত্রের তরলস্তর অপেক্ষা কম হয়।

10.7.6 ডিটারজেন্ট এবং পৃষ্ঠটান (Detergents and Surface Tension)

আমরা গ্রীজ (grease) এবং তেলের দাগযুক্ত সুতি ও অন্যান্য তন্তুজ ময়লা কাপড়কে ডিটারজেন্ট বা সাবানযুক্ত জলে ভেজাই এবং তারপর ঝাঁকুনি দিয়ে বা ধূনে পরিষ্কার করি।চলো এই ঘটনাকে আরও ভালভাবে বোঝার চেস্টা করি।

শুধুমাত্র জল দ্বারা ধুঁয়ে গ্রীজের দাগ তোলা যায় না। এর কারণ হল, জল গ্রীজের ময়লাকে ভিজায় না, অর্থাৎ তাদের মধ্যবর্তী সংস্পর্শ তলের পরিমাণ খুব কম। যদি জল গ্রীজকে ভিজাতে পারত তবে জলের ধারা গ্রীজকে সরিয়ে নিতে পারত। ডিটারজেন্টের সাহায্যে অনেকটা এভাবে পরিষ্কারের কাজ করা হয়। ডিটারজেন্ট এর অণুগুলোর আকৃতি হেয়ার পিনের মতো, যার একপ্রান্ত জলের অণুকে এবং অন্যপ্রান্তগ্রীজের, তেলের বা মোমের অণুকে আকর্ষণ করে, এভাবে জল ও তেলের বিভেদতল সৃষ্টির চেস্টা হয়। এ ফলাফলগুলোকে ক্রমান্বয়ে 10.22 নং চিত্রগুলোতে দেখানো হয়েছে।

আমাদের ভাষায় আমরা বলতে পারি যে, ডিটারজেন্টের সংযোগে যার অণুগুলোর একপ্রান্ত জলের অণুকে এবং অপর প্রান্ত তেলের অণুকে আকর্ষণ করে, তা জল ও তেলের পৃষ্ঠটান *S* কে বহুলাংশে কমিয়ে দেয়। ইহা শক্তির নিরিখেও এরুপ বিভেদতল গঠনের অনুরূপ অবস্থার সৃষ্টি করে, অর্থাৎ ময়লার গোলকগুলো (globs of dirt) প্রথমে ডিটারজেন্ট দ্বারা এবং তার বাইরে জল দ্বারা আবৃত হয়। জলতল সক্রিয় ডিটারজেন্ট বা তল সক্রিয়ক (surfactant) ব্যবহারের এই পাম্বতিকে শুধুমাত্র কোনো কিছু পরিষ্কারের জন্যই গুরুত্বপূর্ণ নয়, উপরন্তু তেল ও খনিজ আকরিক পদার্থ প্রভৃতিকে উদ্ধার করতে ব্যবহৃত হয়।

জল মিশ্রিত করা হল, ময়লার স্থানচ্যুতি হল না।

ডিটারজেন্ট মিশ্রিত করা হল, এর অণুগুলোর নিস্তড়িত তৈলাক্ত প্রান্তগুলো জল ও ময়লার সীমানার দিকে আকর্ষিত হয়।

নিস্তড়িত প্রান্তগুলো ময়লাকে আবৃত করে এবং ময়লার স্তরগুলো জলপ্রবাহ দ্বারা স্থানচ্যুতি ঘটে।

ময়লাগুলো সাবানের অণুদ্বারা আবৃত হয়ে ঝুলতে থাকে।

চিত্র 10.22 ডিটারজেন্টের ক্রিয়া (ডিটারজেন্টের অণুগুলো কী করে)।

উদাহরণ 10.12 একটি 2.00 mm ব্যাসবিশিষ্ট কৈশিক নলের নীচের প্রান্ত বিকারে রাখা জলের নীচে 8.00 cm ডোবানো আছে। জলের নিম্নপ্রান্তে একটি অর্ধগোলাকৃতি বায়ুর বুদবুদ তৈরি করতে নলে কত চাপের প্রয়োজন হবে? পরীক্ষাধীন জলের তাপমাত্রায় জলের পৃষ্টটান হল 7.30×10⁻² Nm⁻¹ | 1 বায়ুমণ্ডলীয় চাপ=1.01×10⁵ Pa, জলের ঘনত্ব=1000 kg/m³, g=9.80 m s⁻²; এক্ষেত্রে অতিরিস্ত চাপের মান বের করো |

উত্তর তরলের অভ্যন্তরে থাকা কোনো গ্যাসীয় বুদবুদের মধ্যে অতিরিস্তু চাপ হল 2*S/r*, যেখানে *S* হল তরল গ্যাস বিভেদ তলে পৃষ্ঠটান। তোমরা এখানে লক্ষ করেছ যে, এক্ষেত্রে একটিমাত্র তরলপৃষ্ঠ আছে, (গ্যাসে থাকা তরলের বুদবুদের বেলায় দুটি তরলপৃষ্ঠ থাকে, তাই সেক্ষেত্রে অতিরিস্তু চাল হল 4*S/r*)। বুদবুদের ব্যাসার্ধ হল r । এখন বুদবুদের বাইরের চাপ হল *P*ুযা বায়ুমণ্ডলীয় চাপ ও 8.00 cm জলস্তন্তের চাপের যোগফলের সমান।

অর্থাৎ,

$$P_{o} = (1.01 \times 10^{5} \text{ Pa} + 0.08 \text{ m} \times 1000 \text{ kg m}^{-3} \times 9.80 \text{ m s}^{-2})$$

= 1.01784 × 10⁵ Pa

সুতরাং, বুদবুদের অভ্যন্তরের চাপ হল

$$P_{i} = P_{o} + 2S/r$$

= 1.01784 × 10⁵ Pa+(2×7.3×10² Pam/10³ m)
= (1.01784 + 0.00146) × 10⁵ Pa

 $= 1.02 \times 10^{5} \, \text{Pa}$

যেহেতু বুদবুদটি হল অর্ধ গোলাকৃতি তাই এখানে বুদবুদের ব্যাসার্ধকে কৈশিক নলের ব্যাসার্ধের সমান ধরা হয়েছে। (উত্তরকে তিন অঞ্চবিশিষ্ট তাৎপর্যপূর্ণ সংখ্যার আসন্ন মানে নেওয়া হয়েছে)। বুদবুদের অভ্যন্তরে অতিরিক্ত চাপ হল 146 Pa।

সারাংশ

- 1. **প্রবাহীর মৌলিক** ধর্ম হল যে এরা প্রবাহিত হতে পারে। প্রবাহী তার আকারের পরিবর্তনকে বাধা দিতে পারে না। তাই প্রবাহীর আকার যে পাত্রে থাকে সে পাত্রের আকার দ্বারা নিয়ন্ত্রিত হয়।
- 2. **তরল অসংনম্য** এবং তার নিজের **মুক্ততল** থাকে। গ্যাস হল সংনম্য এবং এটা প্রসারিত হয়ে যতটা মুক্ত অঞ্চল পায় সবটাই দখল করে নেয়।
- 3. যদি প্রবাহী দ্বারা কোনো তল A তে প্রযুক্ত লম্ব বল F হয়, তাহলে বল ও ক্ষেত্রফলের অনুপাতকে বলা হয় গড় চাপ P_{av} ,

অর্থাৎ
$$P_{av} = \frac{F}{A}$$

4. চাপের একক হল Nm⁻² বা পাস্কাল (Pa)। চাপের অন্যান্য সাধারণ এককগুলো হল 1 atm = 1.01×10⁵ Pa

1 বার = 10⁵ Pa

1 টর = 133 Pa = 0.133 kPa

1 mm পারদ চাপ = 1 টর = 133 Pa

- 5. **পাস্কালের সূত্র :** স্থির প্রবাহীর একই উচ্চতার সকল বিন্দুতে চাপের মান সমান। কোনো আবন্ধ প্রবাহীতে চাপের পরিবর্তন করলে ওই চাপের মান অপরিবর্তিত থেকে তা তরলের সব বিন্দুতে এবং পাত্রের দেয়ালে সঞ্চালিত হয়।
- 6. প্রবাহীতে গভীরতা h এর সঙ্গে চাপের পরিবর্তন নিম্নলিখিত সমীকরণের দ্বারা নির্দেশিত হয়।

 $P = P_a + \rho g h$

যেখানে ho হল প্রবাহীর ঘনত্ব যার মান সমগ্র অঞ্জলে অপরিবর্তিত থাকে ধরা হয়।

 কোনো একটি অসম প্রস্থচ্ছেদবিশিষ্ট নলের মধ্য দিয়ে একটি অসংনম্য প্রবাহীর শান্ত প্রবাহের ক্ষেত্রে একক সময়ে যে-কোনো বিন্দু দিয়ে অতিক্রান্ত প্রবাহীর আয়তন সমান।

v A = ধ্রুবক (v হল বেগ এবং A হল প্রস্থচ্ছেদের ক্ষেত্রফল।)

এই সমীকরণটি অসংনম্য প্রবাহীর ভরের সংরক্ষণের জন্য হয়।

 বার্নোলির নীতি: ধারারেখ প্রবাহ বরাবর চাপ (P), প্রতি একক আয়তনে গতিশক্তি (ρν²/2) এবং প্রতি একক আয়তনে স্থিতিশক্তির যোগফল সর্বত্র ধ্রুবক থাকে।

 $P + \rho v^2/2 + \rho g y =$ ধ্র্বক

এই সমীকরণটি মূলত শক্তির সংরক্ষণ সূত্র যা অসান্দ্র তরলের স্থির গতির ক্ষেত্রে প্রযোজ্য। বাস্তবে এমন কোনো তরল নেই যার সান্দ্রতা শূন্য, তাই উপরের বিবৃতিটি আনুমানিক সত্য ধরা হয়। ঘর্ষণের মতো সান্দ্রতা ও গতিশন্তিকে তাপশক্তিতে রূপান্তরিত করে।

- 9. যদিও প্রবাহীতে কৃন্তন বিকৃতির জন্য কৃন্তন পীড়নের প্রয়োজন হয় না, তা সত্ত্বেও কোনো প্রবাহীতে কৃন্তন পীড়ন প্রয়োগ করা হলে প্রবাহীতে গতি সৃন্টি হয় যা সময়ের সঙ্গো কৃন্তন বিকৃতি সৃন্টি করে। কৃন্তন পীড়ন ও সময়ের সঙ্গো কৃন্তন বিকৃতির হারের অনুপাতকে বলা হয় সান্দ্রতাঙ্ক, η । যেখানে চিহ্নগলো প্রচলিত অর্থে ব্যবহত এবং বইয়ে সংজ্ঞায়িত করা আছে।
- 10. স্টোক্সের সূত্র : সান্দ্রতাজনিত বাধা বল **F** , a ব্যাসার্ধ্য বিশিষ্ট গোলককে **v** বেগে কোনো η সান্দ্রতাজ্ঞ বিশিষ্ট প্রবাহীতে গতিশীল হলে সান্দ্রতাজনিত বাধা বল **F** হবে, **F** = – 6πηav.
- 11. কোনো প্রবাহীতে অশান্তি বা বিক্ষুব্ধতা নির্ধারিত হয় একটি মাত্রাবিহীন রাশি দ্বারা যাকে **রেনলড্স নম্বর** বলে এবং ইহা হল
 - $R_{a} = \rho v d / \eta$

যেঁখানে d হল প্রবাহিত প্রবাহীর নির্দিষ্ট জ্যামিতিক দৈর্ঘ্য এবং অন্যান্য চিহ্নগুলো প্রচলিত অর্থ বহন করে।

12. তরলের পৃষ্ঠতলের একক দৈর্ঘ্যে প্রযুক্ত বলকে (বা একক ক্ষেত্রফলে প্রযুক্ত পৃষ্ঠশক্তিকে) পৃষ্ঠটান বলে। তরলের অভ্যন্তরে থাকা অণুগুলোর তুলনায় পৃষ্ঠে থাকা অণুগুলোতে যে অতিরিক্ত শক্তি থাকে তাই পৃষ্ঠটানের উৎস।

ভেবে দেখার বিষয়সমূহ (POINTS TO PONDER)

 চাপ হল একটি স্কেলার রাশি। "প্রতি একক ক্ষেত্রফলে প্রযুক্ত বলই হল চাপ" - চাপের এই সংজ্ঞা কোনো একজন ব্যান্তিকে ভূল উপলব্ধি দিতে পারে যে এটি একটি ভেক্টর রাশি। চাপের রাশিমালায় লবে থাকা বলটি হল, যে তলের উপর বলটি সক্রিয় তার লম্ব উপাংশ। প্রবাহীর বর্ণনায়, কণা এবং দৃঢ় বস্তুর বলবিদ্যার ধারণা থেকে সরে গিয়ে ভাবতে হবে।

আমরা প্রবাহীর সেই বৈশিষ্ট্যগুলো নিয়ে ভাবব্ যা প্রবাহীর বিভিন্ন বিন্দুতে পরিবর্তিত হয়।

- 2. যে কঠিন পাত্রে প্রবাহীকে নেওয়া হয় তার দেয়ালের উপর কিংবা প্রবাহীতে নিমজ্জিত কোনো কঠিন পদার্থের উপর কেবলমাত্র চাপ প্রদান করে এমনটা ভাবা উচিত নয়। প্রবাহীর সকল বিন্দুতে চাপ প্রযুক্ত হয়। প্রবাহীর কোনো একটি উপাদান (যেমন চিত্র 10.2 তে দেখানো) সাম্যবস্থায় থাকে কারণ এর সকল তলে ক্রিয়াশীল চাপের মান সমান।
- 3. যদি প্রবাহটি অসংনম্য হয় তবে চাপের রাশিমালাটি হয় $P = P_a + \rho g h$ । বাস্তবক্ষেত্রে এটা তরলের ক্ষেত্রে প্রযোজ্য হয় (যেহেতু তরল বেশি মাত্রায় অসংনম্য) এবং তাই নির্দিষ্ট উচ্চতায় ইহার মান ধ্রবক।
- 4. গজ চাপ হল প্রকৃত চাপ এবং বায়ুমন্ডলীয় চাপের পার্থক্য :-

$$P - P_a = P_a$$

অনেক চাপ মাঁপক যন্ত্রের দ্বারা গজ চাপ পরিমাপ করা হয়। টায়ার প্রেসার গজ এবং ব্লাড প্রেসার গজ (sphygmomanometer) ইত্যাদি এদের অর্ন্তভুক্ত।

- 5. ধারারেখ হল প্রবাহীর প্রবাহের রেখাচিত্র। শান্তপ্রবাহে দুটি ধাররেখ পরস্পরকে ছেদ করে না। এর অর্থ হল কোনো এক বিন্দুতে একটি প্রবাহীকণার দুটি ভিন্নমুখী প্রবাহবেগ থাকতে পারে না।
- 6. প্রবাহীতে সান্দ্রতাজনিত প্রতিবন্ধকতা থাকলে বার্নোলির নীতি খাটবে না। সেক্ষেত্রে স্বভাবতই এই অপচয়ী সান্দ্রবল দ্বারা কৃতকার্যকে অবশ্যই হিসাবের মধ্যে আনতে হবে এবং চিত্র 10.9 থেকে প্রাপ্ত P₂ এর মান সমীকরণ 10.12 তে প্রাপ্ত মান অপেক্ষা কম হবে।
- 7. তাপমাত্রা বৃন্দির সঙ্গো সঙ্গো তরলের অণুগুলোর সচলতা বৃন্দি পায় এবং সান্দ্রতাঙ্গ্দ 'η' এর মান হ্রাস পায়। গ্যাসের ক্ষেত্রে তাপমাত্রা বৃন্দির সঙ্গো সঙ্গো অণুগুলোর অনিয়মিত গতিবৃন্দি পায় এবং η বৃন্দি পায়।
- তরল প্রবাহের জ্যামিতিক আকৃতির উপর নির্ভর করে তরলের অশান্ত প্রবাহ শুরুর জন্য রেনল্ডস্ নাম্বার এর সংকট মান 1000 থেকে 10000 সীমার মধ্যে হয়। অধিকাংশ ক্ষেত্রে R₂ < 1000 দ্বারা বোঝায় যে, প্রবাহটি স্তরিত প্রবাহ; 1000 < R < 2000 হলে প্রবাহটি অস্থির হয় এবং R > 2000 দ্বারা বোঝায় যে প্রবাহটি বিক্ষুন্থ প্রবাহ।
- 9. তরলের অভ্যন্তরে থাকা তরল অণুগুলোর গতিশস্তির তুলনায় পৃষ্ঠতলে থাকা অণুগুলোতে অতিরিস্তু গতিশস্তির জন্যই পৃষ্ঠটান সৃষ্টি হয়, এধরনের পৃষ্ঠশস্তির অবস্থান হল দুটি বস্তুর বিভেদতলে। বস্তু দুটির মধ্যে একটি অবশ্যই প্রবাহী হবে। এটা একটিমাত্র প্রবাহীর বৈশিষ্ট্য নয়।

পদার্থবিদ্যা

ভৌতরাশি	ক্তব্য	মাত্রা	একক	মন্তব্য
চাপ	Р	$[M L^{-1}T^{-2}]$	পাস্কাল (Pa)	1 atm = 1.013 × 10 ⁵ Pa, স্কেলার
ঘনত্ব	ρ	[M L ⁻³]	kg m ⁻³	স্কেলার
আপেক্ষিক গুরুত্ব		নাই	নাই	$rac{ ho_{_{ m erg}}}{ ho_{_{_{ m seq}}}}$, স্কেলার
সান্দ্রতাঙ্ক	η	$[M L^{-1} T^{-1}]$	Pa s পয়সলি (Pl)	স্কেলার
রেনল্ডস্ সংখ্যা	$R_{\rm e}$	নাই	নাই	$R_e=rac{ ho arphi d}{\eta}$; স্কেলার
পৃষ্ঠটান	S	[M T ⁻²]	$N m^{-1}$	স্কেলার

অনুশীলনী

10.1 কেন ব্যাখ্যা করো :

- (a) মানবদেহের মস্তিষ্ক অপেক্ষা পায়ে রক্তচাপ বেশি হয়।
- (b) যদিও বায়ুমণ্ডলের উচ্চতা 100 km, তা সত্ত্বেও ভূপষ্ঠ থেকে 6 km উচ্চতায় যে বায়ুচাপ হয়, ভূপষ্ঠে তা অর্ধেক কমে যায়।
- (c) যদিও বলকে ক্ষেত্রফল দ্বারা ভাগ করে চাপ পাওয়া যায় তা সত্ত্বেও চাপ একটি স্কেলার রাশি।
- 10.2 কেন ব্যাখ্যা করো :
 - (a) পারদ ও কাচের স্পর্শকোণ হল স্থৃলকোণ কিন্তু জল ও কাচের ক্ষেত্রে তা হল সূক্ষ্মকোণ।
 - (b) কাচতলের উপর জল ছড়িয়ে পড়তে চায় কিন্তু একই তলে পারদ বিন্দু আকৃতি ধারণ করতে চায়। (অন্যভাবে বলা যায় জল কাচকে ভিজায় কিন্তু পারদ তা করে না)।
 - (c) তরলের পৃষ্ঠটান তার ক্ষেত্রফলের উপর নির্ভর করে না।
 - (d) সাবানযুক্ত জল এবং কাচের স্পর্শকোণ অনেক কম হয়।
 - (e) যে-কোনো বাহ্যিক বলের প্রভাবমুক্ত অবস্থায় কোনো তরলবিন্দুর আকৃতি গোলীয় হয়।
- 10.3 পাশে দেওয়া বন্ধনী থেকে উপযুক্ত শব্দ ব্যবহার করে শূন্যস্থান পূরণ করো :
 - (a) তরলের পৃষ্ঠটান সাধারণত উন্নতার সঙ্গে (বৃদ্ধি পেতে থাকে / হ্রাস পেতে থাকে)।
 - (b) গ্যাসের সান্দ্রতা তাপমাত্রা বৃষ্ধির সঙ্গে কিন্তু তরলের সান্দ্রতা তাপমাত্রা বৃষ্ধির সঙ্গে (বৃষ্ধি পায়/হ্রাস পায়)।
 - (c) স্থিতিস্থাপক কুন্তন গুণাঙ্কযুক্ত কঠিনের কুন্তন বলের মান এর সমানুপাতিক কিন্তু প্রবাহীর ক্ষেত্রে ইহা এর সমানুপাতিক হয় (কৃন্তন বিকৃতি / কৃন্তন বিকৃতির হার)।
 - (d) প্রবাহীর স্থির প্রবাহের ক্ষেত্রে সংকুচিত অংশে প্রবাহীর দ্রুতি বৃদ্ধি পায় যে নীতিতে তা হল (ভরের সংরক্ষণ / বার্নৌলীর নীতি)।
 - (e) বায়ু সুরঞ্চো (wind tunnel) প্রকৃত বিমানে যে বেগের জন্য বিক্ষুব্ধতা সৃষ্টি হয়, মডেল বিমানে বিক্ষুব্ধতা সৃষ্টির জন্য প্রয়োজনীয় বেগের মান তার — (বেশি / কম)।
- কেন ব্যাখ্যা করো : 10.4
 - (a) অনুভূমিকভাবে রাখা এক টুকরো কাগজকে উড়ানোর জন্য তোমাকে তার উপর দিয়ে ফুঁ দিতে হবে, কাগজের নীচে দিয়ে নয়।
 - (b) যখন আমরা আঙুল দ্বারা জলের টেপের মুখকে বন্থ করার চেম্টা করি তখন গতিশীল জলের ধারা টেপের খোলা অংশ দিয়ে আঙুলগুলোর ফাঁক দিয়ে পিচকারির মতো বের হয়।
 - (c) ডাক্তাররা ইন্জেকশান দেওয়ার সময় বুদ্ধাঙ্গুল দ্বারা প্রবাহের হারকে যেভাবে নিয়ন্ত্রণ করতে পারেন তার চেয়ে অনেক ভালোভাবে সিরিঞ্জের আকার দ্বারা নিয়ন্ত্রণ করা যায়।

- (d) একটি পাত্রের ক্ষুদ্র ছিদ্র দিয়ে প্রবাহী নির্গত হওয়ার সময় পাত্রের উপর পশ্চাতমুখী একটি ঘাত প্রয়োগ করে
- (e) একটি ঘূর্ণী ক্রিকেটবল বায়ুর মধ্য দিয়ে যাবার সময় অধিবৃত্তাকার পথ অনুসরণ করে না।
- 10.5 50 kg ভরের এক বালিকা উঁচু হিল্ জুতা পড়ে একপায়ের উপর সাম্যবস্থায় দাঁড়িয়ে আছে। হিল জুতার বৃত্তাকার অগ্রভাগের ব্যাস 1.0 cm । হিল্ দ্বারা অনুভূমিক মেঝের উপর প্রযুক্ত চাপের মান কত ?
- 10.6 টরিসেলির ব্যারোমিটারে পারদ ব্যবহার করা হয়। পাস্কাল একে 984 kg m⁻³ ঘনত্বের ফরাসী অ্যালকোহল দ্বারা প্রতিস্থাপিত করেছিলেন। প্রমাণ বায়ুমণ্ডলীয় চাপের জন্য অ্যালকোহল স্তম্ভের উচ্চতা নির্ণয় করো।
- 10.7 সমুদ্রতট থেকে দুরে সর্বোচ্চ 10⁹ Pa পীড়ন সহ্য করতে পারে এরুপ একটি স্ট্রাক্চার (কাঠামো) তৈরি করা হয়েছে. এই কাঠামোটিকে সমুদ্রের মধ্যে একটি তৈল কৃপের উপর স্থাপন করা উপযুক্ত হবে কিনা ? সমুদ্রের গড় গভীরতাকে মোটামুটি 3 km ধরে নাও এবং সমুদ্রপ্রবাহকে উপেক্ষা করো।
- 10.8
 একটি হাইড্রোলিক মোটরগাড়ির লিফ্ট সর্বোচ্চ 3000 kg উত্তোলন করতে পারে। ভার উত্তোলক পিস্টনটির প্রস্থচ্ছেদের ক্ষেত্রফল 425 cm²। ছোটো পিস্টনটির সর্বোচ্চ কত চাপ সহ্য করতে পারে?
- 10.9 একটি U-টিউবের মধ্যে জল ও মেথিলেটেড স্পিরিট পারদ দ্বারা পরস্পর থেকে পৃথক আছে। বাহু দুটির একটিতে 10.0 cm জল এবং অন্যটিতে 12.5 cm স্পিরিট স্তন্তের দ্বারা পারদ স্তন্তটি দুই বাহু অনুভূমিকভাবে স্থির আছে। স্পিরিটের আপেক্ষিক গুরুত্ব কত ?
- 10.10 পূর্বের সমস্যায় U নলের দুবাহুর মধ্যে জলপূর্ণ বাহুতে 15.0 cm জল এবং স্পিরিট পূর্ণ বাহুতে 15.0 cm স্পিরিট ঢালা হলে দু বাহুতে পারদ স্তম্ভের উচ্চতার পার্থক্য কত হবে ? পারদের আপেক্ষিক গুরুত্ব = 13.6।
- 10.11 বার্নোলির সমীকরণ ব্যবহার করে খরস্রোতা নদীর জলের প্রবাহকে বর্ণনা করা যাবে কিনা ব্যাখ্যা করো।
- 10.12 যদি কেউ বার্নৌলির সমীকরণ প্রয়োগের সময় পরম চাপের পরিবর্তে গজ চাপ ব্যবহার করে তবে কোনো পার্থক্য হবে কি ? ব্যাখ্যা করো।
- 10.13 একটি 1.5 m দীর্ঘ এবং 1.0 cm ব্যাসার্ধের অনুভূমিক নলের মধ্য দিয়ে গ্লিসারিন সুষমভাবে (শাস্তভাবে) প্রবাহিত হচ্ছে। যদি নলের একপ্রান্তে সংগৃহীত গ্লিসারিনের পরিমাণের হার $4.0 \times 10^{-3} \text{ kg s}^{-1}$ হয় তবে নলের দুই প্রান্তের চাপের পার্থক্য কত? (গ্লিসারিনের ঘনত্ব = $1.3 \times 10^3 \text{ kg m}^{-3}$ এবং সান্দ্রতা = 0.83 Pa s)। [তুমি পরীক্ষা করে দেখতে পারো যে স্তরিত বা শাস্ত প্রবাহের স্বীকার্যগুলো এই নলের ক্ষেত্রে সঠিক কিনা?].
- 10.14 একটি বায়ু সুরজো একটি মডেল বিমানের পরীক্ষা যাচাই কালে ডানার উপরের এবং নীচের প্রবাহীর বেগ যথাক্রমে 70 m s⁻¹ এবং 63 m s⁻¹ । যদি ডানার ক্ষেত্রফল 2.5 m² হয় তবে ডানার উপর ঊর্ধ্বমুখী উত্তোলক বল কত ? (ধরে নাও বায়ুর ঘনত্ব 1.3 kg m⁻³)।
- 10.15 10.23(a) এবং (b) চিত্র দুটি অসান্দ্র প্রবাহীর শান্ত প্রবাহকে প্রকাশ করছে। কোন্ চিত্রটি সঠিক নয় ? কেন ?

- 10.16 একটি চোঙাকৃতি স্প্রে পাম্পের প্রস্থচ্ছেদের ক্ষেত্রফল 8.0 cm² এবং তার এক প্রান্তে 1.0 mm ব্যাসের 40 টি সূক্ষ্ম ছিদ্র আছে। যদি নলের ভেতর তরল 1.5 m min⁻¹ বেগে প্রবাহিত হয় তাহলে ছিদ্রগুলোর মধ্য দিয়ে তরল প্রবাহের নিক্ষেপ বেগ কত ?
- 10.17 U-আকৃতির একটি তারকে সাবানের দ্রবণে ডোবানো হল এবং তুলে আনা হল। তারটি (wire) এবং স্লাইডারের মধ্যবতী পাতলা সাবানের সর 1.5 × 10⁻² N ওজন বহন করতে পারে (যার মধ্যে হালকা স্লাইডারের ওজনও অর্ন্তভুক্ত)। স্লাইডারের দৈর্ঘ্য 30 cm। পাতলা সরটির পৃষ্ঠটানের মান কত ?

- 10.19 ঘরের তাপমাত্রায় 3.00 mm ব্যাসার্ধের এক ফোঁটা পারদের অভ্যন্তরে চাপ কত ? ঐ তাপমাত্রায় (20 °C) পারদের পৃষ্ঠটান হল 4.65 × 10⁻¹ N m⁻¹। বায়ুর চাপ হল 1.01 × 10⁵ Pa । বিন্দুর অভ্যন্তরের অতিরিস্তু চাপের মান বের করো।
- 10.20 একটি সাবানের দ্রবণের 5.00 mm ব্যাসার্ধবিশিষ্ট বুদবুদের অতিরিস্তু চাপ কত? (দেওয়া আছে, ঐ তাপমাত্রায় (20 °C) সাবান আকারের বুদবুদের পৃষ্ঠটান হল 2.50 × 10⁻² N m⁻¹)। যদি একটি সমান আকারের বায়ুর বুদবুদ সাবান দ্রবণের (আপেক্ষিক ঘনত্ব 1.20) 40.0 cm গভীরতায় সৃষ্টি হয়, তবে তার অভ্যন্তরে চাপ কত হবে? (1 বায়ুমগুলীয় চাপ হল 1.01 × 10⁵ Pa)।

অতিরিক্ত অনুশীলনী (Additional Exercises)

- 10.21 1.0 m² বর্গাকার ভূমি ক্ষেত্রফলবিশিষ্ট একটি ট্যাংককে একটি উল্লম্ব বিভাজক (partition) দ্বারা দুভাগে ভাগ করা হল। বিভাজকটির নিম্নাংশে 20 cm² ক্ষেত্রফলবিশিষ্ট একটি কজায় ঝুলানো দরজা আছে। ট্যাংকটির একটি প্রকোষ্ঠ জল দ্বারা এবং অন্য প্রকোষ্ঠটি (1.7 আপেক্ষিক ঘনত্ব বিশিষ্ট) একটি অ্যাসিড দ্বারা 4.0 m উচ্চতা পর্যন্ত ভর্ত্তি করা হল। দরজাটিকে বন্ধ রাখতে কত বল প্রয়োজন তা গণনা করো।
- 10.22 একটি আবন্ধ গ্যাসের চাপের পাঠ ম্যানোমিটারে (চিত্র 10.25 (a) তে) দেখানো হয়েছে। যখন পাম্পের সাহায্যে কিছু গ্যাস বের করে নেওয়া হল তখন ম্যানোমিটারের পাঠ চিত্র 10.25 (b) এর মতো দেখায়। ম্যানোমিটারে ব্যবহৃত তরল হল পারদ এবং বায়ুমণ্ডলীয় চাপের মান 76 cm পারদস্তম্ভের চাপের সমান।
 - (a) আবন্ধ পাত্রের গ্যাসের পরম ও গজ চাপের মান পারদ স্তন্তের উচ্চতার cm এককে (a) ও (b) ক্ষেত্রের বেলায়
 কি হবে বের করো।
 - (b) (b) এর ক্ষেত্রে উচ্চতার লেবেলের কি পরিবর্তন হবে যদি 13.6 cm উচ্চতার জল স্তম্ভ (পারদের সঙ্গে মিশ্রণে অসাধ্য তরল) ম্যানোমিটারের ডান বাহুতে ভর্ত্তি করা হয়? (গ্যাসের আয়তনের ক্ষুদ্র পরিবর্তনকে উপেক্ষা করো)।

- 10.23 দুটি পাত্রের ভূমির ক্ষেত্রফল সমান কিন্তু তাদের আকার ভিন্ন। একটি নির্দিষ্ট সাধারণ উচ্চতা পর্যন্ত পূর্ণ করতে প্রথম পাত্রটিতে দ্বিতীয় পাত্রের দ্বিগুণ আয়তনের জল ভর্ত্তি করতে হয়। দুইক্ষেত্রে পাত্রের ভূমিতে প্রযুক্ত বলের মান সমান কিনা ? যদি হয়, তাহলে কেন একই উচ্চতার জন্য এক পাত্রের তুলনায় অন্যপাত্রে পরিমাপক স্কেলে বিভিন্ন পাঠ দেয় ?
- 10.24 শরীরে রক্ত প্রবেশ করানোর সময় সূচকে ধমনীতে ঢোকানো হয় যেখানে গজচাপের মান হল 2000 Pa । ন্যূনতম কত উচ্চতায় রক্তের পাত্রকে রাখলে রক্ত শরীরে প্রবেশ করবে? (সমস্ত রক্তের ঘনত্বের মান সারণি 10.1 থেকে নাও)।
- 10.25 বার্নৌলির সমীকরণ প্রতিষ্ঠায় আমরা নলের অভ্যন্তরে প্রবাহীর স্থিতিশন্তি ও গতিশন্তির পরিবর্তনকে কৃতকার্যের সমান ধরি। (a) একটি 2 × 10⁻³ m ব্যাসবিশিষ্ট শিরার মধ্য দিয়ে রক্তপ্রবাহের সর্বোচ্চ গড়বেগের মান বের করো, যেখানে প্রবাহ অবশ্যই স্তরিত প্রবাহ হয়। (b) প্রবাহীর বেগ বৃদ্ধির সঙ্গো অপচয়ী বলগুলো আরও বেশি গুরুত্বপূর্ণ হবে কিনা ? গুণগতভাবে এর ব্যাখ্যা দাও।
- 10.26
 (a) 2×10⁻³ m ব্যাসার্ধবিশিষ্ট একটি ধমনীর মধ্য দিয়ে স্তরিত প্রবাহের জন্য রক্ত প্রবাহের সর্বোচ্চ গড়বেগ কত

 হবে?
 (b) সংশ্লিষ্ট প্রবাহের হার কত হবে? (রক্তের সান্দ্রতাকে 2.084 × 10⁻³ Pa s ধরে নাও)।
- 10.27 অনুভূমিকভাবে একটি এরোপ্লেন সমবেগে উড়ছে এবং তার দুটি ডানার প্রত্যেকটির ক্ষেত্রফল 25 m² । ডানার নীচে ও উপরে দিয়ে বায়ুপ্রবাহের বেগ যথাক্রমে 180 km/h এবং 234 km/h । উড়োজাহাজটির ভর কত? (বায়ুর ঘনত্বকে 1 kg m⁻³ ধরে নাও)।
- 10.28 মিলিকানের তৈলবিন্দু পরীক্ষার ক্ষেত্রে $2.0 \times 10^{-5} \text{ m}$ ব্যাসার্ধবিশিষ্ট ও $1.2 \times 10^{3} \text{ kg m}^{-3}$ ঘনত্ববিশিষ্ট অনাহিত একটি তৈলবিন্দুর প্রান্তীয় বেগ নির্ণয় করো। পরীক্ষা ব্যবস্থায় সংশ্লিষ্ট উম্নতায় বায়ুর সান্দ্রতাঙ্কন $1.8 \times 10^{-5} \text{ Pa s}$ ধরে নাও। ঐ বেগের জন্য তৈলবিন্দুটির উপর ক্রিয়াশীল সান্দ্রবল নির্ণয় করো। তৈলবিন্দুর উপর বায়ুর প্লবতা বলকে উপেক্ষা করো।
- 10.29 সোডালাইম গ্লাস এর সঙ্গো পারদের স্পর্শকোণ হল 140°। এইরকম কাচ দিয়ে তৈরি 1.00 mm ব্যাসার্ধবিশিষ্ট একটি সরু নলকে পারদপূর্ণ একটি পাত্রে ডোবানো হল। বাইরের পারদস্তরের তুলনায় সরুনলের অভ্যন্তরের পারদের স্তর কত নীচে থাকবে ? পরীক্ষাধীন ব্যবস্থায় ঐ উন্নতায় পারদের পৃষ্ঠটান হল 0.465 N m⁻¹ এবং পারদের ঘনত্ব = 13.6 × 10³ kg m⁻³।
- 10.30 3.0 mm এবং 6.0 mm ব্যাসযুক্ত দুটি সরু চোঙাকৃতি নলকে যুক্ত করে একটি U নল তৈরি করা হল যার দুই প্রান্ত খোলা। যদি U নলটি জল দ্বারা পূর্ণ করা হয় তবে তার দুবাহুতে জলের লেবেলের পার্থক্য কত ? পরীক্ষা ব্যবস্থার সংশ্লিফ্ট উন্নতায় জলের পৃষ্ঠটান হল 7.3 × 10⁻² N m⁻¹। স্পর্শকোণের মানকে শূন্য এবং জলের ঘনত্বকে 1.0 × 10³ kg m⁻³ ধরো (g = 9.8 m s⁻²) ।

ক্যালকুলেটর / কম্পিউটার নির্ভর সমস্যা —

10.31 (a) এটা আমাদের জানা যে বায়ুর ঘনত্ব ho উচ্চতা বৃদ্ধির সঙ্গো নিম্নলিখিত সমীকরণ অনুযায়ি হ্রাস পায়।

 $\rho = \rho_0 e^{-y/y_o}$

যেখানে $\rho_0 = 1.25 \text{ kg m}^{-3}$ হল সমুদ্রপৃষ্ঠে বায়ুমণ্ডলের ঘনত্ব এবং y_0 হল একটি ধ্রুবক। উচ্চতার সঙ্গো ঘনত্বের এই পরিবর্তনের সূত্রকে বলা হয় বায়ুমণ্ডলের সূত্র। বায়ুমণ্ডলের উন্নতা অপরিবর্তিত (সমোঘ্ন থাকে) থাকে ধরে নিয়ে সূত্রটি বের করো। g এর মানও ধ্রুবক থাকে ধরে নাও।

(b) একটি বড়ো He গ্যাস পূর্ণ বেলুনের আয়তন 1425 m³ এবং ইহা 400 kg ভরের পে-লোড (Pay load) কে তোলার কাজে ব্যবহৃত। ধরো বেলুনটির উপরে উঠার সঙ্গো এর ব্যাসার্ধের কোনো পরিবর্তন হয় না। কত উচ্চতা পর্যন্ত বেলুনটি উঠবে ? (ধরো $y_0 = 8000 \text{ m}$ এবং $\rho_{He} = 0.18 \text{ kg m}^{-3}$)।

পরিশিষ্ট 10.1 : রক্তচাপ কী ? APPENDIX 10.1 : WHAT IS BLOOD PRESSURE ?

বিবর্তনের ইতিহাসে কোনো এক সময় ছিল যখন প্রাণীদের দৈনন্দিন জীবনের একটা বড়ো অংশ সোজা দাঁড়ানো অবস্থায় (দাঁড়িয়ে থেকে) অতিবাহিত করতে হতো। এতে সংবহন প্রণালীতে অনেক চাহিদার সৃষ্টি হয়েছে। ফলে শিরাতন্ত্র যা শরীরের নিম্নাংশ থেকে রক্তকে পুনরায় হৃৎপিণ্ডে পৌঁছায় তার অনেক পরিবর্তন হয়েছে। তোমরা জানো যে, শিরা হল রক্তনালিকা যার সাহায্যে রক্ত পুনরায় হৃৎপিণ্ডে ফিরে আসে। মানুষ এবং জিরাফের মতো প্রাণীরা নিজেদেরকে অভিযোজিত করে রক্তকে অভিকর্ষের বিরুদ্ধে উর্ধ্বমুখী চালনা করার সমস্যাকে অতিক্রম করতে সক্ষম হয়েছে।

চিত্র 10.26 খাড়া ও শোয়া অবস্থায় মানুষের শরীরের বিভিন্ন অংশের গজ চাপ এর একটি চিত্র দেখানো হয়েছে। এক্ষেত্রে একটি পূর্ণ হৃদচক্রের চাপের গডমানকে প্রদর্শিত করা হয়েছে।

কিন্তু সাপ, ইঁদুর এবং খরগোশের মতো প্রাণীদেরকে খাড়াভাবে রেখে দিলে তারা মরে যাবে কারণ তাদের রক্ত নিম্মাংশে থেকে যায় এবং তাদের শিরাতন্ত্র রক্তকে ঊর্ধ্বমুখে সঞ্চালিত করে হৃদপিন্ডে পৌঁছাতে পারে না।

চিত্র 10.26 তে মানবদেহের বিভিন্ন বিন্দুতে শিরার মধ্যে রক্তের গড় চাপকে দেখানো হয়েছে। যেহেতু সান্দ্রতাজনিত প্রভাব কম, তাই আমরা এই চাপকে বোঝার জন্য বার্নৌলির সমীকরণ (10.13) কে ব্যবহার করতে পারি

$$P + \frac{1}{2}\rho v^2 + \rho g y =$$
ধ্বক

তিনটি ধমনীতে রক্তের বেগ খুব কম (≈ 0.1 m s⁻¹) বলে গতিশস্তির পদটি (½pv²) কে আমরা উপেক্ষা করতে পারি। তাই মস্তিষ্ক, হৃদপিণ্ড এবং পায়ে গজ চাপের মান যথাক্রম P_r, P_u এবং P_r পরস্পর নিম্নলিখিত সমীকরণের মতো সম্পর্কযুক্ত।

$$P_F = P_H + \rho g h_H = P_B + \rho g h_B \tag{10.34}$$

এখানে p হল রক্তের ঘনত্ব।

হুৎপিঙ ও মস্তিষ্কের উচ্চতার বিশেষ মান (Typical value) হল যথাক্রমে $h_{_H} = 1.3 \text{ m}$ এবং $h_{_B} = 1.7 \text{ m}$ । $\rho = 1.06 \times 10^3 \text{ kg m}^{-3}$ নিয়ে আমরা পাই, $P_{_F} = 26.8 \text{ kPa}$ (কিলোপাস্কাল) এবং $P_{_B} = 9.3 \text{ kPa}$, যা থেকে পাই $P_{_H} = 13.3 \text{ kPa}$ । তাই দাঁড়ানো অবস্থায় শরীরের নিন্মাংশ এবং উধ্বাংশতে চাপের মানের এত পার্থক্য হয়। কিন্তু শোয়া অবস্থায় এই মানগুলো প্রায় সমান হয়। পাঠ্যাংশে উল্লিখিত চাপের একক যা চিকিৎসাবিদ্যা ও শারীরবিদ্যায় সচরাচর ব্যবহৃত হয় তা হল টর ও মিলিমিটার পারদস্তম্ভ। 1 mm পারদস্তম্ভ = 1 টর = 0.133 \text{ kPa}। তাই হুৎপিঙে চাপের গড় মান হল $P_{_H} = 13.3 \text{ kPa}$ । তাই মূল তাই হুৎপিঙে চাপের গড় মান হল $P_{_H} = 13.3 \text{ kPa}$ । তাই মূল তাই হুৎপিঙে চাপের গড় মান হল $P_{_H} = 13.3 \text{ kPa}$

মানব শরীর হল প্রকৃতির অদ্ভুত বিস্ময়। শরীরের নিন্মাংশে (পা) অবস্থিত ধমনীগুলো কপাটিকা (বাম্ব) দ্বারা এমনভাবে সজ্জিত, যাতে করে যখন রস্তু নিন্মাংশ থেকে হৃৎপিঙের দিকে প্রবাহিত হয় তখন বাম্বগুলো খুলে যায়। আবার যখন রস্তু নীচের দিকে গতিশীল হতে চায় তখন তারা বন্ধ হয়ে যায়। আবার রস্তু শ্বাস প্রশ্বাসের সঙ্গো যুক্ত ক্রম সংকোচন প্রসারণ ক্রিয়া দ্বারা এবং হাটার সময় অস্থিপেশীর সংকোচনের ফলে আংশিকভাবে হৃৎপিঙে ফিরে আসে। তাই একজন সৈনিক যখন সাবধান অবস্থায় (attention) দাঁড়ায় তখন সে মুর্ছিত হতে পারে, কারণ তখন হুৎপিঙে অপর্যাপ্ত পরিমাণ রস্তু ফিরে আসে। যখন তাকে শোয়ানো হয় তখন চাপের মান সমতায় পৌঁছায় এবং তার চেতনা ফিরে আসে।

ম্পিগ্মোম্যানোমিটার নামক যন্ত্রের সাহায্যে সাধারণত রক্তচাপ পরিমাপ করা হয়। ইহা হল একটি দ্রুত, যন্ত্রনাবিহীন ও অনাক্রমণাত্মক (noninvasive) পম্বতি যার দ্বারা ডাক্টাররা রোগীদের দেহের অবস্থা সম্পর্কে মোটামুটি ধারণা করতে পারেন। রক্তচাপ পরিমাপের পম্বতিকে 10.27 নং চিত্রে দেখানো হয়েছে। দুটি কারণে হাতের উধ্বাংশকে একাজে ব্যবহার করা হয়। প্রথমত - ইহা হৃদপিণ্ডের সঙ্গো একই উচ্চতায় থাকে এবং এই চাপের পরিমান হৃদপিণ্ডের পরিমাপের কাছাকাছি মান দেয়। দ্বিতীয়ত, হাতের উপরের অংশে একটিমাত্র হাড় থাকে এবং শিরাকে এ অংশে সংকুচিত করা সহজ (যাকে ব্রাসিয়েল বা বাহু-শিরা বলা হয়)। আমরা সবাই কব্জিতে আঙ্গুল চেপে হৃদস্পন্দনের হারকে পরিমাপ করি। প্রতিটি স্পন্দন 1 সেকেণ্ড থেকে অল্প কিছু কম সময় নেয়। প্রতি স্পন্দনে হৃদপিণ্ড এবং সংবহনতন্ত্রে চাপের একটি সর্বোচ্চ মান (সিস্টোলিক চাপ) থাকে যখন হৃদপিণ্ড দ্বারা রন্তুকে পাম্প করা হয় এবং একটি সর্বনিম্ন মান (ডায়াস্টোলিক চাপ) থাকে যখন হৃদপিণ্ড শিথিল অবস্থায় (relaxed) থাকে। স্পিগ্যমা্যানোমিটার হল একটি যন্ত্র, যা এই চূড়ান্ত চাপগুলো পরিমাপ করে। ইহা এ নীতির উপর কাজ করে যেখানে উপযুক্ত চাপ প্রয়োগ করে রক্ত প্রবাহকে ধারারেখ থেকে বিক্ষুব্ধ প্রবাহে পরিণত করে ব্রাসিয়েল শিরাতে (উর্ধ্ববাহুতে) প্রবাহিত করানো হয়। বিক্ষুব্ধ প্রবাহ হল অপচয়ী এবং এর শব্দ আমরা স্টেথোস্কোপের সাহায্যে শুনতে পাই।

একটি বায়ুর থলিকে হাতের ঊর্ধ্বাংশে পেচিয়ে ম্যানোমিটার যন্ত্রের সাহায্যে বা ডায়াল চাপ মাপক (dial pressure gauge) যন্ত্রের সাহায্যে গজ

চাপ পরিমাপ করা হয় (চিত্র 10.27)। ঐ বায়ুথলির চাপকে এমনভাবে বৃদ্ধি করা হয় যাতে করে হাতের উধ্বাংশের ধমনীর প্রবাহ বন্ধ হয়ে যায়। তারপর বায়ুথলির চাপকে ধীরে ধীরে হ্রাস করা হয় এবং স্ট্যাথোস্কোপকে বায়ুথলির নীচে রাখা হয় এবং হাতের উধ্বাংশের ধমনীতে সৃষ্ট শব্দকে শোনা হয়। যখন এ চাপের মান সিস্টোলিক চাপের ঠিক নীচে থাকে তখন শিরা ধীরে ধীরে খুলতে থাকে। এই খোলার স্বল্প সময়কালে খুব সংকীর্ণ ধমনী পথে রক্ত প্রবাহের বেগ খুব বেশি হয়ে বিক্ষুব্ধ প্রবাহ হয় এবং তা কোলাহল পূর্ণ হয় এবং এটি মৃদু শব্দ রূপে স্টেথোস্কোপে ধরা পড়ে। আবার যখন বায়ুথলিতে চাপের মান পুনরায় কমে যায়, হুদচক্রের একটা বেশি সময় ব্যাপি ধমনী খুলে থাকে। তাসত্ত্বেও হৃদস্পন্দনের ডায়াস্টোলিক দশাকালে এটি বন্ধ থাকে। তাই এই মৃদু শব্দটি দীর্ঘস্থায়ী হয়। সমগ্র হৃদচক্রে যখন বায়ুথলিতে চাপের মান ডায়াস্টোলিক চাপের সমান হয়, তখন ধমনীর মুখ উন্মুক্ত হয়। যাই হোক এই প্রবাহ তখনও বিক্ষুন্থ ও এলোমেলো হয়। কিন্ডু এক্ষেত্রে মৃদু

শব্দের পরিবর্তে একটি নির্দিষ্ট মানের নিরবিচ্ছিন্ন জোরালো শব্দ স্টেথোস্কোপে শোনা যায়।

একজন রোগীর রক্তচাপ প্রকাশ করা হয় সিস্টোলিক ও ডায়াস্টোলিক চাপের অনুপাত দ্বারা। বিশ্রামরত অবস্থায় একজন সুস্থ প্রাপ্ত বয়স্ক ব্যক্তির রক্তচাপের সাধারণ মান হল 120/80 mm পারদস্তম্ভ (120/80 টর)। রক্তচাপের মান 140/90 এর বেশি হলে চিকিৎসকের পরামর্শ ও ব্যবস্থা প্রয়োজন। উচ্চ রক্তচাপ হৃৎপিন্ড, কিডনী এবং অন্যান্য অঙ্গাকে তীব্রভাবে ক্ষতিগ্রস্থ করতে পারে এবং তাই তাকে অবশ্যই নিয়ন্ত্রণে আনা প্রয়োজন।

অধ্যায় : একাদশ

পদার্থের তাপীয় ধর্মাবলি (Thermal Properties of Matter)

11.1	ভূমিকা
11.2	তাপমাত্রা ও তাপ
11.3	তাপমাত্রার পরিমাপ
11.4	আদর্শ গ্যাস সমীকরণ ও পরম
	তাপমাত্রা
11.5	তাপীয় প্রসারণ
11.6	আপেক্ষিক তাপ ধারকত্ব
11.7	ক্যালোরিমিতি
11.8	অবস্থার পরিবর্তন
11.9	তাপ সঞ্জালন
11.10	নিউটনের শীতলীকরণ সূত্র
	সারাংশ
	ভেবে দেখার বিষয়সমূহ
	অনুশীলনী
	অতিরিন্তু অনুশীলনী

11.1 ভূমিকা (INTRODUCTION)

তাপ ও তাপমাত্রা সম্পর্কে আমাদের সবার সাধারণ ধারণা রয়েছে। তাপমাত্রা হল বস্তুর 'তাপীয় অবস্থার' পরিমাপ। বরফপূর্ণ একটি বাক্সের তুলনায় ফুটস্ত জলপূর্ণ একটি বোতল অপেক্ষাকৃত বেশি গরম। পদার্থবিদ্যায়, তাপ ও তাপমাত্রার ধারণাকে বেশি গুরুত্বের সাথে ও সঠিকভাবে বর্ণনা করা প্রয়োজন। এ অধ্যায়ে, আমরা তাপ কী এবং একে কীভাবে পরিমাপ করা যায় তা শিখব এবং এক বস্তু থেকে অন্য বস্তুতে তাপ সঞ্চালনের বিভিন্ন পদ্ধতি সম্পর্কে অধ্যয়ন করব। একইভাবে আমরা জানব, গরুর গাড়ির কাঠের চাকায় বেড় পড়ানোর আগে কর্মকার কেন লোহার বলয় (রিং) কে তাপ দেয় এবং কেনই বা সূর্যাস্তের পর সমুদ্রতীরে বায়ু প্রবাহের দিক পরিবর্তিত হয়। তোমরা আরও শিখবে জলের স্ফুটন ও হিমায়নের সময় কী ঘটে এবং এসময় যদিও বিশাল পরিমাণ তাপের আদান প্রদান ঘটে, তবুও জলের তাপমাত্রার কোনো পরিবর্তেন ঘটে না।

11.2 তাপমাত্রা ও তাপ (TEMPERATURE AND HEAT)

তাপমাত্রা ও তাপের সংজ্ঞা দিয়েই আমরা পদার্থের তাপীয় ধর্মসমূহকে জানতে শুরু করবো। তাপমাত্রা হল এক আপেক্ষিক পরিমাপ অথবা গরম ও ঠান্ডার অনুভূতি নির্দেশক। বলা হয় একটি গরম পাত্রের তাপমাত্রা বেশি এবং একটি বরফখন্ডের তাপমাত্রা কম। অন্য কোনো বস্তুর তুলনায় যে বস্তুর তাপমাত্রা বেশি, সে বস্তুকে বেশি **উত্তপ্ত** বলা হয়। লক্ষণীয় যে লম্বা ও বেটের মতো গরম ও ঠান্ডা আপেক্ষিক বিষয়। আমরা স্পর্শের মাধ্যমে তাপমাত্রা অনুভব করতে পারি। যাই হোক, এই তাপমাত্রার ধারণা কিছুটা অনির্ভরযোগ্য এবং বৈজ্ঞানিক বিষয়ে এর ব্যবহারিক ক্ষেত্র অনেকটাই সীমিত।

অভিজ্ঞতা থেকে আমরা জানি যে, গরমের দিনে কোনো টেবিলের উপর এক গ্লাস বরফ-ঠান্ডা জলকে রেখে দিলে অবশেষে গরম হয়ে ওঠে, কিন্তু একই টেবিলের উপর রাখা এক কাপ গরম চা ঠান্ডা হয়। এর অর্থ হচ্ছে, কোনো বস্তু (এক্ষেত্রে বরফ-ঠান্ডা জল বা গরম চা) এবং তার পারিপার্শ্বিকের তাপমাত্রা পৃথক হলে ওই বস্তু ও পারিপার্শ্বিকের মধ্যে তাপের সঞ্জালন চলতে থাকে, যতক্ষণ পর্যন্ত না বস্তু ও তার পারিপার্শ্বিকের তাপমাত্রা সমান হয়। আমরা আরও জানি যে, বরফ-ঠান্ডা জলপর্ণ কাচপাত্রের ক্ষেত্রে পরিবেশ থেকে তাপ কাচপাত্রে

পদার্থের তাপীয় ধর্মাবলি

প্রবাহিত হয়, যেখানে গরম চায়ের ক্ষেত্রে তাপ গরম চায়ের কাপ থেকে পরিবেশে প্রবাহিত হয়। সুতরাং, আমরা বলতে পারি, তাপ হল শস্তির একরূপ যা তাপমাত্রার পার্থক্যের জন্য দুটি বা তার বেশি সংস্থার মধ্যে অথবা কোনো একটি সংস্থা ও তার পারিপার্শ্বিক মাধ্যমের মধ্যে সঞ্চালিত হয়। সঞ্চালিত তাপ শস্তিকে আন্তর্জাতিক (SI) একক পন্দ্বতিতে 'জুল' (J) এককে প্রকাশ করা হয়। তাপমাত্রার আন্তর্জাতিক (SI) একক হচ্ছে কেলভিন (K) এবং ডিগ্রি সেন্টিগ্রেড (°C) হল তাপমাত্রার বহুল ব্যবহৃত একক। একটি বস্তুকে উত্তপ্ত করা হলে তাতে অনেক পরিবর্তন ঘটতে পারে। যেমন বস্তুটির তাপমাত্রা বাড়তে পারে, এটি প্রসারিত হতে পারে অথবা এর অবস্থার পরিবর্তন হতে পারে। বিভিন্ন বস্তুর ওপর তাপের প্রভাব সম্পর্কে আমরা পরবর্তী অনুচ্ছেদগুলোতে জানব।

11.3 তাপমাত্রার পরিমাপ (MEASUREMENT OF TEMPERATURE)

থার্মোমিটার বা তাপমান যন্ত্র ব্যবহার করে তাপমাত্রার পরিমাপ পাওয়া যায়। তাপমাত্রার পরিবর্তনে পদার্থের বিভিন্ন ভৌত ধর্মের যথেস্ট পরিবর্তন ঘটে, এমন সব বৈশিস্ট্য বা বিষয়কেই থার্মোমিটার তৈরির ভিত্তিরূপে ব্যবহার করা হয়। সাধারণত ব্যবহৃত ধর্মটি হল, তাপমাত্রার পরিবর্তনে তরলের আয়তনের পরিবর্তন ঘটে। উদাহরণস্বরূপ, সাধারণ 'কাচনলে-তরল' থার্মোমিটারে ব্যবহৃত পারদ, অ্যালকোহল প্রভৃতি তরল সমূহের আয়তন তাপমাত্রার বিস্তীর্ণ পরিসরে তাপমাত্রার সাথে সুযমভাবে পরিবর্তিত হয়।

থার্মোমিটারগুলোকে এমনভাবে ক্রমাজ্জন করা হয় যেন একটি যথাযথ স্কেলে একটি প্রদন্ত তাপমাত্রার জন্য একটি নির্দিন্ট সাংখ্যিক মান চিহ্নিত করা যায়। যে-কোনো প্রমাণ স্কেল নির্ধারণে দুটি স্থির নির্দেশক বিন্দুর প্রয়োজন হয়। যেহেতু তাপমাত্রার পরিবর্তনে সব বস্তুরই মাত্রিক পরিবর্তন ঘটে, তাই প্রসারণের এক পরম নির্দেশন (absolute reference) সহজলভ্য নয়। যাই হোক, সর্বদাই একই তাপমাত্রায় সংঘটিত হয় এমন ভৌত ঘটনাবলির সাথে প্রয়োজনীয় স্থির বিন্দুগুলোকে সম্পর্কিত করা যেতে পারে। জলের বরফ বিন্দু (ice point) এবং স্টীম বিন্দু (steam point) এমন দুটি সুবিধাজনক স্থির বিন্দু এবং এরা হল যথাক্রমে প্রমাণ চাপে জলের গলনাঙ্ক ও স্ফুটনাঙ্ক। এই দুটি বিন্দু হল দুটি তাপমাত্রা, যে তাপমাত্রা দুটিতে প্রমাণ চাপে যথাক্রমে জল জমে বরফে পরিণত হয় এবং ফুটে বাস্পে পরিণত হয়। তাপমাত্রা পরিমাপের দুটি বহুল প্রচলিত স্কেলে হল — ফারেনহাইট স্কেল এবং সেলসিয়াস স্কেল। ফারেনহাইট স্কেলে বরফ বিন্দু ও স্টীম বিন্দুর মান যথাক্রমে 32 °F ও 212 °F; সেলসিয়াস স্কেলে এ মান দুটো যথাক্রমে 0

চিত্র 11.1 ফারেনহাইট তাপমাত্রা (t_F) বনাম সেলসিয়াস তাপমাত্রা (t_c) র লেখচিত্র।

°C ও 100 °C। ফারেনহাইট স্কেলে দুটো নির্দেশক বিন্দুর মাঝে 180 টি সমান ভাগ আছে, এবং সেলসিয়াস স্কেলে এ ভাগ সংখ্যা 100 টি।

11.1 চিত্র ফারেনহাইট তাপমাত্রা (t_F) বনাম সেলসিয়াস তাপমাত্রা (t_C) র সরল রৈখিক লেখচিত্র, এ থেকে উভয় তাপমাত্রার পারস্পরিক রূপান্তরের একটি সম্পর্ক পাওয়া যায়। সম্পর্কটি নিম্নরূপ —

$$\frac{t_F - 32}{180} = \frac{t_C}{100} \tag{11.1}$$

11.4 আদর্শ গ্যাস সমীকরণ ও পরম তাপমাত্রা (IDEAL-GAS EQUATION AND ABSOLUTE TEMPERATURE)

প্রসারণ ধর্মের বৈসাদৃশ্যের দরুন কাচে তরল থার্মোমিটারগুলো স্থিরাঞ্চ ব্যতীত অন্য তাপমাত্রায় বিভিন্ন পাঠ দেখায়। কিন্তু যে গ্যাসই ব্যবহার করা হোক না কেন, সকল গ্যাস থার্মোমিটার একই তাপমাত্রা দেখায়। পরীক্ষায় দেখা যায় যে, কম ঘনত্বের সকল গ্যাসই একই রকম প্রসারণ ধর্ম প্রদর্শন করে। একটি নির্দিষ্ট ভর পরিমাণ গ্যাসের আচরণ নিয়ন্ত্রক রাশিগুলো হল চাপ, আয়তন ও তাপমাত্রা (*P*, *V* এবং *T*: যেখানে *T* = *t*+273.15; *t* হলো °C এ প্রকাশিত তাপমাত্রা)। তাপমাত্রা স্থির থাকলে নির্দিষ্ট পরিমাণ গ্যাসের চাপ ও আয়তন নিম্নরূপে সম্পর্কিত —

PV =ধ্রুবক।

এই সম্পর্কটির উদ্ভাবক ইংরেজ রসায়নবিদ রবার্ট বয়েল (Robert Boyle (1627–1691)-এর নামানুসারে এটি বয়েলের সূত্র নামে পরিচিত। স্থির চাপে নির্দিন্ট পরিমাণ গ্যাসের আয়তন ও তাপমাত্রার সম্পর্কটি হল *V/T*=ধ্রুবক।এ সম্পর্কটি ফরাসি বিজ্ঞানী জ্যাকুয়াস চার্লস (Jacques

চিত্র 11.2 স্থির আয়তনে রাখা নিম্ন ঘনত্বের কোনো গ্যাসের চাপ বনাম তাপমাত্রা (P-t) লেখচিত্র।

Charles, 1747–1823)-এর নামানুসারে চার্লস-এর সূত্র নামে পরিচিত। নিম্ন ঘনত্বের গ্যাস এই সূত্রগুলো মেনে চলে। এ সম্পর্ক দুটোকে একক সম্পর্কে সমন্বিত করা যায়। লক্ষ করো, যেহেতু নির্দিষ্ট পরিমাণ গ্যাসের ক্ষেত্রে *PV* = ধ্রুবক এবং *V/T* = ধ্রুবক। সুতরাং *PV/T* ও একটি ধ্রুবক হবে। এই সম্পর্কটি আদর্শ গ্যাস সূত্র নামে পরিচিত। সম্পর্কটিকে শুধুমাত্র নির্দিষ্ট পরিমাণ একটি গ্যাসই নয়, যে-কোনো পরিমাণের ও যে-কোনো নিম্ন ঘনত্বের গ্যাসের ক্ষেত্রে প্রয়োগ করা যায়, এমন এক সাধারণ রূপে প্রকাশ করা যায় যা **আদর্শ গ্যাস সমীকরণ** নামে পরিচিত। আদর্শ গ্যাস সমীকরণটি হল:

$$\frac{PV}{T} = \mu F$$

বা, $PV = \mu RT$ (11.2)

যেখানে, μ হলে গৃহীত গ্যাসে, মোল সংখ্যা এবং *R* কে সার্বিক গ্যাস ধ্রুবক বলে। সার্বিক গ্যাস ধ্রুবক —

 $R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$

সমীকরণ 11.2 হতে আমরা জানতে পারি যে চাপ ও আয়তন তাপমাত্রার সাথে সমানুপাতিক : $PV \propto T$ । এই সম্পর্কানুসারেই তাপমাত্রা পরিমাপে স্থির আয়তন গ্যাস থার্মোমিটারে গ্যাস ব্যবহৃত হয়। কোনো একটি গ্যাসের আয়তন স্থির ধরলে সম্পর্কটি দাঁড়ায় $P \propto T$ । এই সম্পর্ককে কাজে লাগিয়ে স্থির আয়তন গ্যাস থার্মোমিটারে চাপের পরিপ্রেক্ষিতে তাপমাত্রার পাঠ নেওয়া হয়। চাপ বনাম তাপমাত্রার লেখচিত্রটি এক্ষেত্রে চিত্র 11.2 এ প্রদর্শিত চিত্রের ন্যায় একটি সরলরেখা হয়।

যাই হোক, নিম্নতাপমাত্রায় আদর্শ গ্যাস সূত্র ব্যবহার করে প্রাপ্ত অনুমিত মানসমূহ থেকে বাস্তব গ্যাসের ক্ষেত্রে প্রাপ্ত মানসমূহের বিচ্যুতি ঘটে। কিন্তু, তাপমাত্রার এক বিস্তীর্ণ পাল্লায় এ সম্পর্কটি সরলরৈখিক এবং এটি প্রতীয়মান হয় যে, একটি গ্যাসের তাপমাত্রা কমতে থাকলে এক সময় এর চাপ শৃন্য হবে যদি ওই তাপমাত্রাতেও ওই গ্যাসটি গ্যাসীয় অবস্থাতেই থাকে। অতএব, চিত্র 11.3 এর ন্যায় চাপ বনাম তাপমাত্রার লেখটিকে (সরলরেখা) তাপমাত্রা অক্ষ পর্যন্তবাড়িয়ে একটি আদর্শ গ্যাসের ক্ষেত্র সম্ভবপর পরম সর্বনিন্ন তাপমাত্রার ধারণা পাওয়া যায়। এভাবে

পাওয়া সর্বনিম্ন তাপমাত্রা – 273.15 °C এবং একে **'পরমশূন্য'** তাপমাত্রা নামে অভিহিত করা হয়। এই 'পরমশূন্য'ই ব্রিটিশ বিজ্ঞানী লর্ড কেলভিনের নামানুসারে পরিচিত তাপমাত্রার কেলভিন স্কেল বা পরম স্কেল-এর মূল ভিত্তি। এই স্কেলে, – 273.15 °C তাপমাত্রাকে শূন্য তাপমাত্রা বা 0 K

নেওয়া হয় (চিত্র 11.4)।

তাপমাত্রার কেলভিন স্কেলে প্রতি এককের আকার এক সেলসিয়াস ডিগ্রির সমান। অতএব, এ দুটি স্কেলে তাপমাত্রার পাঠ নিম্নরূপে সম্পর্কিত:

$$T = t_c + 273.15 \tag{11.3}$$

11.5 তাপীয় প্রসারণ (THERMAL EXPANSION)

তোমরা লক্ষ করে থাকবে যে, কখনো কখনো বোতলের মুখে শক্তভাবে আটকে থাকা ধাতব ঢাকনা বা ছিপি খুলতে ধাতব ছিপিটিকে গরমজলে ডুবিয়ে রাখা হয়। এতে ধাতব ছিপিটি প্রসারিত হয়ে আলাদা হয় এবং

পদার্থের তাপীয় ধর্মাবলি

সহজেই খোলা যায়। তরলের ক্ষেত্রে তোমরা লক্ষ করবে যে, পারদ থার্মোমিটারকে সামান্য গরম জলে রাখলে থার্মোমিটারের পারদ উপরে ওঠে আসে। যদি আমরা থার্মোমিটারটিকে গরম জল থেকে বাইরে নিয়ে আসি, তবে পারদ তল পুনরায় নেমে যায়। একইভাবে গ্যাসের ক্ষেত্রে, ঠান্ডা ঘরে আংশিক ফোলানো বেলুনকে গরম জলে রাখলে বেলুনটি পুরোপুরি ফুলে ওঠে। অন্যদিকে সম্পূর্ণ ফোলানো বেলুনকে ঠান্ডা জলে ডোবালে তার ভিতরের বায়ুর সংকোচনের দরুন বেলুনটি কুঁচকে যায়।

আমাদের সাধারণ অভিজ্ঞতা হল যে, অধিকাংশ বস্তুই তাপ প্রয়োগে প্রসারিত হয় এবং ঠান্ডা করলে সংকুচিত হয়। তাপমাত্রার পরিবর্তন বস্তুর মাত্রিক পরিবর্তন ঘটায়। তাপমাত্রার বৃদ্ধিতে বস্তুর মাত্রিক প্রসারণকে তাপীয় প্রসারণ বলে। দৈর্ঘ্যের প্রসারণকে রৈখিক প্রসারণ বলে। তল বা ক্ষেত্রফলের প্রসারণকে ক্ষেত্রীয় প্রসারণ বলে। আয়তনের প্রসারণকে আয়তন প্রসারণ বলে। (চিত্র 11.5).

যদি বস্তুটি লম্ব দণ্ডাকৃতি হয়, তবে তাপমাত্রার ক্ষুদ্র পরিবর্তনের ফলে দণ্ডটির একক দৈর্ঘ্যে পরিবর্তন $\Delta l/l, \Delta T$ এর সমানুপাতিক হয়।

$$\frac{\Delta l}{l} = \alpha_1 \,\Delta T \tag{11.4}$$

যেখানে, α_1 কে রৈখিক প্রসারণ গুণাজ্ঞক (রৈখিক প্রসার্যতা) বলে এবং এর মান দন্ডের উপাদানের প্রকৃতি নির্ভর। 11.1 সারণিতে 0 °C থেকে 100 °C তাপমাত্রার এই পাল্লায় কিছু পদার্থের রৈখিক প্রসারণ গুণাজ্ঞের গড় মান দেওয়া হল। এই সারণি থেকে কাচ ও তামার α_1 এর তুলনা করলে আমরা দেখতে পাই যে, একই উঘ্নতা বৃদ্ধিতে কাচের তুলনায় তামার পাঁচগুণ বেশি প্রসারণ ঘটে। সাধারণত, ধাতব পদার্থ তুলনায় বেশি প্রসারিত হয় এবং এদের α_1 অপেক্ষাকৃত উচ্চমান বিশিন্ট।

সারণি 11.1 কিছ পদার্থে	র্থর রৈখিক প্রসারণ গণাঙ্কের মা	•
------------------------	--------------------------------	---

পদার্থসমূহ	$\alpha_{1}(10^{-5}\mathrm{K}^{-1})$
অ্যালুমিনিয়াম	2.5
পিতল	1.8
লোহা	1.2
তামা	1.7
রুপা	1.9
সোনা	1.4
কাচ (পাইরেক্স)	0.32
সিসা	0.29

একইভাবে, ΔT তাপমাত্রার পরিবর্তনের ফলে কোনো বস্তুর আয়তনের ভগ্নাংশগত পরিবর্তন $rac{\Delta V}{V}$ হলে আয়তন প্রসারণ গুণাঙ্ককে (বা আয়তন প্রসার্যতাকে) নিম্নরূপে প্রকাশ করা যায় :

$$\alpha_{\rm v} = \left(\frac{\Delta V}{V}\right) \frac{1}{\Delta T} \tag{11.5}$$

এখানে, $\alpha_{
m v}$ অর্থাৎ আয়তন প্রসারণ গুণাঞ্চও বস্তুর একটি বৈশিষ্ট্যমূলক রাশি, যার মান যথার্থভাবে ধুবক নয়। এর মান সাধারণভাবে পদার্থের তাপমাত্রা নির্ভর (চিত্র 11.6)। দেখা যায়, একমাত্র অতি উচ্চ তাপমাত্রায় $\alpha_{
m v}$ এর মান ধ্রুবক হয়।

সারণি 11.2 তে 0–100 °C, তাপমাত্রার পাল্লায় কিছু পরিচিত পদার্থের আয়তন প্রসারণ গুণাঙ্কের মান দেওয়া আছে। তোমরা লক্ষ করো, দেখবে

পদার্থগুলোর তাপীয় প্রসারণ যথেস্ট কম, পাইরেক্স কাচ, ইনভার (লোহা ও নিকেলের এক বিশেষ সংকর) প্রভৃতির ক্ষেত্রে α_v এর মান বেশি

সারণি 11.2	কিছু	পদার্থের	আয়তন	প্রসারণ	গুণাঙ্কের	মান
------------	------	----------	-------	---------	-----------	-----

পদার্থ	$\alpha_v(K^{-1})$
অ্যালুমিনিয়াম	7×10^{-5}
পিতল	6×10^{-5}
লোহা	3.55×10^{-5}
মোম (প্যারাফিন)	58.8×10^{-5}
কাচ (সাধারণ)	2.5×10^{-5}
কাচ (পাইরেক্স)	1×10^{-5}
শক্ত রাবার	2.4×10^{-4}
ইনভার	2×10^{-6}
পারদ	18.2×10^{-5}
জল	20.7×10^{-5}
ইথাইল অ্যালকোহল	110×10^{-5}

জল এক ব্যতিক্রমী আচরণ প্রদর্শন করে; 0 °C থেকে 4 °C-তাপমাত্রার পাল্লায় তাপ প্রয়োগে জল সংকুচিত হয়। নির্দিষ্ট আয়তন জলকে ঘরের তাপমাত্রা থেকে ঠান্ডা করতে থাকলে 4 °C তাপমাত্রা পর্যন্ত জলের আয়তন কমতে থাকে [চিত্র 11.7(a)]। 4 °C তাপমাত্রার নীচে ওই জলের আয়তন পুনরায় বাড়তে থাকে এবং এর ঘনত্ব কমতে থাকে [চিত্র

11.7(b)] |

10

5 তাপমাত্রা (°C)

(a)

পদার্থবিদ্যা

এটা থেকে বোঝা যায়, 4°C তাপমাত্রায় জলের ঘনত্ব সর্বোচ্চ। জলের এই ধর্মটির এক গুরুত্বপূর্ণ পরিবেশগত প্রভাব আছে : হ্রদ ও পুকুরের মতো জলাধারসমূহের উপরিতল প্রথমে বরফে পরিণত হয়। কোনো একটি হ্রদের জল ঠান্ডা হতে থাকলে, 4 °C পর্যন্ত হ্রদের উপরিতলের জল পরিবেশে তাপশস্তি বর্জন করে ঘনতর হয় এবং হদের তলদেশে নেমে যায় এবং তলদেশের কম ঘনত্বের জল উপরে ওঠে আসে। এভাবে, উপরের ঠান্ডা জলের তাপমাত্রা একবার 4 °C এর নীচে নামলে জলের ঘনত্ব কমে যায় এবং ওই জল উপরিপৃষ্ঠেই থেকে যায় এবং সেখানে জমে যায়। যদি জলের এই ধর্ম না থাকতো তবে হ্রদ ও পুকুরের জল নীচে থেকেই জমতো, যার ফলে জলাশয়ের বেশিরভাগ প্রাণি ও উদ্ভিদ ধ্বংস হয়ে যেত।

সাধারণ তাপমাত্রায় কঠিন ও তরলের তুলনায় গ্যাসসমূহ বেশি পরিমাণে প্রসারিত হয়। তরলের ক্ষেত্রে আয়তন প্রসারণ গুণাঞ্চ তুলনামূলকভাবে তাপমাত্রা নিরপেক্ষ। যদিও গ্যাসের ক্ষেত্রে এর মান তাপমাত্রার ওপর নির্ভরশীল।

আদর্শ গ্যাস সমীকরণ $PV = \mu RT$ থেকে স্থির চাপে আদর্শ গ্যাসের আয়তন প্রসারণ গুণাঙ্ক নির্ণয় করা যায়। আদর্শ গ্যাস সমীকরণ —

$$PV = \mu RT$$

স্থির চাপে $P\Delta V = \mu R \Delta T$
বা, $\frac{\Delta V}{V} = \frac{\Delta T}{T}$
অর্থাৎ, $\alpha_v = \frac{1}{T}$, আদর্শ গ্যাসের ক্ষেত্রে। (11.6)

(x10ⁿm³)

l kg জলের আয়তন

1.04343

1.00013

1.00000

0

282

0 °C উন্নতায় α_v = 3.7 × 10⁻³ K⁻¹, যা কঠিন ও তরলের তুলনায় যথেস্ট বেশি। সমীকরণ (11.6) α_v এর তাপমাত্রা নির্ভরতা প্রকাশ করে; তাপমাত্রা বৃদ্ধিতে α_v এর মান হ্রাস পায়। ঘরের তাপমাত্রায় ও স্থির চাপে রাখা একটি গ্যাসের α_v এর মান প্রায় 3300 × 10⁻⁶ K⁻¹, যা বিশেষ কিছু তরলের আয়তন প্রসারণ গুণাজ্ফের তুলনায় অনেকটাই বেশি।

আয়তন প্রসারণ গুণাঙ্ক (α_{v}) ও রৈখিক প্রসারণ গুণাঙ্ক (α_{l}) এর মধ্যে একটি সরল সম্পর্ক রয়েছে। কল্পনা করা যাক, *l* বাহুবিশিন্ট একটি ঘনকের তাপমাত্রা যখন ΔT বৃদ্ধি করা হয় তখন এটি সবদিকে সমভাবে (Δl পরিমাণে) প্রসারিত হয়। আমরা জানি,

$$\Delta l = \alpha_1 \, l \, \Delta T$$

$$\therefore \, \Delta V = (l + \Delta l)^3 - l^3 \simeq 3l^2 \, \Delta l \tag{11.7}$$

l এর তুলনায় Δl এর মান কম হওয়ায় সমীকরণ (11.7) এ $(\Delta l)^2$ এবং $(\Delta l)^3$ বিশিষ্ট পদ দুটোকে অগ্রাহ্য করা হয়েছে।

স্তরাং,
$$\Delta V = \frac{3V\Delta l}{l} = 3V\alpha_l \Delta T$$
 (11.8)

 $\Rightarrow \alpha_{v} = 3\alpha_{l} \tag{11.9}$

একটি রডের প্রান্তগুলোকে দৃঢ়ভাবে আটকে এর তাপীয় প্রসারণকে বাধা দিলে কী ঘটবে ? স্পফতই, রডের দু'প্রান্তের দৃঢ় অবলম্বন কর্তৃক প্রযুক্ত বাহ্যিক বলের প্রভাবে রডে একটি সংকোচক বিকৃতির সৃষ্টি হয়। সৃষ্ট আনুষঞ্জিক পীড়নকে তাপীয় পীড়ন (Thermal Stress) বলে। উদাহরণস্বরূপ ধর, 5 m দৈর্ঘ্য ও 40 cm² প্রস্থচ্ছেদের ক্ষেত্রফলবিশিষ্ট একটি ইস্পাতের পাত নিয়ে তার 10 °C উন্নতা বৃদ্ধিজনিত প্রসারণে বাধা সৃষ্টি করা হল। ইস্পাতের রৈখিক প্রসারণ গুণাঞ্চ $\alpha_{l(s)} = 1.2 \times$ 10^{-5} K^{-1} । অতএব, সংকোচক বিকৃতি $\frac{\Delta l}{l} = \alpha_{l(s)} \Delta T = 1.2 \times 10^{-5} \times$

 $10=1.2 \times 10^{-4}$ । ইস্পাতের ইয়ং গুণাজ্ঞ $Y_{(s)}=2 \times 10^{11} \,\mathrm{N}\,\mathrm{m}^{-2}$ । অতএব,

উদ্ভূত তাপীয় পীড়ন $\frac{\Delta F}{A} = Y_{\text{steel}} \left(\frac{\Delta l}{l} \right) = 2.4 \times 10^7 \text{ N m}^{-2}$, যা

বাহ্যিক বল $\Delta F = AY_{\rm s} \left(\frac{\Delta l}{l}\right) = 2.4 \times 10^7 \times 40 \times 10^{-4} \simeq 10^5 {\rm N}$ এর

সমতূল্য। যদি এরূপ দুটি ইস্পাতের পাতের একপ্রাস্ত যুক্ত করে অপর দুপ্রাস্তকে দৃঢ়ভাবে আটকে দেওয়া যায় তবে এ মানের একটি বল পাতটিকে সহজেই বাঁকাতে পারবে।

উদাহরণ 11.1 দেখাও যে, কঠিন পদার্থের একটি আয়তাকার পাতের ক্ষেত্র প্রসারণ গুণাঙ্ক (Δ*A/A)/ΔT* এর রৈখিক প্রসারণ গুণাঙ্ক α, এর দ্বিগুণ। উত্তর

কঠিন পদার্থের তৈরি *a* দৈর্ঘ্য ও *b* প্রস্থবিশিষ্ট একটি আয়তকার পাত নেওয়া হল (চিত্র 11.8)। যখন এর তাপমাত্রা Δ*T* বৃদ্ধি করা হয় তখন *a* এর বৃদ্ধি ঘটে Δ*a* = α₁*a*Δ*T* এবং *b* এর বৃদ্ধি ঘটে Δ*b* = α₁*b* Δ*T*। 11.8 চিত্রানুসারে পাতের ক্ষেত্রফল বৃদ্ধি

$$\Delta A = \Delta A_1 + \Delta A_2 + \Delta A_3$$

$$\Delta A = a \Delta b + b \Delta a + (\Delta a) (\Delta b)$$

$$= a \alpha_1 b \Delta T + b \alpha_1 a \Delta T + (\alpha_1)^2 a b (\Delta T)^2$$

$$= \alpha_1 a b \Delta T (2 + \alpha_1 \Delta T) = \alpha_1 A \Delta T (2 + \alpha_1 \Delta T)$$

সারণি 11.1 অনুসারে, যেহেতু $\alpha_{
m l} \simeq 10^{-5}~{
m K}^{-1}$, স্বল্প তাপমাত্রার পরিবর্তনে 2 এর তুলনায় $\alpha_{
m l} \Delta T$ কে অগ্রাহ্য করা যায়।

অতএব,

$$\left(\frac{\Delta A}{A}\right)\frac{1}{\Delta T} \simeq 2\alpha_l$$

উদাহরণ 11.2 এক কর্মকার একটি ঘোড়ার গাড়ির কাঠের চাকায় লোহার বেড় আটকাচ্ছে। 27 °C তাপমাত্রায় চাকার বেড়ের ও লোহার বলয়ের ব্যাস যথাক্রমে 5.243 m এবং 5.231 m । চাকার বেড়ে খাপ খাওয়াতে লোহার বলয়টিকে কত তাপমাত্রায় উত্তপ্ত করতে হবে?

উত্তর

দেওয়া আছে,
$$T_1 = 27 \,^{\circ}\text{C}$$

 $L_{\text{T1}} = 5.231 \,\text{m}$
 $L_{\text{T2}} = 5.243 \,\text{m}$
অতএব, $L_{\text{T2}} = L_{\text{T1}} \left[1 + \alpha_1 (T_2 - T_1)\right]$ হতে পাওয়া যায়
 $5.243 \,\text{m} = 5.231 \,\text{m} \left[1 + 1.20 \times 10^{-5} \,\text{K}^{-1} \left(T_2 - 27 \,^{\circ}\text{C}\right)\right]$
বা, $T_2 = 218 \,^{\circ}\text{C}$.

283

11.6 আপেক্ষিক তাপ ধারকত্ব (SPECIFIC HEAT CAPACITY)

একটি পাত্রে কিছু জল নাও এবং একে একটি বার্নারের সাহায্যে উত্তপ্ত করতে শুরু করো। শীঘ্রই তোমরা লক্ষ করবে যে, পাত্রের তলদেশ হতে বুদ্বুদ উপরে ওঠতে শুরু করেছে। তাপমাত্রা বৃদ্ধিতে জলকণাগুলোর গতি বাড়তে থাকে এবং যখন জল ফুটতে শুরু করে তখন এই গতি বিশৃঙ্খল হয়ে ওঠে। কোনো পদার্থের তাপমাত্রা বৃদ্ধিতে প্রয়োজনীয় তাপের পরিমাণ কোন্ কোন্ বিষয়ের ওপর নির্ভর করে? এই প্রশ্নের উত্তর পেতে প্রথমে কিছু পরিমাণ জলের তাপমাত্রা ধর 20 °C, বাড়াও এবং সময় লিপিবন্ধ করো। আবার একই পরিমাণ জল নাও এবং তাপের একই উৎস ব্যবহার করে জলের তাপমাত্রা 40 °C বৃদ্ধি কর। স্টপওয়াচ্ ব্যবহার করে প্রয়োজনীয় সময় লিপিবন্ধ করো। তোমরা দেখবে এক্ষেত্রে দ্বিগুণ সময় নেয়। অতএব, সমপরিমাণ জলের দ্বিগুণ তাপমাত্রা বৃদ্ধি করতে দ্বিগুণ পরিমাণ তাপের প্রয়োজন হয়।

দ্বিতীয়ত ধাপে, এখন ধর তোমরা দ্বিগুণ পরিমাণ জল নিলে এবং একই ব্যবস্থায় তাপমাত্রা 20 °C বাড়ালে। তোমরা দেখবে এক্ষেত্রেও আবার প্রয়োজনীয় তাপের পরিমাণ প্রথম ধাপের দ্বিগুণ।

তৃতীয় ধাপে, জলের পরিবর্তে সমপরিমাণ কোনো তেল, ধর সরিযার তেল নাও এবং এর তাপমাত্রা পুনরায় 20 °C বৃদ্বি করো। একই স্টপওয়াচ্ ব্যবহার করে সময়টি লক্ষ করো। তোমরা দেখতে পাবে যে, এক্ষেত্রে প্রয়োজনীয় সময় অপেক্ষাকৃত কম এবং এভাবে একই তাপমাত্রা বৃদ্বিতে তেলের ক্ষেত্রে প্রয়োজনীয় তাপের পরিমাণ, সম পরিমাণ জলের ক্ষেত্রে প্রয়োজনীয় তাপের তুলনায় কম।

উপরের পর্যবেক্ষণগুলো হতে প্রতীয়মান হয় যে কোনো পদার্থকে উত্তপ্ত করতে প্রয়োজনীয় তাপের পরিমাণ এর ভর m, তাপমাত্রার পরিবর্তন ΔT এবং পদার্থের প্রকৃতির উপর নির্ভর করে। যখন কোনো পদার্থ কর্তৃক এক নির্দিষ্ট পরিমাণ তাপ গৃহীত কিংবা বর্জিত হয় তখন পদার্থের তাপমাত্রার পরিবর্তন তাপধারকত্ব নামক একটি বৈশিষ্ট্যমূলক রাশির দ্বারা নিয়ন্ত্রিত হয়। আমরা পদার্থের তাপধারকত্ব বা তাপগ্রাহিতা S কে নিম্নরূপে সংজ্ঞায়িত করি:

$$S = \frac{\Delta Q}{\Delta T}$$
(11.10)

যেখানে পদার্থটির তাপমাত্রা T হতে $T + \Delta T$ পর্যন্ত পরিবর্তন করতে সরবরাহকৃত তাপের পরিমাণ হল ΔQ ।

তোমরা লক্ষ করেছ যে, সমভরের বিভিন্ন পদার্থে যদি সম পরিমাণ তাপ প্রদান করা হয়, তবে উভয় পদার্থের তাপমাত্রার পরিবর্তন সমান হবে না।এটি বোঝায় যে, প্রত্যেক পদার্থেরই একক ভরের একক তাপমাত্রা পরিবর্তনে বস্তু কর্তৃক গৃহীত বা বর্জিত তাপের এক অদ্বিতীয় মান আছে। এই রাশিটি ওই পদার্থের **আপেক্ষিক তাপ ধারকত্বকে** বোঝায়। *m* ভর সম্পন্ন কোনো পদার্থের তাপমাত্রা ΔT পরিমাণে পরিবর্তন করতে পদার্থ কর্তৃক গৃহীত বা বর্জিত তাপের পরিমাণ যদি ΔQ হয় তবে ওই বস্তুর আপেক্ষিক তাপধারকত্ব,

$$s = \frac{S}{m} = \frac{1}{m} \frac{\Delta Q}{\Delta T}$$
(11.11)

আপেক্ষিক তাপধারকত্ব পদার্থের এমন এক ধর্ম যা পদার্থ কর্তৃক গৃহীত বা বর্জিত তাপের প্রভাবে পদার্থটির (অবস্থান্তর না ঘটিয়ে) তাপমাত্রার পরিবর্তন নির্ধারণ করে। একক ভর পদার্থের একক তাপমাত্রা পরিবর্তনে গৃহীত বা বর্জিত তাপকেই ওই পদার্থের আপেক্ষিক তাপধারকত্ব বলে। এটি পদার্থের প্রকৃতি ও তাপমাত্রার ওপর নির্ভর করে। আপেক্ষিক তাপ ধারকত্বের SI একক হল J kg⁻¹K⁻¹।

পদার্থের পরিমাণকে kg এককে প্রকাশিত ভর *m*-এর এককের পরিবর্তে মোল μ দ্বারা প্রকাশ করলে, পদার্থের মোল প্রতি আপেক্ষিক তাপধারকত্ব হবে

$$C = \frac{S}{\mu} = \frac{1}{\mu} \frac{\Delta Q}{\Delta T}$$
(11.12)

যেখানে *C* কে পদার্থের **মোলার আপেক্ষিক তাপ ধারকত্ব** বলে। *S* এর মতো *C* ও পদার্থের প্রকৃতি ও তার তাপমাত্রার উপর নির্ভর করে। মোলার আপেক্ষিক তাপের SI একক হল J mol⁻¹ K⁻¹।

যদিও গ্যাসের আপেক্ষিক তাপধারকত্ব C কে সংজ্ঞায়িত করতে আরও কিছু বিষয়ের প্রয়োজন হয়। গ্যাসের তাপ সঞ্চালন স্থির চাপে অথবা স্থির আয়তনে হতে পারে। তাপ সঞ্চালনের সময় গ্যাসকে স্থির চাপে রাখা হলে একে স্থির চাপে মোলার আপেক্ষিক তাপ **ধারকত্ব** বলে। একে $C_{
m p}$ দ্বারা সূচিত করা হয়। আবার, তাপ সঞ্জালনকালে আয়তন স্থির রাখলে আনুষঞ্চিাক আপেক্ষিক তাপধারকত্বকে স্থির **আয়তনে মোলার আপেক্ষিক তাপধারকত্ব** বলে। একে C, দ্বারা সূচিত করা হয়। এ বিষয়ে আরও বিশদে জানতে দ্বাদশ অধ্যায় দেখো। সারণি 11.3 এ সাধারণ বায়ুমণ্ডলীয় চাপ ও সাধারণ তাপমাত্রায় কিছু পদার্থের আপেক্ষিক তাপধারকত্বের মান দেওয়া হল। যেখানে সারণি 11.4 এ কিছু গ্যাসের মোলার আপেক্ষিক তাপধারকত্বের মান দেওয়া আছে। সারণি 11.3 এ লক্ষ করলে দেখবে অন্যান্য তরলের তুলনায় জলের আপেক্ষিক তাপ ধারকত্ব সর্বোচ্চ। একারণে মোটরগাড়ির তাপবিকিরকে (radiators) শীতলীকারক রূপে, আবার গরমজলের ব্যাগে উত্তাপক রপেও জল ব্যবহৃত হয়। জলের উচ্চ আপেক্ষিক তাপগ্রাহিতার জন্য গ্রীম্বকালে স্থলভাগের তুলনায় জলভাগ অতি ধীরে গরম হয়, একারণেই

পদার্থ	আপেক্ষিক তাপধারকত্ব	পদার্থ	আপেক্ষিক তাপধারকত্ব
	$(J kg^{-1} K^{-1})$		$(J kg^{-1} K^{-1})$
অ্যালুমিনিয়াম	900.0	বরফ	2060
কার্বন	506.5	কাচ	840
তামা	386.4	লোহা	450
সিসা	127.7	কেরোসিন	2118
রুপা	236.1	ভোজ্য তেল	1965
টাংস্টেন	134.4	পারদ	140
জল	4186.0		

সমুদ্র থেকে বায়ুপ্রবাহের শীতলীকরণের প্রভাব রয়েছে। এখন তুমি নিশ্চয়ই বলতে পারবে, মরু অঞ্চলে ভূপৃষ্ঠ কেন দিনের বেলা তাড়াতাড়ি গরম হয় এবং রাত্রে তাড়াতাড়ি ঠান্ডা হয়।

সারণি 11.4	কয়েকটি	গ্যাসের	মোলার	আপেক্ষিক	তাপ
	ধারকত্ব				

গ্যাস	$C_{\rm p}({\rm Jmol^{-1}K^{-1}})$	$C_{\rm v}({\rm Jmol^{-1}K^{-1}})$
He	20.8	12.5
H_2	28.8	20.4
N ₂	29.1	20.8
O_2	29.4	21.1
CO ₂	37.0	28.5

11.7 ক্যালোরিমিতি (CALORIMETRY)

কোনো একটি সংস্থা ও পারিপার্শ্বিকের মধ্যে তাপের কোনো আদানপ্রদান বা তাপপ্রবাহ না হলে ওই সংস্থাকে বিচ্ছিন্ন সংস্থা বলা হয়। কোনো বিচ্ছিন্ন সংস্থার বিভিন্ন অংশ বিভিন্ন তাপমাত্রায় থাকলে, উচ্চতাপমাত্রার অংশ থেকে কিছু পরিমাণ তাপ নিম্ন তাপমাত্রার অংশে সঞ্চালিত হয়। উচ্চ তাপমাত্রার অংশ কর্তৃক বর্জিত তাপের পরিমাণ নিম্ন তাপমাত্রার অংশ কর্তৃক গৃহীত তাপের সমান হয়।

ক্যালরিমিতি তাপের পরিমাপকে বোঝায়। যদি পারিপার্শ্বিকে তাপ বর্জিত না হয়, তবে উচ্চ তাপমাত্রার একটি বস্তুকে নিম্ন তাপমাত্রার একটি বস্তুর সংস্পর্শে আনা হলে উচ্চ তাপমাত্রার বস্তু কর্তৃক বর্জিত তাপ নিম্ন তাপমাত্রার বস্তু কর্তৃক গৃহীত তাপের সমান হয়। যে যন্ত্রের সাহায্যে তাপের পরিমাপ করা হয় তাকে **ক্যালোরিমিটার** বলে। তামা বা অ্যালুমিনিয়ামের মতো ধাতু দিয়ে তৈরি একটি পাত্র ও একটি আলোড়ক নিয়ে ক্যালোরিমিটার গঠিত। ধাতব পাত্রটিকে কাচ, উল ইত্যাদির মতো তাপ নিরোধক পদার্থযুক্ত কাঠের জ্যাকেটের ভিতরে রাখা হয়। বাইরের জ্যাকেটটি তাপের প্রতিরোধকরৃপে কাজ করে এবং ভিতরের পাত্রের তাপ ক্ষয় কমায়। জ্যাকেটের গায়ে থাকা ছিদ্রপথে একটি পারদ থার্মোমিটারকে ক্যালোরিমিটারের ভিতরে প্রবেশ করানো হয়। গৃহীত তাপ ও বর্জিত তাপ সমান — এই নীতির ব্যবহারে কোনো পদার্থের আপেক্ষিক তাপ ধারকত্ব নির্ণয়ের একটি পদ্ধতি নীচের উদাহরণে দেওয়া হল।

উদাহরণ 11.3 0.047 kg ভরের একটি অ্যালুমিনিয়ামের গোলককে একটি ফুটস্ত জলভর্তি পাত্রে যথেষ্ট সময় ধরে রাখা হল যেন গোলকের তাপমাত্রা 100 °C হয়। গোলকটিকে এরপর তাড়াতাড়ি করে 20 °C তাপমাত্রার 0.25 kg জলপূর্ণ 0.14 kg ভরের ক্যালোরিমিটারে ফেলা হল। এতে জলের তাপমাত্রা বেড়ে 23 °C এ স্থির হয়। অ্যালুমিনিয়ামের আপেক্ষিক তাপধারকত্ব নির্ণয় করো।

উত্তর এ সমস্যার সমাধানে, আমরা, তাপীয় সাম্যাবস্থায় অ্যালুমিনিয়াম গোলক কর্তৃক বর্জিত তাপ, জল ও ক্যালোরিমিটার কর্তৃক গৃহীত তাপের সমান - এ নীতিটি ব্যবহার করবো। অ্যালুমিনিয়াম গোলকের ভর (m₁) = 0.047 kg অ্যালুমিনিয়াম গোলকের প্রাথমিক তাপমাত্রা =100 °C অ্যালুমিনিয়াম গোলকের চূড়ান্ত তাপমাত্রা = 23 °C অ্যালুমিনিয়াম গোলকের তাপমাত্রার পরিবর্তন (ΔT) =(100 °C - 23 °C) = 77 °C মনে করো, অ্যালুমিনিয়ামের আপেক্ষিক তাপ ধারকত্ব = s_{Al}

সুতরাং অ্যালুমিনিয়াম গোলক কর্তৃক বর্জিত তাপ

$$= m_1 s_{Al} \Delta T = 0.047 \text{kg} \times s_{Al} \times 77 \text{ °C}$$

জলের ভর $(m_2) = 0.25 \text{ kg}$

ক্যালোরিমিটারের ভর (m₃) = 0.14 kg জল ও ক্যালোরিমিটারের প্রাথমিক তাপমাত্রা =20 °C মিশ্রণের চূড়ান্ত তাপমাত্রা = 23 °C সুতরাং, তাপমাত্রার পরিবর্তন (ΔT₂)=23 °C-20 °C=3 °C জলের আপেক্ষিক তাপধারকত্ব (s_w) = 4.18 × 10³ J kg⁻¹ K⁻¹ তামার ক্যালোরিমিটারের আপেক্ষিক তাপধারকত্ব (S_{Cu}) = 0.386 × 10³ J kg⁻¹ K⁻¹ জল ও ক্যালোরিমিটার কর্তৃক গৃহীত তাপ = m₂ s_w ΔT₂ + m₃s_{cu} ΔT₂ = (m₂s_w + m₃s_{cu}) (ΔT₂) = (0.25 kg × 4.18 × 10³ J kg⁻¹ K⁻¹+0.14 kg× 0.386 × 10³ J kg⁻¹ K⁻¹) (23 °C - 20 °C) তাপীয় সাম্যাবস্থায়, অ্যালুমিনিয়াম গোলক কর্তৃক বর্জিত তাপ = জল

কর্তৃক গৃহীত তাপ + ক্যালোরিমিটার কর্তৃক গৃহীত তাপ। সুতরাং, $0.047 \text{ kg} \times s_{Al} \times 77 \text{ °C}$ = $(0.25 \text{ kg} \times 4.18 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1} + 0.14 \text{ kg} \times 0.386 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1})(3 \text{ °C})$ $\therefore s_{Al} = 0.911 \text{ kJ kg}^{-1} \text{ K}^{-1}$

11.8 অবস্থার পরিবর্তন (CHANGE OF STATE)

পদার্থ সাধারণত তিন অবস্থায় থাকতে পারে : কঠিন, তরল ও গ্যাসীয়। এদের কোনো এক অবস্থায় রুপান্তরিত হওয়াকে অবস্থার পরিবর্তন বলে। দুটি পরিচিত অবস্থার পরিবর্তন হল কঠিন থেকে তরল ও তরল থেকে গ্যাস এবং বিপরীত প্রক্রিয়া। পদার্থ ও তার পারিপার্শ্বিকের মধ্যে তাপের আদান প্রদান ঘটলেই পদার্থের অবস্থার পরিবর্তন ঘটে। তাপ প্রয়োগ বা শোষণে পদার্থের অবস্থার পরিবর্তনকে বুঝতে আমরা নীচের কাজটি সম্পন্ন করি।

কয়েকটি বরফ টুকরোকে একটি বিকারে নাও এবং বরফের তাপমাত্রা (0°C) লিপিবন্ধ করো। একটি স্থির তাপ উৎসের সাহায্যে বিকারটিকে ধীরে ধীরে উত্তপ্ত করো। প্রতি এক মিনিট পর পর তাপমাত্রা লিপিবন্ধ করো। জল ও বরফের মিশ্রণটিকে অনবরত নাড়তে থাকো। এবার তাপমাত্রা এবং সময়ের একটি লেখচিত্র আঁক (চিত্র 11.9)। লক্ষ করো, বিকারে যতক্ষণ পর্যন্ত বরফ ছিল, তাপমাত্রার কোনোও পরিবর্তন হয় নি। এই প্রক্রিয়ায় নিরবচ্ছিন্নভাবে তাপ প্রয়োগ করা সত্ত্বেও সংস্থাটির তাপমাত্রার পরিবর্তন হয় না। সরবরাহকৃত তাপ এখানে কঠিন অবস্থা (বরফ) থেকে তরল অবস্থায় (জলে) পরিবর্তনে ব্যয়িত হয়।

চিত্র 11.9 তাপ প্রয়োগের ফলে বরফের অবস্থার পরিবর্তনের তাপমাত্রা বনাম সময়ের লেখচিত্র (স্কেল অনুসারে অজ্জিত নয়)।

কঠিন অবস্থা থেকে তরল অবস্থায় পরিবর্তনকে গলন বলে এবং তরল থেকে কঠিনে পরিবর্তনকে হিমায়ন বলে। এটা লক্ষ করা গেছে যে, যতক্ষণ পর্যন্ত না কঠিন পদার্থের সবটাই গলছে, পদার্থের তাপমাত্রা স্থির থাকে। অর্থাৎ, কঠিন অবস্থা থেকে তরল অবস্থায় পরিবর্তনের সময় পদার্থের কঠিন ও তরল উভয় অবস্থা তাপীয় সাম্যে সহাবস্থান করে। যে তাপমাত্রায় কোনো পদার্থের কঠিন ও তরল অবস্থা পরস্পরের সাথে তাপীয় সাম্যে সহাবস্থান করে, তাকে ওই পদার্থের গলনাঙ্ক বলে। এটি পদার্থের একটি বৈশিষ্ট্য। এটি চাপের উপরও নির্ভর করে। প্রমাণ বায়ুমণ্ডলীয় চাপে পদার্থের গলনাঙ্ককে ওই পদার্থের স্বাভাবিক গলনাঙ্ক বলে। বরফের গলন প্রক্রিয়া বুঝতে এখন আমরা নীচের কাজটি করব।

একটি বরফ খণ্ড নাও। একটি ধাতব তার নিয়ে তার দুপ্রান্তে দুটি ভারী টুকরো, ধরো প্রত্যেকটি 5 kg ভরের, আটকাও। 11.10 চিত্রের মতো বরফ খণ্ডটিকে দুটি ধারকের উপর বসিয়ে ধাতব তারটিকে বরফ খণ্ডের উপর দিয়ে দুপাশে ঝুলিয়ে দাও। তোমরা দেখবে তারটি বরফখণ্ডের মাঝ দিয়ে নীচে চলে যায়। এমনটা ঘটে কারণ, তারের ঠিক নীচে চাপ বৃষ্ণির ফলে বরফ কম তাপমাত্রায় গলে। তারটি (বরফগলা জলের) নীচে নামলে উপরের জল পুনরায় জমে বরফে পরিণত হয়। এভাবে তারটি বরফখণ্ডের মধ্য দিয়ে নীচে নেমে আসে কিন্তু বরফ খণ্ডটি টুকরো হয় না। পুনরায় বরফে পরিণত হওয়ার এই ঘটনাকে পুনঃ শিলীভবন (regelation) বলে। স্কেইটস এর তলায় (নীচে বরফ গলে) জল সৃষ্টির কারণেই বরফের উপর স্কেটিং করা সন্তব হয়। চাপ বৃষ্ণির জন্যই জল উৎপন্ন হয় এবং এই জল পিচ্ছিলকারক তরলরূপে কাজ বাড়তে থাকে যতক্ষণ পর্যন্ত না এটি 100 °C এ পৌঁছায় এবং আবার স্থির হয়। এক্ষেত্রে প্রযুক্ত তাপ জলের তরল অবস্থা থেকে বাম্পীয় বা গ্যাসীয় অবস্থায় পরিবর্তনে ব্যয়িত হয়।

পদার্থের তরল অবস্থা থেকে বাস্পে (বা গ্যাসে) পরিণত হওয়াকে বাষ্পীভবন (vaporisation) বলে। দেখা যায়, সমস্ত তরল বাস্পে পরিণত না হওয়া পর্যন্ত তরলের তাপমাত্রা স্থির থাকে। অর্থাৎ তরল থেকে বাষ্পে অবস্থান্তরের সময় তরল ও বাষ্প উভয় অবস্থা তাপীয় সাম্যে সহাবস্থান করে। যে তাপমাত্রায় পদার্থের তরল ও বাষ্পীয় অবস্থা সহাবস্থান করে তাকে ওই পদার্থের স্ফুটনাঙ্ক (boiling point) বলে। জলের স্ফুটন প্রক্রিয়া বুঝতে আমরা নীচের কাজটি করব।

অর্ধেক থেকে বেশি জলভর্তি একটি গোলতল ফ্লাস্ক নাও। ফ্লাস্কের মুখে ছিপির সাহায্যে একটি থার্মোমিটার ও বাষ্পের নির্গম নল লাগাও

সমস্ত বরফ গলে জলে পরিণত হওয়ার পর আরও তাপ প্রয়োগ করতে থাকলে আমরা দেখব, তাপমাত্রা বাড়তে শুরু করে। তাপমাত্রা

ত্রিদশা বিন্দু

পদার্থের অবস্থান্তরের (বা দশা পরিবর্তনের) সময় পদার্থের তাপমাত্রা স্থির থাকে। কোনো পদার্থের তাপমাত্রার (*T*) সাপেক্ষে চাপের (*P*) লেখচিত্রকে দশাচিত্র বা *P* – *T* চিত্র বলে। নীচে জল ও CO₂ এর দশাচিত্র দেখানো হয়েছে। এর্প দশাচিত্র *P* – *T* তলকে কঠিন অঞ্চল, তরল অঞ্চল ও বাষ্পীয় অঞ্চলে ভাগ করে। **উধ্বপাতন লেখ** (BO), **গলন লেখ** (AO) এবং **বাষ্পীভবন লেখ** (CO) দ্বারা বিভিন্ন অঞ্চলগুলো পৃথক করা হয়েছে। **উধ্বপাতন রেখায়** (BO) অবস্থিত বিন্দুগুলো পদার্থের এমন দশা প্রকাশ করে, যেখানে কঠিন ও বাষ্পীয় অবস্থা সহাবস্থান করে। গলনরেখা (AO)-এর উপর অবস্থিত বিন্দুগুলো কঠিন ও তরল দশার সহাবস্থানকে প্রকাশ করে। CO বাষ্পীভবন রেখাস্থিত বিন্দুগুলো তরল ও বাষ্পীয় অবস্থার সহাবস্থানকে প্রকাশ করে। যে তাপমাত্রা ও চাপে গলনরেখা, বাষ্পীভবন রেখা ও উর্ধ্বেপাতন রেখা পরস্পর মিলিত হয় এবং পদার্থের তিনটি দশা সহাবস্থান করে, সে বিন্দুটিকে ওই পদার্থের ত্রিদশা বিন্দু (triple point) বলে। উদাহরণস্বরূপ, জলের ত্রিদশা বিন্দুটি 273.16 K তাপমাত্রা ও 6.11×10⁻³ Pa চাপ দ্বারা সূচিত হয়।

চিত্র 11.11: (a) জল ও (b) CO, চাপ — তাপমাত্রা দশাচিত্র (স্কেল অনুসারে অঙ্কিত নয়)।

এবং ফ্লাস্কটিকে একটি বার্নারের উপর বসাও (চিত্র11.11)। আমরা দেখব ফ্লাস্কের জল উত্তপ্ত হতে থাকলে, প্রথমে জলে দ্রবীভূত বায়ু ছোটো ছোটো বুদ্বুদাকারে বেরিয়ে আসে। এরপর, ফ্লাস্কের তলায় বাষ্প বুদ্বুদ উৎপন্ন হয় কিন্তু উপরিতলের ঠান্ডা জলের সংস্পর্শে এসে ঘনীভূত হয়ে বিলীন হয়ে যায়। অবশেষে, সমগ্র জলের তাপমাত্রা 100 °C এ পৌঁছালে, বাষ্প বুদ্বুদ জলের উপরিতলে এসে মুক্ত হয় এবং বলা হয় স্ফুটন হচ্ছে। ফ্লাস্কের ভিতরে বাষ্প দেখা যায় না, কিন্ডু ফ্লাস্কের বাইরে এসে ঘনীভূত হয়ে ক্ষুদ্র ক্ষুদ্র জলবিন্দুতে পরিণত হয় এবং কুয়াশার মতো দেখায়।

চিত্র 11.11 স্ফুটন পদ্ধতি

এখন বাম্প নির্গমন নলটিকে কয়েক সেকেন্ডের জন্য বন্ধ করে ফ্লাস্কের ভিতরের চাপ বাড়ালে আমরা লক্ষ করব স্ফুটন বন্ধ হয়ে যায়। পুনরায় স্ফুটন শুরু হওয়ার পূর্বে তাপমাত্রা বাড়াতে (চাপ বৃদ্ধির উপর নির্ভরশীল) আরও তাপ প্রয়োগ করতে হয়। অতএব, চাপ বৃদ্ধিতে স্ফুটনাঞ্চ বৃদ্ধি পায়।

এবার বার্নার সরিয়ে জলের তাপমাত্রা 80 °C-এ নামিয়ে আনা হল। থার্মোমিটার ও নির্গমন নল সরিয়ে ফ্লাস্কের মুখ ছিপির সাহায্যে বায়ুনিরুম্বভাবে আটকে দাও। একটি স্ট্যান্ডে ফ্লাস্কটিকে উল্টে আটকে দাও। ফ্লাস্কের উপর বরফ-ঠান্ডা জল ঢাললে ফ্লাস্কের ভিতরের বাষ্প ঘনীভূত হয় এবং জলতলের উপর চাপ হ্রাস পায়। এখন নিম্ন তাপমাত্রাতেই জল পুনরায় ফুটতে শুরু করে।অর্থাৎ, চাপ হ্রাসে স্ফুটনাঞ্চ হ্রাস পায়।

পাহাড়ের উপর রান্না করা কেন কন্টকর এটা তা ব্যাখ্যা করে। উঁচু স্থানে বায়ুচাপ কম হয়। তাই সমুদ্রপৃষ্ঠের তুলনায় জলের স্ফুটনাঙ্কও কম হয়। অন্যদিকে প্রেসার কুকারে বায়ুর চাপ বাড়িয়ে জলের স্ফুটনাঙ্ক বাড়ানো হয়। ফলে রান্না তাড়াতাড়ি হয়। প্রমাণ বায়ুমণ্ডলীয় চাপে পদার্থের স্ফুটনাঙ্ককে এর স্বাভাবিক স্ফুটনাঙ্ক বলে।

যদিও সব পদার্থ কঠিন-তরল-গ্যাসীয়-এ তিন অবস্থার মধ্য দিয়ে যায় না। কিছু পদার্থ আছে, তাপপ্রয়োগে যারা কঠিন অবস্থা থেকে সরাসরি বাম্পে পরিণত হয় এবং বিপরীত ঘটনা ঘটে। তাপ প্রয়োগে কোনো পদার্থের কঠিন অবস্থা থেকে তরলে পরিণত না হয়ে সরাসরি বাম্পে পরিণত হওয়াকে **উর্ধ্বপাতন (sublimation)** বলে এবং পদার্থটিকে উদ্বায়ী পদার্থ (sublime) বলে। শুষ্ক বরফ (কঠিন CO₂), কঠিন আয়োডিন উর্দ্ধপাতিত হয়। উর্দ্ধপাতনের সময় পদার্থের কঠিন ও বাম্পীয় উভয় অবস্থা তাপীয় সাম্যে সহাবস্থান করে।

11.8.1 লীনতাপ (Latent Heat)

11.8 অনুচ্ছেদে আমরা শিখেছি, পদার্থের অবস্থার পরিবর্তনের সময় পদার্থ ও পারিপার্শ্বিকের মধ্যে তাপশন্তির আদান-প্রদান ঘটে। অবস্থার পরিবর্তনের সময় একক ভরের পদার্থ পারিপার্শ্বিক থেকে যে পরিমাণ তাপ গ্রহণ বা বর্জন করে ওই তাপকে সেই পদার্থের ওই অবস্থার পরিবর্তনের লীনতাপ বলে। উদাহরণরূপে, –10 °C তাপমাত্রার বরফে তাপ দিলে বরফের গলনাঙ্ক 0 °C -এ না পৌঁছানো পর্যন্ত বরফের তাপমাত্রা বাড়তে থাকে। 0 °C তাপমাত্রায় আরও তাপ দিতে থাকলে বরফের তাপমাত্রা আর বাড়ে না, বরফ গলতে শুরু করে অর্থাৎ এর অবস্থার পরিবর্তন ঘটে। সমস্তবরফ গলে যাওয়ার পর জলের তাপমাত্রা বাড়তে থাকে। তরল থেকে গ্যাসীয় অবস্থায় পরিবর্তনের সময়ও স্ফুটনাঙ্কে একই রকম অবস্থার সৃষ্টি হয়। ফুটস্ত জলে আরও তাপ দিলে তাপমাত্রা না বেড়ে জলের বাষ্পীভবন ঘটে।

পদার্থের অবস্থার পরিবর্তনে প্রয়োজনীয় তাপের পরিমাণ, রূপান্তরের জন্য তাপ (লীনতাপ) এবং অবস্থান্তরিত পদার্থের ভরের উপর নির্ভর করে। *m* ভরের কোনো পদার্থের এক অবস্থা থেকে অন্য অবস্থায় পরিবর্তনে প্রয়োজনীয় তাপ,
বস্তুসমূহ	গলনাজ্ঞ	লীনতাপ $(L_{ m f})$	স্ফুটনাঙ্ক	লীনতাপ $(L_{_{ m v}})$
	(°C)	$(10^{5} J kg^{-1})$	(°C)	$(10^{5} \mathrm{Jkg^{-1}})$
ইথাইল অ্যালকোহল	-114	1.0	78	8.5
সোনা	1063	0.645	2660	15.8
সিসা	328	0.25	1744	8.67
পারদ	-39	0.12	357	2.7
নাইট্রোজেন	-210	0.26	-196	2.0
অক্সিজেন	-219	0.14	-183	2.1
জল	0	3.33	100	22.6

Q = mL

বা,
$$L = Q/m$$
 (11.13)

যেখানে *L* হল লীনতাপ এবং এটি পদার্থের একটি বৈশিষ্ট্য। এর SI একক J kg⁻¹।লীনতাপ *L* এর মান চাপের উপরও নির্ভর করে। সাধারণত এর মানকে প্রমাণ বায়ুমণ্ডলীয় চাপে উল্লেখ করা হয়। পদার্থের কঠিন থেকে তরলে পরিবর্তনের লীনতাপকে **গলনের লীনতাপ** (*L*_r) এবং তরল থেকে গ্যাস পরিবর্তনের ক্ষেত্রে একে **বাচ্পীভবনের লীনতাপ** (*L*_v) বলে। এই দুই লীনতাপকে সাধারণত গলনের তাপ ও বাচ্পীভবনের তাপও বলা হয়। 11.12 চিত্রে কোনো নির্দিষ্ট পরিমাণ জলের ক্ষেত্রে তাপশস্তি বনাম তাপমাত্রার লেখচিত্র দেখানো হল। সারণি 11.5 -এ কিছু পদার্থের লীনতাপ এবং তাদের গলনাজ্ঞ্ব ও স্ফুটনাজ্ঞ্ব দেওয়া হল।

চিত্র 11.12 এক প্রমাণ বায়ুমণ্ডলীয় চাপে জলের তাপ বনাম তাপমাত্রার লেখচিত্র (স্কেল অনুসারে অঙ্কিত নয়)।

লক্ষ করো, অবস্থার পরিবর্তনের সময় তাপ দেওয়া (বা নেওয়া) হলেও তাপমাত্রা স্থির থাকে। 11.12 চিত্রে লক্ষ করে দেখ দশারেখার নতি সর্বত্র সমান নয়। এটি বোঝায় যে, বিভিন্ন অবস্থায় পদার্থের আপেক্ষিক তাপ সমান নয়। জলের গলন ও বাষ্পীভবনের লীনতাপ যথাক্রমে $L_{\rm f}$ =3.33 × 10⁵ J kg⁻¹ এবং $L_{\rm v}$ =22.6 × 10⁵ J kg⁻¹।অর্থাৎ, 0 °C তাপমাত্রায় 1 kg বরফ গলাতে 3.33 × 10⁵ J তাপের প্রয়োজন এবং 100 °C তাপমাত্রায় 1 kg জলকে বাষ্পে পরিণত করতে 22.6 × 10⁵ J kg⁻¹ তাপের প্রয়োজন। অতএব, 100 °C তাপমাত্রার স্টামে 100 °C তাপমাত্রার জল অপেক্ষা 22.6 × 10⁵ J kg⁻¹ তাপ বেশি থাকে। এজন্যই ফুটস্ত জলে পোড়ার তুলনায় স্টিমে পোড়া বেশি মারাত্মক।

উদাহরণ 11.4 0 °C তাপমাত্রার 0.15 kg বরফ ও 50 °C তাপমাত্রার 0.30 kg জলকে একটি পাত্রে একত্রে মেশালে মিশ্রদের চূড়ান্ত তাপমাত্রা হয় 6.7 °C। বরফ গলনের লীনতাপ নির্ণয় করো। (s_w = 4186 J kg⁻¹ K⁻¹)

উত্তর

জল কর্তৃক বর্জিত তাপ =
$$ms_w (\theta_f - \theta_i)_w$$

= (0.30 kg)(4186 J kg⁻¹ K⁻¹) (50.0 °C - 6.7 °C)
= 54376.14 J
বরফ গলনে প্রয়োজনীয় তাপ = $m_2 L_f = (0.15 \text{ kg}) L_f$
বরফ গলা জলের উন্নতাকে চূড়ান্ত উন্নতায় ওঠাতে প্রয়োজনীয় তাপ
= $m_f s_w (\theta_f - \theta_i)_I$
= (0.15 kg) (4186 J kg⁻¹ K ⁻¹) (6.7 °C - 0 °C)
= 4206.93 J
বর্জিত তাপ = গৃহীত তাপ
54376.14 J = (0.15 kg) L_f + 4206.93 J
 $L_f = 3.34 \times 10^5 \text{ J kg}^{-1}$.

উদাহরণ 11.5 ক্যালোরিমিটারে রাখা -12 °C তাপমাত্রার 3kg বরফকে 100 °C তাপমাত্রার স্টিমে পরিণত করতে কত তাপ লাগবে নির্ণয় করো। দেওয়া আছে, বরফের আপেক্ষিক তাপ ধারকত্ব = 2100 J kg⁻¹ K⁻¹, জলের আপেক্ষিক তাপধারকত্ব = 4186 J kg⁻¹ K⁻¹, বরফ গলনের লীনতাপ = 3.35 × 10⁵ J kg⁻¹ এবং স্টিমের লীনতাপ = 2.256 ×10⁶ J kg⁻¹.

উত্তর দেওয়া আছে,

বরফের ভর, *m* = 3 kg

বরফের আপেক্ষিক তাপ ধারকত্ব, $s_{
m ice}$ = 2100 J kg⁻¹ K⁻¹

- জলের আপেক্ষিক তাপ ধারকত্ব, s_{water}
 - $=4186 \,\mathrm{J \, kg^{-1} \, K^{-1}}$

বরফ গলনের লীনতাপ,
$$L_{
m fice}$$

 $= 3.35 \times 10^5 \,\mathrm{J \, kg^{-1}}$

$$= 2.256 \times 10^{6}$$
 J kg

- এখন, $Q = -12 \,^{\circ}\mathrm{C}$ তাপমাত্রার 3 kg বরফকে 100 $^{\circ}\mathrm{C}$ তাপমাত্রার স্টিমে পরিণত করতে প্রয়োজনীয় তাপ।
 - $Q_1 = -12 \,^{\circ}\mathrm{C}$ তাপমাত্রার বরফকে $0 \,^{\circ}\mathrm{C}$ তাপমাত্রার বরফে পরিণত করতে প্রয়োজনীয় তাপ।
 - = $m s_{icc} \Delta T_1 = (3 \text{ kg}) (2100 \text{ J kg}^{-1} \text{ K}^{-1}) [0-(-12)]^{\circ}\text{C}$ = 75600 J
 - Q₂ = 0 °C তাপমাত্রার বরফকে 0 °C তাপমাত্রার জলে পরিণত করতে প্রয়োজনীয় তাপ।
 - $= mL_{\rm fice} = (3 \,\rm kg) \, (3.35 \times 10^5 \,\rm J \, kg^{-1})$
 - $= 1005000 \,\mathrm{J}$
 - Q₃ = 0 °C তাপমাত্রার জলকে 100 °C তাপমাত্রার জলে পরিণত করতে প্রয়োজনীয় তাপ।
 - $= ms_{w} \Delta T_{2} = (3\text{kg}) (4186\text{J} \text{kg}^{-1} \text{K}^{-1}) (100 \,^{\circ}\text{C})$
 - $= 1255800 \,\mathrm{J}$
 - $Q_4 = 100~^{\circ}{
 m C}$ তাপমাত্রার জলকে $100~^{\circ}{
 m C}$ তাপমাত্রার স্টিমে পরিণত করতে প্রয়োজনীয় তাপ।
 - $= m L_{v \text{ steam}} = (3 \text{ kg}) (2.256 \times 10^6 \text{ J kg}^{-1})$
 - $= 6768000 \,\mathrm{J}$
- সুতরাং, Q = Q₁+Q₂+Q₃+Q₄ = 75600J + 1005000 J + 1255800 J + 6768000 J = 9.1×10⁶ J

11.9 তাপ সঞ্জলন (HEAT TRANSFER)

আমরা জানি, তাপমাত্রার পার্থক্যের জন্য এক সংস্থা থেকে অন্য সংস্থায় বা একই সংস্থার এক অংশ থেকে অন্য অংশে তাপের সঞ্চালন ঘটে। পদার্থবিদ্যা

তাপশন্তি সঞ্জালনের বিভিন্ন পম্বতিগুলো কী কী ? তাপ সঞ্জালনের তিনটি সুনির্দিন্ট পম্বতি রয়েছে : পরিবহন, পরিচলন ও বিকিরণ। (চিত্র 11.13)।

11.9.1 পরিবহন (Conduction)

একটি বস্তুর পাশাপাশি থাকা দুটি অংশের তাপমাত্রার পার্থক্যের কারণে ওই দুটি অংশের মধ্যে তাপের সঞ্চালনের এক কৌশল বা পম্বতি হল পরিবহন। একটি ধাতব রডের এক প্রান্তকে আগুনের শিখায় রাখলে রডের অপর প্রান্ত দ্রুত এত গরম হয়ে উঠবে যে তুমি রডটিকে খালি হাতে ধরে রাখতে পারবে না। এখানে পরিবহন পদ্বতিতে তাপ রডের উত্তপ্ত প্রান্ত থেকে এর বিভিন্ন অংশের মধ্য দিয়ে অপর প্রান্তে সঞ্চালিত হয়। গ্যাস তাপের মৃদু পরিবাহী এবং তরলের পরিবাহিতা কঠিন ও গ্যাসের মাঝামাঝি মানের হয়।

নির্দিন্ট তাপমাত্রার পার্থক্যে থাকা একটি বস্তুর দুটি অংশের মধ্যে তাপের পরিবহনকে পরিমাণগতভাবে সময়ের সাপেক্ষে তাপ প্রবাহের হার রূপে প্রকাশ করা যায়। *L* দৈর্ঘ্য এবং *A* সুষম প্রস্থচ্ছেদ ও দু-প্রান্তের বিভিন্ন তাপমাত্রা বিশিন্ট একটি ধাতব দণ্ড নাও। *T*_c এবং *T*_D তাপমাত্রা বিশিন্ট দুটি বড়ো তাপভাণ্ডার-এ দণ্ডটির দুপ্রান্ত রেখে এটি করা যেতে পারে (চিত্র 11.14)। এক্ষেত্রে একটি আদর্শ অবস্থার কথা ধরে নেব যেন, দণ্ডটির পার্শ্বতলগুলো সম্পূর্ণরূপে তাপ নিরোধক এবং পার্শ্বতল দিয়ে পারিপার্শ্বিকের সাথে তাপের কোনো আদান প্রদান না ঘটে।

কিছু সময় পর এক তাপীয় স্থিতাবস্থা আসে; এবং দণ্ডের তাপমাত্রা দণ্ডের দৈর্ঘ্য বরাবর সুষমভাবে কমে $T_{\rm c}$ থেকে $T_{\rm D}$ তে পৌঁছায়; $(T_{\rm c} > T_{\rm D})$ । তাপভাণ্ডার C সমহারে তাপ সরবরাহ করে যা দণ্ডটির মধ্য দিয়ে একই হারে তাপভাণ্ডার D তে সরবরাহিত হয়। পরীক্ষায় দেখা

চিত্র 11.14 তাপীয় স্থিতাবস্থায় দুপ্রান্ত T_C এবং T_D তাপমাত্রায় রাখা একটি দণ্ডের মধ্য দিয়ে পরিবহন পম্বতিতে তাপের প্রবাহ।

যায় তাপীয় স্থিতাবস্থায় তাপপ্রবাহের হার তাপমাত্রার পার্থক্য ($T_{\rm c} - T_{
m p}$) ও দণ্ডের প্রস্থচ্ছেদের ক্ষেত্রফল A -এর সমানুপাতিক এবং দৈর্ঘ্যের (L) ব্যস্তানুপাতিক :

$$H = KA \frac{T_C - T_D}{L} \tag{11.14}$$

আনুপাতিক ধ্রুবক *K* -কে ওই পদার্থের তাপ পরিবাহিতাঙ্ক বলে। যে পদার্থের *K* -এর মান যত বেশি, ওই পদার্থ তত দ্রুততায় তাপ পরিবহন করে। *K*-এর S.I. একক J s⁻¹m⁻¹K⁻¹ বা W m⁻¹K⁻¹। 11.6 সারণিতে বিভিন্ন পদার্থের তাপ পরিবাহিতাঙ্কের মান দেওয়া হল। তাপমাত্রার পরিবর্তনে এ মানগুলোর সামান্য পরিবর্তন হলেও সাধারণ তাপমাত্রার পাল্লায় ধ্রুবক ধরা যায়।

কাঠ এবং গ্লাসউলের মতো উত্তম তাপ নিরোধক পদার্থে অপেক্ষাকৃত কম তাপীয় পরিবাহিতার সাথে ধাতুর মতো উত্তম তাপ পরিবাহী পদার্থের অপেক্ষাকৃত উচ্চতাপ পরিবাহিতার তুলনা করো। তোমারা লক্ষ করে থাকবে কিছু কিছু রান্নার পাত্রের তলায় তামার প্রলেপ দেওয়া থাকে। তাপের উত্তম পরিবাহী হওয়ায় তামার প্রলেপ পাত্রের তলায় তাপের সুষম বন্টন ঘটায় এবং রান্না সুষম হয়। অন্যদিকে প্লাস্টিক ফোমে (Plastic foams) থাকা আবন্ধ বায়ুর জন্য এটি তাপের এক উত্তম অন্তরক পদার্থ। মনে করে দেখো গ্যাস হল তাপের কম পরিবাহী এবং সারণি 11.6 -এ বায়র নিম্নতাপ পরিবাহিতাঙ্ক লক্ষ করো। ব্যবহারিক ক্ষেত্রে তাপ ধারণ ক্ষমতা ও তাপ সঞ্চালন গুরুত্বপূর্ণ। গ্রীষ্মকালে কংক্রিটের ছাদযুক্ত ঘর অত্যন্ত গরম থাকে, কারণ ধাতর তলনায় কংক্রিটের তাপ পরিবাহিতাঞ্চ কম হলেও যথেষ্ট কম নয়। তাই তাপ সঞ্চালন বন্ধ করতে এবং ঘরকে ঠান্ডা রাখতে মানুষ সাধারণত সিলিং-এর উপর মাটির বা ফোমের অন্তরক আস্তরণ দেয়। কিছু কিছু ক্ষেত্রে তাপ সঞ্চালন খুবই জটিল। যেমন, নিউক্লিয়ার রিয়্যাক্টারে (nuclear reactor) বিস্তৃত তাপ সঞ্জালক ব্যবস্থা তৈরি করা প্রয়োজন হয় যেন এর অভ্যন্তরে (মজ্জা বা core) নিউক্লিয় বিভাজনে উৎপন্ন বিপুল পরিমাণ তাপ যথেষ্ট দ্রুত হারে বাইরে সঞ্জালিত হতে পারে এবং মজ্জাকে বেশি উত্তপ্ত হওয়া থেকে রক্ষা করা যায়।

সারণি 11.6 কিছু পদার্থের তাপ পরিবাহিতাজ্ঞ

পদার্থ	তাপ পরিবাহিতাঙ্ক	
	$(J s^{-1} m^{-1} K^{-1})$	
ধাতু		
রুপা	406	
তামা	385	
অ্যালুমিনিয়াম	205	
পিতল	109	
ইস্পাত	50.2	
সিসা	34.7	
পারদ	8.3	
অধাতু / ধাতু নয় এমন পদার্থ		
	0.15	
অন্তরক ২৮	0.15	
কংক্রেচ	0.8	
দেহচার্ব	0.20	
(ফল্ট	0.04	
বাক	0.8	
বরফ	1.6	
গ্লাস উল	0.04	
কাঠ	0.12	
জল	0.8	
গ্যাস		
বায	0.024	
গার্	0.024	
আগন্দ কাইকাসকল	0.010	
হাহড্রোজেন	0.14	

উদাহরণ 11.6 চিত্র 11.15 তে প্রদর্শিত সংস্থার তাপীয় স্থিতাবস্থায় ইস্পাত ও তামার সংযোগস্থলের তাপামাত্রা নির্ণয় করো। ইস্পাতের রডের দৈর্ঘ্য = 15.0 cm, তামার রডের দৈর্ঘ্য = 10.0 cm, চুল্লির তাপমাত্রা = 300 °C, অপর প্রান্তের তাপমাত্রা = 0 °C। তামার রডের প্রস্থচ্ছেদের তুলনায় ইস্পাতের রডের প্রস্থচ্ছেদ দ্বিগুণ। (ইস্পাতের তাপ পরিবাহিতাজ্ঞ্ব = 50.2 J s⁻¹ m⁻¹K⁻¹; তামার পরিবাহিতাজ্ফ = 385 J s⁻¹m⁻¹K⁻¹).

উত্তর : রডগুলোর চারপাশের তাপের অন্তরক পদার্থ রডের পার্শ্ব দিয়ে তাপক্ষয় কমায়। তাই রডের দৈর্ঘ্য বরাবরই শুধুমাত্র তাপ প্রবাহিত হয়। রডের যে-কোনো একটি প্রস্থচ্ছেদকে (তির্যক স্তর) নেওয়া হল। তাপীয় স্থিতাবস্থায়, ওই স্তরে প্রবাহিত তাপের পরিমাণ ওই স্তর থেকে পরবর্তী স্তরে প্রবাহিত তাপের পরিমাণের অবশ্যই সমান হয়, অন্যথায় ওই স্তরে কিছু পরিমাণ তাপের শোষণ বা বর্জন ঘটবে এবং এর তাপমাত্রা স্থির থাকবে না। এভাবে তাপীয় স্থিতাবস্থায় ইস্পাত-তামার সমন্বিত রডটির দৈর্ঘ্য বরাবর প্রতিটি বিন্দুতে তির্যক স্তরের মধ্য দিয়ে তাপ প্রবাহের হার একই হয়। ধর, তাপীয় স্থিতাবস্থায় ইস্পাত-তামার সংযোগস্থলের তাপমাত্রা *T*। এক্ষণে,

$$\frac{K_1 A_1 (300 - T)}{L_1} = \frac{K_2 A_2 (T - 0)}{L_2}$$

যেখানে, 1 এবং 2 যথাক্রমে ইস্পাত ও তামাকে বোঝাচ্ছে। এখন, $A_1=2\,A_2, L_1=15.0~{\rm cm},\,L_2=10.0~{\rm cm},K_1=50.2~{\rm J~s^{-1}~m^{-1}~K^{-1}},K_2=385~{\rm J~s^{-1}~m^{-1}~K^{-1}}$ ।

স্তরাং,
$$\frac{50.2 \times 2 (300 - T)}{15} = \frac{385T}{10}$$

∴ T=44.4 °C

উত্তর

দেওয়া আছে, $L_1=L_2=L=0.1$ m, $A_1=A_2=A=0.02$ m² $K_1=79~{\rm W}~{\rm m}^{-1}~{\rm K}^{-1},~K_2=109~{\rm W}~{\rm m}^{-1}~{\rm K}^{-1},~T_1=373$ K, এবং $T_2=273~{\rm K}$ ।

তাপীয় স্থিতাবস্থায় লোহার দণ্ডের মধ্য দিয়ে তাপপ্রবাহ $(H_{_{\rm I}})$ পিতল দণ্ডের মধ্য দিয়ে তাপ প্রবাহের $(H_{_{\rm 2}})$ সমান হয়।

সুতরাং,
$$H = H_1 = H_2$$

$$= \frac{K_1 A_1 (T_1 - T_0)}{L_1} = \frac{K_2 A_2 (T_0 - T_2)}{L_2}$$

 $A_1 = A_2 = A$ এবং $L_1 = L_2 = L$, এর জন্য সমীকরণটি হয় $K_1 (T_1 - T_0) = K_2 (T_0 - T_2)$

সুতরাং, দণ্ড দুটির সংযোগ তাপমাত্রা,

$$T_{0} = \frac{\left(K_{1}T_{1} + K_{2}T_{2}\right)}{\left(K_{1} + K_{2}\right)}$$

এ সমীকরণ ব্যবহার করে পাওয়া যায়, যে-কোনো দণ্ডের তাপপ্রবাহ

$$H = \frac{K_1 A (T_1 - T_0)}{L} = \frac{K_2 A (T_0 - T_2)}{L}$$
$$= \left(\frac{K_1 K_2}{K_1 + K_2}\right) \frac{A (T_1 - T_0)}{L} = \frac{A (T_1 - T_2)}{L \left(\frac{1}{K_1} + \frac{1}{K_2}\right)}$$

উপরের সমীকরণগুলো ব্যবহার করে পাওয়া যায় $L_1 + L_2 = 2L$ দৈর্ঘ্য ও *K*' তুল্য তাপ পরিবাহিতাঙ্ক বিশিষ্ট যুগ্ম দণ্ডটির মধ্য দিয়ে তাপপ্রবাহ,

$$H' = \frac{K' A (T_1 - T_2)}{2 L} = H$$

$$K' = \frac{2 K_1 K_2}{K_1 + K_2}$$

(i) $T_0 = \frac{(K_1 T_1 + K_2 T_2)}{(K_1 + K_2)}$

$$= \frac{(79 W m {}^{1}K {}^{1})(373 K) + (109 W m {}^{1}K {}^{1})(273 K)}{79 W m {}^{1}K {}^{1} + 109 W m {}^{1}K {}^{1}}$$

$$= 315 K$$

(ii)
$$T_0 = \frac{(K_1T_1 + K_2T_2)}{(K_1 + K_2)}$$

= $\frac{2 (79 \text{ W m}^{-1} \text{ K}^{-1}) (109 \text{ W m}^{-1} \text{ K}^{-1})}{79 \text{ W m}^{-1} \text{ K}^{-1} + 109 \text{ W m}^{-1} \text{ K}^{-1}}$
= 91.6 W m⁻¹ K⁻¹

(iii)
$$H' = H = \frac{K' A (T_1 - T_2)}{2 L}$$

= $\frac{(91.6 W m^{-1} K^{-1}) \times (0.02 m^2) \times (373 K - 273 K)}{2 \times (0.1 m)}$
= 916.1 W

11.9.2 পরিচলন (Convection)

পরিচলন হল পদার্থকণার প্রকৃত চলাচলের মাধ্যমে তাপ সঞ্চালনের এক পদ্ধতি। এটি একমাত্র প্রবাহীতেই সম্ভব। পরিচলন প্রাকৃতিক ও পরবশ দুভাবে হতে পারে। প্রাকৃতিক পরিচলনে অভিকর্ষ বল এক গুরুত্বপূর্ণ ভূমিকা পালন করে। কোনো প্রবাহীকে নীচ থেকে উত্তপ্ত করা হলে উত্তপ্ত অংশ প্রসারিত হয় এবং এর ঘনত্ব কমে। প্লবতার জন্য ওই অংশের কণাগুলো উপরে ওঠে যায় এবং উপরের শীতল অংশের কণাগুলো ওই স্থান দখল করে। পুনরায় ওই অংশ উত্তপ্ত হয় এবং শীতল অংশের প্রবাহী দ্বারা প্রতিস্থাপিত হয়। এ প্রক্রিয়া চলতেই থাকে। তাপ সঞ্চালনের এ পদ্ধতিটি স্পস্টতই পরিবহনের থেকে আলাদা। পরিচলনে প্রবাহীর বিভিন্ন অংশের বিপুল পরিমাণে স্থানান্তর ঘটে।

পরবশ পরিচলনে পাম্প বা অন্য কোনো ভৌত প্রক্রিয়ায় পদার্থকে গতিশীল হতে বাধ্য করা হয়। পরবশ পরিচলনের কয়েকটি সাধারণ উদাহরণ হল - বাড়িঘরের বায়ু চলাচল ব্যবস্থা, মানুযের সংবহনতন্ত্র, যানবাহনের ইঞ্জিনের শীতলীকরণ ব্যবস্থা। মানব শারীরে হৃৎপিণ্ড শারীরের বিভিন্ন অংশে রক্ত সংবহনে পাম্পের ন্যায় কাজ করে এবং পরবশ পরিচলন প্রক্রিয়ায় তাপ সঞ্চালনের মাধ্যমে শারীরের একই তাপমাত্রা বজায় রাথে।

অনেক পরিচিত ঘটনায় প্রাকৃতিক পরিচলন পম্বতি মুখ্য ভূমিকা পালন করে। দিনের বেলায় বৃহৎ জলাশয়ের তুলনায় স্থলভাগ অতি দুত গরম হয়।জলের উচ্চ আপেক্ষিক তাপ ও পরিচলন স্রোতের মাধ্যমে বিপুল আয়তনের জলে তাপের শোষণ - এই উভয় কারণে এমনটা ঘটে।গরম ভূপৃষ্ঠের সংস্পর্শে থাকা বায়ুস্তর পরিবহন পম্বতিতে উত্তপ্ত হয়ে প্রসারিত হয় এবং পারিপার্শ্বিকের শীতল বায়ুর তুলনায় হালকা হয়ে পড়ে। এর ফলে গরম বায়ু উপরে ওঠে যায় (বায়ুর উর্ধ্বস্রোত সৃষ্টি হয়) এবং ওই শূন্যস্থান পূরণে জলভাগ থেকে শীতল বায়ু প্রবাহিত হয়ে সমুদ্র বায়ু (sea breeze) সৃষ্টি করে। ঠান্ডা বায়ু নীচে নেমে আসে এবং এক তাপীয় পরিচলনচক্র প্রতিষ্ঠিত হয় যা মাটি হতে তাপ সঞ্চালিত করে। রাত্রিবেলায়, স্থল ভাগ অতি দ্রুত তাপ হারায় এবং স্থলভাগের তুলনায় জলতল বেশি উত্তপ্ত থাকে। ফলে তাপীয় পরিচলন চক্রটি বিপরীতমুখী হয় (চিত্র11.17)।

প্রাকৃতিক পরিচলনের অন্য এক উদাহরণ হল - পৃথিবীপৃষ্ঠের উপর দিয়ে উত্তর-পূর্ব দিক থেকে বিযুব অঞ্চলের দিকে প্রবাহিত শান্ত পৃষ্ঠবায়ু যা বাণিজ্য বায়ু নামে পরিচিত। এর যুক্তিসঙ্গাত ব্যাখ্যা নিম্নরূপ : পৃথিবীর বিযুব অঞ্চল ও মেরু অঞ্চল অসমভাবে সৌরতাপ পায়। বিযুব অঞ্চলে ভূপৃষ্ঠের কাছাকাছি বায়ুস্তর অপেক্ষাকৃত গরম হয় অন্যদিকে মেরু অঞ্চলেে উপরের বায়ুমণ্ডল অপেক্ষাকৃত ঠান্ডা হয়। অন্য কোনো প্রভাবকের উপরের বায়ুমণ্ডল অপেক্ষাকৃত ঠান্ডা হয়। অন্য কোনো প্রভাবকের অনুপস্থিতিতেই একটি পরিচলন স্রোতের (convection current) সৃষ্টি হয়, যেখানে বিযুব অঞ্চলের ভূপৃষ্ঠের বায়ু উপরে ওঠে গিয়ে মেরু অঞ্চলের দিকে প্রবাহিত হয় এবং মেরু অঞ্চলের উপরের শীতল বায়ু নীচে নেমে বিযুব অঞ্চলের দিকে প্রবাহিত হয়। তবে পৃথিবীর ঘূর্ণন এই পরিচলন স্রোতকে কিছুটা পরিবর্ধিত করে। এ কারণে বিযুব অঞ্চলে বায়ুর পূর্বমুখী 1600 km/h বেগ থাকে যেখানে মেরু অঞ্চলে এ বেগ শৃন্য। এর ফলে বায়ু ঠিক মেরুতে না নেমে 30°N অক্ষাংশে নেমে আসে এবং সেখান থেকে বিযুব অঞ্চলে ফিরে আসে। এ বায়ু প্রবাহকে বাণিজ্য **বায়ু trade wind**) বলে।

চিত্র 11.17 পরিচলন চব্রু

11.9.3 বিকিরণ (Radiation)

পরিবহন এবং পরিচলন পদ্ধতিতে বাহক মাধ্যম রূপে একটি মাধ্যমের প্রয়োজন হয়। শূন্যস্থানে পৃথক্কৃত দুটি বস্তুর মধ্যে এসব পদ্ধতিতে তাপ সঞ্চালিত হতে পারে না। কিন্তু পৃথিবী বহু দূরে থাকা সূর্যের তাপ পায় এবং বায়ু তাপের কম পরিবাহী হওয়া সত্ত্বেও এবং পরিচলন স্রোত স্থাপনের পূর্বেই আমরা কাছাকাছি থাকা অঞ্চলের উত্তাপ অনুভব করি। তাপ সঞ্চালনের এই তৃতীয় কৌশলটিতে কোনো মাধ্যমের প্রয়োজন হয় না; একে বিকিরণ বলা হয় এবং এ পম্ধতিতে তডিৎচুম্বকীয় তরজ্ঞারুপে সঞ্জালিত তাপশস্তিকে বিকিরিত শস্তি (radiant energy) বলে। কোনো তড়িৎ চুম্বকীয় তরঙ্গে তড়িৎক্ষেত্র ও চৌম্বক ক্ষেত্র শূন্য মাধ্যমে সময়ের সাথে আন্দোলিত (oscillate) হতে থাকে। অন্যান্য তরজোর ন্যায় তড়িৎচুম্বকীয় তরঙ্গা সমূহের বিভিন্ন তরঙ্গাদৈর্ঘ্য থাকতে পারে এবং শূন্য স্থানে একই বেগে তথা আলোর বেগ $3 imes 10^8 \, m \, s^{-1}$ নিয়ে চলতে পারে। তোমরা পরবর্তী সময়ে এ বিষয়ে বিস্তারিত জানবে, কিন্তু এখন তোমরা জান কেন বিকিরণ পম্বতিতে তাপ সঞ্চালনে কোনো জড মাধ্যমের প্রয়োজন হয় না এবং কেনই বা এ পদ্ধতি এত দ্রুত সম্পন্ন হয়। এ পদ্ধতিতে শূন্যস্থানের মধ্য দিয়ে তাপ সূর্য থেকে পৃথিবীতে পৌঁছায়। কঠিন, তরল বা গ্যাসীয় সকল বস্তুই তাপ বিকিরণ করে। বস্তুর তাপমাত্রাজনিত কারণে কোনো বস্তু কর্তৃক নিঃসৃত তড়িৎচুম্বকীয় বিকিরণ, যেমন - লোহিত তপ্ত লৌহ বা ফিলামেন্ট বাতি হতে নিঃসৃত আলোককে তাপীয় বিকিরণ বলে।

যখন এই তাপীয় বিকিরণ কোনো বস্তুর উপর পড়ে এর একাংশ প্রতিফলিত হয় এবং একাংশ বস্তু কর্তৃক শোষিত হয়। কোনো বস্তু কর্তৃক শোষিত বিকিরণের পরিমাণ বস্তুর বর্ণের উপর নির্ভর করে।

আমরা দেখতে পাই, হালকা রঙের বস্তুর তুলনায় কালো রঙের বস্তু বেশি মাত্রায় বিকিরণ শোষণ এবং নিঃসরণ করে। দৈনন্দিন জীবনে এর বহু প্রয়োগ দেখা যায়। আমরা গরমকালে সাদা বা হালকা রঙের পোশাক পরি যেন এগুলো অল্প পরিমাণে সৌরতাপ শোষণ করতে পারে। আবার শীতকালে আমরা গাঢ় রঙের পোশাক ব্যবহার করি যা সৌরতাপ শোষণ করে এবং আমাদের শরীরকে গরম রাখে। রান্নার বাসনপত্রের তলায় কালো রঙ করা হয় যেন এগুলো উনুন থেকে বেশি পরিমাণে তাপ শোষণ করে রান্নার সজ্জিতে সরবরাহ করতে পারে।

অনুরূপভাবে, দেয়ার ফ্লাস্ক (Dewar flask) বা থার্মোফ্লাস্ক বোতল (thermos bottle) এক বিশেষ যন্ত্র যার বোতলের ভিতরের বস্তু ও বাইরের পরিবেশের মধ্যে তাপের আদান প্রদান কম হয়। এটি একটি দুই দেওয়াল বিশিষ্ট কাচের পাত্র যার বাইরের ও ভিতরের দেওয়াল দুটি রুপার প্রলেপ দেওয়া থাকে। ভিতরের দেওয়াল থেকে বিকিরণ (তাপ) প্রতিফলিত হয়ে ভিতরের বস্তুতে ফিরে যায়। অনুরূপে, বাইরের দেওয়াল বাইরের বিকিরণকে প্রতিফলিত করে। পরিবহন ও পরিচলন পম্বতিতে তাপ সঞ্জালন কমাতে দেওয়াল দুটির মধ্যবর্তী স্থানকে বায়ুশূন্য করা হয় এবং পাত্রটিকে একটি তাপের অন্তরক পদার্থ যেমন, কর্কের উপর বসানো হয়। এভাবে যন্ত্রটি ভিতরের গরম বস্তুকে (যেমন-গরম দুধ) ঠান্ডা হওয়া থেকে আটকাতে অপরদিকে ঠান্ডা বস্তুকে (যেমন-বরফ) ঠান্ডা রাখতে বিশেষ উপযোগী।

11.9.4 কৃষ্ণবস্থু বিকিরণ (Blackbody Radiation)

এখন পর্যন্ত আমরা তাপীয় বিকিরণের তরঙ্গদৈর্ঘ্যের কোনো উল্লেখ করিনি। যে-কোনো তাপমাত্রায় তাপীয় বিকিরণ সম্পর্কিত গুরুত্বপূর্ণ বিষয় হল এটি একটি (বা কয়েকটি) তরঙ্গদৈর্ঘ্যে (সমূহের) বিকিরণ নয় বরং এতে ছোটো থেকে দীর্ঘ তরঙ্গদৈর্ঘ্য বিশিষ্ট একটি নিরবচ্ছিন্ন বর্ণালী থাকে। যাইহোক, বিকিরণে জড়িত শক্তি বিভিন্ন তরঙ্গা দৈর্ঘ্যভেদে পরিবর্তিত হয়। 11.18 চিত্রটি, বিভিন্ন তাপমাত্রার জন্য তরঙ্গা দৈর্ঘ্য বনাম একটি কৃষ্ণবস্তু কর্তৃক বিকিরিত প্রতি একক ক্ষেত্রফলে, প্রতি একক তরঙ্গাদৈর্ঘ্যে বিকীর্ণ শক্তির পরীক্ষালব্দ্ব লেখটি দেখায়।

চিত্র 11.18: একটি কৃষ্ণবস্থুর বিভিন্ন তাপমাত্রায় বিকিরিত শস্তি বনাম তরঙ্গদৈর্ঘ্য লেখচিত্র।

লক্ষ করো, তাপমাত্রা বৃষ্ধির সঙ্গো তরঙ্গাদৈর্ঘ্য λ_m , যার জন্য শক্তি সর্বোচ্চ, হ্রাস পাচ্ছে। λ_m এবং T এর মধ্যে সম্পর্কটি লেখা যায়

$$\lambda_m T = ध्रुवक \tag{11.15}$$

এটি ভিনের সরণ সূত্র (Wien's Displacement Law) নামে পরিচিত। ধ্রুবকটির (ভিনের ধ্রুবক) মান 2.9 × 10⁻³ m K। এই সূত্র থেকে

ব্যাখ্যা পাওয়া যায়, কী কারণে এক খণ্ড লোহাকে একটি তপ্ত শিখায় উত্তপ্ত করলে এর বর্ণ প্রথমে নিষ্প্রভ লাল, এরপর লালাভ হলুদ এবং শেষে শ্বেত তপ্ত হয়। মহাজাগতিক বস্তুসমূহ যেমন, চাঁদ, সূর্য এবং অন্য তারাদের পৃষ্ঠের তাপমাত্রার হিসেব পাওয়ার জন্য ভিনের সূত্রটি উপযোগী। দেখা যায়, চাঁদ থেকে আসা আলোর ক্ষেত্রে 14 µm এর কাছাকাছি তরঙ্গদৈর্ঘ্যের জন্য তীব্রতা সর্বোচ্চ হয়। ভিনের সূত্রের সাহায্যে গণনাকৃত চাঁদের পৃষ্ঠদেশের তাপমাত্রা হল 200 K। তরঙ্গদৈর্ঘ্য $\lambda_m =$ 4753 Å এ, সৌর বিকিরণের তীব্রতা সর্বোচ্চ হয়। এর আনুষজিািক তাপমাত্রা T = 6060 K। মনে রাখবে, এটি সূর্যপৃষ্ঠের তাপমাত্রা, অভ্যন্তরীণ তাপমাত্রা নয়।

কৃষ্ণবস্থু বিকিরণের লেখচিত্র 11.18 এর খুবই তাৎপর্যপূর্ণ বৈশিস্ট্য হল এগুলো সর্বজনীন। এই লেখচিত্রগুলো কেবলমাত্র তাপমাত্রার উপর নির্ভর করে এবং কৃষ্ণ বস্তুটির আয়তন, আকৃতি অথবা উপাদানের উপর নির্ভর করে না। বিংশ শতাব্দীর শুরুতে, কৃষ্ণবস্তুর বিকিরণের তাত্ত্বিক ব্যাখ্যার প্রচেস্টায় পদার্থবিদ্যায় কোয়ান্টাম বিপ্লবকে ত্বরান্বিত করেছে, যা তোমরা পরবর্তী পাঠ্যক্রমে জানবে।

কোনো একটি মাধ্যম ছাড়া (অর্থাৎ শূন্য মাধ্যমে) শস্তি, বিকিরণের সাহায্যে বিশাল দূরত্বে স্থানাস্তরিত হতে পারে। *T* পরম তাপমাত্রার একটি বস্তু কর্তৃক বিকিরিত তড়িৎচুম্বকীয় শস্ত্তি এর ক্ষেত্রফল, বিকিরণ ক্ষমতা (বিকিরণ প্রবণতা) এবং সবচেয়ে গুরুত্বপূর্ণ বস্তুটির তাপমাত্রার সঙ্গে সমানুপাতিক হবে। একটি আদর্শ বিকিরক বস্তুর জন্য, প্রতি একক সময়ে নির্গত শস্তি (*H*) কে লেখা যায় -

$$H = A\sigma T^4 \tag{11.16}$$

যেখানে A হল ক্ষেত্রফল এবং T হল বস্তুটির পরম তাপমাত্রা। এটি পরীক্ষামূলকভাবে পেয়েছেন বিজ্ঞানী স্টিফেন (Stefan) এবং পরবর্তী সময়ে বোলজ্ম্যান (Boltzmann) এটি তাত্ত্বিকভাবে প্রমাণ করেন। একে স্টিফেন-বোলজ্ম্যান (Stefan-Boltzmann law) সূত্র এবং ধ্রুবক σ কে স্টিফেন-বোলজ্ম্যান ধ্রুবক বলে। SI এককে এর মান হল 5.67 × 10⁻⁸ W m⁻² K⁻⁴। অধিকাংশ বস্তুই 11.16 নং সমীকরণে প্রদন্ত হারের একটি ভগ্নাংশ বিকিরণ করে। একটি পদার্থ যেমন-ভূসাকালি (lamp black) এই সীমার কাছাকাছি। অতএব, একটি মাত্রাহীন ভগ্নাংশ *e* কে বিকিরণ প্রবণতা বলে এবং লেখা হয় -

$$H = Ae\sigma T^4 \tag{11.17}$$

এখানে, একটি আদর্শ বিকিরকের জন্য e=1 । উদাহরণস্বরূপ, একটি টাংস্টেন বাতির ক্ষেত্রে e এর মান প্রায় 0.4। এভাবে একটি টাংস্টেন বাতির 3000 K তাপমাত্রায় এবং 0.3 cm² পৃষ্ঠতলে বিকিরণের হার

 $H = 0.3 \times 10^{-4} \times 0.4 \times 5.67 \times 10^{-8} \times (3000)^4 = 60 \text{ W}$

 T
 তাপমাত্রার পারিপার্শ্বিকে থাকা
 T
 তাপমাত্রার একটি বস্তুর

 ক্ষেত্রে শক্তির বিকিরণ এবং গ্রহণ পাশাপাশি চলে। একটি আদর্শ বিকিরকের
 (perfect radiator) বিকিরিত শক্তি হ্রাসের হার হল

$$H = \sigma A \left(T^4 - T_s^4 \right)$$

e বিকিরণ প্রবণতা বিশিষ্ট একটি বস্তুর জন্য পরিবর্তিত সম্পর্কটি হল

$$H = e\sigma A \left(T^4 - T_s^4 \right)$$
 (11.18)

চলো, একটি উদাহরণ হিসেবে আমাদের শরীর থেকে বিকিরিত তাপের হিসেব করি। ধরো, এক ব্যক্তির শরীরের পৃষ্ঠতলের ক্ষেত্রফল প্রায় 1.9 m² এবং ঘরটির তাপমাত্রা 22°C ।শরীরের অভ্যন্তরীণ তাপমাত্রা, আমরা যেমন জানি, প্রায় 37°C । ত্বকের উস্লতা 28°C (ধর) হতে পারে। তড়িৎচুম্বকীয় বিকিরণের প্রাসঞ্জিক অংশের জন্য ত্বকের বিকিরণ প্রবণতা প্রায় 0.97 হয়। তাপ হ্রাসের হারটি হল :

$$H = 5.67 \times 10^{-8} \times 1.9 \times 0.97 \times \{(301)^4 - (295)^4\}$$

$$= 66.4 \,\mathrm{W}$$

যা বিশ্রামরত অবস্থায় শরীর কর্তৃক উৎপন্ন শক্তি উৎপাদন হারের (120 W) অর্ধেক থেকে বেশি। এই তাপ অপচয়কে কার্যকরীভাবে (সাধারণ পোশাক অপেক্ষা উন্নততর) প্রতিরোধ করার জন্য আধুনিক শীতের পোশাকের ক্ষেত্রে ত্বকের ঠিক পরেই একটি পাতলা ও চকচকে ধাতব অতিরিক্তু স্তর যুক্ত থাকে, যা শরীরের বিকিরণকে প্রতিফলিত করে।

11.9.5 গ্রিনহাউস এফেক্ট (Greenhouse Effect)

ভূপৃষ্ঠটি তাপীয় বিকিরণের একটি উৎস কারণ এটি সূর্য থেকে শক্তি শোষণ করে। এই বিকিরণের তরঙ্গদৈর্ঘ্য দীর্ঘতর তরঙ্গদৈর্ঘ্য (অবলোহিত) অঞ্চলে থাকে। কিন্তু এই বিকিরণের একটি বড়ো অংশ গ্রিন হাউস গ্যাসগুলো দ্বারা শোষিত হয়, যেমন-কার্বন ডাইঅক্সাইড (CO₂); মিথেন (CH₄); নাইট্রাস অক্সাইড (N₂O); ক্লোরোফ্লরো কার্বন (CF_xCl_x); এবং ট্রপোস্ফেরিক ওজোন (O₃)। এইগুলো বায়ুমণ্ডলকে উত্তপ্ত করে এবং ভূপৃষ্ঠে বেশি শক্তি দেয় এবং ফলস্বরূপ ভূপৃষ্ঠ উত্তপ্ত হয়। ইহা ভূপৃষ্ঠ থেকে বিকিরণের তীব্রতাকে বাড়িয়ে দেয়। উপরে বর্ণিত প্রক্রিয়ার চক্রটি পুনরাবৃত হতে থাকে যতক্ষণ পর্যন্ত না শোষণের জন্য কোনো বিকিরণ অবশিষ্ট থাকে। এর নিট ফলাফল হল ভূপৃষ্ঠ এবং বায়ুমণ্ডলের উন্ন্নায়ন। এটিই **গ্রিন হাউস এফেক্ট** হিসেবে পরিচিত। গ্রিন হাউস এফেক্ট না থাকলে পৃথিবীর তাপমাত্রা থাকত –18°C।

মানুষের ক্রিয়াকলাপের দরুন গ্রিনহাউস গ্যাসের ঘনত্ব উত্তরোত্তর বৃদ্ধি পাচ্ছে এবং পৃথিবী আরও উন্নতর হয়ে উঠছে। একটি সমীক্ষা অনুযায়ী, এভাবে ঘনত্ব বৃদ্ধির ফলে এ শতাব্দীর শুরু থেকে বর্তমানে পৃথিবীর গড় তাপমাত্রা বৃদ্ধি পেয়েছে 0.3 থেকে 0.6°C। পরবর্তী শতাব্দীর মাঝামাঝি নাগাদ পৃথিবীর সার্বিক তাপমাত্রা বর্তমান অবস্থা থেকে 1°C থেকে 3°C পর্যন্ত বৃদ্ধি পেতে পারে। এই বিশ্ব উন্নায়ণ, মানব জীবন, উদ্ভিদ এবং প্রাণী জগতের সমস্যার কারণ হতে পারে। বিশ্ব উন্নায়ণের ফলে হিমশৈল দ্রুত গলে যাচ্ছে, সমুদ্রতল বেড়ে যাচ্ছে এবং আবহাওয়ার গতি-প্রকৃতির পরিবর্তন হয়ে যাচ্ছে। উপকূলবর্তী অনেক শহর সমুদ্র জলে তলিয়ে যাওয়ার মত ঝুঁকি বাড়ছে। উত্তরোত্তর গ্রিন হাউস প্রক্রিয়া বৃদ্ধিতে মরুভূমির বিস্তার বেড়ে যেতে পারে। সমগ্র বিশ্বব্যাপী, এই ভূ-উন্নায়ণ কমানোর জন্য বিভিন্ন প্রয়াস নেওয়া হচ্ছে।

11.10 নিউটনের শীতলীকরণ সূত্র (NEWTON'S LAW OF COOLING)

আমরা সবাই জানি, টেবিলের উপর গরম জল বা দুধ রাখলে তা ধীরে ধীরে ঠান্ডা হয়। একসময় এদের তাপমাত্রা পারিপার্শ্বিকের তাপমাত্রার সমান হয়। পারিপার্শ্বিকের সাথে তাপ বিনিময়ের মাধ্যমে কোনো বস্তু কীভাবে ঠান্ডা হয় তা জানতে আমরা চলো নীচের কাজটি করি।

আলোড়কসহ একটি ক্যালোরিমিটারে কিছু পরিমাণ (ধর 300 mL) জল নাও এবং দুই ছিদ্রযুক্ত ঢাকনা দিয়ে একে ঢেকে দাও। একটি ছিদ্রে একটি থার্মোমিটারকে এমনভাবে আটকাও যেন থার্মোমিটার কুগুলীটি জলে ডোবানো থাকে। থার্মোমিটারের পাঠ T_1 লিখে রাখ। এপাঠ T_1 হল পারিপার্শ্বিকের তাপমাত্রা। ক্যালোরিমিটারে রাখা জলকে এবার গরম করতে থাক যতক্ষণ পর্যন্ত না জলের তাপমাত্রা ঘরের তাপমাত্রা তথা পারিপার্শ্বিকের তাপমাত্রার চেয়ে প্রায় 40 °C উপরে পৌঁছায়। এরপর তাপ উৎসকে সরিয়ে জলকে তাপ দেওয়া বন্দ্ব কর। একটি স্টপওয়াচ্ চালিয়ে নির্দিফ্ট সময় পর পর ধর, এক মিনিট, আলোড়কের সাহায্যে জলকে ধীরে ধীরে আলোড়িত করার পর, থার্মোমিটারের পাঠ নাও এবং লিখে রাখো। এভাবে যতক্ষণ পর্যন্ত না জলের তাপমাত্রা প্রিকার্দ্রিকের তাপমাত্রা থেকে 5 °C উপরের তাপমাত্রায় গোঁছায়, জলের তাপমাত্রা (T_2) লেখো। এবার প্রত্যেক তাপমাত্রায় ব্যবধান $\Delta T = T_2 - T_1$ কে y-অক্ষবরাবর এবং আনুযজিক সময় t কে x-অক্ষ বরাবর নিয়ে একটি লেখচিত্র আঁকো (চিত্র 11.19)।

চিত্র 11.19 সময়ের সাথে গরম জলের শীতলীকরণের লেখচিত্র।

লেখচিত্র থেকে তোমরা অনুমান করতে পারছ যে, গরমজলের শীতলীকরণ (তাপমাত্রা হ্রাস) পারিপার্শ্বিকের সাথে জলের তাপমাত্রার পার্থক্যের উপর নির্ভর করে। তোমরা আরও লক্ষ করবে যে, প্রথমে শীতলীকরনের হার বেশি হয় এবং বস্তুর তাপমাত্রা কমার সাথে সাথে শীতলীকরনের হারও হ্রাস পেতে থাকে।

উপরিউক্ত কাজ এটাই প্রমাণ করে যে, গরম বস্তু তাপ বিকিরণে হারানো তাপ পরিবেশে যায়।বস্তুর তাপক্ষয়ের হার পরিবেশের সাপেক্ষে বস্তুর তাপমাত্রার পার্থক্যের উপর নির্ভর করে। নিউটন সর্বপ্রথম পম্বতিগতভাবে কোনো আবম্ধপাত্রে রাখা বস্তুর তাপক্ষয় এবং বস্তুর উন্নতার সম্পর্ক বিষয়ক গবেষণা করেন।

নিউটনের শীতলীকরণ সূত্রানুসারে, বস্তুর তাপক্ষয়ের হার, – dQ/dt বস্তু ও পারিপার্শ্বিকের তাপমাত্রার পার্থক্য $\Delta T = (T_2 - T_1)$ এর সমানুপাতিক হয়। সূত্রটি তাপমাত্রার খুব কম পার্থক্যের ক্ষেত্রেই প্রযোজ্য হয়। আবার বিকিরণ পম্ধতিতে বস্তুর তাপক্ষয় বস্তুর পৃষ্ঠতলের প্রকৃতি ও মুক্ত পৃষ্ঠের ক্ষেত্রফলের উপরও নির্ভর করে। আমরা লিখতে পারি

$$-\frac{dQ}{dt} = k(T_2 - T_1)$$
(11.19)

যেখানে, *k* হল বস্তুর পৃষ্ঠতলের ক্ষেত্রফল এবং প্রকৃতি নির্ভর একটি ধ্রুবক। ধর, *m* ভর ও *s* আপেক্ষিক তাপ ধারকত্ব বিশিষ্ট একটি বস্তুর তাপমাত্রা *T*₂ এবং বস্তুর পারিপার্শ্বিকের তাপমাত্রা *T*₁ । যদি d*t* সময়ে বস্তুর তাপমাত্রা খুবই কম d*T*₂ পরিমাণ হ্রাস পায় তবে বস্তুর তাপক্ষয়ের পরিমাণ —

$$dQ = ms dT_2$$

∴ তাপক্ষয়ের হার

$$\frac{dQ}{dt} = ms\frac{dT_2}{dt} \tag{11.20}$$

(11.19) ও (11.20) সমীকরণ দুটো থেকে পাওয়া যায়

$$-ms\frac{dT_{2}}{dt} = k(T_{2} - T_{1})$$
$$\frac{dT_{2}}{T_{2} - T_{1}} = -\frac{k}{ms}dt = -Kdt \qquad (11.21)$$

যেখানে, *K* = *k/m s*

সমাকলন করে পাওয়া যায়,

$$\log_{e} (T_2 - T_1) = -Kt + c \tag{11.22}$$

বা,
$$T_2 = T_1 + C' e^{-Kt}$$
; যেখানে $C' = e^c$ (11.23)

সমীকরণ 11.23 তাপমাত্রার এক নির্দিন্ট পাল্লায় শীতলীকরণের 'সময়' নির্ণয় করতে তোমাদের সাহায্য করবে।

পদার্থের তাপীয় ধর্মাবলি

খুব কম তাপমাত্রার পার্থক্যে পরিবহন, পরিচলন ও বিকিরণের সমন্বয়ে শীতলীকরনের হার বস্তু ও পরিবেশের তাপমাত্রার পার্থক্যের সমানুপাতিক। ঘর গরম করার যন্ত্রের (radiator) তাপ সঞ্চালন, ঘরের দেওয়ালের মাধ্যমে তাপক্ষয় বা টেবিলের উপরে রাখা এক কাপ চায়ের ঠান্ডা হওয়ার ক্ষেত্রে শীতলীকরণ সূত্র মোটামুটিভাবে প্রযোজ্য হয়।

চিত্র 11.20 নিউটনের শীতলীকরণ সূত্রের যথার্থতা প্রমাণ।

11.20(a) চিত্রে দেখানো পরীক্ষামূলক ব্যবস্থার সাহায্যে নিউটনের শীতলীকরণ সূত্রের যথার্থতা যাচাই করা যায়। এতে একটি দুই দেওয়ালবিশিন্ট পাত্র আছে যার দেওয়াল দুটির মাঝের অংশ জলপূর্ণ। গরম জলপূর্ণ একটি তামার ক্যালোরিমিটারকে (C) দুই দেওয়াল বিশিন্ট পাত্রে বসানো হয়। তাপমাত্রা পরিমাপে দুটি থার্মোমিটারের T_1 কে দুই দেওয়ালের মাঝের জলে এবং T_2 কে ক্যালোরিমিটারের গরম জলে ছিপির সাহায্যে প্রবেশ করানো থাকে। সমান সময়ের ব্যবধানে ক্যালোরিমিটারের গরম জলের তাপমাত্রা লেখা হল। এবার, $\log_{c}(T_2 - T_1)$ [অথবা $ln(T_2 - T_1)$] এবং সময় (t) এর একটি লেখচিত্র আঁকা হল। লেখচিত্রটির প্রকৃতি চিত্র 11.20(b) এর ন্যায় ঋণাত্মক নতি বিশিষ্ট একটি সরলরেখা। এটি সমীকরণ 11.22 কে সমর্থন করে।

উদাহরণ 11.8 গরম খাবার ভর্তি একটি কড়াইয়ের তাপমাত্রা 2 মিনিটে 94 °C থেকে 86 °C এ নেমে আসে, যখন ঘরের তাপমাত্রা 20 °C । 71 °C থেকে 69 °C এ ঠান্ডা হতে কত সময় লাগবে?

উত্তর 94 °C এবং 86 °C এর গড় তাপমাত্রা 90 °C, যা ঘরের তাপমাত্রা থেকে 70 °C বেশি। এ অবস্থায় কড়াইটি 2 মিনিটে 8 °C ঠান্ডা হয়। সমীকরণ 11.21 ব্যবহার করে আমরা পাই,

বা,
$$\frac{8 \,^{\circ}\mathrm{C}}{2 \,^{\circ}\mathrm{K}} = \mathrm{K} \left(70 \,^{\circ}\mathrm{C}\right)$$

69 °C ও 71 °C এর গড় তাপমাত্রা 70 °C যা ঘরের তাপমাত্রা থেকে 50 °C বেশি। এক্ষেত্রেও *K* এর মান আগের মতো একই।

$$\frac{2^{0}C}{\operatorname{সময}} = K(50 \,^{\circ}\mathrm{C})$$

উপরের দুটি সমীকরণের প্রথমটিকে দ্বিতীয়টি দিয়ে ভাগ করে পাই,

$$\frac{8 \text{ °C/2 মিনিট}}{2 \text{ °C/ সময়}} = \frac{K (70 \text{ °C})}{K (50 \text{ °C})}$$

বা, সময় = 0.7 মিনিট
= 42 s

সারাংশ

- তাপ হল শক্তির একটি রূপ যা কোনো বস্তু ও তার পারিপার্শ্বিক মাধ্যমের মধ্যে ওদের তাপমাত্রার পার্থক্যের দরুন প্রবাহিত হয়। বস্তুর তাপীয় অবস্থার মাত্রা পরিমাণগতভাবে তাপমাত্রার সাহায্যে প্রকাশিত হয়।
- তাপমাত্রার সাথে পরিবর্তিত হয় এমন কিছু পরিমেয় ধর্ম ব্যবহারে তাপমাত্রা পরিমাপক যন্ত্র (থার্মোমিটার) তৈরি করা হয়। বিভিন্ন থার্মোমিটারে তাপমাত্রার বিভিন্ন স্কেল ব্যবহৃত হয়। থার্মোমিটার স্কেল তৈরিতে দুটি স্থির বিন্দু নেওয়া হয় এবং এদের জন্য কিছু ইচ্ছাধীন নির্দিন্ট মান নেওয়া হয়। এই দুটি সংখ্যা স্কেলের মূলবিন্দু ও এককের আকার বা বিস্তৃতি স্থির করে।
- সেলসিয়াস তাপমাত্রা (t_C) ও ফারেনহাইট তাপমাত্রা (t_F) পরস্পর নিম্নরুপে সম্পর্কিত

$$t_{\rm F} = (9/5) t_{\rm C} + 32$$

চাপ (P), আয়তন (V) এবং পরম তাপমাত্রা (T) সমন্বিত আদর্শ গ্যাস সমীকরণ হল :

$$PV = \mu RT$$

যেখানে, μ মোলসংখ্যা ও R সর্বজনীন গ্যাস ধ্রুবক।

 তাপমাত্রার পরম স্কেলে শূন্য হল পরমশূন্য তাপমাত্রা, যে তাপমাত্রায় প্রত্যেক পদার্থই তার সম্ভাব্য সর্বনিম্ন আণবিক সক্রিয়তার অবস্থায় থাকে। তাপমাত্রার পরম স্কেল বা কেলভিন স্কেলে প্রতি ডিগ্রীর আকার (T) সেলসিয়াস স্কেলের প্রতি ডিগ্রির (T) সমান, কিন্তু মূলবিন্দু ভিন্ন :

$$T_{c} = T - 273.15$$

6. রৈখিক প্রসারণ গুণাঙ্ক (α₁) ও আয়তন প্রসারণ গুণাঙ্ক (α₁) নিম্নরূপে সংজ্ঞায়িত :

$$\frac{\Delta l}{l} = \alpha_l \Delta T$$
$$\frac{\Delta V}{V} = \alpha_V \Delta T$$

যেখানে Δl এবং ΔV হল ΔT তাপমাত্রার পরিবর্তনে যথাক্রমে l প্রাথমিক দৈর্ঘ্যের ও V প্রাথমিক আয়তনের পরিবর্তন। $lpha_l$ ও $lpha_v$ এর সম্পর্কটি হল :

$$\alpha_v = 3 \alpha$$

7. কোনো পদার্থের আপেক্ষিক তাপধারকত্ব নিম্নরূপে সংজ্ঞায়িত হয় :

$$\mathbf{s} = \frac{1}{m} \frac{\Delta Q}{\Delta T}$$

যেখানে, *m* পদার্থের ভর এবং ∆T তাপমাত্রার পরিবর্তনে প্রয়োজনীয় তাপের পরিমাণ ∆Q। পদার্থের মোলার আপেক্ষিক তাপধারকত্বের গাণিতিক রাশিমালা —

$$C = \frac{1}{\mu} \frac{\Delta Q}{\Delta T}$$

যেখানে μ হল পদার্থের মোলসংখ্যা।

- 8. নির্দিষ্ট চাপ ও তাপমাত্রায় একক ভর কোনো পদার্থের কঠিন অবস্থা থেকে তরল অবস্থায় পরিণত করতে প্রয়োজনীয় তাপকে ঐ পদার্থের গলনের লীনতাপ (L_f) বলে। চাপ ও তাপমাত্রার কোনো পরিবর্তন না করে একক ভর কোনো পদার্থকে তরল অবস্থা থেকে বাষ্পীয় অবস্থায় পরিণত করতে যে পরিমাণ তাপের প্রয়োজন হয় তাকে ওই পদার্থের বাষ্পীভবনের লীনতাপ (L_v) বলে।
- 9. তাপ সঞ্জালনের তিনটি পদ্ধতি হল পরিবহন, পরিচলন ও বিকিরণ।
- 10. পরিবহন পম্বতিতে পদার্থের কোনো প্রকার প্রবাহ ছাড়াই আণবিক সংঘাতের মাধ্যমে কোনো বস্তুর পাশাপাশি বিভিন্ন অংশের মধ্যে তাপের সঞ্চালন ঘটে। *A* সুযম প্রস্থচ্ছেদবিশিন্ট *L* দৈর্ঘ্যের কোনো দণ্ডের দুপ্রান্তের তাপমাত্রা যথাক্রমে *T* ও *T* হলে দণ্ডটির মধ্য দিয়ে তাপ প্রবাহের হার :

$$H = K A \frac{T_C - T_D}{L}$$

যেখানে *K* হল দণ্ডাকৃতি পদার্থটির উপাদানের তাপ পরিবাহিতাষ্ণ্<u></u>ব।

11. নিউটনের শীতলীকরণ সূত্রানুসারে, কোনো বস্তুর শীতলীকরণ হার পারিপার্শ্বিকের সাপেক্ষে বস্তুর উদ্বৃত্ত তাপমাত্রার সমানুপাতিক হয় :

$$\frac{dQ}{dt} = -k\left(T_2 - T_1\right)$$

যেখানে, T₁ ও T₂ যথাক্রমে পারিপার্শ্বিক মাধ্যম ও বস্তুর তাপমাত্রা।

পদার্থের তাপীয় ধর্মাবলি

রাশি	চিহ্ন (প্রতীক)	মাত্রা	একক	মন্তব্য
বস্তুর পরিমাণ	μ	[mol]	mol	
সেলসিয়াস তাপমাত্রা	l_0	[K]	°C	
কেলভিন পরম তাপমাত্রা	Т	[K]	К	$t_{c} = T - 273.15$
রৈখিক প্রসারণ গুণাঙ্ক	a	[K ⁻¹]	K ⁻¹	
আয়তন প্রসারণ গুণাজ্ঞ	av	[K ⁻¹]	K-1	$\alpha_v = 3 \alpha_i$
কোনো সংস্থায় প্রদন্ত তাপ	ΔQ	[ML ² T ⁻¹]	J	
আপেক্ষিক তাপ	3	$[L^2 T^{-8} K^{-1}]$	$J kg^{-1} K^{-1}$	
তাপ পরিবাহিতাজ্ঞ	K	[M LT ³ K ⁴]	$\mathbf{J} \; \mathbf{s}^{\text{-t}} \mathbf{K}^{\text{-t}}$	$H = -KA \ \frac{\mathrm{d}T}{\mathrm{d}x}$

ভেবে দেখার বিষয়সমূহ

1. কেলভিন তাপমাত্রা (T) ও সেলসিয়াস তাপমাত্রা (t) এর পারস্পরিক সম্পর্ক:

$$T = t_{\rm c} + 273.15$$

এবং জলের ত্রিদশা বিন্দুর ক্ষেত্রে T = 273.16 K, এরা (স্থিরীকৃত) সঠিক সম্পর্ক। এই নির্ধারণ সাপেক্ষে এক বায়ুমঙলীয় চাপে সেলসিয়াস তাপমাত্রায় বরফের গলনাঙ্ক ও জলের স্ফুটনাঙ্ক যথাব্রমে 0 °C এবং 100 °C, কিন্তু বর্তমানে জলের ত্রিদশা বিন্দুকে স্থিরবিন্দু নেওয়া হয়, কারণ এর একটি সুনির্দিষ্ট তাপমাত্রা আছে।

- কোনো তরল এবং তার বাষ্প তাপীয় সাম্যাবস্থায় থাকলে সংস্থাটিতে সর্বদা একই চাপ ও তাপমাত্রা বজায় থাকে, সাম্যাবস্থায় দুটি দশা বা অবস্থার মোলার আয়তনের (তথা ঘনছের) পার্থক্য থাকে। একটি সংস্থার ক্ষেত্রে যে-কোনো সংখ্যক দশা বা অবস্থা সাম্যবস্থানে থাকলে এটি সত্যি হবে।
- 3. দুটি ভিন্ন সংস্থা বা একই সংস্থার দুটি ভিন্ন অংশের মধ্যে তাপমাত্রার পার্থক্যের জন্যই তাপ সঞ্চালিত হয়। কোনো শক্তির সঞ্চালনের সাথে যদি তাপমাত্রার পার্থক্য জড়িত না থাকে তবে ওই শক্তি আর যাই হোক, তাপ নয়।
- 4. কোনো প্রবাহীর বিভিন্ন অংশের অসম তাপমাত্রার দরুন প্রবাহীর মধ্যে পদার্থের প্রবাহের ফলেই পরিচলন হয়। একটি থোলা প্রবাহিত জলের ট্যাপের নীচে রাখা একটি উত্তপ্ত দণ্ডের তাপক্ষয় হয় দণ্ডের পৃষ্ঠতল ও জলের মধ্যে তাপ পরিবহনের জন্য, জলের মধ্যে পরিচলনের জন্য নয়।

অনুশীলনী

- 11.1 নিওন ও কার্বন ডাইঅক্সাইডের ত্রিদশাবিন্দু যথাক্রমে 24.57 K ও 216.55 K । তাপমাত্রাগুলোকে সেলসিয়াস ও ফারেনহাইট স্কেলে প্রকাশ করো।
- **11.2** দুটি পরম স্কেল *A* ও *B* তে জলের ত্রিদশা বিন্দু স্থিরীকৃত আছে যথাক্রমে 200 A এবং 350 B। *T*_A ও *T*_B এর সম্পর্ক কী ?
- 11.3 কোনো এক থার্মোমিটারের ওহ্ম এককে তাড়িতিক রোধ তাপমাত্রার সাথে নীচের (আসন্ন রূপে পাওয়া) সূত্র (approximate law) অনুসারে পরিবর্তিত হয় :

 $R = R_{o} [1 + \alpha (T - T_{o})]$

জলের ত্রিদশা বিন্দু 273.16 K তে রোধ 101.6 Ω এবং সিসার স্বাভাবিক গলনাঙ্কে (600.5 K) রোধ 165.5 Ω। রোধ যখন 123.4 Ω, তখন তাপমাত্রা কত হবে ?

11.4 নীচের প্রশ্নগুলোর উত্তর দাও :

- (a) আধুনিক থার্মোমিতিতে জলের ত্রিদশা বিন্দুকে প্রমাণ স্থিরাঙ্ক ধরা হয় কেন ? বরফের গলনাঙ্ক ও জলের স্ফুটনাঙ্ককে প্রমাণ স্থিরাঙ্ক ধরলে কী ভূল হয় (যেমনটা সেলসিয়াস স্কেলে ধরা হত) ?
- (b) মূল সেলসিয়াস স্কেলে উপরের বর্ণনা মতো দুটি স্থিরাঙ্ক ছিল যাদের মান নির্দিষ্ট করা হয়েছিল যথাক্রমে 0°C ও 100 °C । তাপমাত্রার পরম স্কেলে তাদের মধ্যে একটি স্থিরাঙ্ক জলের ত্রিদশা বিন্দু, কেলভিন পরম স্কেলে যার মান নির্দিষ্ট করা হয় 273.16 K । কেলভিন স্কেলে অপর স্থিরাঙ্কটি কত ?
- (c) পরম তাপমাত্রা (কেলভিন স্কেলে) T, সেলসিয়াস স্কেলে তাপমাত্রা t_c এর সাথে নিম্নরূপে সম্পর্কিত t_c = T-273.15

সম্পর্কটিতে 273.16 না নিয়ে 273.15 নেওয়া হয় কেন?

- (d) যে পরম স্কেলের একক ব্যবধান ফারেনহাইট স্কেলের একক ব্যবধানের সমান, ওই স্কেলে জলের ত্রিদশা বিন্দুর তাপমাত্রা কত?
- 11.5 দুটি আদর্শ গ্যাস থার্মোমিটার A ও B তে যথাক্রমে অক্সিজেন ও হাইড্রোজেন ব্যবহৃত হয়। নীচের পর্যবেক্ষণগুলো পাওয়া গেল :

তাপমাত্রা	চাপ থার্মোমিটার A	চাপ থার্মোমিটার B
জলের ত্রিদশা বিন্দু	$1.250 \times 10^5 \mathrm{Pa}$	$0.200 \times 10^5 \text{Pa}$
গন্ধকের (সালফারের) স্বাভাবিক গলনাঙ্ক	$1.797 \times 10^5 \text{Pa}$	$0.287 \times 10^5 \text{Pa}$

- (a) A ও B থার্মোমিটারে সালফারের স্বাভাবিক গলনাঞ্চের পরম তাপমাত্রা কত হবে ?
- (b) A ও B থার্মোমিটারের দেখানো পাঠে সামান্য পার্থক্য থাকার পেছনে কী কারণ থাকতে পারে বলে তুমি মনে করো ? (থার্মোমিটার দুটি ত্রুটিপূর্ণ নয়)। দুই থার্মোমিটারের পাঠের পার্থক্য কমাতে পরীক্ষা পম্বতিতে আর কী উপায় অবলম্বন করা প্রয়োজন ?
- 11.6
 1m লম্বা একটি ইস্পাতের ফিতা 27.0 °C তাপমাত্রায় সঠিকভাবে দাগ কাটা আছে। 45.0 °C তাপমাত্রায় এক গরমের দিনে ঐ ফিতা দিয়ে একটি ইস্পাত দণ্ডের দৈর্ঘ্য মেপে দেখা গেল তার দৈর্ঘ্য 63.0 cm । ওই দিনে ইস্পাত দণ্ডটির প্রকৃত দৈর্ঘ্য কত ? কোনো দিনের তাপমাত্রা 27.0 °C হলে, ওই দিনে একই দণ্ডের দৈর্ঘ্য কত হবে ? ইস্পাতের দৈর্ঘ্য প্রসারণ গুণাজ্ক = 1.20×10^{-5} K⁻¹ ।
- 11.7 ইস্পাতের একটি বড়ো চাকাকে একই পদার্থের তৈরি একটি চোঙাকৃতি দঙ্ডের (shaft) চারিদিকে উপযুক্তভাবে বসাতে হবে। 27 °C তাপমাত্রায় দঙ্ডের বর্হিব্যাস 8.70 cm এবং চাকার কেন্দ্রীয় ছিদ্রের ব্যাস 8.69 cm। দঙ্ডটিকে শুষ্ক বরফের সাহায্যে ঠান্ডা করা হল। কত তাপমাত্রায় চাকাটি দঙ্চে প্রবেশ করবে? ধরে নাও, তাপমাত্রার ওই পাল্লায় ইস্পাতের রৈখিক প্রসারণ গুণাজ্ক ধ্রুবক এবং ওই মান α_{steel} = 1.20 × 10⁻⁵ K⁻¹।
- 11.9 27 °C তাপমাত্রায় 1.8 m দৈর্ঘ্যের একটি পিতলের তারকে দুটি দৃঢ় অবলম্বনের মাঝে হালকা টানে টান টান করে বাধা আছে। যদি তারটির ব্যাস 2.0 mm হয় এবং তারটিকে –39 °C তাপমাত্রায় ঠান্ডা করা হয়, তবে তারটিতে কত টানের সৃষ্টি হবে ? পিতলের রৈখিক প্রসারণ গুণাজ্ঞ্ব = 2.0 × 10⁻⁵ K⁻¹ এবং ইয়ং গুণাজ্ঞ্ব = 0.91 × 10¹¹ Pa।
- 11.10 50 cm দৈর্ঘ্য ও 3.0 mm ব্যাস বিশিষ্ট একটি পিতল দণ্ডকে সমান দৈর্ঘ্য ও ব্যাসের একটি ইস্পাত দণ্ডের সাথে যুক্ত

করা হল। দণ্ড দুটির দৈর্ঘ্য 40.0 °C তাপমাত্রায় নেওয়া হলে 250 °C তাপমাত্রায় যুগ্ম দণ্ডটির দৈর্ঘ্য পরিবর্তন কত হবে ? দণ্ড দুটির সংযোগ স্থলে কোনো তাপীয় পীড়নের উদ্ভব হবে কি ? দণ্ডটির প্রান্ত দুটি মুক্ত (পিতলের রৈখিক প্রসারণ গুণাঙ্ক = 2.0 × 10⁻⁵ K⁻¹, ইস্পাতের রৈখিক প্রসারণ গুণাঙ্ক = 1.2 × 10⁻⁵ K⁻¹)।

- 11.11 গ্নিসারিনের আয়তন প্রসারণ গুণাঙ্ক 49 × 10⁻⁵ K⁻¹। 30 °C উয়তা বৃদ্ধিতে ঘনত্বের ভগ্নাংশগত পরিবর্তন কত হবে ?
- 11.12 8.0 kg ভরের একটি ছোটো অ্যালুমিনিয়াম ব্লকে ছিদ্র করতে 10 kW ক্ষমতার একটি ছিদ্র করার যন্ত্র (drilling machine) ব্যবহার করা হল। 2.5 মিনিটে ব্লকটির তাপমাত্রা কত বৃদ্ধি পাবে? ধরে নাও, ক্ষমতার 50% যন্ত্রটির নিজের তাপমাত্রা বৃদ্ধিতে ব্যয়িত হয় অথবা পরিবেশে হারায়; অ্যালুমিনিয়ামের আপেক্ষিক তাপ = 0.91 J g⁻¹ K⁻¹।
- 11.13 2.5 kg ভরের একটি তামার ব্লককে কোনো চুল্লিতে রেখে 500 °C পর্যন্ত উত্তপ্ত করার পর একে একটি বড়ো বরফখণ্ডের উপর বসানো হল। সর্বাধিক কী পরিমাণ বরফ গলবে? (তামার আপেক্ষিক তাপ = 0.39 J g⁻¹ K⁻¹; বরফের গলনের লীনতাপ = 335 J g⁻¹).
- 11.14 ধাতুর আপেক্ষিক তাপ সংক্রান্ত এক পরীক্ষায়, 0.20 kg ভরের ও 150 °C তাপমাত্রাবিশিষ্ট একটি ধাতুখণ্ডকে 27 °C উন্নতার 150 cm³ জলপূর্ণ একটি তামার ক্যালোরিমিটারে (যার জলসম 0.025 kg) ফেলা হল। মিশ্রণের চূড়ান্ত তাপমাত্রা 40 °C হলে ধাতুটির আপেক্ষিক তাপ নির্ণয় করো। পরিবেশে হারানো তাপের পরিমাণ নগণ্য হলে, তোমার পাওয়া ফল ধাতুটির প্রকৃত আপেক্ষিক তাপ অপেক্ষা কম না বেশি ?
- 11.15 কিছু সাধারণ গ্যাসের ঘরের তাপমাত্রায় মোলার আপেক্ষিক তাপের মান নীচে দেওয়া হল :

গ্যাস	মোলার আপেক্ষিক তাপ (C _v) (cal mo1 ⁻¹ K ⁻¹)
হাইড্রোজেন	4.87
নাইট্রোজেন	4.97
অক্সিজেন	5.02
নাইট্রিক অ্যাসিড	4.99
কার্বন মনোঅক্সাইড	5.01
ক্লোরিন	6.17

এই গ্যাসগুলোর পরিমাপ করে পাওয়া মোলার আপেক্ষিক তাপ এক পরমাণুক গ্যাসের তুলনায় উল্লেখযোগ্যভাবে আলাদা। সাধারণভাবে, এক পরমাণুক কোনো গ্যাসের মোলার আপেক্ষিক তাপ 2.92 cal/mol K । এ পার্থক্যের কারণ ব্যাখ্যা করো। অন্যান্য গ্যাসের তুলনায় ক্লোরিনের উচ্চ মোলার আপেক্ষিক তাপ থেকে তুমি কী সিদ্ধান্তে পৌঁছাবে?

- 11.16 101°F শরীরের তাপমাত্রার (জ্বরযুক্ত) একটি শিশুকে একটি এন্টি পাইরিন (জ্বর কমানোর ঔষধ) দেওয়া হল যা শিশুর শরীরের ঘামের বাষ্পায়ন হার বৃদ্ধি করে। যদি 20 মিনিটে শিশুটির জ্বর 98 °F এ নেমে আসে। ঔষধের প্রভাবে অতিরিস্ত বাষ্পায়ন হারের গড় কত ? ধরে নাও, বাষ্পায়ন কৌশলই এক্ষেত্রে তাপক্ষয়ের একমাত্র উপায়। শিশুটির ভর 30 kg। মানবদেহের আপেক্ষিক তাপ জলের আপেক্ষিক তাপের প্রায় সমান এবং জলের বাষ্পীভবনের লীনতাপ ওই তাপমাত্রায় প্রায় 580 cal g⁻¹।
- 11.17 থার্মোকোলের বরফ বাক্স (Thermocol icebox) হল গ্রীম্মকালে রান্না করা খাদ্যদ্রব্য সংরক্ষণের এক সুলভ ও কার্যকর পাশ্বতি। প্রতিটি 30 cm বাহুবিশিষ্ট ঘনকাকৃতি বরফ বাক্সের বেধ 5.0 cm। যদি 4.0 kg বরফ বাক্সে রাখা হয়, তবে 6 ঘন্টা পর কত বরফ অবশিষ্ট থাকবে নির্ণয় কর। বাক্সের বাইরের তাপমাত্রা 45 °C এবং থার্মোকোলের তাপ পরিবাহিতাঙ্ক 0.01 J s⁻¹ m⁻¹ K⁻¹। [বরফ গলনের লীনতাপ = 335 × 10³ J kg⁻¹]
- 11.18 একটি পিতলের স্ফুটন পাত্রের ভূমিতলের ক্ষেত্রফল 0.15 m² এবং বেধ 1.0 cm। একে একটি গ্যাস স্টোভের উপর

বসালে 6.0 kg/min হারে জল ফোটায়। শিখার স্ফুটন পাত্রের স্পর্শে থাকা অংশের তাপমাত্রা নির্ণয় করো। পিতলের তাপ পরিবাহিতাঙ্ক = 109 J s⁻¹ m⁻¹ K⁻¹; জলের বাষ্সীভবনের লীনতাপ = 2256 × 10³ J kg⁻¹।

11.19 কেন ব্যাখ্যা করো:

- (a) উচ্চ প্রতিফলন ক্ষমতা সম্পন্ন বস্তু ক্ষীণ নিঃসারক।
- (b) শীতের দিনে একটি কাঠের ট্রে অপেক্ষা একটি পিতলের গ্লাস বেশি ঠান্ডা অনুভূত হয় কেন ?
- (c) আদর্শ কৃষ্ণবস্থুর বিকিরণ পরিমাপে ক্রমাঙ্কিত একটি আলোকীয় পাইরোমিটার (উচ্চ তাপমাত্রা মাপক যন্ত্র) উন্মুক্ত স্থানে রাখা একটি লোহিত তপ্ত লৌহখণ্ডের তাপমাত্রার জন্য খুবই নিম্ন পাঠ দেখায়, কিন্তু একই খণ্ড যখন চুল্লিতে থাকে তখন তার তাপমাত্রার সঠিক মান দেখায়।
- (d) বায়ুমণ্ডলশূন্য পৃথিবী অসহনীয় ঠান্ডা হত।
- (e) কোনো ঘরকে গরম রাখতে গরম জল প্রবাহিত করে গরম রাখার ব্যবস্থার তুলনায় স্টিম প্রবাহিত করে গরম রাখার ব্যবস্থা বেশি কার্যকর।
- 11.20 একটি বস্তু 5 মিনিটে ঠান্ডা হয়ে 80 °C থেকে 50 °C -এ আসে। 60 °C থেকে 30 °C-এ ঠান্ডা হতে বস্তুটির কত সময় লাগবে নির্ণয় করো। পারিপার্শ্বিকের তাপমাত্রা 20 °C ।

অতিরিক্ত অনুশীলনী

- 11.21 কার্বন-ডাইঅক্সাইডের *P-T* দশাচিত্রের ভিত্তিতে নীচের প্রশ্নগুলোর উত্তর দাও :
 - (a) কোন্ তাপমাত্রা ও চাপে CO₂ এর কঠিন, তরল ও গ্যাসীয় অবস্থা তাপীয় সাম্যাবস্থায় সহাবস্থান করে ?
 - (b) CO2 এর গলনাধ্ব্রু ও স্ফুটনাধ্ব্বের উপর চাপ হ্রাসের প্রভাব কী?
 - (c) CO₂ এর সংকট তাপমাত্রা ও চাপ কত ? এদের তাৎপর্য কী ?
 - (d) CO₂ কঠিন, তরল, গ্যাসীয় কোন্ অবস্থায় থাকবে : (a) 1 বায়ুমণ্ডলীয় চাপে –70 °C তাপমাত্রায়, (b) 10 বায়ুমণ্ডলীয় চাপে –60 °C তাপমাত্রায়, (c) 56 বায়ুমণ্ডলীয় চাপে 15 °C তাপমাত্রায়?
- 11.22 CO₂ এর *P T* দশা চিত্রের ভিত্তিতে নীচের প্রশ্নগুলোর উত্তর দাও :
 - (a) 1 বায়ুমঙলীয় চাপে ও 60 °C তাপমাত্রায় CO₂ কে সমোষ্ণ প্রক্রিয়ায় সংকুচিত করা হল। CO₂ কি তরল দশার মধ্য দিয়ে যাবে?
 - (b) 4 বায়ুমণ্ডলীয় চাপে রাখা CO₂ কে ঘরের উয়তা থেকে ঠান্ডা করা হলে কী ঘটবে ?
 - (c) 10 বায়ুমন্ডলীয় চাপ ও –65 °C তাপমাত্রার নির্দিষ্ট ভর CO₂ কে স্থির চাপে ঘরের তাপমাত্রায় আসা পর্যন্ত উত্তপ্ত করা হলে কী কী পরিবর্তন ঘটবে গুণগতভাবে বর্ণনা করো।
 - (d) CO₂ কে 70 °C তাপমাত্রায় উত্তপ্ত করা হল এবং সমোষ্ল প্রক্রিয়ায় সংকুচিত করা হল। এক্ষেত্রে CO₂ এর কী কী বৈশিস্ট্যগত পরিবর্তন দেখবে বলে তুমি আশা করছ?

তাপগতিবিদ্যা (Thermodynamics)

12.1 ভূমিকা (Introduction)

পূর্বের অধ্যায়ে আমরা বস্তুর তাপীয় ধর্মগুলো অধ্যয়ন করেছি। এই অধ্যায়ে তাপশস্তির অধীন সূত্রগুলো অধ্যয়ন করব যেখানে কার্য তাপে রূপান্তরিত হয় এবং তাপ কার্যে রূপান্তর হয়। শীতকালে যখন আমরা হাতের করতলদ্বয় ঘর্ষণ করি তখন আমরা উষ্ণ্ন অনুভব করি। এখানে ঘর্ষণের জন্য কৃতকার্য তাপ উৎপন্ন করে। বিপরীতভাবে, স্টিম্ইঞ্জিনে, পিস্টনটি গতিশীল করতে বাম্পের তাপকে প্রয়োজনীয় কার্য করতে ব্যবহৃত হয় যা ট্রেনের চাকাগুলোতে ঘূর্ণন আনে।

পদার্থবিদ্যায় তাপ, তাপমাত্রা, কার্য প্রভৃতি ধারণাগুলো আমাদের অধিক সচেতনভাবে সংজ্ঞায়িত করার প্রয়োজন হয়। ঐতিহাসিকভাবে 'তাপ' সম্বন্ধীয় সঠিক ধারণায় পৌঁছাতে অনেক সময় লেগেছে। আধুনিক ধারণার পূর্বে, তাপকে একপ্রকার সুক্ষ্ম অদৃশ্য প্রবাহী হিসাবে বিবেচনা করা হত যা পদার্থের মধ্যস্থিত অসংখ্য ছিদ্রে থাকে। একটি উয়্নবস্তু ও একটি শীতল বস্তু পরস্পরের সংস্পর্শে থাকলে, প্রবাহীটি (কেলরিক বলা হত) শীতল বস্তু হতে উয়ু বস্তুর দিকে প্রবাহিত হয়। ভিন্ন উচ্চতার জলতল বিশিষ্ট দুটি ট্যাংককে একটি অনুভূমিক পাইপ দ্বারা যুক্ত করলে যা ঘটবে, এটি তারই অনুরূপ। ট্যাংকদ্বয়ে জলতলের উচ্চতা সমান না হওয়া পর্যন্ত প্রবাহ চলতে থাকে।একইভাবে তাপের 'কেলরিক চিত্রে', 'কেলরিক তলদ্বয়' (অর্থাৎ তাপমাত্রাগুলো) সমান না হওয়া পর্যন্ত তাপ প্রবাহিত হয়।

পরবর্তীকালে প্রবাহী হিসেবে তাপের ধারণা বাদ যায়। আধুনিক মতবাদানুসারে তাপকে শক্তির একটি রূপ হিসেবে ধরা হয়। এ প্রসঞ্জো 1798 সালে বেঞ্জামিন থমসন (কাউন্ট রামফোর্ড হিসেবেও পরিচিত) একটি গুরুত্বপূর্ণ পরীক্ষা করেন। তিনি লক্ষ করেন যে, ব্রাসের কামানে ছিদ্র করার সময় যে প্রচুর তাপ উৎপন্ন হয় প্রকৃতপক্ষে তা জলকে ফুটানোর জন্য যথেন্ট। অধিকতর তাৎপর্যপূর্ণভাবে উৎপন্ন তাপের পরিমাণ কৃতকার্যের (ছিদ্র করার জন্য নিযুক্ত অশ্বগুলো) উপর নির্ভর করে, কিন্তু তুরপুনের ধারের উপর নির্ভর করে না। কেলরিক ধারণা অনুযায়ী একটি ধারালো তুরপুন ছিদ্রগুলো থেকে অধিক তাপ প্রবাহী বের করতে পারে কিন্তু এমনটা দেখা যায় না। পর্যবেক্ষণগুলোর অধিক স্বাভাবিক ব্যাখ্যা ছিল তাপ এক প্রকার শক্ত্তি এবং পরীক্ষাটি কার্যকে তাপে রূপান্তরের মাধ্যমে শক্তির একরপ থেকে অন্য রূপে পরিবর্তনকে প্রদর্শন করে।

12.1 ভূমিকা

- 12.2 তাপীয় সাম্যাবস্থা
- 12.3 তাপগতিবিদ্যার শূন্যতম সূত্র
- 12.4 তাপ, অন্তঃশক্তি এবং কার্য
- 12.5 তাপগতিবিদ্যার প্রথম সূত্র
- 12.6 আপেক্ষিক তাপধারকত্ব
- 12.7 তাপগতীয় অবস্থার চলরাশি এবং অবস্থার সমীকরণ
- 12.8 তাপগতীয় প্রক্রিয়া
- 12.9 তাপ ইঞ্জিন
- 12.10 হিমায়ক এবং তাপীয় পাম্প
- 12.11 তাপগতিবিদ্যার দ্বিতীয় সূত্র
- 12.12 প্রত্যাবর্তক এবং অপ্রত্যাবর্তক প্রক্রিয়া

12.13 কার্নো ইঞ্জিন সারাংশ, ভেবে দেখার বিষয়সমূহ অনুশীলনী

নির্ধারণকারী পরিবীক্ষণিক চলরাশিগুলো সময়ের সাথে অপরিবর্তিত থাকে। উদাহরণস্বরূপ, পরিবেশ থেকে সম্পূর্ণ বিচ্ছিন্ন একটি দৃঢ় আবদ্ধ পাত্রে থাকা একটি গ্যাসের স্থির চাপ, আয়তন, তাপমাত্রা, ভর এবং উপাদান সময়ের সাথে অপরিবর্তিত থাকলে সংস্থাটি তাপগতীয় সাম্যাস্থায় থাকবে।

সাধারণত, একটি সংস্থা সাম্যাবস্থায় থাকবে কি থাকবে না তা নির্ভর করে পারিপার্শ্বিকের উপর এবং পারিপার্শ্বিক থেকে সংস্থাকে

(a) A এবং B সংস্থাদ্বয় (দুটি গ্যাস রয়েছে) একটি তাপরোধক দেয়াল দ্বারা আলাদা আছে— একটি অন্তরক দেয়াল যা তাপের প্রবাহ হতে দেয় না।(b) একই সংস্থাদ্বয় A এবং B একটি তাপের সুপারিবাহী দেয়াল দ্বারা পৃথক করা আছে— একটি পরিবাহী দেয়াল যা এক সংস্থা হতে অপর সংস্থাতে তাপের প্রবাহ হতে দেয়। এক্ষেত্রে যথাসময়ে তাপীয় সাম্যাবস্থা অর্জিত হবে।

পৃথক করে রাখা দেয়ালের প্রকৃতির উপর। ধরা যাক দুটি গ্যাস A এবং B দুটি ভিন্ন পাত্রে রাখা আছে। আমরা পরীক্ষামূলকভাবে জানি যে, একটি নির্দিন্ট ভরের গ্যাসের ক্ষেত্রে চাপ এবং আয়তনকে দুটি স্বনির্ভর চলরাশি হিসাবে বিবেচনা করা যেতে পারে। ধরা যাক, গ্যাসদ্বয়ের চাপ ও আয়তন যথাক্রমে (P_A , V_A) এবং (P_B , V_B)। সর্বপ্রথম ধরা যাক সংস্থাদ্বয় পরস্পরের সংলগ্ন এবং **তাপনিরোধক** দেয়াল (adiabatic wall) — একটি অন্তরক পদার্থের দেয়াল (চলনক্ষম) যা এক পাত্র হতে অপর পাত্রে শক্তি (তাপ) প্রবাহ হতে দেয় না, দ্বারা পৃথক করা রয়েছে। সংস্থাদ্বয় পারিপার্শ্বিক থেকে একই প্রকারের তাপনিরোধক দেয়ালগুলো দ্বারা বিচ্ছিন্ন থাকে। এই

তাপগতি বিদ্যা হল পদার্থ বিজ্ঞানের এমন একটি শাখা যেখানে তাপ ও তাপমাত্রা এবং তাপ ও অন্যান্য শক্তির মধ্যে রূপান্তর নিয়ে আলোচিত হয়। তাপগতিবিদ্যা হল পরিবীক্ষণিক বিজ্ঞান (macroscopic-science)। এ শাখায় বৃহৎ সংস্থা নিয়ে চর্চা হয় কিন্তু পদার্থের উপাদানের অণুর সমন্বয় নিয়ে আলোচিত হয় না। বস্তুত পদার্থের আণবিক চিত্র দৃঢ়ভাবে প্রতিষ্ঠিত হবার পুর্বেই ঊনবিংশ শতাব্দীতে এর ধারণা ও সূত্রের রূপদান করা হয়েছে। তাপগতীয় বিবরণে সংস্থার তুলনামূলক মুস্টিমেয় পরিবীক্ষণিক চলরাশিগুলো অন্তর্ভুক্ত যারা সাধারণ অনুভূতি দ্বারা উদ্ভূত হয়েছে এবং যাদের সরাসরি পরিমাপ করা যায়। উদাহরণস্বরুপ, একটি গ্যাসের আণুবীক্ষণিক বিবরণে গ্যাসটির গঠনকারী অণুগুলোর নির্দিষ্ট স্থানাঙ্কগুলো এবং এদের আনুষঙ্গিক গতিবেগগুলো বিষয়ভুক্ত থাকে। গ্যাসের গতিতত্ত্বের বিবরণ এত বিস্তারিত নয় কিন্তু এতে অণুগুলোর গতিবেগের বন্টন অন্তর্ভুক্ত আছে। অপরদিকে গ্যাসের তাপগতীয় বিবরণে, অনুসম্বন্ধীয় বিবরণ সম্পূর্ণভাবে এড়িয়ে গেছে। এর পরিবর্তে, তাপগতিবিদ্যায় একটি গ্যাসের অবস্থা, পরিবীক্ষণিক চলরাশিগলো যেমন চাপ, আয়তন, তাপমাত্রা, ভর, উপাদান দ্বারা নির্দিষ্ট করা হয় যা আমাদের বোধশন্তি দ্বারা অনুভূত এবং পরিমিত।

বলবিদ্যা এবং তাপগতিবিদ্যার মধ্যে পার্থক্য আমাদের ভালোভাবে মনে রাখা উচিত (worth bearing in mind)। বলবিদ্যায় আমাদের আগ্রহ হল বলসমূহ এবং টর্কসমূহের ক্রিয়ার অধীন কণাগুলোর অথবা বস্তুগুলোর গতি। তাপগতিবিদ্যায় সামগ্রিকভাবে সংস্থার গতি জড়িত নয়। এটি বস্তুর অভ্যন্তরীণ পরিবীক্ষণিক অবস্থার গতি জড়িত। যখন একটি বন্দুক হতে গুলি ছোড়া হয় তখন যে পরিবর্তন হয় সেটা হল গুলিটির যান্ত্রিক অবস্থা (বিশেষ করে এর গতিশস্তি), এর তাপমাত্রা নয়। যখন গুলিটি কাঠকে ভেদ করে থেমে যায়, তখন গুলিটির গতিশক্তি তাপশস্তিতে রূপান্তরিত হয় এবং গুলি ও কাঠের পৃষ্ঠ তলগুলোর তাপমাত্রার পরিবর্তন হয়। বুলেটটির অভ্যন্তরীণ (এলোমেলো) গতির আনুযজািক শস্তির সঙ্গো এর তাপমাত্রা সম্পর্কযুক্ত, কিন্ডু সামগ্রিকভাবে গুলির গতির সজো ইহা সম্পর্কযুক্ত নয়।

12.2 তাপীয় সাম্যাবস্থা (Thermal Equilibrium)

বলবিদ্যায় সাম্যাবস্থা বলতে কোনো সংস্থার উপর মোট বাহ্যিক বল ও টর্ক শূন্য হওয়াকে বোঝায়। তাপগতিবিদ্যায় 'সাম্যাবস্থা' শব্দটি বিভিন্ন প্রসঙ্গো ব্যবহৃত হয়। আমরা একটি সংস্থাকে সাম্যাবস্থায় আছে বলবো যদি সংস্থাটির বিভিন্ন বৈশিক্য

^{*} তাপগতিবিদ্যায় অপর চলরাশিগুলো যুক্ত থাকতে পারে যেগুলো সম্পর্কে আমাদের সুস্পষ্ট ধারণা নাও থাকতে পারে, যেমন এনট্রোপি, এনথাল্পি, প্রভৃতি এবং এগুলো সবই পরিবীক্ষণিক চলরাশি।

পরিস্থিতিটি 12.1 (a) রেখাচিত্রে দেখানো হয়েছে। এক্ষেত্রে দেখা যায়, যে কোনো মানের সম্ভাব্য যুগল (P_A, V_A) অপর সম্ভাব্য যুগল (P_B, V_B) এর সাথে সাম্যাবস্থায় থাকে। এখন তাপরোধক দেয়ালটির পরিবর্তে একটি তাপসুপরিবাহী দেয়াল (diathermic wall) একটি পরিবাহী দেয়াল যা এক পাত্র হতে অপর পাত্রে শক্তি (তাপ) প্রবাহিত হতে দেয়, বিবেচনা করা হলে দেখা যাবে যে সংস্থা দুটি সাম্যাবস্থা অর্জন না করা পর্যন্ত A এবং B সংস্থাদ্বয়ের পরিবীক্ষণিক চলরাশিগুলোর স্বতস্ফুর্ত পরিবর্তন ঘটতে থাকে। এরপর সেখানে তাদের অবস্থার পরিবর্তন ঘটবে না। এ অবস্থাটি 12.1(b) নং চিত্রে দেখানো হয়েছে। গ্যাস দুটির চাপ ও আয়তন চলরাশিদ্বয় পরিবর্তিত হয়ে (P_B', V_B') এবং (P_A', V_A') হয়, এতে A ও B এর নতুন অবস্থাদ্ব পরস্পর সাম্যাবস্থায় থাকে।

একটি থেকে অন্যটিতে আর কোনো শস্তি প্রবাহ হয় না। আমরা তখন বলতে পারি A সংস্থাটি B সংস্থার সঙ্গো তাপীয় সাম্যাবস্থায় আছে। দুটি সংস্থার মধ্যে তাপীয় সাম্যাবস্থার পরিস্থিতি সূচক বৈশিস্টগুলো কী ? অভিজ্ঞতা হতে আমরা এর উত্তরটি অনুমান করতে পারি। তাপীয় সাম্যাবস্থায় থাকা দুটো সংস্থার তাপমাত্রা সমান হয়। আমরা দেখব কীভাবে একজন তাপগতিবিদ্যায় তাপমাত্রার ধারণাতে পৌঁছায়? তাপগতিবিদ্যার শূন্যতার সূত্রে এই ধারণার ইংগিত রয়েছে।

12.3 তাপগতিবিদ্যার শূন্যতম সূত্র (Zeroth Law of Thermodynamics)

[চিত্র 12.2(a)] তাপরোধক দেয়াল দ্বারা পৃথক করা দুটি সংস্থা A এবং B কল্পনা করা হল যেখানে প্রত্যেকে একটি সুপরিবাহী দেয়ালের মাধ্যমে তৃতীয় একটি সংস্থার (C) সাথে যুক্ত। A এবং B উভয়ই C-র সাথে তাপীয় সম্যাবস্থায় না আসা পর্যন্ত সংস্থাগুলোর অবস্থার [যথা তাদের পরিবীক্ষণিক (macroscopic) চলরাশিগুলো] পরিবর্তন হবে। এ অবস্থা উপস্থিত হবার পর ধরা যাক A এবং B এর মধ্যবর্তী তাপরোধক দেয়ালটি একটি পরিবাহী দেয়াল দ্বারা প্রতিস্থাপিত হল এবং A ও B থেকে C কে একটি তাপরোধক দেয়াল দ্বারা অন্তরিত করা হল [চিত্র 12.2(b)]। এবার দেখা যাবে যে A এবং B এর অবস্থাদ্বয়ের কোনো পরিবর্তন হয় না অর্থাৎ তারা পরস্পর তাপীয় সাম্যাবস্থায় থাকে। এই পর্যবেক্ষণ তাপগতিবিদ্যার শূন্যতম সূত্রের ভিত্তি গঠন করে, যা ব্যক্ত করে যে 'দুটি সংস্থা, তৃতীয় একটি সংস্থার সাথে পৃথকভাবে তাপীয় সাম্যাবস্থায় থাকলে পরস্পর পরস্পরের সঞ্চো তাপীয় সাম্যো থাকৰে'। তাপ গতিবিদ্যার প্রথম এবং দ্বিতীয় সূত্র বিবৃত হওয়ার অনেক পরে 1931 সালে আর. এইচ. ফাউলার উপরিউক্ত বিবৃতিটি প্রণয়ন করেন। সেজন্য একে শূন্যতম সূত্র বলে।

শূন্যতম সূত্রটি স্পন্টভাবে প্রস্তাব রাখে যে, দুটি সংস্থা A এবং B তাপীয় সাম্যাবস্থায় থাকলে উভয়ের ক্ষেত্রে একটি প্রাকৃতিক রাশি থাকবে যার মান উভয় ক্ষেত্রেই সমান হবে। এই তাপগতীয় চলরাশিটি যার মান তাপীয় সাম্যাবস্থায় উভয় সংস্থার ক্ষেত্রে একই থাকে, তাকে তাপমাত্রা (T) বলে। সুতরাং A এবং B, C-র সাথে পৃথকভাবে সাম্যাবস্থায় থাকলে, $T_A = T_C$ এবং $T_B = T_C$ । এটি বোঝায় যে $T_A = T_B$ অর্থাৎ A এবং B সংস্থাদ্বয় তাপীয় সাম্যাবস্থায় থাকবে। প্রচলিত প্রথানুযায়ী শূন্যতম সূত্রের মাধ্যমে আমরা তাপমাত্রার ধারণায় উপনীত হয়েছি। পরবর্তী প্রশ্নটি হল : বিভিন্ন বস্থুর তাপমাত্রার সাংখ্যিক মানগুলো কীভাবে নির্ণয় করা যায়? কিংবা, আমরা কীভাবে একটি তাপমাত্রার স্কেল তৈরি করতে পারি? থার্মোমিতি এই মৌলিক প্রশ্নটি নিয়ে চর্চা করে যা আমরা পরবর্তী

Fig. 12.2 (a) A এবং B সংস্থাদ্বয় একটি তাপরোধক দেয়াল দ্বারা পৃথক করা আছে, যেখানে প্রত্যেকে একটি পরিবাহী দেয়াল দ্বারা একটি তৃতীয় সংস্থা C-এর সংস্পর্শে আছে। (b) A এবং B এর মধ্যবতী তাপরোধক দেয়ালটি একটি সুপরিবাহী দেয়াল দ্বারা প্রতিস্থাপিত হল যেখানে C একটি তাপরোধক দেয়াল দ্বারা A এবং B হতে অন্তরিত।

^{*} উভয় চলরাশি পরিবর্তনের প্রয়োজন নেই। এটি শর্তগুলোর উপর নির্ভর করে। উদাহরণস্বরুপ, যদি গ্যাসগুলো নির্দিষ্ট আয়তনের পাত্রগুলোতে থাকে, সেক্ষেত্রে তাপীয় সাম্যাবস্থা আনতে কেবলমাত্র গ্যাসগুলোর চাপই পরিবর্তিত হয়।

12.4 তাপ, অন্তঃশক্তি এবং কার্য (Heat, internal energy and work)

তাপগতিবিদ্যার শূন্যতম সূত্রটি আমাদেরকে তাপমাত্রার ধারণা দেয় যা আমাদের সাধারণ ধারণার সাথে মিলে যায়। তাপমাত্রা কোনো বস্তুর তাপীয় অবস্থাকে (hotness) চিহ্নিত করে। যখন দুটি বস্তু তাপীয় সংস্পর্শে থাকে তখন এটি তাপ প্রবাহের দিক নির্দেশ করে। উচ্চ তাপমাত্রায় থাকা বস্তু হতে নিন্ন-তাপমাত্রায় থাকা বস্তুর দিকে তাপ প্রবাহিত হয়। উভয়ের তাপমাত্রা এক হলে প্রবাহ বন্ধ হয়; বস্তুদুটি তাপীয় সাম্যাবস্থায় আসে। বিভিন্ন বস্তুর তাপমাত্রাগুলো নির্ণয়ের জন্য তাপমাত্রার স্কেলগুলো কী করে গঠিত হয় তা আমরা বিস্তারিতভাবে দেখবো। আমরা এখন তাপের ধারণা এবং অন্য প্রাসঞ্জিক রাশিগুলো যেমন অস্তঃশস্ত্তি এবং কার্যের বর্ণনা করব।

একটি সংস্থার অন্তঃশন্তির ধারণাটি বোঝা কন্টসাধ্য নয়। আমরা জানি প্রত্যেক বৃহৎ আকারের সংস্থায় অধিক সংখ্যক অণু থাকে। অন্তঃশন্তি এসব অণুগুলোর গতিশন্তি ও স্থিতিশন্তির সমন্টি মাত্র। তাপগতিবিদ্যায় সামগ্রিকভাবে সংস্থার গতিশন্তিই যে প্রাসঞ্জিক নয় তা পূর্বেই ব্যক্ত হয়েছে। যে নির্দেশ তন্ত্রের স্বাপেক্ষে সংস্থাটির ভরকেন্দ্র স্থির থাকে, সেই নির্দেশতন্ত্রে অণুগুলোর গতিশন্তি এবং স্থিতিশন্তির সমন্টিই হল সংস্থাটির অন্তঃশন্তি। এজন্য, এটি সংস্থার অণুগুলোর এলোমেলো গতিসম্পর্কিত (ছত্রভঙ্গা) শন্তিটি কেবলমাত্র বিবেচিত হয়। আমরা একটি সংস্থার অন্তঃশন্তিকে *U* দ্বারা প্রকাশ করি।

যদিও আমরা অন্তঃশক্তির অর্থ বোঝার জন্য আণবিক চিত্রের প্রবর্তন করেছি, তাপগতীয় বিদ্যায় U হল কেবলমাত্র সংস্থাটির পরিবীক্ষণিক চলরাশি। অন্তঃশক্তির ব্যাপারে গুরুত্বপূর্ণ দিকটি হল এটি কেবলমাত্র সংস্থাটির অবস্থার উপর নির্ভর করে, কীভাবে অবস্থাটি আসে তার উপর নির্ভর করে না। একটি সংস্থার অন্তঃ শক্তি U, তাপগতীয় 'অবস্থার প্রাচল' (state variable) এর একটি উদাহরণ। এটির মান সংস্থাটির প্রদত্ত অবস্থার উপরই কেবলমাত্র নির্ভর করে, অবস্থাটি কোন্ পথে এল তার ইতিহাসের উপর নয়। এজন্য নির্দিষ্ট ভরের গ্যাসের অন্তঃশক্তি গ্যাসটির অবস্থা নির্ণায়ক চাপ, আয়তন এবং তাপমাত্রার আপেক্ষিক মানের উপর নির্ভর করে। গ্যাসটির অবস্থা কী করে এল তার উপর নির্ভর করে না। চাপ, আয়তন, তাপমাত্রা এবং অন্তঃশক্তিএকটি সংস্থার (গ্যাস) তাপগতীয় চলরাশি (12.7 নং অনুচ্ছেদ দেখো)। যদি আমরা গ্যাসের ক্ষুদ্র আন্তঃ গতি সম্পর্কিত গতিশস্তির সমষ্টিই কেবলমাত্র গ্যাসটির অন্তঃশস্তি। পরবর্তী অনুচ্ছেদে আমরা দেখব গ্যাসের অণুগুলোর গতিতে কেবলমাত্র চলনগতি থাকে না (অর্থাৎ পাত্রের মধ্যস্থ আয়তনে এক বিন্দু হতে অপর বিন্দুতে); এতে অণুগুলোর ঘূর্ণন ও কম্পন গতিও অন্তর্ভূক্ত থাকে (চিত্র 12.3)।

Fig. 12.3 (a) একটি বাক্স যখন স্থিরাবস্থায় থাকে তখন এর মধ্যস্থ একটি গ্যাসের অন্তঃশক্তি U, এটির অণুগুলোর গতিশক্তি ও স্থিতিশক্তির সমষ্টি। বিভিন্ন ধরনের গতির জন্য গতিশক্তি (চলন, ঘুর্ণন, কম্পন) অন্তঃশক্তি U এর অন্তর্ভুক্ত।(b) একই বাক্সটি যদি কোনো গতিবেগ নিয়ে গতিশীল থাকে U তে বাক্সটির গতিশক্তি অন্তর্ভক্ত হয় না।

Fig. 12.4

তাপ এবং কার্য, কোনো একটি সংস্থায় শক্তির সঞ্চালনের দুটি স্পন্ট রুপ যা অন্তঃশক্তির পরিবর্তন ঘটায়। (a) সংস্থা এবং পরিবেশের মধ্যে তাপমাত্রার পার্থক্য থাকলে তাপশক্তি সঞ্চালিত হয়। (b) কার্য হল কোনো উপায়ে ঘটানো শক্তির সঞ্চালন (উদাহরণস্বরুপ ভারযুক্ত পিন্টনিটির ভার কিছু পরিমাণে বাড়িয়ে বা কমিয়ে পিন্টনটিকে নামানো হল অথবা উঠানো হল) যার সাথে তাপমাত্রার পার্থক্য জড়িত নয়।

একটি সংস্থার অন্তঃশক্তির (internal energy) পরিবর্তন কীভাবে হয় ? আবার ধরো, গতিশীল পিস্টনসহ একটি চোঙের মধ্যে নির্দিষ্ট ভরের গ্যাস রয়েছে যা 12.4 নং চিত্রে দেখানো হলো। অভিজ্ঞতা বোঝায় সেখানে দুভাবে গ্যাসটির অবস্থার (এবং এটির অন্তঃশক্তি) পরিবর্তন করা যায়। একটি উপায় হল চোঙটির মধ্যে থাকা গ্যাস থেকে অধিক তাপমাত্রায় থাকা একটি বস্তুর সংস্পর্শে চোঙটিকে রাখা। তাপমাত্রার পার্থক্যের জন্য উত্তপ্ত বস্তুটি থেকে গ্যাসে শক্তির (তাপ) প্রবাহ ঘটবে। এতে গ্যাসটির অন্তঃ শক্তির বৃদ্ধি ঘটে। অন্য উপায়টি হল পিস্টনটিকে নীচের দিকে ঠেলে দেয়া অর্থাৎ সংস্থার উপর কার্য করা, ফলস্বরুপ গ্যাসের অন্তঃশন্তির বৃদ্ধি হয়। অবশ্য বিপরীতক্রমে এদুটি প্রক্রিয়াই ঘটতে পারে। পারিপার্শ্বিকের তাপমাত্রা কম হলে গ্যাস থেকে পারিপার্শ্বিকে তাপের প্রবাহ হয়। একইভাবে, গ্যাসটি পিস্টনকে উপরের দিকে ঠেলতে পারে এবং পারিপার্শ্বিকের উপর কার্য করে। সংক্ষেপে, তাপ এবং কার্য হল একটি তাপগতীয় সংস্থার অবস্থা পরিবর্তন করার দুটি ভিন্ন প্রক্রিয়া এবং এ দুটি উপায়েই অন্তঃশক্তির পরিবর্তন ঘটে।

তাপের ধারণাটি, অন্তঃশক্তির ধারণাটি থেকে সচেতনভাবে পৃথক করা উচিত। তাপ নিশ্চিতভাবে একটি শক্তি, যা প্রবাহিত হতে পারে। এটি কেবলমাত্র শব্দের খেলা নয়। প্রভেদটি মৌলিক তাৎপর্যপূর্ণ। একটি তাপগতীয় সংস্থার বৈশিষ্ট্য নির্ধারিত হয় এটির অন্তঃশক্তির দ্বারা, তাপ দ্বারা নয়। 'একটি গ্যাসের কোনো এক প্রদত্ত অবস্থায় নির্দিষ্ট পরিমাণ তাপ থাকে' এই উন্তিটি যেমন অর্থহীন, ঠিক তেমনি 'একটি গ্যাসে কোনো এক প্রদত্ত অবস্থায় নির্দিষ্ট পরিমাণ কার্য থাকে' উন্তিটিও অর্থহীন। তুলনামূলকভাবে 'একটি গ্যাসে কোনো প্রদত্ত অবস্থাতে নির্দিষ্ট পরিমাণ অভ্যন্তরীণ শক্তি থাকে' এই উন্তিটি যথার্থভাবে তাৎপর্যপূর্ণ। একই রকমভাবে 'একটি সংস্থাতে নির্দিষ্ট পরিমাণ তাপ সরবরাহ করা হল' অথবা 'সংস্থাটির দ্বারা কিছু পরিমাণ কার্য করা হল'— উন্তিটি সঠিক তাৎপর্যপূর্ণ হয়।

সারসংক্ষেপে, তাপগতিবিদ্যায় তাপ এবং কার্য অবস্থার প্রাচল নয়। এগুলো হল একটি সংস্থার ক্ষেত্রে শক্তির সঞ্চালনের প্রক্রিয়াসমূহ যার ফল স্বরূপ সংস্থাটিতে অন্তঃশক্তির পরিবর্তন ঘটে, যা ইতিপূর্বে অবস্থার প্রাচলরূপে উল্লেখিত হয়েছে।

সাধারণ ভাষাতে, আমরা প্রায়ই তাপের সাথে অন্তঃশক্তিকে গুলিয়ে ফেলি। প্রাথমিক পদার্থবিদ্যার বইগুলোতে এদের মধ্যে পার্থক্যটি উপেক্ষা করা হয়। তাপগতিবিদ্যা সঠিকভাবে বোঝার জন্য পার্থক্যটি অত্যন্ত গুরুত্বপূর্ণ।

12.5 তাপগতিবিদ্যার প্রথম সূত্র (First Law of Thermodynamics)

আমরা দেখেছি একটি সংস্থার অন্তঃশক্তি *U*-র পরিবর্তন শক্তি সঞ্চালনের দুটি প্রক্রিয়ার মাধ্যমেই করা যায় : তাপ এবং কৃতকার্য। ধরা যাক

 $\Delta Q = \gamma$ পরিবেশ দ্বারা সংস্থাতে সরবরাহিত তাপ

 $\Delta W =$ পরিবেশের উপর সংস্থা দ্বারা কৃতকার্য

 $\Delta U \;\;=\;\;$ সংস্থার অন্তঃশক্তির পরিবর্তন

শক্তির সংরক্ষণের সাধারণ নীতি নির্দেশ করে যে

△Q = △U + △W (12.1) অর্থাৎ সংস্থাতে সরবরাহিত শক্তির (△Q) এক অংশ সংস্থার অন্তঃ শক্তি বৃদ্ধি করে (△U) এবং অপর অংশটি পরিবেশের উপর কার্য (△W) করে। সমীকরণ (12.1) তাপগতিবিদ্যার প্রথম সূত্র হিসেবে পরিচিত। এটি কেবলমাত্র যে-কোনো সংস্থায় প্রযুক্ত শক্তির সংরক্ষণের সাধারণ সূত্র, যেখানে পারিপার্শ্বিক থেকে অথবা পারিপার্শ্বিকে শক্তির সঞ্জালন গণনা করা হয়।

সমীকরণ (12.1) এর ভিন্ন রূপটি হল

 $\Delta Q - \Delta W = \Delta U \tag{12.2}$

এখন সংস্থাটিকে প্রাথমিক অবস্থা থেকে চূড়ান্ত অবস্থাতে বেশ কিছু উপায়েই নেওয়া যায়। উদাহরণস্বরূপ, একটি গ্যাসের অবস্থা (P_1, V_1) থেকে (P_2, V_2) এ পরিবর্তন করতে গ্যাসটির চাপ অপরিবর্তিত রেখে আমরা প্রথমে গ্যাসটির আয়তন V_1 থেকে V_2 তে পরিবর্তন করতে পারি। অর্থাৎ প্রথমে (P_1, V_2) অবস্থায় যেতে পারি এবং পরে (P_2, V_2) অবস্থায় নিয়ে যেতে আয়তন স্থির রেখে গ্যাসের চাপ P_1 থেকে P_2 তে পরিবর্তন করতে পারি। অপরভাবে, প্রথমে আমরা আয়তনটি স্থির রাখব এবং পরে চাপ স্থির রাখব। যেহেতু U একটি অবস্থা প্রাচল, ΔU কেবলমাত্র প্রাথমিক এবং চূড়ান্ত অবস্থার উপর নির্ভর করে কিন্তু গ্যাসটিকে এক অবস্থা থেকে অন্য অবস্থাতে নিয়ে যাওয়ার পথের উপর নয়। যা হোক ΔQ এবং ΔW , সাধারণত গ্যাসটিকে প্রাথমিক অবস্থা থেকে চূড়ান্ত অবস্থায় নিয়ে যাওয়ার পথের উপর নির্ভর করে। তাপগতি বিদ্যার প্রথম সূত্রের সমীকরণ (12.2) থেকে এটি স্পষ্ট যে (∆Q – ∆W) সংযুক্তিটি পথনিরপেক্ষ হয়। এটি দেখায় যে, একটি সংস্থাকে যদি এমন একটি প্রক্রিয়ার মাধ্যমে নিয়ে যাওয়া হয় যেখানে ∆U=0 (উদাহরণস্বরুপ, একটি আদর্শ গ্যাসের সমোষ্ব প্রসারণ, 12.8 অনুচ্ছেদ দেখো), সেক্ষেত্রে

 $\Delta Q = \Delta W$

অর্থাৎ, পরিবেশের উপর সংস্থা দ্বারা কার্য করতে সংস্থায় সরবরাহিত তাপ সম্পূর্ণরূপে ব্যবহৃত হয়।

যদি সংস্থাটি চলাচলে স্বক্ষম পিষ্টনযুক্ত চোঙে থাকা গ্যাস

হয় তবে গ্যাসটি পিস্টনটিকে গতিশীল করতে কার্য করে। যেহেতু বল হল চাপ এবং ক্ষেত্রফলের গুণফল এবং আয়তন হল ক্ষেত্রফল এবং সরণের গুণফল, স্থিরচাপ *P* এর বিরুদ্বে সংস্থাদ্বারা কৃতকার্য $\Delta W = P \Delta V$

যেখানে, ΔV হল গ্যাসটির আয়তনের পরিবর্তন। এক্ষেত্রে সমীকরণ (12.1) হতে পাওয়া যায়

$$\Delta Q = \Delta U + P \,\Delta V \tag{12.3}$$

সমীকরণ (12.3) এর একটি প্রয়োগ হিসেবে, 1 g জল যখন ইহার তরল থেকে বাম্পীয় অবস্থায় যায় তখন অন্তঃশক্তির পরিবর্তনটিকে বিবেচনা করা যাক। জলের পরিমিত লীনতাপ হল 2256 J/g অর্থাৎ 1 g জলের জন্য ∆Q = 2256 J । বায়ুমণ্ডলীয় চাপে, 1 g জলের তরল অবস্থায় আয়তন 1 cm³ এবং বাম্পীয় অবস্থায় 1671 cm³।

সুতরাং,

△*W* =*P* (*V*_g −*V*₁) = 1.013 ×10⁵ ×(1671×10⁻⁶) =169.2 J সমীকরণ (12.3) থেকে পাওয়া যায়,

 $\Delta U = 2256 - 169.2 = 2086.8 \text{ J}$

এক্ষেত্রে আমরা দেখি যে, তরল থেকে বাষ্পীয় অবস্থায় রূপান্তরের সময় বেশিরভাগ তাপই অন্তঃশক্তির বৃদ্ধিতে ব্যবহৃত হয়।

12.6 আপেক্ষিক তাপ ধারকত্ব (Specific heat capacity)

ধরা যাক, একটি পদার্থে ΔQ পরিমাণ তাপ সরবরাহ করায় এটির তাপমাত্রা *T* থেকে পরিবর্তিত হয়ে *T* + ΔT হয়। পদার্থটির তাপধারকত্ব আমরা নিম্নরূপে সংজ্ঞায়িত করব।

$$S = \frac{\Delta Q}{\Delta T} \tag{12.4}$$

আমরা আশা করি, ΔQ এবং তাপধারকত্ব *S* পদার্থের ভরের সমানুপাতিক হবে। তাছাড়া এটি তাপমাত্রার উপরও নির্ভর করে অর্থাৎ, বিভিন্ন তাপমাত্রাতে রেখে কোনো পদার্থের একক তাপমাত্রা বৃদ্ধি করতে বিভিন্ন পরিমাণ তাপের প্রয়োজন হতে পারে। পদার্থটির নির্দিষ্ট বৈশিষ্ট্যটি এবং এর পরিমাণ নিরপেক্ষতা সংজ্ঞায়িত করতে হলে, আমরা *S* কে পদার্থটির ভর *m* [kg তে] দ্বারা ভাগ করব :

$$s = \frac{S}{m} = \left(\frac{1}{m}\right) \frac{\Delta Q}{\Delta T} \tag{12.5}$$

s, উপাদানটির আপেক্ষিক তাপ ধারকত্ব হিসেবে পরিচিত। এটি উপাদানটির প্রকৃতি এবং তাপমাত্রার উপর নির্ভর করে।আপেক্ষিক তাপ ধারকত্বের এককটি হল J kg⁻¹ K⁻¹।

যদি উপাদানের পরিমাণটি মোল μ (kg তে ভর m এর পরিবর্তে) দ্বারা উল্লেখিত হয়, আমরা উপাদানটির প্রতি মোলে তাপ ধারকত্ব নিম্নের রাশিমালা দ্বারা সংজ্ঞায়িত করতে পারব,

$$C = \frac{S}{\mu} = \frac{1}{\mu} \frac{\Delta Q}{\Delta T}$$
(12.6)

C উপাদানটির মোলার আপেক্ষিক তাপ ধারকত্ব হিসেবে পরিচিত। s এর মত C, উপাদানের পরিমাণ নিরপেক্ষ। C, উপাদানটির প্রকৃতি, তাপমাত্রা এবং তাপ যেসব শর্তগুলোর অধীনে সরবরাহ করা হয় তাদের উপর নির্ভর করে। C-র এককটি হল J mol⁻¹ K⁻¹। আমরা পরে দেখব (গ্যাসের আপেক্ষিক তাপ ধারকত্ব সম্পর্কে) C অথবা s কে সংজ্ঞায়িত করাতে অতিরিক্ত শর্তের প্রয়োজন হতে পারে। C কে সংজ্ঞায়িত করার ধারণাটি হল, মোলার আপেক্ষিক তাপ ধারকত্ব সম্পর্কে সহজ সরল ভবিষ্যৎবাণী করা।

12.1 নং সারণিতে বায়ুমণ্ডলীয় চাপ এবং ঘরের সাধারণ তাপমাত্রায় কঠিনের আপেক্ষিক এবং মোলার তাপধারকত্বগুলোর পরিমাপ দেওয়া হল।

13নং অধ্যায়ে আমরা দেখব গ্যাসের আপেক্ষিক তাপ সম্পর্কিত অনুমানগুলো সাধারণত পরীক্ষার সাথে সহমত রাখে। কঠিনের মোলার আপেক্ষিক তাপ ধারকত্বগুলোর গণনা করতে আমরা শন্তির সমবণ্টনের একই সূত্রটি ব্যবহার করতে পারি। N সংখ্যক পরমাণুবিশিষ্ট একটি কঠিনকে বিবেচনা করা যাক, যার পরমাণুগুলো প্রত্যেকেই তাদের সাম্যাবস্থার সাপেক্ষে কম্পিত হয়। একমাত্রিক একটি স্পন্দকের গড় শক্তি হবে $2 \times \frac{1}{2} k_B T = k_B T$ । ত্রিমাত্রিক ক্ষেত্রে, গড় শক্তি হল 3 $k_B T$ । এক মোল পরিমাণ একটি কঠিনের জন্য মোট শক্তি হল $U = 3 k_B T \times N_4 = 3 RT$

এখন যেহেতু কঠিনের ক্ষেত্রে ΔV উপেক্ষণীয়, স্থিরচাপে, $\Delta Q = \Delta U + P \Delta V \cong \Delta U$, সুতরাং

$$C = \frac{\Delta Q}{\Delta T} = \frac{\Delta U}{\Delta T} = 3R \tag{12.7}$$

সারণি 12.1 ঘরের তাপমাত্রা এবং বায়ুমঙলীয় চাপে কিছু সংখ্যক কঠিনের আপেক্ষিক এবং মোলার তাপ ধারকত্ব (Specific and molar heat capacities of some solids at room temperature and atmospheric pressure)

উপাদান	আপেক্ষিক তাপ (J kg ⁻¹ K ⁻¹)	মোলার আপেক্ষিক তাপ (J mol ⁻¹ K ⁻¹)
অ্যালুমিনিয়াম	900.0	24.4
কাৰ্বন	506.5	6.1
তামা	386.4	24.5
সিসা	127.7	26.5
রূপা	236.1	25.5
টাংস্টেন	134.4	24.9

সারণি 12.1 দেখায় যে সাধারণ তাপমাত্রাগুলোতে অনুমিত মান 3R পরীক্ষামূলকভাবে গণনা করা মানগুলোর সাথে সম্মতি রাখে। (কার্বন হল একটি ব্যতিক্রম) নিম্ন তাপমাত্রাগুলোতে এই উক্তিটি খাটে না।

জলের আপেক্ষিক তাপধারকত্ব (Specific heat capacity of water)

তাপের প্রাচীন একক ছিল ক্যালরি। এক ক্যালরির আগেকার সংজ্ঞা ছিল 1g জলের তাপমাত্রা 1°C বৃদ্ধি করতে প্রয়োজনীয় তাপ। অধিক সূক্ষ্ম পরিমাপগুলোতে দেখা যায় যে জলের আপেক্ষিক তাপ এর তাপমাত্রার সাথে স্বল্প পরিবর্তিত হয়। 12.5 নং চিত্রে তাপমাত্রার 0°C থেকে 100 °C বিস্তারের মধ্যে এই পরিবর্তনটি দেখানো হয়েছে।

16এ 12.5 তাপমাগ্রার সাথে জলের আপোক্ষক তাপ ধারকত্বের পরিবর্তন

ক্যালরির যথাযথ সংজ্ঞার জন্য একটি একক তাপমাত্রার ব্যবধান উল্লেখ করা প্রয়োজন। 1g জলের তাপমাত্রা 14.5°C থেকে 15.5 °C পর্যন্তবৃদ্ধি করতে প্রয়োজনীয় তাপের পরিমাণটিকে এক ক্যালরি তাপ হিসাবে সংজ্ঞায়িত করা হয়। যেহেতু তাপ শক্তির একটি রূপমাত্র, তাই জুল, J এককটি ব্যবহার করাই শ্রেয়। SI এককে, জলের অপেক্ষিক তাপ ধারকত্ব হল 4186 J kg⁻¹ K⁻¹ অর্থাৎ 4.186 J g⁻¹ K⁻¹। এক ক্যালরি তাপ উৎপন্ন করতে প্রয়োজনীয় কার্যকে তথাকথিত তাপের যান্ত্রিক তূল্যাঙ্ক হিসেবে সংজ্ঞায়িত করা হয়। এটি দুটি ভিন্ন শক্তির এককের মধ্যে রূপান্তর গুণক মাত্র : ক্যালরি থেকে জুল। যেহেতু SI এককে, তাপের একক হিসেবে আমরা জুল এককটি ব্যবহার করি, তাই তাপ, কার্য অথবা শক্তির যে-কোনো রূপের ক্ষেত্রে যান্ত্রিক তুলাঙ্ক পদটি এখন অনাবশ্যক এবং ব্যবহার করা অপ্রয়োজনীয়।

ইতোমধ্যেই উদ্ধৃত হয়েছে যে, আপেক্ষিক তাপ ধারকত্ব নির্ভর করে প্রক্রিয়া বা কোন শর্ত সমূহে তাপ সঞ্চালন সংগঠিত হয়— তার উপর। উদাহরণস্বরূপ, গ্যাসের ক্ষেত্রে, আমরা দুটি আপেক্ষিক তাপ সংজ্ঞায়িত করব : স্থি<mark>র আয়তনে আপেক্ষিক তাপ ধারকত্ব</mark> এবং স্থি<mark>র চাপে আপেক্ষিক তাপ ধারকত্ব</mark>। আদর্শ গ্যাসের ক্ষেত্রে, আমরা একটি সরল সম্পর্ক পাই

$$C_p - C_v = R \tag{12.8}$$

যেখানে C_p এবং C_v হল একটি আদর্শ গ্যাসের যথাক্রমে স্থির চাপে ও স্থির আয়তনে মোলার আপেক্ষিক তাপ এবং R হল সর্বজনীন গ্যাস ধ্রুবক। সম্পর্কটি প্রমাণ করতে আমরা 1 মোল গ্যাসের ক্ষেত্রে সমীকরণ (12.3) নিয়ে শুরু করব,

$$\Delta Q = \Delta U + P \,\Delta V$$

স্থির আয়তনে শোষিত তাপ ΔQ হলে, $\Delta V = 0$,

$$C_{\nu} = \left(\frac{\Delta Q}{\Delta T}\right)_{\nu} = \left(\frac{\Delta U}{\Delta T}\right)_{\nu} = \left(\frac{\Delta U}{\Delta T}\right)$$
(12.9)

যেখানে শেষ পদটিতে v প্রত্যয়টি (subscript) বাদ দেওয়া হয়েছে, কেননা আদর্শ গ্যাসের ক্ষেত্রে U কেবলমাত্র তাপমাত্রার উপর নির্ভর করে (প্রত্যয়টি যে রাশিটি স্থির রাখা হয় তাকে বোঝায়)। অপরদিকে যদি, স্থির চাপে শোষিত তাপ ΔQ হয়, তবে,

$$C_{p} = \left(\frac{\Delta Q}{\Delta T}\right)_{p} = \left(\frac{\Delta U}{\Delta T}\right)_{p} + P\left(\frac{\Delta V}{\Delta T}\right)_{p}$$
(12.10)

প্রথম পদটি থেকে *p* প্রত্যয়টি বাদ দেওয়া যেতে পারে, কেননা আদর্শ গ্যাসের ক্ষেত্রে *U* কেবলমাত্র *T*-র উপর নির্ভর করে। এখন এক মোল পরিমাণ কোনো আদর্শ গ্যাসের জন্য,

$$PV = RT$$

যা দেখায়

$$P\left(\frac{\Delta V}{\Delta T}\right)_{p} = R \tag{12.11}$$

(12.9) থেকে (12.11) পর্যন্ত সমীকরণগুলোর সাহায্যে প্রত্যাশিত 12.8 নং সমীকরণটি পাওয়া যায়।

12.7 তাপগতীয় অবস্থা চলরাশি এবং অবস্থার সমীকরণ (Thermodynamic state variables and Equation of State)

একটি তাপগতীয় সংস্থার প্রত্যেক সাম্যাবস্থা পরিবীক্ষণিক (macroscopic) চলরাশিগুলোর নির্দিষ্ট মানগুলো দ্বারা সম্পূর্ণরূপে বর্ণনা করা হয়, এদের অবস্থার চলরাশিও বলে। উদাহরণস্বরূপ, একটি গ্যাসের সাম্যাবস্থা— চাপ, আয়তন, তাপমাত্রা এবং ভর (এবং গ্যাসের মিশ্রণের ক্ষেত্রে উপাদানগুলো), এদের মানগুলোর দ্বারা সম্পূর্ণভাবে নির্দিষ্ট করা হয়। একটি তাপগতীয় সংস্থা সর্বদা সাম্যাবস্থায় থাকে না। উদাহরণস্বরূপ, একটি গ্যাসকে শূন্যে প্রসারিত হতে দিলে এটি সাম্যাবস্থায় থাকে না [চিত্র 12.6(a)]। দ্রুত প্রসারণের সময় গ্যাসটির চাপ সর্বত্র সমান নাও হতে পারে। একইভাবে একটি গ্যাস মিশ্রণ একটি বিস্ফোরক রাসায়নিক বিক্রিয়ার মধ্য দিয়ে গেলে (যথা পেট্রোল বাষ্প এবং বায়ুর একটি মিশ্রণে যখন স্ফুলিঞ্চোর দ্বারা ঝলকানো হয়) সাম্যাবস্থায় থাকে না। এক্ষেত্রে মিশ্রণটির

চিত্র 12.6 (a) বাক্সটিতে থাকা বিভাজক প্রাচীরটি সরিয়ে গ্যাসের মুক্ত প্রসারণ হতে দেওয়া হল। (b) গ্যাস মিশ্রণটিকে বিস্ফোরক রাসায়নিক বিক্রিয়ার মধ্য দিয়ে যেতে দেওয়া হল। উভয়ক্ষেত্রেই, গ্যাসটি সাম্যাবস্থায় থাকবে না এবং অবস্থামূলক চলরাশিগ্রলো দ্বারা বর্ণনা করা যাবে না।

তাপমাত্রা এবং চাপ সুষম থাকে না [চিত্র 12.6(b)]। অবশেষে গ্যাসটি সুষম তাপমাত্রা এবং চাপ লাভ করে ও পরিবেশের সাথে এটি তাপীয় এবং যান্ত্রিক সাম্যাবস্থায় আসে।

সংক্ষেপে, তাপ গতিবিদ্যায় অবস্থামূলক চলরাশিগুলো (state variables) সংস্থার সাম্যাবস্থাটিকে বর্ণনা করে। বিভিন্ন অবস্থার চলরাশিগুলোর (state variables) স্বনির্ভর হওয়া আবশ্যক নয়। অবস্থার চলরাশিগুলোর মধ্যে সম্পর্কটিকে অবস্থার সমীকরণ বলা হয়। উদাহরণস্বরূপ, একটি আদর্শ গ্যাসের ক্ষেত্রে, অবস্থার সমীকরণটি হল আদর্শ গ্যাস সমীকরণ :

$$P V = \mu R T$$

নির্দিষ্ট পরিমাণ গ্যাস অর্থাৎ প্রদন্ত µ এর জন্য এভাবে কেবলমাত্র দুটি স্বতন্ত্র চলরাশি আছে যেমন P এবং V অথবা T এবং V। একটি নির্দিষ্ট তাপমাত্রার ক্ষেত্রে চাপ-আয়তনের লেখচিত্রটিকে সমোন্নলেখ বলে। বাস্তব গ্যাসের ক্ষেত্রে অবস্থার সমীকরণগুলো অধিকতর জটিল হতে পারে। তাপগতীয় চলরাশিগুলো দুধরনের হয় ঃ ব্যাপক (extensive) এবং সংকীর্ণ (intensive)।ব্যাপক চলরাশিগুলো সংস্থাটির আকার নির্দেশ করে, কিন্তু সংকীর্ণ চলরাশিগুলো যেমন চাপ এবং তাপমাত্রা তা নয়। কোন্ **প্রাচলটি** (variables) ব্যাপক এবং কোনোটি সংকীর্ণ সিম্বান্ত নিতে গেলে, সাম্যাবস্থায় থাকা একটি প্রাসঞ্চিক সংস্থার কথা ভাবতে হবে এবং কল্পনা করতে হবে যে এটি দুটি সমান অংশে বিভক্তু। যে চলগুলো প্রত্যেক অংশের ক্ষেত্রে অপরিবর্তিত থাকে যেগুলো সংকীর্ণ। যে চলগুলোর মানসমূহ প্রত্যেক অংশের ক্ষেত্রেই অর্ধেক হয় এরা ব্যাপক। উদাহরণস্বরূপ, এটি সহজেই দেখা যাবে যে অন্তঃশক্তি U, আয়তন V, মোট ভর M হল ব্যাপক চলরাশি। চাপ P, তাপমাত্রা T এবং ঘনত্ব ρ হল সংকীর্ণ চলরাশি। চলসমূহের এই শ্রেণিবিন্যাস ব্যবহার করে তাপগতীয় সমীকরণগুলোর সংগতি যাচাই করা একটি ভাল কৌশল। উদাহরণস্বরূপ, সমীকরণটিতে,

$$\Delta Q = \Delta U + P \,\Delta V$$

উভয়পক্ষের রাশিগুলো হল ব্যাপক* (সংকীর্ণ চলরাশি *P* এবং ব্যাপক চলরাশি Δ*V* , এর গুণফলটি হল একটি ব্যাপক চলরাশি)

12.8 তাপগতীয় প্রক্রিয়া (Thermodynamic processes) 12.8.1 প্রায়স্থির প্রক্রিয়া (Quasi-static process)

ধরা যাক, একটি গ্যাস পারিপার্শ্বিকের সাথে তাপীয় এবং যান্ত্রিক সাম্যাবস্থায় রয়েছে। সেক্ষেত্রে গ্যাসটির চাপ বাহ্যিক চাপের সমান হয় এবং এর তাপমাত্রা, পারিপার্শ্বিক তাপমাত্রার সমান হয়। ধরা যাক, বাহ্যিক চাপ হঠাৎ করে কমানো হল (যেমন পাত্রের মধ্যস্থ গতিশীল পিস্টনটির উপর থেকে ওজনটি তুলে নিয়ে)। পিস্টনটি বাইরের দিকে ত্বরান্বিত হবে। এই প্রক্রিয়াটি চলাকালীন গ্যাসটি যেসব অবস্থাগুলোর মধ্য দিয়ে যায় সেগুলো সাম্যাবস্থায় থাকে না। অসাম্যাবস্থায় থাকা অবস্থাগুলোর সুনির্দিষ্ট চাপ এবং তাপমাত্রা থাকে না। একইভাবে, যদি গ্যাসটি এবং এর পারিপার্শ্বিকের মধ্যে নির্দিষ্ট তাপমাত্রার পার্থক্য থাকে, সেক্ষেত্রে তাপের দ্রুত আদান প্রদান ঘটবে এবং গ্যাসটি অসাম্যবস্থাগুলোর মধ্য দিয়ে যাবে। যথাসময়ে গ্যাসটি ইহার পারিপার্শ্বিকেকর সাথে সমান ও সুনির্দিষ্ট তাপমাত্রা এবং চাপের একটি সাম্যাবস্থা স্থাপন করবে। শৃন্যে একটি গ্যাসের মুক্ত প্রসারণ এবং বিস্ফোরক রাসায়নিক বিক্রিয়ার সংগঠক গ্যাস মিশ্রণও (যা অনুচ্ছেদ 12.7এ উল্লেখিত) অসাম্য অবস্থাগুলোর মধ্য দিয়ে যাবার একটি উদাহরণ।

একটি সংস্থার অসাম্য অবস্থাগুলো নিয়ে কাজ করা কন্টসাধ্য

^{*} পূর্বেই জোর দেয়া হয়েছে যে, Q অবস্থার চলরাশি নয়। যা হোক ΔQ স্পফ্টতঃই সংস্থার মোট ভরের সমানুপাতিক এবং এজন্য এটি ব্যাপক।

হয়। অতএব, একটি আদর্শ প্রক্রিয়া কল্পনা করা সুবিধাজনক যেখানে প্রতিটি ধাপে সংস্থাটি একটি সাম্যাবস্থায় থাকে। এরপ একটি প্রক্রিয়া নীতিগতভাবে অতিধীর হয়, এজন্য এর নাম আপাতস্থির (প্রায় স্থির বোঝায়)। সংস্থাটি এর চলরাশিগুলো (P, T, V) কে এত ধীরে পরিবর্তন করে যে, এটি পারিপার্শ্বিকের সঙ্গে তাপীয় এবং যান্ত্রিক সাম্যাবস্থায় থাকে। একটি প্রায় স্থির প্রক্রিয়ার প্রতিটি ধাপে সংস্থাটির চাপ এবং বাহ্যিক চাপের মধ্যে পার্থক্য অতি ক্ষদ্র হয়। সংস্থা এবং এর পারিপার্শ্বিকের মধ্যে তাপমাত্রার পার্থক্যের ক্ষেত্রেও একইভাবে সত্য হয়। একটি প্রায় স্থির প্রক্রিয়ায় একটি গ্যাসকে (P, T) অবস্থা থেকে (P', T') অবস্থায় নিয়ে যেতে আমরা বাহ্যিক চাপকে খুবই স্বল্প পরিমাণে পরিবর্তন করি যেন সংস্থাটি এর চাপ পারিপার্শ্বিকের চাপের সমান করতে পারে এবং প্রক্রিয়াটি অতি ধীরে চলতে থাকে যতক্ষণ না সংস্থাটি চাপ P' অর্জন করে। একইরকমভাবে তাপমাত্রার পরিবর্তনের ক্ষেত্রে, আমরা সংস্থা এবং পারিপার্শ্বিক আধারগুলোর মধ্যে অতিক্ষুদ্র তাপমাত্রার পার্থক্য সৃষ্টি করি এবং T থেকে T ' পর্যন্ত ক্রমাগত বিভিন্ন তাপমাত্রায় আধার নির্বাচন করি যেন সংস্থাটি *T'* তাপমাত্রাটি অর্জন করে।

একটি প্রায় স্থির প্রক্রিয়া স্বাভাবিকভাবেই একটি কাল্পনিক প্রকল্প। ব্যবহারিক ক্ষেত্রে, যে সকল প্রক্রিয়া অতি মন্থর এবং পিস্টন ত্বরনশীল গতিযুক্ত নয় ও তাপমাত্রার নতি বৃহৎ নয়, যুক্তিসংগতভাবেই সে সকল প্রক্রিয়া হল আনুমানিকভাবে প্রায় স্থির প্রক্রিয়া। আগে থেকে নির্দেশিত না থাকলে, আমরা এখন থেকে প্রায় স্থির প্রক্রিয়া নিয়ে আলোচনা করব।

যে প্রক্রিয়াতে সংস্থাটির তাপমাত্রা সর্বদা স্থির থাকে, তাকে সমোম্ন প্রক্রিয়া বলে (isothermal process)। স্থির তাপমাত্রায় থাকা একটি বৃহৎ আধারের মধ্যে রাখা একটি ধাতব চোঙের ভেতরে গ্যাসের প্রসারণ হল একটি সমোষ্ণ প্রক্রিয়ার উদাহরণ। (আধারের উচ্চ তাপ ধারকত্বের কারণে আধারটি থেকে সংস্থাতে তাপের সঞ্জালন বস্তুত আধারের তাপমাত্রাকে প্রভাবিত করে না)। সমচাপ প্রক্রিয়ায় চাপ স্থির থাকে যেখানে সমআয়তন প্রক্রিয়ায় আয়তন স্থির থাকে। অবশেষে যদি সংস্থাটিকে পারিপার্শ্বিক থেকে অন্তরিত করা হয় এবং সংস্থাটি ও পারিপার্শ্বিকের মধ্যে তাপের আদান প্রদান না ঘটে, তবে প্রক্রিয়াটি হল **রুম্ব্বতাপ** (Adiabatic)। এই প্রক্রিয়াগুলোর সংজ্ঞা 12.2 নং সারণিতে সংক্ষিপ্তাকারে রয়েছে।

সারণি 12.2 কিছু বিশেষ তাপগতীয় প্রক্রিয়া

প্রক্রিয়ার ধরণ	বৈশিষ্ট্য
সমোয় (Isothermal)	তাপমাত্রা স্থির
সমচাপ (Isobaric)	চাপ স্থির
সমআয়তন(Isochoric)	আয়তন স্থির
রুদ্ধতাপ (Adiabatic)	সংস্থা এবং পরিবেশের মধ্যে
	তাপের সরবরাহ ঘটে না।
	$(\Delta Q = 0)$

এখন আমরা এই প্রক্রিয়াগুলো বিস্তারিতভাবে বিবেচনা করব।

12.8.2 সমোন্ন প্রক্রিয়া (Isothermal process)

একটি সমোষ্ণ প্রক্রিয়ার ক্ষেত্রে (T স্থির), আদর্শ গ্যাসের সমীকরণটি হবে,

অর্থাৎ, নির্দিষ্ট ভরের গ্যাসের চাপ এর আয়তনের সঙ্গে ব্যাস্তানুপাতে পরিবর্তিত হয়। এটি বয়েলের সূত্র ছাড়া আর কিছুই নয়।

ধরা যাক, একটি আদর্শ গ্যাস (*T* তাপমাত্রায়) সমোম্বভাবে এর প্রাথমিক অবস্থা (*P*₁, *V*₁) থেকে চূড়ান্ত অবস্থায় (*P*₂, *V*₂) গেল। গ্যাসটির যে-কোনো একটি অন্তর্বর্তী অবস্থায় চাপ *P* এবং আয়তন *V* থেকে পরিবর্তিত হয়ে *V* + Δ*V* হলো (Δ*V* ক্ষুদ্র)

$$\Delta W = P \Delta V$$

(∆V → 0) ধরে এবং ∆W এই রাশিটিকে সমগ্র প্রক্রিয়াটির উপর যোগ করে পাই,

$$W = \int_{V_1}^{V_2} P \, dV$$

= $\mu RT \int_{V_1}^{V_2} \frac{dV}{V} = \mu RT \quad In \frac{V_2}{V_1}$ (12.12)

যেখানে দ্বিতীয় ধাপে আমরা আদর্শ গ্যাসের $PV = \mu RT$ সমীকরণটি

ব্যবহার করেছি এবং ধ্রুবকটিকে সমাকলনের বাইরে আনা হয়েছে। একটি আদর্শ গ্যাসের ক্ষেত্রে অন্তঃশক্তি কেবলমাত্র এর তাপমাত্রার উপর নির্ভর করে। এজন্য সমোষ্ণ প্রক্রিয়ায় একটি আদর্শ গ্যাসের ক্ষেত্রে অন্তঃশক্তির পরিবর্তন হয় না। সেক্ষেত্রে তাপগতিবিদ্যার প্রথম সূত্রটি বোঝায় যে গ্যাসটিতে সরবরাহিত তাপ গ্যাসটি দ্বারা কৃতকার্যের সমান : Q = W + 12.12নং সমীকরণ থেকে লক্ষ করা যায় যে $V_2 > V_1$ হলে W > 0 এবং $V_2 < V_1$ হলে W < 0। এজন্য একটি সমোম্ন প্রসারণে গ্যাসটি তাপ শোষণ করে এবং কার্য করে। যেখানে সমোম্ন সংকোচনে পরিবেশ গ্যাসের উপর কার্য করে এবং তাপ মুক্ত হয়।

12.8.3 রুম্বতাপ প্রক্রিয়া (Adiabatic process) :

একটি রুম্বতাপ প্রক্রিয়ায় সংস্থাটি, পারিপার্শ্বিক থেকে অন্তরিত থাকে এবং তাপের শোষণ বা বর্জন শূন্য হয়। সমীকরণ (12.1) নং থেকে আমরা দেখি যে, গ্যাসটির দ্বারা কৃতকার্য গ্যাসটির অন্তঃশক্তির হ্রাস ঘটায় (এবং এজন্য একটি আদর্শ গ্যাসের তাপমাত্রা হ্রাস পায়)। প্রমাণ ছাড়াই আমরা উল্লেখ করব যে (উচ্চ পাঠ্যক্রমে আমরা সম্পর্কটি শিখবো) একটি আদর্শ গ্যাসের রুম্বতাপ প্রক্রিয়ায় (Adiabatic process)

> $PV^{\gamma} =$ ধ্বক (12.13)

যেখানে γ হল (স্বাভাবিক অথবা মোলার) স্থির চাপে এবং স্থির আয়তনে আপেক্ষিক তাপদ্বয়ের অনুপাত

$$\gamma = \frac{C_{\mu}}{C_{\mu}}$$

এভাবে যদি একটি আদর্শ গ্যাস রুম্বতাপীয়ভাবে (P1, V1) অবস্থা থেকে (P_2, V_2) অবস্থায় পরিবর্তিত হয় তবে,

$$P_1 V_1^{\gamma} = P_2 V_2^{\gamma} \tag{12.14}$$

12.8নং চিত্রটি দেখায় যে, একটি আদর্শ গ্যাসের P-V

চিত্র 12.8 একটি আদর্শ গ্যাসের সমোষ্ণ এবং রুম্বতাপ প্রক্রিয়ার P-V লেখচিত্র।

পদার্থবিদ্যা

লেখচিত্রটি দুটি রুম্বতাপ প্রক্রিয়া, দুটি সমোম্ন প্রক্রিয়াকে যুক্ত করেছে।

পূর্বের ন্যায় একটি রুম্বতাপ প্রক্রিয়ায়, একটি আদর্শ গ্যাস (P₁, V₁, T₁) অবস্থা থেকে (P₂, V₂, T₂) অবস্থায় পরিবর্তিত হলে কৃতকার্যকে আমরা গণনা করতে পারি—

$$W = \int_{V_1}^{V_2} P \ dV$$

= ध्रुवक × $\int_{V_1}^{V_2} \frac{dV}{V^{\gamma}} =$ ध्रुवक × $\frac{V^{-\gamma+1}}{1-\gamma} \Big|_{V_1}^{V_2}$
 $\frac{$ ध्रुवक × $\left[\frac{1}{V_2^{\gamma-1}} - \frac{1}{V_1^{\gamma-1}}\right]$ (12.15)

_

(12.14) নং সমীকরণ থেকে, ধ্রুবকটি হল $P_1 V_1^{\gamma}$ অথবা $P_2 V_2^{\gamma}$

$$W = \frac{1}{1 - \gamma} \left[\frac{P_2 V_2^{\gamma}}{V_2^{\gamma - 1}} - \frac{P_1 V_1^{\gamma}}{V_1^{\gamma - 1}} \right]$$
$$= \frac{1}{1 - \gamma} \left[P_2 V_2 - P_1 V_1 \right] = \frac{\mu R(T_1 - T_2)}{\gamma - 1} \quad (12.16)$$

প্রত্যাশিতভাবে, রুম্বতাপ প্রক্রিয়ায় গ্যাসটি দ্বারা কার্য সম্পাদিত হলে (W > 0) (12.16) নং সমীকরণ থেকে $T_2 < T_1$ হয়। অপরদিকে, গ্যাসটির উপর কার্য সম্পাদিত হলে (W<0), আমরা পাই $T_2 > T_1$ অর্থাৎ গ্যাসটির তাপমাত্রা বৃদ্ধি পাবে।

12.8.4 সমআয়তন প্রক্রিয়া (Isochoric process)

সমআয়তন প্রক্রিয়ায়, V ধ্রুবক থাকে। গ্যাস দ্বারা অথবা গ্যাসের উপর কোনো কার্য হয় না। (12.1) নং সমীকরণ অনুযায়ী গ্যাসটির দ্বারা শোষিত তাপ, সম্পূর্ণরূপে এর অন্তঃশক্তি এবং তাপমাত্রার পরিবর্তন করে। কিছু পরিমাণ তাপপ্রদানের ফলে তাপমাত্রার পরিবর্তন গ্যাসটির স্থির আয়তনে আপেক্ষিক তাপ দ্বারা নির্ধারিত হয়।

12.8.5 সমচাপ প্রক্রিয়া (Isobaric process)

সমচাপ প্রক্রিয়ায় P স্থির থাকে ৷ গ্যাসটি দ্বারা কৃতকার্য হল

$$W = P(V_2 - V_1) = \mu R(T_2 - T_1)$$
(12.17)

তাপমাত্রার পরিবর্তন হওয়ায় অন্তঃশক্তির পরিবর্তন ঘটে। শোষিত তাপের এক অংশ অন্তঃশক্তির বৃদ্ধি করে এবং অপর অংশ কার্য করে। কিছু পরিমাণ তাপ প্রদানের ফলে তাপমাত্রার পরিবর্তন গ্যাসটির স্থির চাপে আপেক্ষিক তাপ দ্বারা নির্ধারিত হয়।

12.8.6 আবর্ত প্রক্রিয়া (Cyclic process)

আবর্ত প্রক্রিয়ায় সংস্থাটি তার প্রাথমিক অবস্থায় ফিরে আসে। যেহেতু অন্তঃশক্তি একটি অবস্থার চলরাশি, একটি আবর্ত প্রক্রিয়ার জন্য $\Delta U = 0$ হয়। (12.1) নং সমীকরণ অনুযায়ী মোট শোষিত তাপ সংস্থার দ্বারা কৃতকার্যের সমান।

12.9 তাপ ইঞ্জিন (Heat Engines)

তাপ ইঞ্জিন হল একটি যান্ত্রিক ব্যবস্থা যার দ্বারা সংস্থাটি একটি আবর্ত প্রক্রিয়ার মধ্য দিয়ে গিয়ে তাপকে কার্যে রূপান্তরিত করে।

- (1) এটি একটি কার্যকরী উপাদান—সংস্থা নিয়ে গঠিত। উদাহরণ স্বরূপ, গ্যাসোলিন অথবা ডিজেল ইঞ্জিনে জ্বালানি বাষ্প এবং বায়ুর একটি মিশ্রণ অথবা বাষ্পীয় ইঞ্জিনে বাষ্প হল কার্যকরী উপাদান।
- (2) কার্যকরী উপাদানটি বিভিন্ন প্রক্রিয়া সমন্বিত একটি চক্রের মধ্য দিয়ে যায়। এই প্রক্রিয়াগুলোর মধ্যে কয়েকটিতে T₁ উচ্চ তাপমাত্রা সম্পন্ন একটি বাহ্যিক আধার থেকে কার্যকরী উপাদানটি মোট Q₁ পরিমাণ তাপ শোষণ করে।
- (3) চক্রটির অপর কিছু প্রক্রিয়ায় কার্যকরী উপাদানটি T2 নিম্নতাপমাত্রা সম্পন্ন একটি বাহ্যিক আধারে মোট Q2 পরিমাণ তাপ সরবরাহ করে।
- (4) চক্রটিতে সংস্থাটি দ্বারা কৃতকার্য (W) কিছু ব্যবস্থার মাধ্যমে পরিবেশে সঞ্চালিত হয় (উদাহরণস্বরূপ, গতিশীল পিন্টনসহ একটি চোঙ মধ্যস্থ কার্যকরী উপাদান একটি যানের চাকাগুলোতে আবর্তনশীল চালকদণ্ডের মাধ্যমে যান্ত্রিক শক্তি সঞ্চালিত করতে পারে)।

একটি তাপীয় ইঞ্জিনের মৌলিক বৈশিষ্ট্যগুলোর রূপরেখা (12.9) নং চিত্রে দেখানো হল।

চিত্র 12.9 তাপ ইঞ্জিনের রূপরেখা। ইঞ্জিনটি T₁ তাপমাত্রায় উত্তপ্ত আধার থেকে Q₁ তাপ গ্রহণ করে এবং T₂ তাপমাত্রায় শীতল আধারে Q₂ তাপ বর্জন করে এবং 'W' পরিমাণ কার্য পারিপার্শ্বিকে প্রদান করে।

কিছু উদ্দেশ্য সাধনে প্রয়োজনীয় কার্য পেতে চক্রটির বার বার পুনরাবৃত্তি করা হয়। তাপ ইঞ্জিনের অধ্যয়নের মধ্যেই তাপগতিবিদ্যা বিষয়টির ভিত্তি নিহীত রয়েছে। তাপ ইঞ্জিনের কর্মদক্ষতার সঙ্গো সম্পর্কিত একটি মূল প্রশ্ন রয়েছে। একটি তাপীয় ইঞ্জিনের কর্ম দক্ষতা (η) নিম্নের সম্পর্ক দ্বারা সংজ্ঞায়িত হয়

$$\eta = \frac{W}{Q_1} \tag{12.18}$$

যেখানে, Q1 হল গৃহীত তাপ অর্থাৎ একটি পূর্ণচক্রে সংস্থাটি দ্বারা

শোষিত তাপ এবং W হল একটি চক্রে পরিবেশের উপর কৃতকার্য। একটি চক্রে ইঞ্জিনটি কিছু পরিমাণ তাপ (Q₂) পরিবেশে ত্যাগও করতে পারে, তখন তাপগতিবিদ্যার প্রথম সূত্রানুসারে একটি পূর্ণচক্রে,

$$W = Q_1 - Q_2 \tag{12.19}$$

অর্থাৎ
$$\eta = 1 - \frac{Q_2}{Q_1}$$
 (12.20)

 $Q_2 = 0$ এর জন্য $\eta = 1$, অর্থাৎ ইঞ্জিনটি তাপকে কার্যে রূপান্তরের ক্ষেত্রে 100% কর্মদক্ষতা রাখে। লক্ষণীয় যে, তাপগতিবিদ্যার প্রথম সূত্র অর্থাৎ শক্তির সংরক্ষণ সূত্রটি এরূপ একটি ইঞ্জিনকে বাতিল করতে পারে না। কিন্তু অভিজ্ঞতা দেখায় যে একটি প্রকৃত ইঞ্জিনের সঙ্গো যুক্ত বিভিন্ন প্রকারের ক্ষয় অপসারণ করার পরও $\eta = 1$ বিশিষ্ট এরূপ একটি আদর্শ ইঞ্জিন কখনো সম্ভব নয়। এর থেকে সিদ্ধান্ত নেওয়া যায় যে, তাপ গতিবিদ্যার দ্বিতীয় সূত্র (অনুচ্ছেদ12.11) নামক প্রকৃতির এক স্বতন্ত্র নীতির দ্বারা একটি তাপ ইঞ্জিনের কর্মদক্ষতার মূল সীমা নির্ধারিত হয়।

বিভিন্ন তাপ ইঞ্জিনের ক্ষেত্রে তাপকে কার্যে রূপান্তর করার কৌশল বিভিন্ন হয়। মূলত সেক্ষেত্রে দুটি উপায় রয়েছে : একটি বাহ্যিক চুল্লি দ্বারা সংস্থাটিকে (যেমন একটি গ্যাস অথবা একটি গ্যাস মিশ্রণ) উত্তপ্ত করা হয়, যেমন একটি বাষ্পীয় ইঞ্জিনে; অথবা একটি অভ্যন্তরীণ দহন ইঞ্জিনের ক্ষেত্রে একটি তাপোৎপাদী রাসায়নিক বিক্রিয়ার দ্বারা একে অভ্যন্তরীণভাবে উত্তপ্ত করা হয়। একটি চক্রে যুক্ত বিভিন্ন ধাপগুলোও এক ইঞ্জিন থেকে অন্য ইঞ্জিনে ভিন্ন হয়।

12.10 হিমায়ক এবং তাপীয় পাম্প (Refrigerators and heat pumps)

হিমায়ক (Refrigerator) হল একটি তাপ ইঞ্জিনের বিপরীত। এক্ষেত্রে কার্যকরী উপাদানটি T_2 তাপমাত্রার একটি শীতল আধার থেকে Q_2 তাপ নিষ্কাশন করে, এর উপর কিছু পরিমাণ বাহ্যিক কার্য সম্পাদন করে এবং T_1 তাপমাত্রায় উম্ব আধারটিতে Q_1 তাপ মুক্ত করে (12.10 চিত্রে)।

চিত্র 12.10 তাপ ইঞ্জিনের বিপরীত একটি হিমায়ক (Refrigerator) অথবা একটি তাপীয় পাম্পের রুপরেখার উপস্থাপন।

তাপগতি বিদ্যার প্রবর্তকগণ (Pioneers of Thermodynamics)

লর্ড কেলভিন (উইলিয়াম থম্সন্) (1824-1907), আয়ারল্যান্ডের বেলফান্টে জন্মগ্রহণ করেন। উনবিংশ শতাব্দীতে মুখ্য ব্রিটিশ বৈজ্ঞানিকদের মধ্যে তিনিও একজন। জেমস্ জুল (1818-1889), জুলিয়াস মেয়ার (1814-1878) এবং হারমান হেল্মহোল্জের (1821-1894) কাজের দ্বারা প্রস্তাবিত শক্তির সংরক্ষণ সূত্রের উন্নতিতে থমসন মুখ্য ভূমিকা গ্রহণ করেন। তথাকথিত জুল-থমসন ক্রিয়া : শ্ন্যস্থানে প্রসারণের ফলে গ্যাসের শীতলীকরণের উপর কাজে তিনি জুলের সহযোগিতা করেন। তিনি পরমশূন্যের ধারণা প্রচলন করেন এবং তাপমাত্রার পরম স্কেলের প্রস্তাব করেন, যাকে তাঁর সন্মানার্থে বর্তমানে কেলভিন স্কেল বলা হয়। সডি কার্ণটের (1796-1832) কাজ থেকে থমসন তাপগতিবিদ্যার দ্বিতীয় সূত্রের রূপটি প্রদান করেন। থমসন একজন বহুগুণে গুণান্বিত পদার্থ বিজ্ঞানী ছিলেন। তড়িৎ চুম্বকীয় তত্ত্ব এবং প্রবাহী গতিবিদ্যায় তাঁর অবদান উল্লেখযোগ্য।

রুডল্ফ ক্লসিয়াস (1822-1888), পোলান্ডে জন্মগ্রহণ করেন। তিনি সাধারণত তাপগতিবিদ্যার দ্বিতীয় সূত্রের আবিষ্কারক হিসাবে সম্মানিত। কার্নট ও থমসনের কাজের উপর ভিত্তি করে ক্লসিয়াস এনট্রপির গুরুত্বপূর্ণ ধারণায় উপনীত হন। এটি তাপগতিবিদ্যার দ্বিতীয় সূত্রের মৌলিক সংস্করণ। এর বিবৃতিটি হল, বিচ্ছিন্ন সংস্থার এনট্রপি (Entropy) কখনো কমতে পারে না। ক্লসিয়াস গ্যাসের গতিতত্বের উপরও কাজ করেন এবং সর্বপ্রথম অণুর আকার, বেগ, গড় মুক্ত পথ প্রভৃতির নির্ভরযোগ্য হিসেব করেন।

একটি তাপীয় পাম্প, একটি হিমায়কেরই (Refrigerator) অনুরূপ। যন্ত্রটির ব্যবহারিক উদ্দেশ্যের উপর নির্ভর করেই আমরা নামটি ব্যবহার করি। যদি আমাদের উদ্দেশ্য এমন হয় যে, কোনো স্থানের একটি অংশকে ঠান্ডা করতে হবে, যেমন- চারপাশ উচ্চতাপমাত্রার তাপ আধার দ্বারা পরিবেস্টিত প্রকোষ্ঠের অভ্যন্তর ভাগ, সেক্ষেত্রে আমরা যন্ত্রটিকে **হিমায়ক বলি**। আর যদি ধারণাটি হয় কোন স্থানের একটি অংশে তাপ প্রদান করা (একটি অট্টালিকার কোন একটি কক্ষে, যেখানে বাহিরের পরিবেশ শীতল থাকে) যন্ত্রটিকে তাপীয় পাম্প বলা হয়।

হিমায়কের (Refrigerator) কার্যকরী উপাদানটি (সাধারণত গ্যাসীয় অবস্থায় থাকে) নিম্নলিখিত ধাপগুলোর মধ্য দিয়ে যায়:

- (a) উচ্চ চাপ থেকে নিম্নচাপে গ্যাসটিকে হঠাৎ প্রসারিত হতে দিলে এটি শীতল হয় এবং বাষ্প ও তরলের একটি মিশ্রণে পরিবর্তিত হয়।
- (b) যে স্থানটিকে শীতল করতে হবে সেই স্থান থেকে তাপ শোষণে প্রবাহীটি (কার্যকর পদার্থটি) বাস্পে পরিণত হয়।
- (c) সংস্থাটির উপর বাহ্যিক কার্য করিয়ে বাষ্পটিকে উত্তপ্ত করা হয়, এবং
- (d) বাষ্পটি দ্বারা পরিবেশে তাপ বর্জন করিয়ে প্রাথমিক অবস্থায় নিয়ে যাওয়া হয় এবং চক্রটি সম্পূর্ণ করা হয়।

হিমায়কটির দক্ষতা গুণাজ্ফটি (α) হল,

$$\alpha = \frac{Q_2}{W} \tag{12.21}$$

যেখানে Q_2 হল শীতল আধার থেকে গৃহীত তাপ এবং W হল হিমায়ক - সংস্থাটির উপর কৃতকার্য (তাপীয় পাম্পটির জন্য α হল $Q_1/W)$ । লক্ষণীয়, যেখানে সংজ্ঞাগতভাবে η কখনো 1 এর অধিক হতে পারে না, সেখানে α , 1 এর অধিক হতে পারে। শক্তির সংরক্ষণ অনুযায়ী, উন্ন আধারে বর্জিত তাপ হল

$$Q_1 = W + Q_2$$

অর্থাৎ, $\alpha = \frac{Q_2}{Q_1 - Q_2}$ (12.22)

একটি তাপ ইঞ্জিনে, তাপ সম্পূর্ণরূপে কার্যে রূপান্তরিত হয় না; একই রকমভাবে সংস্থাটির উপর বাহ্যিক কার্য করা না হলে হিমায়কটি (Refrigerator) কার্য করতে পারে না, অর্থাৎ (12.21) নং সমীকরণ অনুযায়ী দক্ষতা গুণাঙ্কটি অসীম হবে।

12.11 তাপগতিবিদ্যার দ্বিতীয় সূত্র (Second Law of Thermodynamics)

তাপগতিবিদ্যার প্রথম সূত্রটি হল শক্তির সংরক্ষণ নীতি। সাধারণ অভিজ্ঞতা দেখায় যে, অনেক অনুধাবনীয় প্রক্রিয়া রয়েছে যেগুলো প্রথম সূত্রটি দ্বারা সঠিকভাবে গৃহীত হলেও অদ্যাপি কখনও W পরিমাণ কার্য করে। কোথাও অন্য কোনো প্রকার প্রভাব না রেখে আমরা এ প্রক্রিয়াটিকে বিপরীতমুখী এবং সংস্থা ও পারিপার্শ্বিক উভয়কে এদের প্রাথমিক অবস্থায় আনতে পারি কি ? অভিজ্ঞতার নিরিখে বোঝা যায় যে প্রকৃতির বেশির ভাগ প্রক্রিয়াগুলোতে এটি সন্তব নয়। প্রকৃতির স্বতঃস্ফূর্ত প্রক্রিয়াগুলো অপ্রত্যাবর্তক হয়। এমন অনেক উদাহরণের উল্লেখ করা যেতে পারে। চুল্লির উপরে রাখা একটি পাত্রের পাদদেশ, এর অপর অংশগুলো থেকে উম্বতর হয়। পাত্রটিকে যখন সরিয়ে নেওয়া হয় তখন পাদদেশ থেকে অপর অংশগুলোতে তাপের সঞ্জালন ঘটে এবং পাত্রটিকে সমতাপ মাত্রায় আনে (যা যথাসময়ে পারিপার্শ্বিকের তাপমাত্রায় শীতল হয়)। এই প্রক্রিয়াটিকে প্রত্যাবর্তন করা যায় না; পাত্রটিরে একটি অংশ স্বতঃ স্ফুর্তভাবে শীতল হবে না এবং পাদদেশটি গরম হবে না। যদি এমনটা হয় তবে তা তাপগতিবিদ্যার দ্বিতীয় সূত্রটিকে লঙ্খন করবে।

একটি গ্যাসের মুক্ত প্রসারণ অপ্রত্যাবর্তক। পেট্রোল এবং বায়ুর মিশ্রণকে স্ফুলিজোর দ্বারা জ্বালিয়ে সংগঠিত দহন বিক্রিয়া প্রত্যাবর্তক হতে পারে না। রান্নাঘরের একটি গ্যাস সিলিন্ডার থেকে লিক করা গ্যাস সমগ্র কক্ষে ছড়িয়ে পড়ে। ব্যাপন প্রক্রিয়াটি স্বতঃস্ফুর্তভাবে প্রত্যাবর্তক হবে না এবং গ্যাসটিকে ফিরিয়ে সিলিন্ডারে নিয়ে যেতে পারবে না। একটি আধারের সাথে তাপীয় সংস্পর্শে থাকা তরলকে আলোড়িত করলে কৃতকার্য তাপে রুপান্তরিত হয়ে আধারের অন্তঃ শক্তি বৃদ্ধি করে। সঠিকভাবে প্রক্রিয়াটিকে প্রত্যাবর্তন করানো যায় না; অন্যথায় এটি তাপগতিবিদ্যার দ্বিতীয় সূত্র লঙ্ঘন করে তাপকে সম্পূর্ণভাবে কার্যে রপান্তরিত করবে। অপ্রত্যাবর্তনতা প্রকৃতিতে ব্যতিক্রম নয় বরং একটি নিয়ম। প্রধানতঃ দুটি কারণে অপ্রত্যাবর্তনতা সৃষ্টি হয় : প্রথম, অনেকগুলো প্রক্রিয়া (যেমন, একটি মুক্ত প্রসারণ, অথবা একটি বিস্ফোরক রাসায়নিক বিক্রিয়া) সংস্থাটিকে অসাম্যাবস্থায় নিয়ে যায়; দ্বিতীয়টি, অধিকাংশ প্রক্রিয়াগুলোতে অন্তর্ভুক্ত ঘর্ষণ, সান্দ্রতা এবং অন্যান্য অপচয়ী প্রভাবসমূহ (উদাহরণস্বরপ একটি গতিশীল বস্তু থেমে গেলে বস্তুটি ওর যান্ত্রিক শক্তি মেঝে ও বস্তুতে তাপরুপে হারিয়ে ফেলে; তরলের মধ্যে ঘূর্ণায়মান একটি ব্লেড সান্দ্রতার জন্য থেমে যায় এবং এর যান্ত্রিক শক্তি হারিয়ে তরলটির আনুষজ্গিক অন্তঃশক্তি বৃদ্ধি করে)। যেহেতু সর্বত্র অপচয়ী প্রভাবসমূহ বর্তমান এবং এটি কমানো যেতে পারে কিন্তু সম্পূর্ণরূপে অপসারণ করা যায় না; আমরা চর্চা করি এমন বেশিরভাগ প্রক্রিয়াগুলোই হল অপ্রত্যাবর্তক।

একটি তাপগতীয় প্রক্রিয়া (অবস্থা *i* → অবস্থা *f*) প্রত্যাবর্তক হবে যদি বিশ্বব্রত্নান্ডের অন্যত্র কোনো প্রকারের পরিবর্তন না ঘটিয়ে, সংস্থা এবং পারিপার্শ্বিক উভয়কেই এদের প্রাথমিক অবস্থায় ফিরিয়ে আনা যায়। পূর্ববর্তী আলোচনা অনুসারে, একটি প্রত্যাবর্তক প্রক্রিয়া হল একটি আদর্শায়িত ধারণা। **একটি প্রক্রিয়া প্রত্যাবর্তক হবে**

পর্যবেক্ষিত হয়নি। উদাহরণস্বরূপ, টেবিলের উপর রাখা একটি বই নিজে থেকে লাফিয়ে একটি উচ্চতায় উঠছে এমনটা কেউ কখনও দেখেনি। কিন্তু এরূপ ঘটনা সম্ভব হবে যদি শক্তির সংরক্ষণ নীতিটিই একমাত্র বিধি নিষেধ হয়। টেবিলটি স্বতঃস্ফূর্তভাবে ঠান্ডা হয়ে এর অন্তঃশক্তির কিছু অংশকে বইয়ের যান্ত্রিক শক্তিতে রূপান্তরিত করতে পারে এবং বইটির অর্জিত যান্ত্রিক শক্তির সমান স্থিতিশক্তি সম্পন্ন উচ্চতায় লাফাতে পারে। কিন্তু এটি কখনো ঘটে না। স্পন্টতই, এটি শক্তির সংরক্ষণের নীতিকে মান্য করলেও প্রকৃতির কিছু অতিরিক্ত মূল নীতি এরূপ হতে বাধা দেয়। তাপগতি বিদ্যার প্রথম সূত্রের সঞ্চো সংগতিপূর্ণ ঘটনাগুলোকে অগ্রাহ্য করার এ নীতিটি তাপগতি বিদ্যার দ্বিতীয় সূত্র হিসাবে পরিচিত।

তাপগতি বিদ্যার দ্বিতীয় সূত্র, একটি তাপ ইঞ্জিনের দক্ষতা এবং হিমায়কের দক্ষতা গুণাজ্কের একটি মূল সীমা প্রদান করে। এক কথায় এটি নির্দেশ করে যে, একটি তাপ ইঞ্জিনের দক্ষতা কখনো একক (Unity) হতে পারে না। (12.20) নং সমীকরণ অনুযায়ী এটি বোঝায় যে একটি শীতল আধারে বর্জিত তাপ কখনো শূন্য করা যায় না। দ্বিতীয় সূত্রানুসারে একটি হিমায়কের দক্ষতা গুণাঙ্কটি কখনো অসীম হতে পারে না। (12.21) নং সমীকরণ অনুযায়ী, এটি বোঝায় যে বাহ্যিক কার্য (W) কখনো শূন্য হতে পারে না। নিম্নলিখিত বিবৃতি দুটি : একটি— কেলভিন এবং প্ল্যাঙ্ক কর্তৃক যথার্থ তাপ ইঞ্জিনের সম্ভাবনাটিকে অস্বীকার করা এবং অপরটি ক্লসিয়াস কর্তৃক যথার্থ হিমায়কের অথবা তাপীয় পাম্পের সম্ভাবনাকে অস্বীকার করা, হল উপরের পর্যবেক্ষণগুলোর সারসংক্ষেপ।

তাপগতিবিদ্যার দ্বিতীয় সূত্র (Second Law of Thermodynamics)

কেলভিন- প্লাঙ্কের বিবৃতি (Kelvin-Planck statement)

এ রকম কোন প্রক্রিয়া সম্ভব নয় যার একমাত্র উদ্দেশ্য হল একটি আধার থেকে তাপ শোষণ করা এবং তাপটিকে সম্পূর্ণ রূপে কার্যে রূপান্তরিত করা।

ক্লসিয়াসের বিবৃতি (Clausius statement)

এমন কোনো প্রক্রিয়া সম্ভব নয় যার একমাত্র উদ্দেশ্য হল শীতল বস্তু থেকে উত্তপ্ত বস্তুতে তাপ সরবরাহ করা।

প্রমাণ করা যায় যে উপরিউক্ত বিবৃতি দুটি সম্পূর্ণভাবে সমতুল্য।

12.12 প্রত্যাবর্তক এবং অপ্রত্যাবর্তক প্রক্রিয়া (Reversible and irreversible processes)

এমন কিছু প্রক্রিয়া কল্পনা করা যাক যেখানে একটি সংস্থা প্রাথমিক অবস্থা *i* হতে চূড়ান্ত অবস্থা *f* -এ যায়। প্রক্রিয়াটি চলাকালীন সংস্থাটি পারিপার্শ্বিক থেকে *Q* তাপ শোষণ করে এবং এর উপর কেবলমাত্র যদি এটি প্রায় স্থির (প্রতি ধাপে সংস্থাটি এর পারিপার্শ্বিকের সঙ্গো সাম্যাবস্থায় থাকে) এবং সেখানে কোনো প্রকার অপচয়ী প্রভাব না থাকে। উদাহরণস্বরূপ, ঘর্ষণহীনভাবে চলনক্ষম একটি পিন্টনযুক্ত চোঙের মধ্যে থাকা একটি আদর্শ গ্যাসের প্রায় স্থির সমোষ্ণ প্রসারণটি হল একটি প্রত্যাবর্তক প্রক্রিয়া।

তাপগতিবিদ্যায় এ ধরনের প্রত্যাবর্তিতা এক মৌলিক ধারণা কেন ? আমরা যেমনটা দেখেছি তাপগতিবিদ্যার সংশ্লিফ বিষয়টি হল দক্ষতা যার সাহায্যে তাপকে কার্যে রূপান্তরিত করা যায়। তাপগতিবিদ্যার দ্বিতীয় সূত্রটি 100% দক্ষতা সহ একটি যথার্থ তাপীয় ইঞ্জিনের সম্ভাবনাকে নাকচ করে। কিন্তু T_1 এবং T_2 তাপমাত্রায় থাকা দুটি তাপীয় আধারের মধ্যে কার্যকরী একটি তাপীয় ইঞ্জিনের সম্ভাব্য সর্বোচ্চ দক্ষতাটি কত ? এটি প্রমাণিত যে, আদর্শ প্রত্যাবর্তক প্রক্রিয়ার উপর ভিত্তিকরে একটি তাপীয় ইঞ্জিন সম্ভাব্য সর্বোচ্চ দক্ষতা অর্জন করে। কোনো না কোনো অপ্রত্যাবর্তিতাযুক্ত অন্য সব ইঞ্জিনগুলোর (ব্যবহারিক ইঞ্জিনের ক্ষেত্রে যা প্রযোজ্য হয়) দক্ষতা এই সীমাস্থ দক্ষতা থেকে কম থাকে।

12.13 কার্নো ইঞ্জিন (Carnot Engine)

ধরা যাক, আমাদের কাছে T_1 তাপমাত্রার একটি উত্তপ্ত আধার এবং T_2 তাপমাত্রার একটি শীতল আধার আছে। এ দুটি তাপ আধারের মধ্যে ক্রিয়াশীল কোনো ইঞ্জিনের সম্ভাব্য সর্বোচ্চ দক্ষতা কত হবে এবং এ সর্বোচ্চ দক্ষতা অর্জনে কোন্ আবর্ত প্রক্রিয়া গ্রহণ করা উচিত ? সডি কার্নো (Sadi Carnot) নামে এক ফরাসি ইঞ্জিনিয়ার 1824 খ্রিস্টাব্দে সর্বপ্রথম এ প্রশ্নটি চিন্তা করেন। মজার বিষয়, কার্নো এর একটি সঠিক সিদ্ধান্তে উপনীত হন, যদিও তাপ ও তাপ গতিবিদ্যার মৌলিক ধারণাগুলো তখনও সঠিকভাবে প্রতিষ্ঠিত হয়নি।

আমরা আশা করি দুটি ভিন্ন তাপমাত্রার মধ্যে ক্রিয়াশীল আদর্শ ইঞ্জিনটি একটি প্রত্যাবর্তক ইঞ্জিন হবে। পূর্ববর্তী অধ্যায়ে বলা হয়েছে যে, অপ্রত্যাবর্তিতায় অপচয়ী প্রভাব থাকে এবং দক্ষতা হ্রাস পায়। একটি প্রক্রিয়া প্রত্যাবর্তক হয় যদি এটি প্রায় স্থির (quasi-static) ও অনপচয়ী (non-dissipative) হয়। আমরা দেখেছি যে, কোনো সংস্থা ও তাপ আধারের তাপমাত্রার পার্থক্য সসীম হলে ওদের মধ্যে ক্রিয়াশীল প্রক্রিয়া প্রায় স্থির হয় না। এর তাৎপর্য হল দুটি ভিন্ন তাপমাত্রার মধ্যে ক্রিয়াশীল ইঞ্জিন অবশ্যই সমোম্ব প্রক্রিয়ায় (উন্ন আধার থেকে) তাপ শোষণ করবে এবং (শীতল আধারে) তাপ বর্জন করবে। এভাবে আমরা প্রত্যাবর্তক তাপ ইঞ্জিনের দুটি ধাপকে সনান্ত করতে পারি: T_1 তাপমাত্রায় সমোম্ব প্রক্রিয়ায় উত্তপ্ত আধার থেকে Q_1 তাপের শোষণ এবং T_2 তাপমাত্রায় সমোম্ব প্রক্রিয়ায় শীতল আধারে Q_2 তাপের বর্জন। চক্রটিকে সম্পূর্ণ করতে সংস্থাটিকে T_1 তাপমাত্রা থেকে T_2 তাপমাত্রায় একে T_2 তাপমাত্রা

থেকে T1 তাপমাত্রায় আনতে হবে। এক্ষেত্রে এমন কোন্ প্রক্রিয়াগুলো ব্যবহার করব যারা প্রত্যাবর্তক ? একটু ভাবলেই বোঝা যায় যে দুটি ক্ষেত্রেই আমরা শুধুমাত্র প্রত্যাবর্তক রুম্বতাপ প্রক্রিয়াই প্রয়োগ করতে পারি, যেখানে কোনো আধার থেকেই কোনোরুপ তাপপ্রবাহ ঘটবে না। সংস্থাটিকে এক তাপমাত্রা থেকে অন্য তাপমাত্রায় নিয়ে যেতে আমরা যদি রুদ্ধতাপ প্রক্রিয়া ব্যতীত অন্য কোনো প্রক্রিয়া, ধরা যাক, সমায়তনিক প্রক্রিয়া (isochoric process) প্রয়োগ করি তবে সেক্ষেত্রে প্রক্রিয়াটিকে প্রায় স্থির রাখতে T, থেকে T, তাপমাত্রার পাল্লায় আমাদের অনেকগুলো শ্রেণিবদ্ধ তাপ আধারের প্রয়োজন হবে। (লক্ষণীয় যে, কোনো প্রক্রিয়া প্রায় স্থির এবং প্রত্যাবর্তক হতে হলে সংস্থা ও তাপ আধারের তাপমাত্রার পার্থক্য অবশ্যই সসীম (finite) হবে না)। কিন্তু আমরা এমন এক প্রত্যাবর্তক ইঞ্জিন ধরে নিয়েছি যেটি শুধুমাত্র দুই ভিন্ন তাপমাত্রার মধ্যে কার্যকর। অতএব, এ ইঞ্জিনে সংস্থাটির তাপমাত্রাকে T_1 থেকে T_2 তে এবং পুনরায় T, থেকে T,-এ পরিবর্তন করতে অবশ্যই রুম্বতাপ প্রক্রিয়াকেই প্রয়োগ করতে হবে।

চিত্র 12.11 আদর্শ গ্যাসকে কার্যকর পদার্থরূপে ব্যবহার করা একটি ইঞ্জিনের কার্নো চক্র।

দুটি ভিন্ন তাপমাত্রার মধ্যে ক্রিয়াশীল একটি প্রত্যাবর্তক তাপ ইঞ্জিনকে কার্নো ইঞ্জিন বলে। আমরা যুক্তির সাহায্যে দেখিয়েছি যে এরুপ একটি ইঞ্জিনের একটি চক্র নিচের ধাপগুলোর ক্রমানুসারে সংগঠিত হয়। এরুপ চক্রকে, 12.11. চিত্রে যেমনটা দেখানো হয়েছে, কার্ণোচক্র বলে। আমরা, আদর্শ গ্যাসকে কার্ণো ইঞ্জিনের কার্যকরী উপাদানরূপে ধরে নিয়েছি।

(a) ধাপ 1→2 গ্যাসটিকে এর (P₁, V₁, T₁) অবস্থা থেকে (P₂, V₂, T₁) অবস্থায় নিয়ে যেতে গ্যাসের সমোষ্ল প্রসারণ।

 T_1 তাপমাত্রায় তাপ আধার থেকে গ্যাস কর্তৃক শোষিত তাপের পরিমাণ (Q_1), (12.12) সমীকরণের সাহায্যে দেওয়া যায়। এটি আবার গ্যাস কর্তৃক পরিবেশের উপর কৃতকার্য $(W_{1
ightarrow 2})$ এর সমান হয়।

$$W_{1 \to 2} = Q_1 = \mu R T_1 \ln \left(\frac{V_2}{V_1}\right)$$
 (12.23)

(b) ধাপ $2 \to 3$ গ্যাসটির (P_2, V_2, T_1) অবস্থা থেকে (P_3, V_3, T_2) অবস্থায় রুম্বতাপ প্রসারণ।

সমীকরণ (12.16) অনুসারে, এক্ষেত্রে গ্যাস কর্তৃক কৃতকার্য

$$W_{2\to3} = \frac{\mu R \left(T_1 - T_2\right)}{\gamma - 1}$$
(12.24)

(c) ধাপ 3 \rightarrow 4 গ্যাসটির (P_3, V_3, T_2) অবস্থা থেকে (P_4, V_4, T_2) অবস্থায় সমোষ্ণ সংকোচন।

T₂ তাপমাত্রায় গ্যাস কর্তৃক শীতল তাপ আধারে বর্জিত তাপ (Q₂), 12.12 সমীকরণ থেকে পাওয়া যায়। এটি পরিবেশ কর্তৃক গ্যাসের উপর কৃতকার্য (W_{3→4}) এর সমান।

$$W_{3\to4} = Q_2 = \mu R T_2 \ln\left(\frac{V_3}{V_4}\right)$$
 (12.25)

(d) Step 4 \rightarrow 1 গ্যাসটির (P_4, V_4, T_2) অবস্থা থেকে (P_1, V_1, T_1) অবস্থায় রুদ্ধতাপ সংকোচন।

(12.16) সমীকরণ অনুসারে এক্ষেত্রে গ্যাসের উপর কৃতকার্য

$$W_{4 \to 1} = \mu R \left(\frac{T_1 - T_2}{\gamma - 1} \right)$$
 (12.26)

(12.23) থেকে (12.26) সমীকরণ পর্যন্ত একটি পূর্ণ চক্রে গ্যাস কর্তৃক মোট কৃতকার্য

$$W = W_{1 \to 2} + W_{2 \to 3} - W_{3 \to 4} - W_{4 \to 1}$$
$$= \mu R T_1 \ln \left(\frac{V_2}{V_1}\right) - \mu R T_2 \ln \left(\frac{V_3}{V_4}\right) \quad (12.27)$$

কার্ণো ইঞ্জিনের দক্ষতা

$$\eta = \frac{W}{Q_1} = 1 - \frac{Q_2}{Q_1}$$
$$= 1 - \left(\frac{T_2}{T_1}\right) \frac{In\left(\frac{V_3}{V_4}\right)}{In\left(\frac{V_2}{V_1}\right)}$$
(12.28)

এখন, যেহেতু ধাপ 2 → 3 একটি রুদ্ধতাপ প্রক্রিয়া তাই

$$T_1 V_2^{\gamma - 1} = T_2 V_3^{\gamma - 1}$$

মর্থাৎ
$$\frac{V_2}{V_3} = \left(\frac{T_2}{T_1}\right)^{1/(\gamma-1)}$$
 (12.29)

অনুরূপভাবে, ধাপ 4 → 1 একটি রুদ্ধতাপ প্রক্রিয়া হওয়ায়,

$$T_2 V_4^{\gamma - 1} = T_1 V_1^{\gamma - 1}$$

$$aqvig \qquad \frac{V_1}{V_4} = \left(\frac{T_2}{T_1}\right)^{1/\gamma - 1}$$
(12.30)

(12.29) এবং (12.30) সমীকরণ থেকে পাওয়া যায়,

$$\frac{V_3}{V_4} = \frac{V_2}{V_1}$$
(12.31)

(12.31) এবং (12.28) সমীকরণ ব্যবহার করে পাওয়া যায়,

$$\eta = 1 - \frac{T_2}{T_1}$$
 (কার্নো ইঞ্জিন) (12.32)

আমরা ইতোমধ্যেই দেখেছি যে কার্নো ইঞ্জিন একটি প্রত্যাবর্তক ইঞ্জিন। প্রকৃতপক্ষে, কার্নো ইঞ্জিন একমাত্র সম্ভাব্য প্রত্যাবতর্ক ইঞ্জিন, যা বিভিন্ন উস্নতার দুটি তাপ আধারের মধ্যে কাজ করে। 12.11 চিত্রে দেখানো কার্ণোচক্রের প্রতিটি ধাপকে বিপরীতমুখী করা যায়। এর ফলে T_2 তাপমাত্রার শীতল আধার থেকে Q_2 তাপ গ্রহণ করে সংস্থাটির উপর *W* পরিমাণ কার্য করে এবং উত্তপ্ত আধারে Q_1 তাপ সরবরাহ করে। এটি একটি প্রত্যাবর্তক রেফ্রিজারেটর হবে।

পরবর্তীতে আমরা একটি গুরুত্বপূর্ণ তত্ত্ব প্রতিষ্ঠা করব (যাকে কার্নোর উপপাদ্যও বলা হয়) যা, (a) T_1 এবং T_2 তাপমাত্রায় থাকা দুটি যথাক্রমে উত্তপ্ত ও শীতল আধারের মধ্যে ক্রিয়াশীল। কোনো ইঞ্জিনের দক্ষতাই কার্নো ইঞ্জিনের দক্ষতার থেকে বেশি হতে পারে না, এবং (b) কার্নো ইঞ্জিনের দক্ষতা ব্যবহৃত কার্যকরী উপাদানের প্রকৃতি নিরপেক্ষ।

(a) ফলাফলকে প্রমাণ করার জন্য ধরা যাক, একটি প্রত্যাবর্তী (কার্নো) ইঞ্জিন *R* এবং একটি অপ্রত্যাবর্তী ইঞ্জিন *I* একই তাপ উৎস (উত্তপ্ত আধার) এবং সিঙ্কের (শীতল আধার) মধ্যে ক্রিয়াশীল। *I* এবং *R* ইঞ্জিন দুটির এমন জোড় তৈরি করা হল যেন *I* তাপ ইঞ্জিনের মত এবং *R* হিমায়ক (Refrigerator)-এর মতো আচরণ করে। ধরা যাক, *I* ইঞ্জিনটি উৎস থেকে *Q*₁ তাপ শোষণ করে *W'* পরিমাণ কার্য করে এবং (*Q*₁-*W'*) পরিমাণ তাপকে শীতল আধারে মুক্ত করে। আমরা এমন ব্যবস্থা করেছি যাতে করে *R* ইঞ্জিনটি সমপরিমাণ তাপ *Q*₁ উৎসকে ফেরত দিতে পারে এবং শীতল আধার থেকে *Q*₂ পরিমাণ তাপ নিয়ে এর উপর *W* = *Q*₁ – *Q*₂ পরিমাণ কার্য সম্পাদন করতে পারে। এখন ধরা যাক $\eta_{\rm R} < \eta_{\rm I}$ অর্থাৎ *R* যদি

দক্ষতা অপেক্ষা বেশি হতে পারে না। একই রকমের যুক্তির সাহায্যে দেখানো যেতে পারে যে, একটি নির্দিষ্ট উপাদান ব্যবহারকারী একটি প্রত্যাবর্তী ইঞ্জিন, অন্য একটি উপাদান ব্যবহারকারী ইঞ্জিনের দক্ষতা অপেক্ষা বেশি দক্ষতাসম্পন্ন হতে পারে না। 12.32 নং সমীকরণে দেয়া একটি কার্নো ইঞ্জিনের সর্বাধিক দক্ষতাটি কার্নোচক্রে সংঘটিত ধাপগুলো সম্পাদনকারী সংস্থাটির প্রকৃতির উপর নির্ভরশীল নয়। কাজেই, কার্নো ইঞ্জিনের দক্ষতা n গণনায় আমরা সঠিকভাবেই সংস্থারুপে আদর্শ গ্যাসকে ব্যবহার করেছি। আদর্শ গ্যাসের অবস্থার এক সরল সমীকরণ রয়েছে যার সাহায্যে সরাসরি n গণনা করার সুযোগ রয়েছে, কিন্তু n-এর চূড়ান্ত মান (সমীকরণ12.32 ব্যবহার করে) যে কোন কার্নো ইঞ্জিনের ক্ষেত্রেই সঠিক।

এই চূড়ান্ত বিবৃতি অনুযায়ী কার্নো চক্রটিতে,

$$\frac{Q_1}{Q_2} = \frac{T_1}{T_2}$$
(12.33)

হল একটি সার্বজনীন সম্পর্ক যা সংস্থার প্রকৃতির উপর নির্ভরশীল নয়। এখানে Q_1 এবং Q_2 হল যথাক্রমে কার্নো ইঞ্জিনে সমোয়ভাবে গৃহীত এবং বর্জিত তাপ (উত্তপ্ত আধার থেকে শীতল আধারে)। অতএব 12.33 নং সমীকরণটি একটি সত্যিকারের সর্বজনীন তাপগতীয় তাপমাত্রার স্কেলকে সংজ্ঞায়িত করার সম্পর্ক হিসেবে ব্যবহার করা যেতে পারে যা কার্নোর চক্রে ব্যবহৃত সংস্থাটির একটি নির্দিষ্ট ধর্মের উপর নির্ভরশীল নয়। কার্নো ইঞ্জিনের কার্যকরী উপাদান হিসাবে অবশ্যই আদর্শ গ্যাসের এই সর্বজনীন তাপমাত্রা 12.11 নং অনুচ্ছেদে উপস্থাপিত আদর্শ গ্যাস তাপমাত্রার সঞ্চো সামঞ্জস্য পূর্ণ।

সারাংশ

- তাপ গতিবিদ্যার শূন্যতম সূত্র সংক্রান্ত বিবৃতিটি হল 'দুটি সংস্থা যদি তৃতীয় একটি সংস্থার সঙ্গে তাপীয় সাম্যে থাকে তবে সংস্থা দুটির প্রত্যেকে পরস্পরের সঙ্গে তাপীয় সাম্যে থাকে, শূন্যতম সূত্রটি তাপমাত্রার ধারণার পথ প্রদর্শক।
- 2. একটি সংস্থার অভ্যন্তরীণ শক্তি হল সংস্থাটির আণবিক উপাদানগুলোর গতিশন্তি এবং স্থিতি শক্তির সমষ্টি। এটি সংস্থাটির সামগ্রিক গতিশন্তিকে অন্তর্ভুক্ত করে না। সংস্থাটিতে শন্তি সঞ্জালনের দুটি উপায় হল তাপ এবং কার্য। সংস্থাটি এবং পারিপার্শ্বিকের মধ্যে তাপমাত্রার পার্থক্যের দরুণ সঞ্জালিতে শন্তিই হল তাপ। কার্য হল অন্য উপায়ে আনা শন্তির সঞ্জালন, যেমন গ্যাসপূর্ণ একটি চোঙের চলনশীল একটি পিন্টনকে এর সঞ্জো যুক্ত কিছু ভারের সাহায্যে উপর-নীচ করানো।
- তাপ গতিবিদ্যার প্রথম সূত্রটি হল কোনো সংস্থায় প্রযুক্ত শক্তির সংরক্ষণের সাধারণ সূত্র, যেখানে শক্তি পারিপার্শ্বিক থেকে বা উহাতে (তাপ এবং কার্যের মাধ্যমে) সরবরাহিত হয়। বিবৃতিটি নিম্নরূপ—

$$\Delta Q = \Delta U + \Delta W$$

যেখানে ΔQ = সংস্থায় সরবরাহকৃত তাপ

 $\Delta W =$ সংস্থা কর্তৃক কৃতকার্য এবং

 $\Delta U =$ সংস্থাটির অভ্যন্তরীণ শক্তির পরিবর্তন।

চিত্র 12.12 একটি অপ্রত্যাবর্তী ইঞ্জিন (I) একটি প্রত্যাবর্তী হিমায়ক

অসঙ্গতিপূর্ণ।

(R) এর সঞ্চো যুক্ত হয়েছে। যদি W ' > W হয়, তবে এটি শীতল উৎস (sink) থেকে (W' – W)

পরিমাণ তাপ নিষ্কাশন করে একে সম্পুর্ণরূপে কার্যে

রুপান্তর করা, তাপগতিবিদ্যার দ্বিতীয় সুত্রের সঙ্গে

ইঞ্জিন রূপে কাজ করে তবে যে পরিমাণ কার্য করবে তার মান I

দ্বারা কৃতকার্য অপেক্ষা কম হয় অর্থাৎ প্রদত্ত Q_1 এর জন্য $W{<}W'$ ।

R হিমায়করুপে কাজ করার অর্থ হল $Q_2 = Q_1 - W > Q_1 - W'$ ।

সামগ্রিকভাবে I-R যুগ্ম সংস্থাটি উৎস বা অন্য কোনো জায়গায়

কিছু পরিবর্তন না করেই শীতল আধার থেকে $(Q_1 - W) - (Q_1)$

— W') = (W' – W) পরিমাণ তাপ নিষ্কাশন করে এবং একটি

চক্রে সমপরিমাণ কার্য মুক্তু করে। স্পম্টভাবে এটি তাপগতিবিদ্যার

দ্বিতীয় সূত্র সম্পর্কিত কেলভিন-প্ল্যাঙ্কের বিবৃতিটির বিপরীত। সুতরাং

 $\eta_{
m I}>\eta_{
m R}$ বিবৃতিটি ভুল। কোনো ইঞ্জিনের দক্ষতা কার্নো ইঞ্জিনের

4. একটি পদার্থের আপেক্ষিক তাপ ধারকত্বকে নিম্নরূপে সংজ্ঞায়িত করা হয়,

$$s = \frac{1}{m} \frac{\Delta Q}{\Delta T}$$

যেখানে m = পদার্থটি ভর

এবং ΔQ = এর তাপমাত্রা ΔT পরিবর্তন করতে প্রয়োজনীয় তাপ। একটি পদার্থের মোলার আপেক্ষিক তাপ ধারকত্বকে নিম্নরূপে সংজ্ঞায়িত করা হয়,

$$C = \frac{1}{\mu} \frac{\Delta Q}{\Delta T}$$

যেখানে μ = পদার্থটির মোল সংখ্যা। একটি কঠিনের জন্য, শক্তির সমবিভাজন নীতি অনুসারে C=3 R যা সাধারণ উন্নতায় পরীক্ষার সঙ্গো সংগতিপূর্ণ। তাপের প্রাচীন একক ক্যালরি। এক গ্রাম জলের তাপমাত্রা 14.5 °C থেকে 15.5 °C পর্যন্ত বৃদ্ধি করতে প্রয়োজনীয় তাপ হল 1 ক্যালরি।

$$1 \text{ cal} = 4.186 \text{ J}.$$

- একটি আদর্শ গ্যাসের জন্য, স্থির চাপ এবং আয়তনে মোলার আপেক্ষিক তাপ ধারকত্বগুলোর মধ্যে C_p C_v = R সম্পর্কটি মান্য হয়। যেখানে R হল সর্বজনীন গ্যাস ধ্রুবক।
- 6. একটি তাপগতীয় সংস্থার সাম্য অবস্থা সমূহ অবস্থা চলরাশিগুলো (state variable) দ্বারা বর্ণনা করা হয়। একটি অবস্থা চলরাশির মান কেবল নির্দিন্ট অবস্থার উপর নির্ভর করে, ঐ অবস্থায় পৌঁছতে যে পথ ব্যবহৃত হয়েছে তার উপর নয়। অবস্থা চলরাশির উদাহরণগুলো হল চাপ (P), আয়তন (V), তাপমাত্রা (T), এবং ভর (m), তাপ এবং কার্য অবস্থা চলরাশি নয়। অবস্থার একটি সমীকরণ (আদর্শ গ্যাসের সমীকরণ PV = μRT এর মত) হল বিভিন্ন অবস্থা চলরাশিগুলোর সংযুদ্তি সম্পর্কিত।
- 7. প্রায় স্থির প্রক্রিয়াটি এমন এক অতীব ধীর প্রক্রিয়া (infinitely slow process) যে সংস্থাটি সর্বাংশে পারিপার্শ্বিকের সঙ্গে তাপীয় এবং যান্ত্রিক সাম্যে থাকে। প্রায় স্থির একটি প্রক্রিয়ায় পারিপার্শ্বিকের চাপ এবং তাপমাত্রা ওইসব সংস্থা থেকে কেবলমাত্র অতীব ক্ষুদ্র পার্থক্যে থাকতে পারে।
- 8. একটি আদর্শ গ্যাসের T তাপমাত্রায় আয়তন V_1 থেকে V_2 সমোষ্ণ প্রসারণে শোষিত তাপ, গ্যাস কর্তৃক কৃতকার্যের সমান এবং প্রতি ক্ষেত্রেই

$$Q = W = \mu R T \ln \left(\frac{V_2}{V_1}\right)$$

যেখানে
$$\gamma = \frac{C_p}{C_v}$$

(P1, V1, T1) থেকে (P2, V2, T2) পর্যন্ত অবস্থার রুম্বতাপ পরিবর্তনে, একটি আদর্শ গ্যাস কর্তৃক কৃতকার্য

$$W = \frac{\mu R \left(T_1 - T_2\right)}{\gamma - 1}$$

10. তাপ ইঞ্জিন একটি যন্ত্র যেখানে একটি সংস্থা একটি চক্রীয় (cyclic) প্রক্রিয়ার মাধ্যমে তাপকে কার্যে রূপান্তরিত করে। যদি উৎস থেকে শোষিত তাপ Q_1 , শীতল আধারে বর্জিত তাপ Q_2 এবং পূর্ণ চক্রটিতে সম্পাদিত কার্য W হয়, তবে ইঞ্জিনের কর্ম দক্ষতা

$$\eta = \frac{W}{Q_1} = 1 - \frac{Q_2}{Q_1}$$

11. একটি রেফ্রিজারেটরে বা একটি তাপ পাম্পে, সংস্থাটি ঠাণ্ডা আধার থেকে Q_2 তাপ নিষ্কাশন করে এবং তপ্ত আধারে

 Q_1 তাপ মুক্ত করে এবং সংস্থাটির উপর W কার্য সম্পাদন করে। রেফ্রিজারেটারটির দক্ষতা গুণাঙ্ককে (co-efficient of performance) লেখা হয়

$$\alpha = \frac{Q_2}{W} = \frac{Q_2}{Q_1 - Q_2}$$

12. তাপগতীয় বিদ্যার প্রথম সূত্রের সঙ্গে সংগতিপূর্ণ কিছু প্রক্রিয়াকে, তাপগতীয় বিদ্যার দ্বিতীয় সূত্র অনুমোদন দেয় না। কেলভিন-প্লাঙ্জের বিবৃতি—

এমন কোন প্রক্রিয়াই সম্ভব নয় যার একমাত্র লক্ষ্য হল একটি উৎস থেকে তাপ শোষণ এবং তাপকে সম্পূর্ণরূপে কার্যে রূপান্তরিত করা।

ক্লসিয়াসের বিবৃতি—

এমন কোনো প্রক্রিয়াই সম্ভব নয় যার একমাত্র লক্ষ্য হল একটি শীতল বস্তু থেকে উন্ন বস্তুতে তাপ সঞ্চালিত করা। সহজভাবে বললে, দ্বিতীয় সূত্রটি বোঝায় যে, কোনো তাপীয় ইঞ্জিনের কর্ম দক্ষতা $\eta=1$ হতে পারে না অথবা কোনো রেফ্রিজারেটারেই কর্মদক্ষতা গুণাঙ্ক α , অসীম মানের হতে পারে না।

- 13. বিশ্বব্রত্মান্ডের অন্য কোথাও কোনোরূপ পরিবর্তন ছাড়াই যদি কোনো একটি প্রক্রিয়া এমনভাবে প্রত্যাবর্তী হয় যেন সংস্থা ও পারিপার্শ্বিক উভয়েই তাদের মূল অবস্থায় ফিরে যায় তবে ঐ প্রক্রিয়াটি একটি প্রত্যাবর্তী প্রক্রিয়া। প্রকৃতির স্বতঃস্ফৃর্ত প্রক্রিয়াগুলো অপ্রত্যাবর্তক। আদর্শায়িত প্রত্যাবর্তক প্রক্রিয়া, অপচয়়কারী গুণক যেমন ঘর্ষণ, সান্দ্রতা প্রভৃতি ছাড়া, একটি প্রায়-স্থির প্রক্রিয়া।
- 14. কার্নো ইঞ্জিন দুটি উন্নতা T_1 (উৎস) এবং T_2 (শীতল আধার) এর মধ্যে ক্রিয়াশীল একটি প্রত্যাবর্তক ইঞ্জিন। কার্নো ইঞ্জিনটি দুটি রুম্বতাপ প্রক্রিয়া ও তাদের সংযোগকারী দুটি সমোম্ন প্রক্রিয়ার সমন্বয়ে গঠিত। একটি কার্নো ইঞ্জিনের কর্মদক্ষতা

$$\eta = 1 - \frac{T_2}{T_1}$$

(কার্নো ইঞ্জিন)

দুটি উন্নতার মধ্যে ক্রিয়াশীল কোনো ইঞ্জিনেরই কর্মদক্ষতা কার্নো ইঞ্জিন অপেক্ষা বেশি থাকতে পারে না।

15. যদি $\mathrm{Q}>0$ হয়, তবে সংস্থাটিতে তাপ সরবরাহিত হয়।

যদি $\mathrm{Q}>0$ হয়, তবে সংস্থাটি থেকে তাপ অপসারিত হয়।

যদি $\mathrm{W}>0$ হয়, তবে সংস্থাটি কর্তৃক কার্য সম্পাদিত হয়।

যদি $\mathrm{W} < 0$ হয়, তবে সংস্থাটির উপর কার্য সম্পাদিত হয়।

রাশি	প্রতীক	মাত্রা	একক	মন্তব্য
আয়তন প্রসারণ গুণাঞ্চ	$lpha_{\rm v}$	[K ⁻¹]	K ⁻¹	$\alpha_v = 3 \alpha_1$
একটি সংস্থার সরবরাহিত তাপ	ΔQ	[ML ² T ⁻²]	J	<i>Q</i> একটি অবস্থা চলরাশি নয়
আপেক্ষিক তাপ	S	$[L^2T^{-2}K^{-1}]$	$J kg^{-1} K^{-1}$	
তাপ পরিবাহিতাজ্ঞ	Κ	[MLT ⁻³ K ⁻¹]	J s ⁻¹ K ⁻¹	$H = -KA \frac{dT}{dx}$

ভেবে দেখার বিষয় সমূহ

- 1. একটি বস্তুর তাপমাত্রা এর গড় অন্তঃশস্তির সাথে সম্পর্ক যুক্ত, ইহার ভরকেন্দ্রের গতিশস্তির সাথে নয়। একটি বন্দুক থেকে নিক্ষিপ্ত বুলেটের উচ্চ দুতির জন্য এর তাপমাত্রা উচ্চতর হয় না।
- 2. তাপগতিবিদ্যায় সাম্যাবস্থা সেই পরিস্থিতিটিকে নির্দেশ করে যখন সংস্থাটির তাপগতীয় অবস্থার বিবরণকারী পরিবীক্ষণিক চলরাশিগুলো সময়ের উপর নির্ভর করে না। বলবিদ্যায় একটি সংস্থার সাম্যাবস্থা বুঝায় যে সংস্থাটির উপর মোট বাহ্যিক বল ও টর্ক শূন্য।
- 3. তাপগতিয় সাম্যাবস্থায় একটি সংস্থার আণুবীক্ষণিক উপাদানগুলো সাম্যাবস্থায় থাকে না (বলবিদ্যার ধারণা অনুযায়ী)।
- 4. সাধারণত তাপধারকত্ব, তাপসরবরাহের মাধ্যমে সংস্থাটি যে প্রতিক্রিয়ার মধ্য দিয়ে যায় তার উপর নির্ভর করে।
- 5. প্রায়-স্থির সমোষ্ণ প্রক্রিয়াগুলোতে, সংস্থাটি দ্বারা তাপ শোষিত অথবা বর্জিত হয় যদিও প্রতিটি ধাপেই গ্যাসটি উহার পারিপার্শ্বিক আধারের সাথে একই তাপমাত্রায় থাকে। সংস্থাটি এবং ইহার আধারের মধ্যে অতিক্ষুদ্র তাপমাত্রার পার্থক্য থাকায়, এটি সম্ভব হয়।

অনুশীলনী

- 12.1 একটি গিজার 3.0 লিটার প্রতি মিনিট হারে প্রবাহিত জলকে 27 °C হতে 77 °C তাপমাত্রায় উত্তপ্ত করে। এই গিজারটি যদি একটি গ্যাস বার্নারের উপর কাজ করে তবে জ্বালানি ব্যবহারের হার কত হবে যদি ইহার দহনে তাপ 4.0 × 10⁴ J/g ?
- 12.2 (ঘরের তাপমাত্রায়) স্থির চাপে 2.0 × 10⁻² kg ভরের নাইট্রোজেনের তাপমাত্রা 45 °C বৃদ্ধি করতে কী পরিমাণ তাপ সরবরাহ করতে হবে ? (নাইট্রোজেনের আণবিক ভর = 28; R = 8.3 J mol⁻¹ K⁻¹.)
- 12.3 ব্যাখ্যা করো কেন-
 - (a) T_1 এবং T_2 তাপমাত্রায় থাকা দুটি বস্তুকে তাপীয় সংস্পর্শে আনলে প্রয়োজনীয়ভাবে $(T_1 + T_2)/2$ গড় তাপমাত্রা লাভ নাও করতে পারে।
 - (b) রাসায়নিক অথবা নিউক্লিয়ার প্লেন্টে শীতলীকারকটির (coolant) (অর্থাৎ প্লেন্টটির বিভিন্ন অংশগুলো অধিক উত্তপ্ত না হওয়ার জন্য ব্যবহৃত তরলটি) উচ্চ আপেক্ষিক তাপ হওয়া উচিত।
 - (c) গাড়ি চালাবার সময় চাকার টায়ারটিতে বায়ুর চাপ বৃদ্ধি পায়।
 - (d) একই অক্ষাংশে থাকা একটি মরুভূমির নগরীর চেয়ে একটি বন্দর নগরীর আবহাওয়া অধিক উত্তপ্ত হয়।
- 12.4 গতিশীল পিস্টন যুক্ত একটি চোঙে প্রমাণ তাপমাত্রা এবং চাপে 3 মোল হাইড্রোজেন রয়েছে। চোঙটির দেওয়া তাপীয় অন্তরক পদার্থ দ্বারা তৈরি এবং পিস্টনটি তার উপর রাখা বালিস্তম্ভ দ্বারা অন্তরিত। গ্যাসটিকে উহার প্রাথমিক আয়তনের অর্ধেক সংকুচিত করানো হলে গ্যাসটি চাপের কত ভগ্নাংশ বৃদ্ধি পাবে ?
- 12.5 সাম্যাবস্থা A হতে অপর একটি সাম্যাবস্থা B তে রুম্বতাপীয়ভাবে একটি গ্যাসের অবস্থার পরিবর্তন করানো হলে সংস্থাটির উপর 22.3 J কার্য করা হয়। যদি গ্যাসটিকে এমন একটি প্রক্রিয়ার মধ্য দিয়ে A অবস্থা হতে B অবস্থাতে নিয়ে যাওয়া হয় যেখানে সংস্থা দ্বারা শোষিত তাপ 9.35 cal, তবে সেক্ষেত্রে সংস্থা দ্বারা মোটকৃত কার্যের পরিমাণ কত হবে ? (ধরো 1 cal = 4.19 J)
- 12.6 সমান ধারকত্ব বিশিষ্ট দুটি চোঙ A এবং B পরস্পরের সঙ্গো একটি স্টপকক দ্বারা যুক্ত। প্রমাণ চাপ ও তাপমাত্রায় একটি গ্যাস A তে রয়েছে। B সম্পূর্ণভাবে খালি। সম্পূর্ণ সংস্থাটি তাপীয়ভাবে অন্তরিত থাকে। এখন প্যাচকলটি (stopcock) চালু করা হল। নিম্নলিখিতগুলোর উত্তর লেখো :
 - (a) A এবং B তে অবস্থিত গ্যাসের চূড়ান্ত চাপটি কত হবে?

- (b) গ্যাসটির অভ্যন্তরীণ শক্তির পরিবর্তন কত?
- (c) গ্যাসটির তাপমাত্রার পরিবর্তন কত হবে?
- (d) P-V-T তলে অবস্থানরত সংস্থাটির (চূড়ান্ত সাম্যাবস্থা উপস্থিত হওয়ার পূর্বে) অন্তর্বর্তী অবস্থা থাকবে কি ?
- 12.7
 একটি বাষ্প ইঞ্জিন প্রতি মিনিটে 5.4×10⁸J হারে কার্য সরবরাহিত করে এবং এর বয়লার থেকে প্রতি মিনিটে 3.6×10⁹J তাপ বের করে। ইঞ্জিনটির দক্ষতা কত হবে ? প্রতি মিনিটে কত তাপের অপচয় হবে ?
- 12.8 একটি বৈদ্যুতিক হিটার একটি সংস্থাকে 100W হারে তাপ সরবরাহ করে। সংস্থাটি প্রতি সেকেন্ডে 75 J কার্য করে। এক্ষেত্রে অন্তঃশক্তির বৃদ্ধির হারটি কত হবে ?
- 12.9 একটি তাপগতীয় সংস্থাকে মূল অবস্থা D হতে একটি অন্তর্বর্তী অবস্থা E তে সরল রৈখিক প্রক্রিয়া দ্বারা নিয়ে যাওয়া হল যা (12.13) নং চিত্রে দেখানো হল।

চিত্র 12.13

একটি সমচাপ প্রক্রিয়ার দ্বারা এর আয়তন E থেকে F পর্যন্ত নিয়ে গিয়ে মূল মান পর্যন্ত কমিয়ে দেওয়া হল। D হতে E হয়ে F এ যেতে গ্যাসটির দ্বারা কৃতকার্য গণনা করো।

12.10 একটি রেফ্রিজারেটরের ভেতরে খাবার রাখলে তাতে 9⁰C তাপমাত্রা বজায় থাকে। যদি ঘরের তাপমাত্রা 36⁰C হয় তবে ইহার দক্ষতা গুণাঙ্ক গণনা কর।

অধ্যায় : ত্রয়োদশ

গতীয় তত্ত্ব (KINETIC THEORY)

13.1 ভূমিকা (Introduction)

1661 সালে বয়েল এক সূত্র আবিষ্কার করেন, যা তাঁর নাম অনুসারে বয়েলের সূত্র বলে পরিচিত। বয়েল, নিউটন এবং আরও অন্যান্য বিজ্ঞানীরা গ্যাসকে সূক্ষ্ম পারমাণবিক কণার দ্বারা গঠিত ধরে নিয়ে গ্যাসের ধর্মগুলো ব্যাখ্যা করার চেন্টা করেন। প্রকৃত পারমাণবিক তত্ত্ব এর প্রায় 150 বছর পর প্রতিষ্ঠিত হয়েছিল। গ্যাসের গতিতত্ত্ব, গ্যাস তীর গতিসম্পন্ন পরমাণু অথবা অণু দ্বারা গঠিত এ ধারণার উপর ভিত্তি করেই গ্যাসের ধর্ম ব্যাখ্যা করে। আন্তঃপারমাণবিক বল যা স্বল্প দৈর্ঘ্যের বল বলেও পরিচিত তা কঠিন এবং তরলের ক্ষেত্রে গুরুত্বপূর্ণ ভূমিকা পালন করলেও গ্যাসের ক্ষেত্রে উপেক্ষণীয় বলেই এটি সম্ভব হয়েছে। উনবিংশ শতাব্দীতে ম্যাক্সওয়েল, বোলৎজ্ম্যান এবং অন্যান্য বিজ্ঞানীদের দ্বারা গতীয় তত্ত্ব বিকশিত হয়েছিল। এটি অসাধারণভাবে সফল হয়েছিল। এটি গ্যাসের চাপ ও তাপের আণবিক ব্যাখ্যা দেয় এবং অ্যাডোগাড্রো প্রকল্প এবং গ্যাস সূত্রের সঞ্চো সঙ্গতিপূর্ণ। এটি বিভিন্ন গ্যাসের আপেক্ষিক তাপ ধারকত্বের সঠিকভাবে ব্যাখ্যা দেয়। গ্যাসের সান্দ্রতা, পরিবাহিতা এবং ব্যাপনের মতো পরিমাপযোগ্য বৈশিষ্ট্যগুলোকে আণবিক প্রচলের সাথে সম্পর্ক স্থাপন করে এবং আণবিক ভর ও আকারে পরিমাপ সম্ভব করে। এ অধ্যায়ে গতীয় তত্ত্বের প্রারম্ভিক জ্ঞান দেওয়া হয়েছে।

13.2 পদার্থের আণবিক প্রকৃতি (Molecular Nature of Matter)

বিংশ শতাব্দীর একজন মহান পদার্থবিদ রিচার্ড ফিনম্যান— "পদার্থ পরমাণু দিয়ে গঠিত" এই আবিষ্কারটি বিবেচনা করেন যা এক অতি গুরুত্বপূর্ণ বিষয় । আমরা যদি বিচক্ষণতার সাথে আচরণ না করি তবে মানবসভ্যতার ধ্বংস (পারমাণবিক বিপর্যয়ের কারণে) অথবা বিলোপ (পরিবেশগত বিপর্যয়ের কারণে) ঘটতে পারে । যদি এরকম ঘটে যে, সমস্ত বৈজ্ঞানিক জ্ঞান ধ্বংস হয়ে গেল, তাহলে ফিনম্যান চাইবেন বিশ্বের পরবর্তী প্রজন্মের সৃষ্টিকারীদের কাছে 'পারমাণবিক প্রকল্প'-টিকে পৌঁছে দিতে । পারমাণবিক প্রকল্প : "সমস্ত পদার্থ পরমাণু দিয়ে তৈরি", পরমাণু অতি ক্ষুদ্র পদার্থকণা যা অবিরাম গতিশীল, ক্ষুদ্র দূরত্বের ব্যবধানে থাকলে এরা পরস্পরকে আকর্ষণ করে কিন্তু এরা পরস্পর সংকৃচিত হলে (squeezed) বিকর্ষণ করতে শুরু করে ।

ভাবা হয় যে, পদার্থ নিরবচ্ছিন্ন নাও হতে পারে, বিভিন্ন স্থানে এবং বৈচিত্র্যপূর্ণভাবে অবস্থান করতে পারে। ভারতের কণাদ এবং গ্রিসের ডেমোক্রিটাস প্রস্তাব করেছিলেন যে, পদার্থ অবিভাজ্য কণা দিয়ে তৈরি। সাধারণত বিজ্ঞানসন্মত 'পারমাণবিক তত্ত্ব'

13.1 ভূমিকা

- 13.2 পদার্থের আণবিক প্রকৃতি
- 13.3 গ্যাসের আচরণ
- 13.4 আদর্শ গ্যাসের গতীয় তত্ত্ব
- 13.5 শক্তির সমবিভাজন নীতি
- 13.6 আপেক্ষিক তাপ ধারকত্ব
- 13.7 গড় মুক্ত পথ

সংক্ষিপ্তসার ভেবে দেখার বিষয়সমূহ অনুশীলনী অতিরিক্ত অনুশীলনী

প্রাচীন ভারত এবং গ্রিসে পারমাণবিক প্রকল্প (Atomic Hypothesis in Ancient India and Greece)

আধুনিক বিজ্ঞানে যদিও পারমাণবিক দৃষ্টিকোণের সাথে পরিচয় ঘটানোর কৃতিত্ব জন ডালটনকে দেওয়া হয়, কিন্তু প্রাচীন ভারতীয় এবং গ্রিসের পশ্চিতগণ বহু পূর্বেই অণু এবং পরমাণুর অস্তিত্বের কথা অনুমান করেছিলেন। ভারতে ভৈসেশিক দর্শন বিদ্যালয়ে, যার প্রতিষ্ঠাতা ছিলেন কণাদ (খ্রিস্টপূর্বাব্দ যষ্ঠ শতাব্দী) পারমাণবিক চিত্র বেশ বিস্তারিতভাবে বিকশিত হয়েছিল। পরমাণুকে শাশ্বত, অবিভাজ্য, বস্তুর অতিক্ষুদ্র এবং চূড়াস্ত মৌলিক অংশ বলে মনেকরা হত। এটি নিয়েও বিতর্ক হয়েছিল যে পদার্থকে বিভাজন করার প্রক্রিয়ার কোনো শেষ না থাকে তাহলে একটি শস্যদানা এবং মেরু পর্বতমালার মধ্যে কোনো পার্থক্য থাকবে না। চার ধরনের পরমাণুর [Paramanu (পরমাণু-সংস্কৃত শব্দে সূক্ষ্মতম কণাকে পরমাণু বলে)] কথা কল্পনা করা হয়েছিল যেগুলোর গুণগত ভর এবং অন্যান্য বৈশিষ্ট্যগুলো হল যথা– ভূমি (Earth), অপ (water), তেজ (fire) এবং বায়ু (air)। ভাবা হয়েছিল যে আকাশের কোনো পারমাণবিক গঠন নেই এবং এটি নিরবিচ্ছিন্ন এবং নিশ্চল। পরমাণুর সংযোগে বিভিন্ন অণু তৈরি হয়। [উদাহরণস্বরূপ, দুটি পরমাণুর সংযোগে দ্বিপরমাণুক অণু বা দ্বাণুকা, তিনটি পরমাণুর সংযোগে ত্রিপরমাণুক অণু বা ট্র্যানুকা (tryanuka) তৈরি হয়], এগুলোর ধর্ম অণুর উপাদানগুলোর প্রক্রি মাধ্যমে পরমাণুর আকারের হিসাব। গৌতম বুন্দের জীবনীমূলক বিখ্যাত বই 'ললিতা করা হয়েছিল ভিসতারা' যা মূলত খ্রিস্টপূর্ব দ্বিতীয় শতকে লেখা হয়েছিল, সেখানে পরমাণুর আকারের হিসাবের সঙ্গে আধুনিক হিসাব খুব কাছাকাছি হয় এবং মানটি হল 10⁻¹⁰ m মিটার।

প্রাচীন গ্রিসে ডেমোর্ক্রিটাস তাঁর পারমাণবিক প্রকল্পের জন্য (খ্রিস্টপূর্ব চতুর্থ শতকে) বিখ্যাত ছিলেন। গ্রিকে ''অ্যাটম'' শব্দটির অর্থ হল অবিভাজ্য। তাঁর মতে পরমাণু আকার, আকৃতি এবং অন্যান্য ভৌত ধর্মের ভিত্তিতে একটি অন্যটি থেকে আলাদা ফলে এগুলোর সমন্বয়ে গঠিত বিভিন্ন পদার্থের মধ্যে ধর্মের পার্থক্য হয়। জলের পরমাণুগুলো মসৃণ এব গোলাকার এবং একে অপরের সঙ্গো আটকে থাকতে পারে না বলে জল এবং তরল সহজেই প্রবাহিত হয়। মাটির (earth) পরমাণুগুলো অমসৃণ এবং গোঁজ কাটা হওয়ায় এগুলো একসঙ্গো থেকে কঠিন পদার্থ গঠন করে। আগুনের পরমাণুগুলো তীক্ষ্ণ (thorny) যে কারণে এগুলো যন্ত্রণাদায়ক দহন ঘটায়। এ চিন্তাকর্যক ধারণাগুলোর উদ্ভাবনী দক্ষতা থাকা সত্ত্বেও এগুলো অধিক মাত্রায় প্রকাশ পায়নি, কারণ সেগুলো স্বজ্ঞাত অনুমান ছিল এবং অনুমানগুলো পরিমাণগত পরীক্ষা দ্বারা প্রমাণিত এবং সংশোধন করা হয়নি– যা আধুনিক বিজ্ঞানের প্রমাণ চিহ্ন (hallmark)।

(Atomic Theory) জন ডালটনের অবদানর্পে স্বীকৃত মৌলের সংযোজনের ফলে যৌগ গঠনের সম স্থিরানুপাত এবং গুণানুপাত সূত্র মেনে চলে— এটি ব্যাখ্যা করার জন্য জন ডালটন পারমাণবিক তত্ত্বের প্রস্তাব করেন। প্রথম সূত্রানুসারে, যে-কোনো প্রদন্ত যৌগের উপাদান মৌলগুলোর ভরের অনুপাত স্থির থাকে। দ্বিতীয় সূত্রানুসারে, যখন দুটো মৌলের সংযোগে একের বেশি যৌগ তৈরি হয়, একটি মৌলের স্থির ভরের সঞ্চো অন্যান্য মৌলগুলোর ভর ক্ষুদ্র পূর্ণ সংখ্যার অনুপাতে থাকে।

সূত্রগুলো ব্যাখ্যা করার জন্য ডালটন 200 বছর পূর্বে প্রস্তাব করেছিলেন যে, মৌলের ক্ষুদ্রতম উপাদান হল পরমাণু। একই মৌলের পরমাণুগুলো একই রকম কিন্তু ভিন্ন মৌলের পরমাণুগুলো বিভিন্ন হয়। প্রতিটি মৌলের অল্প সংখ্যক পরমাণু সংযোগে যৌগটির অণু গঠিত হয়। উনিশ শতকের শুরুতে দেওয়া গে লুসাকের সূত্রের বিবৃতিটি হল : গ্যাসের অণুগুলো রাসায়নিকভাবে সংযুক্ত হয়ে নতুন গ্যাস তৈরির সময় সেগুলোর আয়তন পূর্ণসংখ্যার অনুপাতে থাকে। অ্যাভোগাড্রোর সূত্রের (বা প্রকল্পের) বিবৃতি : একই চাপ ও উস্নতায় সম আয়তন সব গ্যাসে সমান সংখ্যক অনু থাকে। অ্যাভোগাড্রোর সূত্র ডালটনের তত্ত্বের সংযোগে গে লুসাকের সূত্রের ব্যাখ্যা করে। যেহেতু গ্যাসের উপাদানগুলো প্রায়ই অণুরূপে থাকে, ডালটনের পারমাণবিক তত্ত্বকে পদার্থের আণবিক তত্ত্ব হিসাবেও বিবেচনা করা যেতে পারে। এই তত্ত্ব এখন বিজ্ঞানীদের দ্বারা সাদরে গৃহীত। কিন্ডু উনবিংশ শতাব্দীর শেষেও অনেক বিখ্যাত বিজ্ঞানী ছিলেন যারা পারমাণবিক তত্ত্বকে বিশ্বাস করতেন না!

সাম্প্রতিক সময়ে বিভিন্ন পর্যবেক্ষণ থেকে আমরা জানি যে অণু সমূহই (এক বা একাধিক পরমাণুর সমন্বয়ে গঠিত হয়) পদার্থ গঠন করে। এমনকি ইলেকট্রন মাইক্রোস্কোপ (Electron microscope) এবং স্ক্যানিং টানেলিং মাইক্রোস্কোপের (scanning tunnelling microscope) সাহায্যে আমরা এগুলোকে (পরমাণু) দেখতে পারি। একটি পরমাণুর আকার প্রায় এক অ্যাংস্ট্রমের (10⁻¹⁰ m) সমান। কঠিনে, পরমাণুগুলো শন্তুভাবে আবন্ধ থাকে, এবং একে অপর থেকে প্রায় কিছু অ্যাংস্ট্রম (2 Å) দূরে থাকে। তরলের দুটো পরমাণুর মধ্যে দূরত্ব প্রায় একই থাকে। তরলে পরমাণুগুলো কঠিনের মতো দৃঢ়ভাবে আবদ্ধ থাকে না এবং ইতস্তত ঘুরতে থাকে। এই কারণে তরল প্রবাহিত হতে সক্ষম। গ্যাসে আন্তঃপারমাণবিক দূরত্ব এক অ্যাংস্ট্রমের দশগুণ। একটি অণু সংঘর্ষ ছাড়া যে গড় দূরত্ব অতিক্রম করে তাকে বলে গড় মুক্তপথ (mean free path)। গ্যাসের ক্ষেত্রে গড় মুক্তপথ এক অ্যাংস্ট্রমের হাজার গুণ হয়। গ্যাসের পরমাণুগুলো অনেক বেশি (freer) স্বাধীন এবং কোনোরুপ ধার্কা বা সংঘর্ষ ছাড়াই দীর্ঘ দুরত্ব অতিক্রম করতে পারে। গ্যাস যদি আবদ্ধ না থাকে তাহলে গ্যাস চারদিকে ছড়িয়ে পড়ে। কঠিন এবং তরলের পরমাণুগুলোর নৈকট্যতার জন্য আন্তঃপারমাণবিক বলটি গুরুত্বপূর্ণ। বলটি দীর্ঘ পরিসরে আকর্ষণধর্মী এবং স্বল্প পরিসরে বিকর্ষণধর্মী হয়।
পরমাণুগুলো কয়েক অ্যাংস্ট্রম দূরে থেকে পরস্পরকে আকর্ষণ করে কিন্তু অধিকতর নিকটবর্তী হলে পরস্পরকে বিকর্ষণ করে। গ্যাসের স্থির অবস্থা বিভ্রান্তিকর। গ্যাস সম্পূর্ণ সক্রিয় এবং এর সাম্যাবস্থা চিরগতিশীল। চিরগতিশীল সাম্যাবস্থা অণুগুলোর সংঘর্ষ ঘটে এবং সংঘর্ষের সময় তাদের দ্রুতির পরিবর্তন ঘটে। শুধু গড় বৈশিষ্ট্যগুলো স্থির থাকে।

পারমাণবিক তত্ত্ব আমাদের অনুসম্বানের (quest) শেষ নয়, বরং শুরু। এখন আমরা জানি যে, পরমাণু মৌলিক বা অবিভাজ্য নয়। পরমাণু নিউক্রিয়াস এবং ইলেকট্রন নিয়ে গঠিত। নিউক্রিয়াস নিজেই প্রোটন এবং নিউট্রন দিয়ে গঠিত। প্রোটন নিউট্রন তৈরি আবার কোয়ার্ক দিয়ে। এমনকি কোয়ার্কই গল্পের শেষ নয়। সেখানে তন্তুর (string) মতো প্রাথমিক সন্তা রয়েছে। প্রকৃতি সর্বদাই আমাদের জন্য চমক রাখে, কিন্ডু সত্যের অনুসন্ধান প্রায়ই আনন্দদায়ক এবং আবিষ্কারগুলো হয় সুন্দর। এ অধ্যায়ে আমরা গ্যাসের এবং কঠিনের সামান্য পরিমাণে এক ঝাঁক গতিশীল অণুর অবিশ্রাম গতি হিসাবে গ্যাসের বৈশিন্ট্যাবলি বোঝার মধ্যে আমাদের সীমাবন্দ্ব রাখব।

13.3 গ্যাসের আচরণ (Behaviour of Gases)

কঠিন এবং তরলের চেয়ে গ্যাসের ধর্মগুলো বুঝতে সুবিধাজনন। এর প্রধান কারণ হল— গ্যাসে অণুগুলো পরস্পর থেকে দূরে থাকে এবং দুটো অণুর মধ্যে সংঘর্ষ ব্যতীত এদের পারস্পরিক অন্তঃক্রিয়া (interactions) নগণ্য হয়। যে চাপ ও উয়তায় গ্যাস তরলীভূত হয় (বা কঠিনে পরিণত হয়) তার চেয়ে নিম্নচাপ এবং উচ্চ উয়তায় প্রদন্ত নমুনার একটি গ্যাসের ক্ষেত্রে চাপ, উয়তা এবং আয়তনের মধ্যে আনুমানিকভাবে একটি সরল সম্পর্ক বিদ্যামান (একাদশ অধ্যায় দ্রুফ্টব্য) যা নিম্নরূপ :

$$PV = KT$$

যেখানে *T* হল কেলভিন স্কেলে (অথবা পরম স্কেলে) উন্নতা। *K* হল প্রদন্ত নমুনার জন্য ধ্রুবক, কিন্তু গ্যাসের আয়তনের সঙ্গো পরিবর্তিত হয়। এখন যদি আমরা অণু, পরমাণুর ধারণা আনি, তাহলে '*K*' অণুর সংখ্যার সঙ্গো সমানুপাতিক। ধরি, প্রদন্ত নমুনায় অণুর সংখ্যা *N*। সুতরাং, আমরা লিখতে পারি *K* = *N k*। পর্যবেক্ষণ থেকে দেখা যায় সকল গ্যাসের ক্ষেত্রে '*k*' -এর মান একই। একে বোলৎজ্ম্যান ধ্রুবক বলে এবং একে ' *k*ু' দিয়ে লেখা হয়।

যেহেতু,
$$\frac{P_1 V_1}{N_1 T_1} = \frac{P_2 V_2}{N_2 T_2} =$$
ধ্বক = $k_{\rm B}$ (13.2)

যদি *P*, *V* এবং *T* একই হয় তাহলে, সকল গ্যাসের ক্ষেত্রে *N*-এর মানও একই হবে। অর্থাৎ, একই চাপ ও উন্নতায় সকল গ্যাসের একক আয়তনে সমান সংখ্যক অণু থাকে— এটি অ্যাভোগ্রাড্রোর প্রকল্প। যে কোনো গ্যাসের 22.4 লিটার আয়তনে অণুর সংখ্যা হলো 6.02×10^{23} । একে অ্যাভোগাড্রো সংখ্যা বলে এবং একে *N*_A দিয়ে সূচিত করা হয়। S.T.P-তে (প্রমাণ উন্নতা 273 K এবং চাপ 1 atm) 22.4 লিটার আয়তনের যে-কোনো গ্যাসের ভরগ্রাম এককে (প্রকাশিত) গ্যাসটির আণবিক ওজনের সমান। এই পরিমাণ পদার্থকে 'মোল' বলে। (আরও সুনির্দিন্ট সংজ্ঞার জন্য দ্বিতীয় অধ্যায় দেখো)। রাসায়নিক বিক্রিয়াসমূহ থেকে অ্যাভোগাড্রো অনুমান করেছিলেন, স্থির তাপমাত্রা এবং চাপে সমান আয়তনের গ্যাসে সমান সংখ্যক অণু বর্তমান থাকে। গ্যাসের গতিতত্ত্ব এই প্রকল্পকে সমর্থন করে।

আদর্শ গ্যাস সমীকরণটিকে নিম্নরু পে লেখা যেতে পারে—

$$PV = \mu RT \tag{13.3}$$

যেখানে μ হল মোল সংখ্যা এবং $R = N_{
m A} \, k_{
m B}$ হল সর্বজনীন ধ্রুবক। T হলো পরম তাপমাত্রা। পরম তাপমাত্রার জন্য কেলভিন

জন ডালটন (John Dalton) (1766–1844)

ডালটন ছিলেন একজন ইংরেজ রসায়নবিদ। যখন বিভিন্ন ধরনের পরমাণুর সংযোজন ঘটে তখন এগুলো নির্দিষ্ট কিছু সরল সূত্র মেনে চলে। ডালটনের পারমাণবিক তত্ত্ব সে সমস্ত সূত্রগুলোকে সহজ উপায়ে ব্যাখ্যা করে। তিনি বর্ণাম্বতারও একটি তত্ত্ব দিয়েছিলেন।

অ্যামেডিও অ্যাভাগাড্রো (Amedeo Avogadro) (1776–1856)

তিনি একটি অসাধারণ ধারণা করেছিলেন যে, একই চাপ ও উন্নতায় সম আয়তনের সব গ্যাসে সমান সংখ্যক অণু থাকে। এই ধারণা বিভিন্ন ধরনের গ্যাসের সংযুক্তি খুব সহজ্ভাবে বুঝতে সাহায্য করে। একে

বর্তমানে অ্যাভোগাড্রোর প্রকল্প বা সূত্র বলা হয়। তিনি আরও বলেছিলেন (বা প্রস্তাব করেছিলেন) যে, হাইড্রোজেন, অক্সিজেন এবং নাইট্রোজেনের মতো গ্যাসের ক্ষুদ্র উপাদানগুলো পরমাণু নয়, বরং দ্বিপরমাণুক অণু।

(13.1)

স্কেল নির্বাচন করা হলে $R = 8.314 \text{ J mol}^{-1} \text{K}^{-1}$. এখানে,

$$\mu = \frac{M}{M_0} = \frac{N}{N_A} \tag{13.4}$$

যেখানে *M* হল, *N* সংখ্যক অণু সম্বলিত গ্যাসের ভর, *M*₀ হল মোলার ভর এবং *N*_A হলো অ্যাভোগাড্রো সংখ্যা। সমীকরণ (13.4) এবং (13.3) -কে নিম্নরূপেও লেখা যেতে পারে—

চিত্র 13.1 নিম্নচাপ এবং উচ্চ তাপমাত্রায় বাস্তব গ্যাসসমূহ আদর্শ গ্যাসের মতো আচরণ করে।

যেখানে n হল সংখ্যা ঘনত্ব, অর্থাৎ, প্রতি একক আয়তনে অণুর সংখ্যা । $k_{\rm B}$ হল উপরে বর্ণিত বোলৎজম্যান ধ্রুবক । SI এককে এর মান হলো, 1.38×10^{-23} J K $^{-1}$.

সমীকরণ (13.3) এর আরেকটি কার্যকরী রুপ হল—

$$P = \frac{\rho RT}{M_0} \tag{13.5}$$

যেখানে ho হল গ্যাসের ভর ঘনত্ব ।

সকল চাপ ও তাপমাত্রায় যে গ্যাস (13.3) সমীকরণ যথাযথভাবে মেনে তাকে 'আদর্শ গ্যাস' (ideal gas) বলা হয়। গ্যাসের একটি সরল তাত্ত্বিক মডেল হল আদর্শ গ্যাস। কোনো বাস্তব গ্যাসই প্রকৃতপক্ষে আদর্শ গ্যাস নয়। তিনটি বিভিন্ন তাপমাত্রায় একটি বাস্তব গ্যাস আদর্শ গ্যাসের আচরণ থেকে কীভাবে বিচ্যুত হয় তা চিত্র 13.1 এ দেখানো হয়েছে। লক্ষ করে দেখো, সকল বক্রলেখ নিম্নচাপ এবং উচ্চ তাপমাত্রায় বাস্তব গ্যাসের লেখ-এর নিকটবর্তী হয়।

নিম্নচাপ অথবা উচ্চ তাপমাত্রায় অণুগুলো দূরে দূরে থাকে এবং আন্তঃ আণবিক ক্রিয়া নগণ্য হয়। আন্তঃ আণবিক ক্রিয়া ব্যতীত গ্যাস আদর্শ গ্যাসের মতো আচরণ করো।

যদি সমীকরণ ((13.3)-এ আমরা μ এবং Τ কে স্থির ধরি, আমরা পাই–

অর্থাৎ, তাপমাত্রা স্থির থাকলে প্রদন্ত ভরের গ্যাসের চাপ গ্যাসের আয়তনের সাথে ব্যস্ত অনুপাতে পরিবর্তিত হয়। এটিই বিখ্যাত বয়েলের সূত্র। পরীক্ষালব্ধ *P-V* লেখ এবং বয়েলের সূত্রানুসারে অনুমিত তাত্ত্বিক লেখ-র তুলনা চিত্র 13.2 -এ দেখনো হয়েছে। চিত্রে আরও একবার তোমরা দেখলে যে নিম্নচাপ এবং উচ্চ তাপমাত্রায় লেখগুলো সঙ্গতিপূর্ণ হয়। পরবর্তীতে, যদি তুমি *P* কে স্থির রাখো, তাহলে সমীকরণ 13.1 থেকে দেখা যায়, *V* ত *T*, অর্থাৎ, স্থির চাপে গ্যাসের আয়তন পরম তাপমাত্রা *T*-এর সমানুপাতিক হয় (চার্লসের সূত্র) (চিত্র 13.3 দেখো)।

চিত্র 13.2 তিনটি ভিন্ন উয়তায় জলীয় বাম্পের পরীক্ষালব্ধ P-V লেখর (টানা রেখা)সঙ্গে বয়েলের সূত্রের (কাটা রেখা) তুলনা। চাপ P কে 22 atm এককে এবং আয়তন V কে 0.09 লিটার এককে।

পরিশেষে, *P* চাপ এবং *T* তাপমাত্রায়, পরস্পরের সঞ্চো ক্রিয়া করে না এরকম আদর্শ গ্যাসের একটি মিশ্রুণে গ্যাস 1-এর μ_1 মোল এবং গ্যাস 2-এর μ_2 মোল ইত্যাদিকে *V* আয়তনের একটি পাত্রে নেওয়া হল। তাহলে, মিশ্রণের অবস্থার সমীকরণ হয় :

$$PV = (\mu_1 + \mu_2 + \dots) RT$$
(13.7)

অর্থাৎ
$$P = \mu_1 \frac{RT}{V} + \mu_2 \frac{RT}{V} + \dots$$
 (13.8)

$$=P_1 + P_2 + \dots$$
 (13.9)

স্পষ্টতই, $P_1 = \mu_1 R T/V$ হল যদি অন্য কোনো গ্যাস উপস্থিত না থাকে, তবে তাপমাত্রও আয়তনের একই শর্তে গ্যাস 1 কর্তৃক প্রযুক্ত চাপ।একে গ্যাসটির আংশিক চাপ বলা হয়। সুতরাং, আংশিক চাপগুলোর সমষ্টিই হল একটি আদর্শ গ্যাস মিশ্রণের মোট চাপ। এটি হল ডালটনের আংশিক চাপ সুত্র।

গতীয় তত্ত্ব

পরবর্তীতে আমরা কিছু উদাহরণ নেব যেগুলো একটি একক অণুর আয়তন এবং একটি নির্দিষ্ট অণু কর্তৃক অধিকৃত আয়তন সম্পর্কে আমাদের তথ্য দেবে।

উদাহরণ 13.1 জলের ঘনত্ব 1000 kg m⁻³। 100 °C উষ্নতা এবং 1 atm চাপে জলীয় বাষ্পের ঘনত্ব 0.6 kg m⁻³। একটি অণুর আয়তনকে মোট অণুর সংখ্যা দিয়ে গুণ করলে যে আয়তন পাওয়া যায় তাকে আণবিক আয়তন বলে। উপরে উল্লিখিত চাপ ও তাপমাত্রার শর্তে জলীয় বাষ্প দ্বারা অধিকৃত আণবিক আয়তন এবং মোট আয়তনের অনুপাত নির্ণয় করো।

উত্তর প্রদত্ত ভরের জলের অণুসমূহের যদি আয়তন বেশি হয়, তাহলে ঘনত্ব কম হবে। সুতরাং, বাস্পের আয়তন 1000/0.6 = 1/ (6 ×10⁻⁴) গুণ বেশি। যদি আয়তনিক জলের (bulk water) ঘনত্ব এবং জলের অণুর ঘনত্ব সমান হয়, তাহলে তরল অবস্থায় আণবিক আয়তন এবং মোট আয়তনের অনুপাত 1 হবে। যেহেতু বাস্পীয় অবস্থায় আয়তন বৃদ্ধি পেয়েছে তাই আংশিক আয়তন একই অনুপাতে (অর্থাৎ 6 ×10⁻⁴ অংশ) হ্রাস পাবে।

উদাহরণ 13.2 উদাহরণ 13.1 -এ দেওয়া তথ্যের সাহায্যে জলের একটি অণুর আয়তন নির্ণয় করো।

উত্তর কঠিন অথবা তরল দশায় জলের অণুগুলো খুব কাছাকাছি সংঘবদ্ধ থাকে। এ কারণে জলের অণুর ঘনত্ব মোটামুটিভাবে আয়তনিক জলের (bulk water) ঘনত্ব = 1000 kg m⁻³-এর সমান ধরা যায়। জলের অণুর আয়তন নির্ণয় করার জন্য আমাদের জলের একটি অণুর ভর জানতে হয়। আমরা জানি এক মোল জলের ভর প্রায়

(2+16)g = 18 g = 0.018 kg.

যেহেতু 1 মোলে প্রায় 6 × 10²³ (অ্যাভোগাড্রো সংখ্যা) সংখ্যক অণু থাকে, জলের একটি অণুর ভর হয় (0.018)/(6 × 10²³) kg = 3 × 10⁻²⁶ kg । সুতরাং, মোটামুটিভাবে জলের একটি অণুর আয়তনের গণনা হল নিম্নরূপ :

জলের অণুর আয়তন = (3 × 10⁻²⁶ kg)/ (1000 kg m⁻³) = 3 × 10⁻²⁹ m³ = (4/3) π (ব্যাসার্ধ)³ সুতরাং, ব্যাসার্ধ ≈ 2 ×10⁻¹⁰ m=2 Å

 উদাহরণ 13.3 জলের দুটো পরমাণুর মধ্যে গড় দূরত্ব (আন্তঃ পারমাণবিক দূরত্ব) কত? উদাহরণ 13.1এবং 13.2
 -এ দেওয়া তথ্যাবলি ব্যবহার করো।

উত্তর বাষ্পীয় অবস্থায় জলের প্রদন্ত ভর তরল অবস্থায় সমভরের জলের আয়তনের 1.67×10³ গুণ (উদাহরণ 13.1)।এটি হল আবার, সহজলভ্য প্রতিটি জলের অণুর আয়তন বৃদ্ধির পরিমাণ। যখন আয়তন 10³ গুণ বৃদ্ধি পায়, ব্যাসার্ধ বৃদ্ধি পায় V^{1/3} অথবা 10 গুণ, অর্থাৎ 10×2 Å = 20 Å। সুতরাং গড় দূরত্ব হল, 2×20=40 Å।

উদাহরণ 13.4 একটি পাত্রে পরস্পর বিক্রিয়া করে না এরুপ দুটি গ্যাস আছে : নিয়ন (এক পরমাণুক) এবং অক্সিজেন (দ্বিপরমাণুক)। গ্যাস দুটোর আংশিক চাপের অনুপাত 3:2। পাত্রে থাকা নিয়ন এবং অক্সিজেন গ্যাসের (i) অণুর সংখ্যার এবং (ii) ভর ঘনত্বের অনুপাত নির্ণয় করো। Ne এর পারমাণবিক ভর = 20.2 u, এবং O₂ -এর আণবিক ভর = 32.0 u ।

উত্তর মিশ্রণের একটি গ্যাসের আংশিক চাপ একই আয়তন এবং তাপমাত্রায় যদি গ্যাসটি একক ভাবে পাত্রে থাকে তার চাপের সমান। (পরস্পরের সঙ্গে বিক্রিয়া করে না এরকম গ্যাসমিশ্রণের মোট চাপ উপাদান গ্যাসগুলোর আংশিক চাপের যোগফলের সমান)। প্রতিটি গ্যাস (আদর্শ গ্যস ধরে নিয়ে) গ্যাস সূত্র মেনে চলে। যেহেতু দুটো গ্যাসের ক্ষেত্রেই V এবং Tসমান, আমরা লিখতে পারি, P_1V $= \mu_1 RT$ এবং $P_2V = \mu_2 RT$ অর্থাৎ $(P_1/P_2) = (\mu_1/\mu_2)$ । যেখানে 1 এবং 2 হল যথাক্রমে নিয়ন এবং অক্সিজেন গ্যাস। যেহেতু, (দেওয়া আছে) $(P_1/P_2) = (3/2)$, তাই $(\mu_1/\mu_2) = 3/2$ । (i) সংজ্ঞা অনুসারে μ₁ = (N₁/N_A) এবং μ₂ = (N₂/N_A) যেখানে N₁ এবং N₂ হল গ্যাস 1 এবং গ্যাস 2 -এর অণুর সংখ্যা এবং N_A হলো অ্যাভোগাড্রো সংখ্যা ।

সুতরাং, $(N_1/N_2) = (\mu_1/\mu_2) = 3/2$ ।

(ii) আমরা আরও লিখতে পারি, μ₁ = (m₁/M₁) এবং μ₂ = (m₂/M₂) । যেখানে, m₁ এবং m₂ হল গ্যাস 1 এবং 2 এর ভর আবার M₁ এবং M₂ হল তাদের আণবিক ভর । (m₁এবং M₁ একইভাবে m₂এবং M₂ কে একই এককে প্রকাশ করতে হবে।) গ্যাস 1 এবং 2 এর ঘনত্ব যথাক্রমে ρ₁ এবং ρ₂ হলে, আমরা পাই,

$$\frac{\rho_1}{\rho_2} = \frac{m_1 / V}{m_2 / V} = \frac{m_1}{m_2} = \frac{\mu_1}{\mu_2} \times \left(\frac{M_1}{M_2}\right)$$
$$= \frac{3}{2} \times \frac{20.2}{32.0} = 0.947$$

13.4 আদর্শ গ্যাসের গতিতত্ত্ব (Kinetic theory of an ideal gas)

গ্যাসের গতি তত্ত্বের ভিত্তি হল পদার্থের আণবিক চিত্র। একটি গ্যাস অসংখ্য অণুর (সাধারণত অ্যাভোগাড্রো সংখ্যা ক্রমে) সমন্বয়ে গঠিত, যেগুলো অনবরত এলোমেলোভাবে গতিশীল থাকে। সাধারণ চাপ ও তাপমাত্রার অণুসমূহের মধ্যে গড় দূরত্ব অণুর আকারের (2 Å) 10 গুণ বা তার চেয়ে বেশি হয়। তাই অণুগুলোর মধ্যে পারস্পরিক আন্তঃক্রিয়া নগণ্য এবং আমরা ধরে নিতে পারি যে, নিউটনের প্রথম সূত্র অনুসারে অণুগুলো মুক্তভাবে সরলরেখা বরাবর গতিশীল হয়। তথাপি অণুগুলো মাঝে মাঝে কাছাকাছি চলে আসে, ফলে আন্তরাণবিক বল অনুভব করে এবং তাদের গতিবেগের পরিবর্তন ঘটে। এই আন্তঃক্রিয়াগুলোকে সংঘর্ষ বলে। অণুগুলো পরস্পরের সঞ্চো এবং পাত্রের দেওয়ালের সঞ্চো অনবরত ধাক্বা খায় এবং এতে এদের গতিবেগের পরিবর্তন ঘটে। সংঘর্ষগুলোকে স্থিতিস্থাপক ধরা হয়। গ্যাসের গতিতত্ত্বের উপর ভিত্তি করে আমরা চাপের একটি রাশিমালা প্রকাশ করতে পারি।

আমরা এ ধরণার সঙ্গে আরম্ভ করি যে, গ্যাসের অণুগুলো অনবরত এলোমেলোভাবে গতিশীল এবং একে অপরের সঙ্গে এবং পাত্রের দেওয়ালের সঙ্গো সংঘর্ষ ঘটায়। অণুর সঙ্গো পাত্রের দেওয়ালের সংঘর্ষ এবং অণুগুলোর পারস্পরিক সংঘর্ষ সবই স্থিতিস্থাপক। এর অর্থ মোট গতিশক্তি সংরক্ষিত থাকে। স্বাভাবিকভাবেই মোট ভরবেগও সংরক্ষিত থাকে।

13.4.1 একটি আদর্শ গ্যাসের চাপ (Pressure of an Ideal Gas)

ধরা যাক, একটি গ্যাস 'l' বাহুবিশিষ্ট একটি ঘনকে আবন্ধ আছে। চিত্র 13.4-এর মতো ঘনকের বাহুগুলোর সমান্তরালে অক্ষগুলোকে

চিত্র 13.4 পাত্রের দেওয়ালের সঙ্গে গ্যাস অণুর স্থিতিস্থাপক সংঘর্ষ

নেওয়া হল। একটি অণু যার বেগ (v_x, v_y, v_z) , yz- তলের সমান্তরাল দেওয়ালে, যার ক্ষেত্রফল $A (=l^2)$ আঘাত করে। যেহেতু সংঘর্ষগুলো স্থিতিস্থাপক, অণুগুলো একই বেগ নিয়ে প্রতিক্ষিপ্ত হয়; সংঘর্ষের ফলে অণুটির বেগের y এবং z উপাংশের কোনো পরিবর্তন হয় না, কিন্তু x-উপাংশের চিহ্ন উল্টে (বা, বিপরীত চিহ্নযুক্ত) যায়। অর্থাৎ সংঘর্ষের পরে বেগ হয় $(-v_x, v_y, v_z)$ । অণুটির ভরবেগের পরিবর্তন হয় : $-mv_x - (mv_x) = -2mv_x$ । ভরবেগের সংরক্ষণ সূত্র অনুসারে, সংঘর্ষের ফলে দেওয়ালে প্রদেয় ভরবেগ হল $= 2mv_x$.

দেওয়ালে প্রযুক্ত বল (এবং চাপ) গণনা করতে, প্রতি একক সময়ে দেওয়ালে প্রদেয় ভরবেগ গণনা করা প্রয়োজন। Δt ক্ষুদ্র সময় অবকাশে একটি অণু বেগের x-উপাংশ v_x নিয়ে দেওয়ালে আঘাত করবে যদি অণুটি দেওয়াল থেকে $v_x \Delta t$ দূরত্বের মধ্যে থাকে। অর্থাৎ, সমস্ত অণু যাদের আয়তন $Av_x \Delta t$ -র মধ্যে শুধু সেগুলোই Δt সময়ে দেওয়ালে আঘাত করতে পারে। কিন্তু গড়ে এগুলোর মধ্যে অর্ধেক অণু দেওয়ালের দিকে এবং বাকি অর্ধেক দেওয়ালের বিপরীত দিকে গতিশীল হয়। সুতরাং, Δt সময়ে (v_x , v_y , v_z) গতিবেগ নিয়ে দেওয়ালে আঘাতকারী অণুর সংখ্যা $\frac{1}{2}A v_x \Delta t n$, যেখানে n হলো প্রতি একক আয়তনে অণুর সংখ্যা । Δt সময়ে এ অণুগুলো দ্বারা দেওয়ালে সঞ্জালিত মোট ভরবেগ হল :

$$Q = (2mv_{x}) \left(\frac{1}{2} n A v_{x} \Delta t\right)$$
(13.10)

দেওয়ালে প্রযুক্ত বল হল ভরবেগ সঞ্জালনের হার *Q*/∆*t* এবং চাপ হল প্রতি একক ক্ষেত্রফলে প্রযুক্ত বল :

$$P = Q/(A\Delta t) = n m v_x^2$$
(3.11)

প্রকৃতপক্ষে একটি গ্যাসের সব অণুগুলোর বেগ একইরকম নয়; সেখানে গতিবেগের একটি বন্টন থাকে। সুতরাং, উপরের সমীকরণটি হলো *x*- অভিমুখে *v_x* বেগসম্পন্ন অণুসমষ্টির জন্য চাপের সমীকরণ এবং n হলো ওই অণুসমষ্টির সংখ্যা ঘনত্ব। সকল অণুগুচ্ছের অবদানের (চাপের) সমষ্টি নিয়ে মোট চাপ পাওয়া যায় :

$$P = n m \overline{v_x^2} \tag{13.12}$$

যেখানে v_x^2 হল v_x^2 এর গড়। এখন গ্যাস সমসত্ত্ব হওয়ায় পাত্রের অভ্যন্তরে অনুসমূহের গতিবেগের কোনো পছন্দসই দিক থাকে না। সুতরাং, প্রতিসাম্য অনুযায়ী,

$$\begin{split} \overline{v_x^2} &= \overline{v_y^2} = \overline{v_z^2} \\ &= (1/3) \left[\overline{v_x^2} + \overline{v_y^2} + \overline{v_z^2} \right] = (1/3) \overline{v^2} \quad (13.13) \\ \text{যেখান, } v \text{ zemi ny দুতি এবং } \overline{v^2} \quad \text{zem ny an (constraints)} \end{split}$$

 $P = (1/3) n m \overline{v^2}$ (13.14)

এই রাশিমালা নির্ণয় সম্পর্কিত কিছু মন্তব্য : প্রথমত, যদিও আমরা পাত্রটিকে ঘনক আকৃতির ধরে নিয়েছি, প্রকৃতপক্ষে পাত্রটির আকার মুখ্য নয়। যে-কোনো আকৃতির পাত্রের জন্য আমরা অতিক্ষুদ্র ক্ষেত্র (সামতলিক) ধরে নিয়ে উপযুক্ত ধাপগুলো সম্পন্ন করি। লক্ষ করে দেখো, চূড়ান্ত ফলে A এবং ∆t দুটোই অনুপস্থিত। দশম অধ্যায়ে দেওয়া পাস্কালের সূত্র অনুসারে সাম্য অবস্থায় গ্যাসের কোনো অংশে চাপ, গ্যাসের অন্য যে কোনো অংশের চাপের সমান হয়। দ্বিতীয়ত, এই নির্ণয়ে আমরা অন্তবর্তী সংঘর্ষগুলো উপেক্ষা করেছি। যদিও এই অনুমানটির সত্যতা সঠিকভাবে যাচাই করা কঠিন, আমরা গুণগতভাবে দেখতে পারি যে, এটি ফলাফলকে ব্রুটিপূর্ণ করতে পারে না। দেখা যায় যে Δt সময়ে পাত্রের দেওয়ালে আঘাতকারী অণুর সংখ্যা হয় $\frac{1}{2}$ $n Av_x \Delta t$ । এখন সংঘাতগুলো এলোমেলো এবং গ্যাস স্থিতিশীল অবস্থায় রয়েছে। সুতরাং, (v_x, v_y, v_z) বেগ সম্পন্ন একটি অণু সংঘর্ষের ফলে যদি ভিন্ন বেগ লাভ করে, তাহলে সেখানে সর্বদাই ভিন্ন প্রাথমিক বেগ সম্পন্ন অন্য কোনো অণু থাকবে যা সংঘর্ষের ফলে (v_x, v_y, v_z) বেগ লাভ করবে। যদি এরকম না হয়, তাহলে অণুসমূহের বেগ বন্টন স্থির থাকবে না। যে-কোনো ক্ষেত্রেই আমরা $\overline{v_x^2}$ -এর মান নির্ণয় করব। সুতরাং, সামগ্রিকভাবে আণবিক সংঘাত (যদি সংঘর্ষগুলো খুব ঘন ঘন না হয় এবং একটি সংঘর্ষে ব্যয়িত সময় দুটো সংঘর্ষের মধ্যবর্তী সময়ের তুলনায় নগণ্য হয়) উপরের গণনাকে প্রভাবিত করবে না।

13.4.2 তাপমাত্রার গতীয় ব্যাখ্যা (Kinetic Interpretation of Temperature)

সমীকরণ (13.14) কে লেখা যায়-

$$PV = (1/3) \, nVm \, v^2 \tag{13.15a}$$

$$PV = (2/3) N. \frac{1}{2} m \overline{v^2}$$
 (13.15b)

গ্যাসের গতীয় তত্ত্বের প্রতিষ্ঠাতা বিজ্ঞানীগণ (Founders of Kinetic Theory of Gases)

জেমস ক্লার্ক ম্যাক্সওয়েল (1831 – 1879) [James Clerk Maxwell (1831 – 1879)], স্কটল্যান্ডেব এডিনবার্গে জন্মগ্রহণ করেন। তিনি উনবিংশ শতকের বিখ্যাত পদার্থবিদদের একজন ছিলেন। তিনি গ্যাসের অণুর তাপীয় বেগ বল্টনসূত্র প্রতিষ্ঠা করেন। বিজ্ঞানীদের মধ্যে তিনিই প্রথম পরিমাপযোগ্য রাশি যেমন সান্দ্রতা ইত্যাদি থেকে আণবিক প্রাচল নির্ণয়ের নির্ভরযোগ্য গণনার উপায় প্রতিষ্ঠা করেন। ম্যাক্সওয়েলের বড়ো কৃতিত্ব হল তড়িৎ এবং চুম্বকত্বের সূত্রণূলোর (যেগুলো আবিষ্ণার করেছিলেন বিজ্ঞানী কুলম্ব, ওরস্টেড, অ্যামপিয়ার এবং ফ্যারাডে) একত্রীকরণ করে সঙ্গাতিপূর্ণ সমীকরণে প্রকাশ, যেগুলো এখন ম্যাক্সওয়েল সূত্র বলে পরিচিত। এর থেকে তিনি একটি গুরুত্বপূর্ণ সিম্বান্ডে পৌছিছিলেন যে, আলোক হলো তড়িৎচুম্বকীয় তরঙ্গা। মজার ব্যাপার হল, ম্যাক্সওয়েল বিদ্যুতের কণা প্রকৃতির ধারণার (যা ফ্যারেডের তড়িৎ বিশ্লেষণের সূত্র দৃঢ়ভাবে

প্রস্তাব করা হয়েছিল।) সঙ্গো কখনো একমত ছিলেন না।

লুডবিগ বোলজ্ম্যান (1844 – 1906) [Ludwig Boltzmann (1844 – 1906)] লুডবিস বোলজ্ম্যান অস্ট্রিয়ার ভিয়েনায় জন্মগ্রহণ করেন। তিনি ম্যাক্সওয়েল থেকে

আলাদা ও স্বাধীনভাবে গ্যাসের গতীয় তত্ত্বের উপর কাজ করেন। গতীয় তত্ত্বের ভিন্তি পরমাণুবাদের দৃঢ় সমর্থক বোলজ্ম্যান তাপগতিবিদ্যার দ্বিতীয় সূত্র এবং এনট্রপির ধারণার সংখ্যাতাত্ত্বিক ব্যাখ্যা দিয়েছিলেন। তাঁকে সনাতন বলবিদ্যার একজন প্রতিষ্ঠাতা হিসাবে গণ্য করা হয়। গ্যাসের গতিবিদ্যায় শক্তি এবং তাপমাত্রার সম্পর্ক স্থাপনকারী সমানুপাতিক ধ্রবককে তাঁর সম্মানার্থে বোলজ্ম্যান ধ্রবক বলা হয়।

যেখানে N(=nV) হল নমুনাটিতে অণুর সংখ্যা।

বন্ধনীর মধ্যে রাশিটি হল গ্যাসের অণুসমূহের চলনজনিত গড় গতিশক্তি। যেহেতু আদর্শ গ্যাসের অভ্যন্তরীণ শক্তি E হল কেবলমাত্র গতিশক্তি *.

$$E = N \times (1/2) m \overline{v^2} \tag{13.16}$$

সমীকরণ (13.15) থেকে পাওয়া যায় :

$$PV = (2/3)E$$
 (13.17)

আমরা এখন উন্নতার গতীয় ব্যাখ্যা দেওয়ার জন্য প্রস্তুত। সমীকরণ (13.17) কে আদর্শ গ্যাস সমীকরণ (13.3) -এর সাথে সংযুক্ত করে পাই,

$$E = (3/2) k_B NT$$
 (13.18)

অথবা $E/N = \frac{1}{2} m v^2 = (3/2) k_B T$ (13.19) অর্থাৎ, গ্যাসের একটি অণুর গড় গতিশন্তি গ্যাসটির পরম উন্নতার সমানুপাতিক; এটি আদর্শ গ্যাসের চাপ, আয়তন অথবা প্রকৃতির উপর নির্ভরশীল নয়। এটি একটি মৌলিক ফল, যা কোনো গ্যাসের তাপমাত্রা যেটি গ্যাসের এক পরিমেয় পরিবীক্ষণিক প্রাচলকে (parameter) (যাকে একটি তাপগতীয় চল বলা হয়) গ্যাসের একটি অণুর গড় গতিশন্তি নামক আণবিক রাশির সঙ্গে সম্পর্কিত করে। বোলজ্ম্যান ধ্রুবকের দ্বারা এ দুটি ক্ষেত্রের সংযুক্তি ঘটে। সমীকরণ (13.18) থেকে আমরা দেখতে পাই একটি আদর্শ গ্যাসের অভ্যন্তরীণ শন্তি শুধুমাত্র তাপমাত্রার উপর নির্ভর করে, চাপ এবং আয়তনের উপর নয়। তাপমাত্রার এ ব্যাখ্যা থেকে দেখা যায় আদর্শ গ্যাস সমীকরণ এবং এর উপর ভিত্তি করে গড়ে ওঠা বিভিন্ন গ্যাস সূত্রগুলো আদর্শ গ্যাসের গতিতত্ত্বের সঙ্গো সামঞ্জ্রস্যপূর্ণ।

পরস্পরের সঙ্গো বিক্রিয়া করে না এরকম আদর্শ গ্যাসের একটি মিশ্রণের মোট চাপ মিশ্রণের উপাদান গ্যাসগুলোর চাপের সমষ্টির সমান। সমীকরণ (13.14) কে লেখা যায়—

$$P = (1/3) \left[n_1 m_1 \overline{\nu_1^2} + n_2 m_2 \overline{\nu_2^2} + \dots \right]$$
(13.20)

সাম্য অবস্থায় বিভিন্ন গ্যাসের অণুগুলোর গড় গতিশক্তি সমান হবে। অর্থাৎ

$$\frac{1}{2} m_1 \overline{v_1^2} = \frac{1}{2} m_2 \overline{v_2^2} = (3/2) k_B T$$
 তাই,

 $P = (n_1 + n_2 + ...) k_B T$ (13.21) যা হল ডালটনের আংশিক চাপসূত্র।

সমীকরণ (13.19) থেকে আমরা কোনো গ্যাসের অণুগুলোর বিশেষ (typical) বেগের ধারণা করতে পারি। *T*=300 K তাপমাত্রায়, নাইট্রোজেন গ্যাসের একটি অণুর গড় বর্গ বেগ হল:

$$\overline{v^2} = 3 k_B T / m = (516)^2 \text{ m}^2 \text{s}^{-2}$$

(राभारन,
$$m = \frac{M_{N_2}}{N_A} = \frac{28}{6.02 \times 10^{26}} = 4.65 \times 10^{26}$$
 kg.

 $\overline{v^2}$ এর বর্গমূলকে মূল গড় বর্গবেগ বলা হয় এবং একে লেখা হয় $v_{
m ms}$, দ্বারা।

$$(\overline{v^2}$$
 কে আমরা $< v^2 >$ হিসাবেও লিখতে পারি)
 $v_{\rm rms} = 516~{\rm m~s^{-1}}$

এই বেগ বায়ুতে শব্দের বেগের অণুরূপ ক্রমযুক্ত (same order) হয়।সমীকরণ (13.19) থেকে দেখা যায় যে, একই তাপমাত্রায় হালকা অণুগুলোর rms বেগ বেশি হয়।

উদাহরণ 13.5 একটি ফ্লাক্সে আর্গন এবং ক্লোরিন গ্যাস, ভরের 2:1 অনুপাতে রয়েছে। মিশ্রণটির তাপমাত্রা 27 °C । দুটি গ্যাসের (i) প্রতি অণুতে গড় গতিশক্তি এবং (ii) অণুগুলোর মূল গড়বর্গবেগের অনুপাত নির্ণয় করো। আর্গনের পারমাণবিক ভর = 39.9 u; ক্লোরিনের আণবিক ভর = 70.9 u ।

উত্তর মনে রাখার মতো গুরুত্বপূর্ণ বিষয় হল যে, যে-কোনো গ্যাসের (আদর্শ) গড় গতিশক্তি (প্রতি অণুতে) (এক পরমাণুক যেমন, আর্গন, দ্বিপরমাণুক যেমন ক্লোরিন অথবা বহুপরমাণুক) সবসময় (3/2) $k_B T$ এর সমান হয়। এটি শুধু তাপমাত্রার উপর নির্ভর করে এবং গ্যাসের প্রকৃতির উপর নির্ভর করে না।

- (i) যেহেতু ফ্লাক্সে আর্গন এবং ক্লোরিন দুটোই একই উন্নতায় থাকে গ্যাস দুটোর গড় গতিশক্তির (প্রতি অণুতে) অনুপাত হল 1:1।
- (ii) এখন $\frac{1}{2} m v_{\text{rms}}^2 =$ প্রতি অণুতে গড় গতিশস্তি = (3/2)) $k_{\text{B}}T$ । যেখানে *m* হল গ্যাস অণুর ভর। সুতরাং,

$$\left(\mathbf{v}_{rms}^{2}\right)_{Ar}$$
 = $\frac{(m)_{Cl}}{(m)_{Ar}}$ = $\frac{(M)_{Cl}}{(M)_{Ar}}$ = $\frac{70.9}{39.9}$ =1.77

যেখানে M হল গ্যাসের আণবিক ভর। (আর্গনের ক্ষেত্রে একটি পরমাণুই হল এর একটি অণু।) উভয়পক্ষে বর্গমূল নিয়ে পাই,

$$\frac{\left(\mathbf{v}_{rms}\right)_{Ar}}{\left(\mathbf{v}_{rms}\right)_{Cl}} = 1.33$$

তোমরা অবশ্যই লক্ষ করবে যে, উপরোক্ত গণনায় মিশ্রণটির উপাদানগুলোর ভরভিত্তিক অনুপাত একাস্তই অপ্রাসজ্ঞিন। তাপমাত্রা

^{*} E, অভ্যন্তরীণ শক্তি U-এর চলনজনিত অংশকে সূচিত করে। যেখানে U-তে অন্য স্বাধীনতার মাত্রা জনিত শক্তিগুলোও অন্তর্ভুক্ত হতে পারে। (অনুচ্ছেদ 13.5 দ্রন্টব্য)

ম্যাক্সওয়েল বন্টন অপেক্ষক (Maxwell Distribution Function)

প্রদত্ত ভরের গ্যাসের জন্য সকল অণুর বেগ এক নয়, যদিও বেশিরভাগ প্রাচলগুলো যেমন- চাপ, আয়তন এবং উন্নতা ধ্রুবক থাকে। সংঘর্ষ অণুগুলোর দ্রুতি এবং অভিমুখের পরিবর্তন ঘটায়। তাছাড়া, সাম্য অবস্থায় বেগের বন্টন স্থায়ী ধ্রুবক হয়। বহুসংখ্যক বস্তু ধারণকারী সংস্থাকে নিয়ে কাজ করার সময় দ্রুতির বন্টন খুবই গুরুত্বপর্ণ এবং উপযোগী। উদাহরণস্বরূপ, একটি শহরের বিভিন্ন ব্যক্তির বয়স বিবেচনা করো। প্রত্যেক ব্যস্তির বয়স আলাদাভাবে নিয়ে কাজ করা সম্ভব নয়।

জনসাধারণকে আমরা কয়েকটি দলে ভাগ করতে পারি। শিশু 20 বছর বয়স পর্যন্ত, প্রাপ্ত বয়স্ক 20 থেকে 60 বছর বয়স পর্যন্ত এবং বৃদ্ধ 60 বছর বয়সের উপর। যদি আমরা আরও বিস্তারিত তথ্য চাই, তাহলে আমরা বয়সকে আরও ছোটো ছোটো ব্যবধানে, যেমন- 0-1, 1-2,..., 99-100 ভাগ করতে পারি। যদি ব্যবধান ছোটো, যেমন অর্ধবর্ষ হয়, তাহলে ওই ছোটো ব্যবধানে লোকসংখ্যাও কমে যাবে, আনুমানিকভাবে, অর্ধবর্ষ সময়ের ব্যবধানে লোকসংখ্যা এক বছর ব্যবধানে লোকসংখ্যা র প্র যে আর্ম বার্ধ বিষ্ধারিত বছর বয়স পর্যন্ত এবং বৃদ্ধ এবং বৃদ্ধ তিবছর বয়সের উপর। বদি ব্যবধানে ছোটো, যেমন অর্ধবর্ষ হয়, তাহলে ওই ছোটো ব্যবধানে লোকসংখ্যাও কমে যাবে, আনুমানিকভাবে, অর্ধবর্ষ সময়ের ব্যবধানে লোকসংখ্যা এক বছর ব্যবধানে লোকসংখ্যার প্রায় অর্ধেক হয়ে যাবে। x এবং x+dx এই বয়সের ব্যবধানে থাকা লোকসংখ্যা dN(x), dx এর সমানুপাতী হয়। অর্থাৎ $dN(x) = n_x dx$ । আমরা এখানে x বছর বয়সি লোকদের সংখ্যা বোঝাতে n_x ব্যবহার করছি।

একইভাবে অণুগুলোর দ্রুতি v এবং v + dv এর মধ্যে অণুর দ্রুতি বন্টন থেকে অণুর সংখ্যা পাওয়া যায়, $dN(v) = 4p N a^3 e^{-bv^2} v^2 dv$ $= n_v dv |$ একে ম্যাক্সওয়েল বন্টন বলে | চিত্রে n_v এবং v এর মধ্যে লেখ দেখানো হয়েছে | v এবং v+dv দ্রুতির মধ্যে অণুর সংখ্যা লেখচিত্রে পটির ক্ষেত্রফল দ্বারা দেখানো হয়েছে | v^2 -এর মতো যে কোনো রাশির গড় প্রকাশ করা হয় | সমাকলন $\langle v^2 \rangle = (1/N) \int v^2 dN(v) = \int \mathbf{A}(3k_B T/m)$ দ্বারা, যা প্রাথমিক বিবেচনা থেকে প্রাপ্ত ফলাফলের সঙ্গো একমত হয় |

অপরিবর্তিত থাকলে আর্গন ও ক্লোরিনের ভরভিত্তিক অন্য অনুপাতের ক্ষেত্রেও (i) এবং (ii), এর একই উত্তর আসবে।

উদাহরণ 13.6 ইউরেনিয়ামের দুটো আইসোটোপের ভর যথাক্রমে 235 এবং 238 একক। ইউরেনিয়াম হেক্সাফ্রুরাইড গ্যাসে যদি দুটিই উপস্থিত থাকে, তবে কোন্টির গড় বেগ বেশি হবে ? যদি ফ্রুরিনের আণবিক ভর 19 একক হয়, তাহলে যে-কেনো তাপমাত্রায় এর বেগের শতকরা অস্তর নির্ণয় করো।

উত্তর স্থির তাপমাত্রায় গড় শক্তি = ½ m <v² > ধ্রুবক। সুতরাং, অণুর ভর যত কম হবে, বেগ তত বেশি হবে। বেগের অনুপাত ভরের বর্গমূলের অনুপাতের সঙ্গো ব্যস্তানুপাতে থাকে। ভরগুলো হল 349 এবং 352 একক। সুতরাং,

$$v_{349}/v_{352} = (352/349)^{1/2} = 1.0044$$
.
: পার্থক্য $\frac{\Delta V}{V} = 0.44\%$.

[²³⁵Uএকটি আইসোটোপ বা সমস্থানিক যা নিউক্লীয় বিভাজনের জন্য দরকার। ²³⁸U -এর প্রচুর আইসোটোপ থেকে একে আলাদা করার জন্য মিশ্রণটিকে একটি সছিদ্র চোঙ দিয়ে বেস্টন করে রাখা হয়। সছিদ্র সিলিন্ডারটিকে অবশ্যই পুরু এবং সরু হতে হবে, যাতে অণুগুলো লম্বাছিদ্রের দেওয়ালে এককভাবে সংঘর্ষ করতে করতে বেরিয়ে যেতে পারে। মন্থরগামী অণুর চেয়ে দ্রুতগামী অণুগুলো বেশি পরিমাণে বেরিয়ে আসতে পারে, তাই সছিদ্র সিলিন্ডারের বাইরে হালকা অণু (সমৃদ্ধি) বেশি পরিমাণে থাকে (চিত্র 13.5)। এই পদ্ধতি খুব বেশি কার্যকরী নয় এবং যথেষ্ট সমৃদ্ধকরণের জন্য বহুবার পুনরাবৃত্ত করা হয়।

যখন গ্যাসের ব্যাপন ঘটে, গ্যাসের ব্যাপনের হার গ্যাসের ভরের বর্গমূলের ব্যস্তানুপাতিক। (অনুশীলন 13.12 দেখো)। উপরের উত্তরের ভিত্তিতে তুমি এই তত্ত্বের ব্যাখ্যার অনুমান করতে পারো কি ?

উদাহরণ 13.7 (a) যখন একটি অণু (অথবা একটি স্থিতিস্থাপক বল) একটি (ভারী) দেওয়ালকে আঘাত করে, এটি একই বেগ নিয়ে প্রতিক্ষিপ্ত হয়। যখন একটি বল দৃঢ়ভাবে রাখা একটি ব্যাটকে আঘাত করে, তাও একই ঘটনা ঘটে। কিন্ডু, যখন ব্যাট বলের অভিমুখে যায়, বল তখন আলাদা বেগ নিয়ে প্রতিক্ষিপ্ত হয়। এ ক্ষেত্রে বলের গতি দ্রুততর হবে না মন্থরতর হবে? (অধ্যায় 6-এ, স্থিতিস্থাপক সংঘর্ষ সম্পর্কে তোমার স্মৃতিকে সতেজ করবে।)

(b) সিলিন্ডারে রাখা কোনো গ্যাসকে পিস্টনের সাহায্যে চাপ প্রয়োগে সংকুচিত করলে গ্যাসের তাপমাত্রা বৃদ্ধি পায়। গতীয় তত্ত্বের সাহায্যে এর ব্যাখ্যায় উপরের (a) এর ঘটনাগুলো ধরে নাও।

(c) একটি সংকুচিত গ্যাস যখন পিস্টনকে বাইরের দিকে ধাঞ্চা দেয় এবং প্রসারিত হয়, তখন কী ঘটবে ? তুমি কি লক্ষ করবে ?

(d) সচিন তেন্ডুলকর ক্রিকেট খেলার সময় একটি ভারী ব্যাট ব্যবহার করেন। এটি কি তাকে কোনোভাবে সাহায্য করে।

উত্তর (a) ধরি, ব্যাটের পেছনে থাকা উইকেটের সাপেক্ষে বলের বেগ *u* । যদি উইকেটের সাপেক্ষে ব্যাট বলের দিকে *V* বেগ নিয়ে এগিয়ে যায়, তাহলে ব্যাটের অভিমুখে ব্যাটের সাপেক্ষে বলের আপেক্ষিক বেগ V + u । যখন বলটি (ভারী ব্যাটটিকে আঘাত করার পর) প্রতিক্ষিপ্ত হয়, এটি ব্যাটের সাপেক্ষে V + u আপেক্ষিক বেগ নিয়ে ব্যাট থেকে সরে যায় । সুতরাং, উইকেটের সাপেক্ষে প্রতিক্ষিপ্ত হয়ে বলটি V + (V + u) = 2V + u বেগ নিয়ে উইকেটে থেকে সরে যায় । সুতরাং ব্যাটের সঙ্গে সংঘাতের পর বলের বেগ বেড়ে যায় । যদি ব্যাটটি ভারী না হয় তাহলে বলের প্রতিক্ষেপ বেগ u থেকে কম হয় । অণুর ক্ষেত্রে এর অর্থ হল তাপমাত্রার বৃদ্ধি পাওয়া ।

(a) এর উত্তরের উপর ভিত্তি করে তুমি (b)(c) এবং (d) এর উত্তর দিতে পারো।

(সংকেত: পিস্টন → ব্যাট, সিলিন্ডার → উইকেট, অণু → বল, এদের ক্ষেত্রে সাদৃশ্যটি লক্ষ করো)

13.5 শক্তির সমবিভাজনের সূত্র (LAW OF EQUIPARTITION OF ENERGY)

একটি একক অণুর গতিশক্তি হল–

$$\varepsilon_t = \frac{1}{2}mv_x^2 + \frac{1}{2}mv_y^2 + \frac{1}{2}mv_z^2 \qquad (13.22)$$

তাপীয় সাম্য অবস্থায় T তাপমাত্রায় থাকা কোনো গ্যাসের গড় শক্তির মান < \mathcal{E}_t > দ্বারা প্রকাশ করা হয়, সুতরাং

$$\langle \varepsilon_t \rangle = \left\langle \frac{1}{2} m v_x^2 \right\rangle + \left\langle \frac{1}{2} m v_y^2 \right\rangle + \left\langle \frac{1}{2} m v_z^2 \right\rangle = \frac{3}{2} k_B T$$
 (13.23)

যেহেতু, সেখানে কোনো পছন্দের অভিমুখ নেই, সমীকরণ (13.23) বোঝায়,

$$\left\langle \frac{1}{2} m w_x^2 \right\rangle = \frac{1}{2} k_B T \left\langle \frac{1}{2} m w_y^2 \right\rangle = \frac{1}{2} k_B T ,$$

$$\left\langle \frac{1}{2} m w_z^2 \right\rangle = \frac{1}{2} k_B T$$
(13.24)

ত্রিমাত্রিক দেশে স্বাধীন গতিশীল কোনো অণুর অবস্থান নির্দিষ্ট করার জন্য তিনটি স্থানাজ্কের দরকার হয়। যদি অণুটি একটি সমতলে গতিশীল থাকতে বাধ্য হয়, তাহলে দুটি, আর যদি অণুটি একটি সরলরেখা বরাবর গতিশীল হয়, তাহলে এর অবস্থান নির্দিষ্ট করার জন্য একটিমাত্র নির্দেশক বা স্থানাজ্কের দরকার হয়। বিষয়টিকে অন্যভাবেও ব্যাখ্যা করা যায়। আমরা বলতে পারি যে, রৈখিক গতির জন্য একটি স্বাধীনতার মাত্রা, সমতলে গতির জন্য দুটি এবং ত্রিমাত্রিক দেশে গতির জন্য তিনটি স্বাধীনতার মাত্রার দরকার হয়। সামগ্রিকভাবে কোনো বস্থুর এক বিন্দু থেকে অন্য বিন্দুতে গতিকে বলা হয় চলন। সুতরাং, ত্রিমাত্রিক দেশে মুক্তভাবে গতিশীল একটি অণুর তিনটি চলন গতীয় (translational) স্বাধীনতার মাত্রা থাকে। প্রত্যেক চলন গতীয় স্বাধীনতার মাত্রা একটি রাশি প্রদান করে যাতে থাকে গতির কিছু চলরাশির বর্গ, যেমন, ½ mv² এবং v, এবং v, এর একইরকম রাশি। সমীকরণ (13.24) থেকে আমরা দেখি তাপীয় সাম্য অবস্থায় এরকম প্রতিটি রাশির গড় হল ½ $k_{\scriptscriptstyle R}T$ ।

আর্গনের মতো এক পরমাণুক ণ্যাসের শুধু চলন গতীয় স্বাধীনতার মাত্রা রয়েছে। কিন্তু O₂ অথবা N₂ -এর দ্বিপরমাণুক ণ্যাসের ক্ষেত্রে কী হবে ? একটি O₂ অণুর তিনটি চলন গতীয় স্বাধীনতার মাত্রা রয়েছে। কিন্তু একই সঙ্গো এটি তার ভরকেন্দ্রের সাপেক্ষে আবর্তিতও হয়। চিত্র 13.6-এ অক্সিজেনের দুটি পরমাণুর সংযোগকারী সরলরেখার সঙ্গো লম্ব দুটি স্বাধীন ঘূর্ণন অক্ষ 1এবং 2, যেগুলোর সাপেক্ষে অণুটি আবর্তিত হতে পারে*। অণুটির তাই দুটি ঘূর্ণনজনিত স্বাধীনতার মাত্রা থাকে যেগুলোর রৈখিক গতিশক্তি ε_t এবং ঘূর্ণন গতিশক্তি ε_r -এর সমন্বয়ে সৃষ্ট মোট শক্তিতে এদের উভয়েরই ভূমিকা রয়েছে।

চিত্র 13.6 দ্বিপরমাণুক অণুর দুটো স্বাধীন ঘূর্ণন অক্ষ।

যেখানে, ω_1 এবং ω_2 হল অক্ষ 1 এবং 2-এর সাপেক্ষে কৌণিক বেগ এবং I_1, I_2 হল জড়তা ভ্রামক। লক্ষ করে দেখো, প্রতিটি ঘূর্ণন গতীয় স্বাধীনতার মাত্রা শক্তির রাশিতে একটি পদের অবদান যোগায় যা ঘূর্ণন জাতীয় একটি চলরাশির বর্গ সমন্বিত।

উপরে আমরা ধরে নিয়েছি যে O₂ অণু একটি 'দৃঢ় ঘূর্ণক'। অর্থাৎ অণুটির কম্পন হয় না। এই অনুমানটি O₂ -এর ক্ষেত্রে সহনীয় তাপমাত্রায় (moderate temperatures) সত্য হলেও, সবসময় যথাযথ নাও হতে পারে। CO -এর মতো কিছু অণুর মাঝারি উন্নতায়ও কম্পন হয়, অর্থাৎ এর পরমাণুগুলো আন্তঃ পারমাণবিক অক্ষ বরাবর এক মাত্রিক দোলকের ন্যায় দোলন সম্পন্ন করে এবং এর ফলে মোট শক্তিতে কম্পন শক্তি ε_{v} নামে একটি রাশির সংযুক্তি ঘটে :

$$\varepsilon_v = \frac{1}{2}m\left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 + \frac{1}{2}ky^2$$

$$\mathcal{E} = \mathcal{E}_t + \mathcal{E}_r + \mathcal{E}_v$$

যেখানে, k হল দোলকের বল ধ্রুবক এবং y হল কম্পন স্থানাজ্জ।

পুনরায় লক্ষ করো, সমীকরণ (13.26) -এ কম্পন শক্তির রাশিমালা গঠিত হয়েছে গতির কম্পন চলরাশি y এবং dy/dt -এর বর্গের সমন্বয়ে।

সমীকরণ (13.26) এর লক্ষণীয় একটি গুরুত্বপূর্ণ বৈশিষ্ট্য হল যেখানে প্রত্যেক চলন গতীয় এবং ঘূর্ণন স্বাধীনতার মাত্রার জন্য সমীকরণ(13.26) -এ শুধুমাত্র একটি 'বর্গীয় রাশি', (squared terms) থাকে, সেখানে কম্পন প্রকৃতির (vibrational mode) জন্য থাকে দুটো 'বর্গীয় রাশি': গতিশক্তি এবং স্থিতিশক্তি।

শস্তি রশিমালায় থাকা প্রতিটি দ্বিঘাত রাশি হল একটি অণুর দ্বারা শোষিত শস্তির রূপ। আমরা দেখেছি যে পরম উন্নতা T তে তাপীয় সাম্য অবস্থায় রৈখিক গতির প্রত্যেক রূপের জন্য গড় শস্তি হল ½ k_BT । সনাতন সংখ্যাতাত্ত্বিক বলবিদ্যার একটি খুব মার্জিত নীতি (সর্বপ্রথম ম্যাক্সওয়েল প্রমাণ করেছিলেন) অনুসারে শস্তির প্রত্যেক রূপ যেমন— রৈখিক, ঘূর্ণন এবং কম্পন প্রকৃতির জন্য গড় গতিশস্তির মান একই হয়। অর্থাৎ, তাপীয় সাম্য অবস্থায়, মোট শস্তি সম্ভাব্য প্রতি শস্তিরূপের মধ্যে সমানভাবে বন্টিত হয়, এবং প্রত্যেক রূপে গড়শস্তি ½ k_BT এর সমান। একে শস্তির সমবিভাজন সূত্র বলে। অনুরূপভাবে একটি অণুর চলন এবং ঘূর্ণনের প্রত্যেক স্বাধীনতার মাত্রার জন্য শস্তির সমীকরণে একটি রাশি থাকে ½ k_BT । যেখানে প্রত্যেক কম্পনের কম্পাঞ্জের জন্য হয় $2 \times \frac{1}{2} k_BT = k_BT$, যেহেতু কম্পনে স্থিতি এবং গতি দুটি শস্তির রপই থাকে।

শস্তির সমবিভাজন নীতির প্রমাণ এই বইয়ের পরিধি বহির্ভৃত। এখানে আমরা তাত্ত্বিকভাবে গ্যাসের আপেক্ষিক তাপ গণনা করার জন্য এ সূত্রটি প্রয়োগ করব। পরবর্তীতে আমরা কঠিন পদার্থের আপেক্ষিক তাপের ক্ষেত্রেও সূত্রটির প্রয়োগ নিয়ে সংক্ষেপে আলোচনা করব।

13.6 আপেক্ষিকতাপ ধারকত্ব (SPECIFIC HEAT CAPACITY)

13.6.1 এক পরমাণুক গ্যাস (Monatomic Gases)

এক পরমাণুক গ্যাস অণুর কেবলমাত্র তিনটি চলনজনিত স্বাধীনতার মাত্রা থাকে। সুতরাং, *T* তাপমাত্রায় একটি অণুর গড় শক্তি হল (3/2) $k_{
m B}T$ । এ ধরনের গ্যাসের 1 মোলের মোট অভ্যন্তরীণ শক্তি হল–

(13.26)

^{*} পরমাণু সংযোগকারী রেখা বরাবর ঘূর্ণনের জড়তা ভ্রামকের মান খুব কম এবং কোয়ান্টাম বলবিদ্যার কারণে এটি কার্যকর হয় না। অনুচ্ছেদ 13.6 -এর শেষ অংশ দেখো।

$$U = \frac{3}{2}k_BT \times N_A = \frac{3}{2}RT \tag{13.27}$$

স্থির আয়তনে মোলার আপেক্ষিক তাপ C,, হল

$$C_v$$
 (এক পরমাণুক গ্যাস) = $\frac{\mathrm{d}U}{\mathrm{d}T} = \frac{3}{2}RT$ (13.28)

আদর্শ গ্যাসের ক্ষেত্রে,

$$C_p - C_v = R \tag{13.29}$$

যেখানে, C_p হল স্থির চাপে মোলার আপেক্ষিক তাপ। সুতরাং,

$$C_p = \frac{5}{2} R \tag{13.30}$$

আপেক্ষিক তাপের অনুপাত $\gamma = \frac{C_{\rm p}}{C_{\rm v}} = \frac{5}{3}$ (13.31)

13.6.2 দ্বিপরমাণুক গ্যাস (Diatomic Gases)

যেহেতু আগেই ব্যাখ্যা করা হয়েছে, দ্বিপরমাণুক অণু হল ডাম্বেল আকৃতির দৃঢ় আবর্তক যার স্বাধীনতার মাত্রা রয়েছে 5 টি; 3টি রৈখিক এবং 2 টি ঘূর্ণন । শক্তির সমবিভাজন নীতি অনুসারে, এ ধরনের গ্যাসের এক মোলের মোট অভ্যন্তরীণ শক্তি হল,

$$U = \frac{5}{2}k_{B}T \times N_{A} = \frac{5}{2}RT$$
 (13.32)

সেক্ষেত্রে, মোলের আপেক্ষিক তাপ,

$$C_{\nu}(দৃ \cdot \overline{P} R) = \frac{5}{2} R, \ C_{p} = \frac{7}{2} R$$
(13.33)

$$\gamma$$
 (দৃঢ় দ্বিপরমাণুক) = $\frac{7}{5}$ (13.34)

যদি দ্বিপরমাণুক অণু দৃঢ় না হয়, বরং এর এক অতিরিস্তু কম্পন রূপ থাকে, তাহলে,

$$U = \left(\frac{5}{2}k_{B}T + k_{B}T\right)N_{A} = \frac{7}{2}RT$$

$$C_{v} = \frac{7}{2}R, \quad C_{p} = \frac{9}{2}R, \quad \gamma = \frac{9}{7}$$
(13.35)

13.6.3 বহুপরমাণুক গ্যাস (Polyatomic Gases)

সাধারণত একটি বহু পরমাণুক অণুতে 3টি রৈখিক, 3 টি ঘূর্ণন স্বাধীনতার মাত্রা এবং নির্দিষ্ট সংখ্যক (f) কম্পন রূপ থাকে। শক্তির সমবিভাজন নীতি অনুসারে এটি সহজেই দেখা যায় যে, এ ধরনের এক মোল গ্যাসের অভ্যন্তরীণ শক্তি।

$$U = \left(\frac{3}{2} k_{B}T + \frac{3}{2} k_{B}T + fk_{B}T N_{A}\right)$$

অর্থাৎ, $C_v = (3+f)R$, $C_p = (4+f)R$,

$$\gamma = \frac{(4+f)}{(3+f)}$$
(13.36)

লক্ষ করার বিষয় হল যে, $C_p - C_v = R$ যে-কোনো আদর্শ গ্যাসের ক্ষেত্রেই সত্য, তা সেটি এক পরমাণুক, দ্বিপরমাণুক বা বহু পরমাণুক যাই হোক না কেন।

সারণি 13.1 -এ গ্যাসের যে-কোনো ধরনের কম্পন রূপকে উপেক্ষা করে গ্যাসের আপেক্ষিক তাপের তাত্ত্বিক পূর্বানুমান (predictions) সূচিবম্ব করা হয়েছে।এ মানগুলো সারণি 13.2 তে দেওয়া বিভিন্ন গ্যাসের পরীক্ষালব্ধ আপেক্ষিক তাপের মানের সঙ্গো পুরোপুরি মিলে যায়। এটি সত্য যে, অন্যান্য অনেক গ্যাসের (যেগুলোকে সারণিতে দেখানো হয়নি) যেমন $\text{Cl}_2, \text{C}_2\text{H}_6$ এবং আরও অনেক বহু পরমাণুক গ্যাসের আপেক্ষিক তাপের তাত্ত্বিক এবং প্রকৃত মানের মধ্যে অনেক অমিল রয়েছে। সাধারণত এই সকল গ্যাসের পরীক্ষালব্ধ মানসমূহ 13.1 সারণিতে প্রদন্ত তাত্ত্বিক মানসমূহের চেয়ে বেশি হয়। এর অর্থ হলো, আমরা যদি আপেক্ষিক তাপের গণনায় কম্পনের রূপগুলোকে অন্তর্ভুক্ত করি, তবে এই অমিল অনেকটাই দূর করা যাবে।এভাবে সাধারণ তাপমাত্রায়শক্তির সমবিভাজন নীতির সারণি 13.1 কিছু গ্যাসের আপেক্ষিক তাপ ধারকত্বের তাত্ত্বিক

13.1 নিশ্রু জালের আলেন্দিক তান বারকদ্বের তাত্ত্বন্দ মান (Predicted values) (এক্ষেত্রে কম্পন রূপকে উপেক্ষা করা হয়েছে)।

গ্যাসের প্রকৃতি	С _v (J mol ⁻¹ K ⁻¹)	С _р (J mol ⁻¹ K ⁻¹)	C _p - C _v (J mol ⁻¹ K ⁻¹)	γ
এক পরমাণুক	12.5	20.8	8.31	1.67
দ্বিপরমাণুক	20.8	29.1	8.31	1.40
ত্রিপরমাণুক	24.93	33.24	8.31	1.33

গ্যাসের প্রকৃতি	গ্যাস	С _v (J mol ⁻¹ К ⁻¹)	С _р (J mol ⁻¹ К ⁻¹)	C _p – C _v (J mol ⁻¹ K ⁻¹)	γ
একপরমাণুক	Не	12.5	20.8	8.30	1.66
একপরমাণুক	Ne	12.7	20.8	8.12	1.64
একপরমাণুক	Ar	12.5	20.8	8.30	1.67
দ্বিপরমাণুক	H_2	20.4	28.8	8.45	1.41
দ্বিপরমাণুক	O_2	21.0	29.3	8.32	1.40
দ্বিপরমাণুক	N_2	20.8	29.1	8.32	1.40
ত্রিপরমাণুক	H ₂ O	27.0	35.4	8.35	1.31
বহুপরমাণুক	CH4	27.1	35.4	8.36	1.31

যথার্থ পরীক্ষামূলকভাবে যাচাই করা যায়।

উদাহরণ 13.8 প্রমাণ চাপ ও তাপমাত্রা স্থির ধারণ ক্ষমতা বিশিষ্ট একটি চোঙে 44.8 লিটার হিলিয়াম গ্যাস আছে। চোঙে রাখা এই গ্যাসের উন্নতা 15.0 °C বৃষ্ণি করতে কতটুকু তাপ লাগবে? (*R* = 8.31 J mo1⁻¹ K⁻¹)।

উত্তর গ্যাসসূত্র $PV = \mu RT$, ব্যবহার করে, তোমরা সহজেই দেখতে পারো যে, 1 মোল পরিমাণ যে-কোনো আদর্শ গ্যাসের প্রমাণ চাপ (1 atm = 1.01×10^5 Pa) এবং তাপমাত্রায় (273 K) আয়তন 22.4 লিটার। এই সর্বজনীন আয়তনকে বলে মোলার আয়তন। সুতরাং, এই উদাহরণে চোঙটিতে 2 মোল হিলিয়াম রয়েছে। আবার, যেহেতু হিলিয়াম এক পরমাণুক গ্যাস, স্থির আয়তনে এর পূর্ব অনুমিত (এবং পর্যবেক্ষিত) মোলার আপেক্ষিক তাপ, $C_{\nu} = (3/2)$ R, এবং স্থির চাপে মোলার আপেক্ষিক তাপ, $C_{p} = (3/2)$ R + R = (5/2) R । যেহেতু চোঙের আয়তন স্থির, তাই প্রয়োজনীয় তাপ C_{ν} দ্বারা নির্ণয় করা হয়। সুতরাং,

প্রয়োজনীয় তাপ = মোলের সংখ্যা × মোলার আপেক্ষিক তাপ × তাপমাত্রার বৃদ্ধি।

 $= 2 \times 1.5 R \times 15.0 = 45 R$

 $=45 \times 8.31 = 374$ J.

13.6.4 কঠিন পদার্থের আপেক্ষিক তাপধারকত্ব (Specific Heat Capacity of Solids)

কঠিন পদার্থের আপেক্ষিক তাপধারকত্ব নির্ণয়ে আমরা শক্তির সমবিভাজন নীতির ব্যবহার করতে পারি। *N* সংখ্যক পরমাণু বিশিস্ট একটি কঠিন পদার্থ ধরা হল যার প্রতিটি পরমাণু তাদের গড় অবস্থানের সাপেক্ষে কম্পিত হচ্ছে। একমাত্রিক দোলনের গড়শক্তি হল $2 \times \frac{1}{2} k_B T = k_B T$ । ত্রিমাত্রিক দোলনের গড়শক্তি হল 3 $k_B T$ । এক মোল কঠিনের ক্ষেত্রে $N = N_A$ এবং মোট শক্তি হল:

$$U=3 \ k_B T \times N_A = 3 \ R L$$

এখন, স্থির চাপে $\Delta Q = \Delta U + P \Delta V = \Delta U$, যেহেতু কঠিনের ক্ষেত্রে ΔV উপেক্ষণীয়, সুতরাং

$$C = \frac{\Delta Q}{\Delta T} = \frac{\Delta U}{\Delta T} = 3R \tag{13.37}$$

সারণি 13.3 ঘরের তাপমাত্রায় এবং বায়ুমঙলীয় চাপে কিছু কঠিনের আপেক্ষিক তাপ ধারকত্ব

পদার্থের নাম	আপেক্ষিক তাপ (J kg ^{_1} K ^{_1})	মোলার আপেক্ষিক তাপ (J mol-1 K-1)
অ্যালুমিনিয়াম	900.0	24.4
কার্বন	506.5	6.1
কপার	386.4	24.5
সিসা	127.7	26.5
রুপা	236.1	25.5
টাংস্টেন	134.4	24.9

সারণি 13.3 তে দেখা যাচ্ছে যে, স্বাভাবিক তাপমাত্রায় পূর্ব অনুমিত মান এবং পরীক্ষালব্ধ মান একই হয়। (কঠিন হল ব্যত্তিক্রমী)।

13.6.5 জলের আপেক্ষিক তাপধারকত্ব (Specific Heat Capacity of Water)

জলকে আমরা কঠিন হিসাবে ধরে নিই। প্রতিটি অণুর জন্য গড় শক্তি হল 3k_BT।জলের অণুতে তিনটি পরমাণু রয়েছে — দুটি হাইড্রোজেন এবং একটি অক্সিজেন পরমাণু। সুতরাং, জলের এক মোলের অভ্যস্তরীণ শস্তি,

$$U=3 \times 3 k_{B}T \times N_{A} = 9 RT$$

এবং $C = \Delta Q / \Delta T = \Delta U / \Delta T = 9R$.

এই মানটি পর্যবেক্ষিত এবং সুসামঞ্জস্যপূর্ণ। ক্যালোরি, গ্রাম, ডিগ্রি এককে জলের আপেক্ষিক তাপ ধারকত্বের মান 1 । যেহেতু 1 ক্যালোরি = 4.179 জুল এবং 1 মোল জল হলো 18 গ্রাম, প্রতি মোলের তাপ ধারকত্ব ~ 75 J mol⁻¹ K⁻¹~ 9R ।তথাপি, অ্যালকোহল এবং অ্যাসিটোনের মতো অনেক বেশি জটিল মোলের ক্ষেত্রে স্বাধীনতার মাত্রাভিত্তিক ধারণাটি আরও জটিল হয়ে ওঠে।

সর্বশেষে, শক্তির সমবিভাজন নীতির উপর ভিত্তিকরে আপেক্ষিক তাপের পূর্বানুমানের একটি গুরুত্বপূর্ণ রুপ আমাদের মনে রাখতে হবে। অনুমিত আপেক্ষিক তাপ, তাপমাত্রার উপর নির্ভরশীল নয়। কিন্তু, আমরা যতই নিম্ন তাপমাত্রার দিকে যেতে শুরু করি, ততই আপেক্ষিক তাপের এই অনুমিত মানের উল্লেখযোগ্য বিচ্যুতি দেখা যায়। যেহেতু $T \rightarrow 0$, সমস্ত পদার্থের আপেক্ষিক তাপ শূন্য অভিমুখী হয়। এটি নিম্ন তাপমাত্রায় স্বাধীনতার মাত্রা অকার্যকর এবং নিষ্ক্রি য় হয়ে পড়ে, এই তথ্যটির সঙ্গো সম্পর্কিত। সনাতন পদার্থবিদ্যা অনুসারে, স্বাধীনতার মাত্রা সর্বাধীনতার মাত্রা অকার্যকর এবং নিষ্ক্রি য় আপেক্ষিক তাপের আচরণ সনাতন পদার্থবিদ্যার অক্ষমতাকেই প্রকাশ করে এবং কোয়ান্টাম ধারণার অবতারণার দ্বারাই ব্যাখ্যা করা যায়, যেমনটা সর্বপ্রথম আইনস্টাইন দেখিয়েছিলেন। কোয়ান্টাম বলবিদ্যায় স্বাধীনতার মাত্রা কার্যকরী হওয়ার পূর্বে একটি সর্বনিম্ন, অশূন্য পরিমাণ শস্তির প্রয়োজন হয়। কিছু কিছু ক্ষেত্রে কেন শুধুমাত্র কম্পনশীল স্বাধীনতার মাত্রা কার্যকরী হয় এটিই হল সে কারণ।

13.7 গড়মুক্ত পথ (MEAN FREE PATH)

গ্যাসে অণুগুলোর বেগ খুব বেশি, বায়ুতে শব্দের গতিবেগের মাত্রার সমান। যদিও রামাঘরে সিলিন্ডার লিকের (leaking) ফলে নির্গত গ্যাসের ঘরের অপর কোণায় ব্যপিত হতে বেশ কিছু সময় লাগে। বায়ুমণ্ডলে ধোঁয়ার কুণ্ডলীর শীর্ষ ঘণ্টার পর ঘণ্টা জমাট বেঁধে থাকে। এর কারণ গ্যাসের অণুগুলো ছোটো হলেও নির্দিন্ট আকারের হয়, তাই গ্যাস অণুগুলোর পরস্পরের সঞ্চো সংঘর্ষ হতে বাধ্য। ফলস্বরুপ,

দেখেই বিশ্বাস করো (Seeing is Believing)

পরমাণুকে এদিক ওদিক ছোটাছুটি করতে দেখা যায় কি ? স্পষ্টতই না হলেও, অনেকটাই দেখা যায়। তোমরা জলের অণুর দ্বারা ধাক্কা দেওয়ার ফলে ফুলের পরাগরেণুর এলোমেলো চলন দেখেছ। পরাগরেণুর আকার প্রায় ~ 10⁻⁵ মি। 1827 সালে স্কটিশ উদ্ভিদ বিজ্ঞানী রবার্ট ব্রাউন অণুবীক্ষণের দ্বারা পর্যবেক্ষণের সময় দেখেন যে জলে প্রলম্বিত ফুলের পরাগরেণুগুলো অনবরত আঁকাবাঁকা পথে এলোমেলোভাবে গতিশীল থাকে।

গতীয়তত্ত্ব এই ঘটনার সরল ব্যাখ্যা দেয়। জলে প্রলম্বিত যে-কোনো বস্তুর উপর জলের অণুগুলো সকল পার্শ্ব থেকে অনবরত ধার্কা দেয়। যেহেতু অণুগুলোর গতি এলোমোলো তাই বস্তুটিতে একটি নির্দিন্ট দিক থেকে আঘাতকারী অণুর সংখ্যা এবং তার ঠিক বিপরীত দিক থেকে আঘাতকারী অণুর সংখ্যা প্রায় সমান হয়। সাধারণ আকারের বস্তুর জন্য এ ধরনের দুটো সংঘাতের ক্ষুদ্র পার্থক্য মোট সংঘাতের সংখ্যার তুলনায় নগণ্য এবং আমরা ওই বস্তুটির কোনো নড়াচড়া লক্ষ করি না।

যখন বস্তুটি যথেষ্ট ছোটো কিন্তু তারপরেও অণুবীক্ষণে দৃশ্যমান, তাহলে বিভিন্ন দিক থেকে বস্তুটিকে অণুর আঘাতের সংখ্যার পার্থক্য সামগ্রিকভাবে আর উপেক্ষণীয় নয়, অর্থাৎ মাধ্যমে (জল অথবা অন্য কোনো তরল) প্রলম্বিত বস্তুর উপর মাধ্যমের অণুণুলোর অনবরত সংঘাতের ফলে সৃষ্ট ঘাত এবং টর্কের সমষ্টি ঠিক শৃন্য হয় না। সেক্ষেত্রে কোনো না কোনো অভিমুখে মোট ঘাত এবং টর্ক থেকে যায়। একারণে প্রলম্বিত বস্তু আঁকাবাঁকা পথে চলে এবং অনবরত ডিগবাজি খায়। 'ব্রাউনিয় গতি' আখ্যা দেওয়া এই গতি আণবিক সক্রিয়তার এক দ্রুষ্টব্য প্রমাণ। গত প্রায় 50 বৎসর ধরে ক্রমবীক্ষণ সুরঙ্গা (scanning tunneling) এবং অন্যান্য বিশেষ অণুবীক্ষণের দ্বারা অণুণুলোকে দেখা গেছে। 1987 সালে USA -এ কর্মরত ইজিস্টের বিজ্ঞানী আহমেদ জেবিল শুধুমাত্র অণুই নয় বরং অণু সম্বন্ধীয় বিস্তারিত আন্তঃক্রিয়াও পর্যবেক্ষণ করতে সমর্থ হয়েছিলেন। তিনি খুব ক্ষুদ্র 10 ফেনটোসেকেন্ডেরও কম অবকাশ সম্পন্ন লেজার আলোর ক্ষণদীপ্তি (flash) দ্বারা অণুকে আলোকিত করে এবং এণুলোর ছবি তুলে এ কাজটি করতে সমর্থ হয়েছিলেন। (1 femto- second = 10⁻¹⁵ s) এখন তা তোমরা রাসায়নিক বন্ধনের গঠন এবং ভাঙন নিয়েও অধ্যয়ন করতে পারো। এটি বাস্তবে দেখা যায়।

অণুগুলো অবাধে সরলরেখায় চলতে পারে না; এদের গতিপথ অনবরত পরিবর্তিত হতে থাকে।

ধরে নেওয়া যাক একটি গ্যাসের অণুগুলো *d* ব্যাস বিশিষ্ট গোলন। <v> গড়বেগ সম্পন্ন একটি অণুর উপর দৃষ্টি নিবন্ধ করি। এই অণুটির অন্য যে-কোনো একটি অণুর সঙ্গে সংঘাত ঘটবে যখন অণু দুটির কেন্দ্রের মধ্যবর্ত দূরত্ব *d* হয়। Δt সময়ে এটি $\pi d^2 <v> \Delta t$ আয়তন অতিক্রম করে যেখানে তার সঞ্চো অন্য আরেকটি অণুর সংঘর্ষ হতে পারে (চিত্র 13.7 দেখো) । যদি প্রতি একক আয়তনে অণুর সংখ্যা *n* হয়, তাহলে Δt সময়ে একটি অণু $n\pi d^2 < v > \Delta t$ সংখ্যক সংঘর্ষ ঘটায়। সুতরাং, সংঘাতের হার হয় $n\pi d^2 < v >$ অথবা পরপর দুটো সংঘাতের মধ্যবর্তী গড় সময়

$$\tau = 1/(n\pi < v > d^2) \tag{13.38}$$

দুটো পরপর সংঘাতের মধ্যবর্তী গড় দূরত্বকে গড় মুক্ত পথ *।* বলা হয় :

 $l = \langle v \rangle \tau = 1/(n\pi d^2)$ (13.39)

এই সম্পর্ক প্রতিষ্ঠায়, আমরা ধরে নিয়েছি যে অন্যান্য অণুগুলো স্থির আছে। কিন্তু প্রকৃতপক্ষে সকল অণুই গতিশীল এবং সংঘাতের হার নির্ণয় করা হয় অণুগুলোর গড় আপেক্ষিক বেগর দ্বারা। সুতরাং, সমীকরণ (13.38)-এ আমাদের <v> কে <v> দ্বারা প্রতিস্থাপিত করতে হবে। আরও সঠিকভাবে লিখতে গেলে—

$$l = 1 / \left(\sqrt{2} \ n\pi d^2 \right) \tag{13.40}$$

চলো, এখন আমরা *<v>* = (485m/s) গড় বেগ সম্পন্ন অণুর জন্য STP -তে *l* এবং *t* গণনা করি।

$$a = \frac{(0.02 \times 10^{23})}{(22.4 \times 10^{-3})}$$
$$= 2.7 \times 10^{25} \,\mathrm{m}^{-3.}$$
$$d = 2 \times 10^{-10} \,\mathrm{m}.$$
 And the formula of the second second

গতীয় তত্ত্ব

আকার এবং সংখ্যা ঘনত্বের উপর ব্যস্তানুপাতিকভাবে নির্ভরশীল। একটি শূন্য নলে *n* -এর মান যতই ছোটো হোক না কেন গড় মুক্ত পথের মান সর্বাধিক নলের দৈর্ঘ্যের সমান হতে পারে।

 উদাহরণ 13.9 373 K তাপমাত্রায় জলীয় বাম্পে জলের অণুর গড় মুক্ত পথের মান নির্ণয় করো। উপরের সমীকরণ (13.41) এবং অনুশীলনী 13.1 থেকে তথ্যগুলো নাও।

উত্তর জলীয় বাষ্প এবং বায়ুর জন্য *d* এর মান একই। সংখ্যা ঘনত্ব পরম তাপমাত্রার সঙ্গো ব্যস্তানুপাতিক।

সুতরাং, গড় মুক্ত পথ $l\!=\!4\! imes\!10^{-7}\,\mathrm{m}$

লক্ষ করো, পূর্বে গণনা করা হয়েছিল যে, গড় মুক্তপথ আন্তঃ পারমাণবিক দূরত্ব ~40 Å = 4 ×10^{.9} m -এর 100 গুণ। গড়মুক্ত পথের এই বৃহৎ মানই গ্যাসের বিশেষ আচরণের নজির রাখে।

কোনো পাত্র ছাড়া গ্যাসকে কখনও আবদ্ধ করা যায় না। গ্যাসের গতিতত্ত্বের সাহায্যে সান্দ্রতা, তাপ পরিবাহীতা এবং ব্যাপনের মতো পরিমাণযোগ্য ধর্মগুলোকে আণবিক আকারের মতো অতিসূক্ষ্ম আণুবীক্ষণিক প্রাচলের সঙ্গো সম্পর্কিত করা যেতে পারে। এ ধরনের সম্পর্কগুলোর মাধ্যমেই সর্বপ্রথম আণবিক আকারের গণনা করা হয়েছিল।

সারাংশ (SUMMARY)

1. চাপ (P), আয়তন (V) এবং পরম উন্নতা (T) এর সংযোজককারী আদর্শ গ্যাস সমীকরণটি হল, $PV = \mu RT = k_{\scriptscriptstyle R} NT$

যেখানে μ হল মোলসংখ্যা এবং N হল অণুর সংখ্যা। R এবং k_R হল সর্বজনীন ধ্রুবক।

$$R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}, \quad k_B = \frac{R}{N_A} = 1.38 \times 10^{-23} \text{ J K}^{-1}$$

বাস্তব গ্যাস, আদর্শ গ্যাস সমীকরণকে মোটামুটিভাবে মেনে চলে এবং নিম্নচাপে ও উচ্চ তাপমাত্রায় অধিকতর সঠিকভাবে মেনে চলে।

2. আদর্শ গ্যাসের গতিতত্ত্ব থেকে প্রাপ্ত সম্পর্ক,

$$P = \frac{1}{3} n m \overline{v^2}$$

যেখানে n হল অণুর সংখ্যা ঘনত্ব, m হল অণুর ভর এবং $\overline{v^2}$ হল গড় বর্গবেগ। আদর্শ গ্যাস সমীকরণের সঙ্গো সংযুক্ত করলে এর থেকে তাপমাত্রার এক গতীয় ব্যাখ্যা পাওয়া যায়।

$$\frac{1}{2}m \overline{v^{2}} = \frac{3}{2}k_{B}T, \ v_{rms} = \left(\overline{v^{2}}\right)^{1/2} = \sqrt{\frac{3k_{B}T}{m}}$$

এ থেকে বোঝা যায় যে, গ্যাসের তাপমাত্রা হল গ্যাস অণুর গড় গতিশক্তির পরিমাপ যা গ্যাস অথবা অণুর প্রকৃতির উপর নির্ভর করে না। নির্দিন্ট তাপমাত্রায় একটি গ্যাস মিশ্রণের ভারী অণুর গড় অপেক্ষাকৃত কম হয়।

3. চলনজনিত (translational) গতিশন্তি,

$$E = \frac{3}{2} k_B NT.$$

এর থেকে আমরা নীচের সম্পর্কটি পাই,

$$PV = \frac{2}{3}E$$

 শক্তির সমবিভাজন নীতিতে বলা হয় যে, যদি পরম তাপমাত্রা T তে কোনো সংস্থা সাম্য অবস্থায় থাকে, তাহলে মোট শক্তি, শক্তির শোষণের বিভিন্ন প্রকৃতিতে (mode) সমভাবে বন্টিত হয় এবং প্রত্যেক প্রকৃতিতে শক্তির পরিমাপ হয় ½ $k_B T$ । প্রত্যেক চলনজনিত এবং ঘূর্ণনজনিত স্বাধীনতার মাত্রার সঙ্গে সংশ্লিষ্ট এক শক্তির শোষণ প্রকৃতি রয়েছে এবং এই শক্তির পরিমাণ হয় ½ $k_B T$ । প্রত্যেক কম্পন কম্পাঙ্কের শক্তির দুটো রূপ (গতিশক্তি এবং স্থিতিশক্তি) এবং অনুরূপ শক্তির পরিমাণ হল —

$$2 \times \frac{1}{2} k_B T = k_B T.$$

- 5. শক্তির সমবিভাজন নীতি ব্যবহার করে, গ্যাসের মোলার আপেক্ষিক তাপ নির্ণয় করা যায় এবং এই মানগুলো পরীক্ষা দ্বারা প্রাপ্ত বিভিন্ন গ্যাসের আপেক্ষিক তাপের মানগুলোর সঙ্গো মিলে যায়। গতির কম্পন রূপের অন্তর্ভুক্তি এই মিলকে আরও উন্নততর করতে পারে।
- 6. গড়মুক্ত পক্ষ l হল, একটি অণুর পরপর দুটো সংঘাতের মধ্যবর্তী গড় দূরত্ব :

$$l = \frac{1}{\sqrt{2} n \pi d^2}$$

যেখানে n হলো অণুর সংখ্যা ঘনত্ব এবং d হল অণুটির ব্যাস।

ভেবে দেখার বিষয়সমূহ (POINTS TO PONDER)

- 1. একটি প্রবাহীর চাপ শুধুমাত্র তার ধারকপাত্রের দেওয়ালেই প্রযুক্ত হয় না, বরং চাপ প্রবাহীর সর্বত্র বিদ্যমান। পাত্রে রাখা গ্যাসের আয়তনের যে-কোনো স্তর সাম্য অবস্থায় থাকে, কারণ এই স্তরের দুই দিকে সমান চাপ থাকে।
- 2. গ্যাসের আন্তঃপারমাণবিক দূরত্ব সম্বন্থে ফলাও করে কোনো ধারণা দেওয়া আমাদের উচিত নয়। সাধারণ চাপ ও তাপমাত্রায় এর মান কঠিন ও তরল পদার্থের আন্তঃপারমাণবিক দূরত্বের 10 গুণ বা সমান হয়। পার্থক্যটি হল, গড়মুক্ত পথে যা কোনো গ্যাসের আন্তঃপারমাণবিক দূরত্বের 100 গুণ এবং অণুর আকারের 1000 গুণ হয়।
- 3. শন্তির সমবিভাজন নীতির বিবৃতিটি হল : তাপীয় সাম্য অবস্থায় প্রতিটি স্বাধীনতার মাত্রার সঙ্গে যুক্ত শন্তির পরিমাণ হল ½ kg T । অণুর মোট শন্তির সমীকরণে প্রতিটি দ্বিঘাত রাশিকে একটি স্বাধীনতার মাত্রা হিসাবে গণ্য করা হয় । অতএব প্রতিটি কম্পন রূপের জন্য স্বাধীনতার মাত্রা (স্থিতি এবং গতিশন্তির রূপ) হয় 2 টি (1টি নয়) এবং সংশ্লিষ্ট শন্তি হয় 2 × ½ kg T = kg T ।
- 4. একটি ঘরে থাকা বায়ুর অণুগুলো সব নীচে পড়ে না (অভিকর্ষের কারণে) এবং ঘরের মেঝেতে এসে জমা হয় না। এর কারণ এগুলো উচ্চগতিসম্পন্ন হয় এবং এদের অবিরাম সংঘর্ষ ঘটে। সাম্য অবস্থায়, কম উচ্চতায় বায়ুর ঘনত্ব কিছুটা বেশি হয় (বায়ুমণ্ডলের মতো)। এর প্রভাব কম, কারণ সামান্য উচ্চতার জন্য স্থিতিশক্তির (mgh) মান অণুর গড় গতিশক্তি ½ mv² -এর তুলনায় অনেক কম হয়।
- 5. < v²> এর মান সর্বদা (<v>)²-এর সমান হয় না। এটি বাধ্যতমূলক নয় যে, কোনো রাশির বর্গের গড় মান ওই রাশির গড়ের বর্গমানের সমান হবে। তুমি কি এই বিবৃতির সপক্ষে উদাহরণ দিতে পারবে।

অনুশীলনী

- 13.1
 অক্সিজেনের আণবিক আয়তন, STP তে এর দ্বারা অধিকৃত প্রকৃত আয়তনের কত অংশ নির্ণয় করো। ধরে নাও,

 অক্সিজেনের একটি অণুর ব্যাস 3 Å ।
- 13.2
 মোলার আয়তন হল, STP তে যে-কোনো গ্যাসের (আদর্শ) 1 মোল দ্বারা অধিকৃত প্রকৃত আয়তন। (STP: 1 চাপ, 0 °C)। দেখাও যে এর মান 22.4 লিটার।
- 13.3 চিত্র 13.8 এ 1.00×10⁻³ kg অক্সিজেন গ্যাসের জন্য দুটি ভিন্ন ভিন্ন তাপমাত্রায় PV/T এবং P -এর মধ্যে লেখচিত্র দেখানো হয়েছে।

গতীয় তত্ত্ব

- (a) বিন্দু অঙ্কিত রেখা কী নির্দেশ করছে?
- (b) কোন্টি সঠিক : $T_1 > T_2$ অথবা $T_1 < T_2$?
- (c) y অক্ষের উপর যেখানে বরুরেখাগুলো মিলিত হয়, সেখানে *PV/T* এর মান কত?
- (d) আমরা যদি 1.00×10⁻³ kg হাইড্রোজেন গ্যাসের জন্য একই লেখচিত্র পাই, তাহলে, y-অক্ষের উপর যেখানে বরুরেখাগুলো মিলিত হবে সেখানেও আমরা PV/T এর জন্য একই মান পাব কি ? যদি না পাওয়া যায়, তাহলে কত ভরের হাইড্রোজেনের জন্য PV/T এর (নিম্নচাপ এবং উচ্চ তাপমাত্রার ক্ষেত্রের) একই মান পাওয়া যাবে ? (আণবিক ভর H₂=2.02 u, O₂=32.0 u, R=8.31 J mo1⁻¹ K⁻¹)।
- 13.4 30 লিটার আয়তনের একটি অক্সিজেন সিলিন্ডারের অক্সিজেনের প্রাথমিক গজ চাপ 15 atm এবং তাপমাত্রা 27 °C। সিলিন্ডার থেকে কিছু অক্সিজেন বের করে নিলে গজ চাপ (gauge pressure) কমে 11 atm হয় এবং -এর তাপমাত্রা কমে হয় 17 °C। সিলিন্ডার থেকে বের করে নেওয়া অক্সিজেনের ভর নির্ণয় করো। (R = 8.31 J mol⁻¹ K⁻¹, O, এর আণবিক ভর = 32 u)।
- 13.5
 1.0 cm³ আয়তনের একটি বায়ুর বুদ্বুদ 40 মি গভীরতা বিশিষ্ট একটি জলাশয়ের তলদেশ, যেখানে তাপমাত্রা

 12 °C থেকে উঠে উপরের পৃষ্ঠে এল, যেখানে তাপমাত্রা 35 °C । বুদবুদটির বর্দ্ধিত আয়তন কত হবে ?
- 13.6
 27 °C তাপমাত্রা এবং 1 atm চাপে 25.0 m³ ধারণক্ষমতা বিশিষ্ট একটি ঘরের বায়ুর মোট অণুর (যাতে রয়েছে অক্সিজেন, নাইট্রোজেন, জলীয় বাষ্প এবং অন্যান্য উপাদান) সংখ্যা নির্ণয় করো।
- 13.7
 একটি হিলিয়াম পরমাণুর গড় তাপীয় শক্তি নির্ণয় করো (i) ঘরের তাপমাত্রায় (27 °C), (ii) সূর্য পৃষ্ঠের (6000 K)

 তাপমাত্রায়। (iii) 10 মিলিয়ন কেলভিন (একটি তারার ক্ষেত্রে বিশেষ কোর তাপমাত্রা) তাপমাত্রায়।
- 13.8 একই চাপ ও সমান ধারকত্ব বিশিষ্ট তিনিট পাত্রে গ্যাস রয়েছে। প্রথম পাত্রে রয়েছে নিয়ন (একপরমাণুক) গ্যাস, দ্বিতীয় পাত্রে রয়েছে ক্লোরিন (দ্বিপরমাণুক) গ্যাস এবং তৃতীয় পাত্রে রয়েছে ইউরেনিয়াম হেক্সাফ্রুরাইড (বহুপরমাণুক) গ্যাস। প্রতিটি পাত্রে উপরোক্ত গ্যাসগুলোর অণুসংখ্যা কি সমান হবে ? তিনটি ক্ষেত্রেই অণুগুলোর মূল গড় বর্গবেগ সমান হবে কী ? যদি না হয়, তাহলে কোন্ ক্ষেত্রে v_{rms} -এর মান সর্বাধিক হবে ?
- 13.9 কোন্ তাপমাত্রায় আর্গন গ্যাস সিলিন্ডারে পরমাণুর মূল গড় বর্গ বেগ, 20 °C তাপমাত্রায় হিলিয়াম গ্যাসের পরমাণুর v_{rms}-এর মানের সমান হবে? (Ar এর পারমাণবিক ভর = 39.9u এবং He-এর পারমাণবিক ভর = 4.0 u) ।
- 13.10
 নাইট্রোজেন গ্যাসের এক সিলিন্ডারে 2.0 atm চাপ এবং 17 °C তাপমাত্রায় থাকা নাইট্রোজেন অণুর গড় মুক্ত পথ এবং

 সংঘর্ষ কম্পাঙ্ক নির্ণয় করো । নাইট্রোজেন অণুর ব্যাস মোটামুটিভাবে ধরে নাও 1.0 Å । সংঘর্ষের সময়ের সঙ্গো পরপর দুটো সংঘর্ষের মাঝে অণুর দ্বারা মুক্তভাবে চলনের সময়ের তুলনা করো (N, এর আণবিক ভর = 28.0 u)।

Additional Exercises

- 13.11
 1 মিটার লম্বা সরু ছিদ্র বিশিষ্ট একটি নল (যার এক প্রান্ত বন্ধ) অনুভূমিকভাবে রাখা আছে এবং এতে 76 cm দীর্ঘ পারদসূত্র রয়েছে যা নলের

 মধ্যে 15 cm বায়ুস্তন্তকে আবন্দ রাখে। খোলা প্রান্ত নীচের দিকে রেখে নলটিকে যদি খাড়াভাবে রাখা হয়, তাহলে কী ঘটবে?
- 13.12
 কোনো এক নির্দিষ্ট যন্ত্র (apparatus) থেকে হাইড্রোজেন গ্যাসের গড় ব্যাপনের হার হল 28.7 cm³ s⁻¹ । একই শর্তে অন্য আরেকটি গ্যাসের গড় ব্যাপন হার 7.2 cm³ s⁻¹ । গ্যাসটি শনাস্তু করো ।

 [ইজিাত : গ্রাহামের গ্যাস ব্যাপন সূত্র : R₁/R₂ = (M₂/M₁)^{1/2}, যেখানে R₁ এবং R₂ হল গ্যাস1 এবং 2, এর ব্যাপন হার M₁ এবং M₂ ব্যবহার করো । গ্রাহামের সূত্রটি হল গতীয় তত্ত্বের একটি সরল ফল ।]
- 13.13 সাম্য অবস্থায় থাকা একটি গ্যাসের ঘনত্ব এবং চাপ গ্যাসটির সম্পূর্ণ আয়তনে একই হয়। এটি যথাযথভাবে সত্য হবে তখনই যখন এতে কোনো বাহ্যিক প্রভাব থাকবে না। উদাহরণস্বরূপ, অভিকর্ষের অধীনে থাকা একটি গ্যাস স্তন্তের ঘনত্ব (এবং চাপ) সুষম হয় না। তুমি আশা করতে পারো যে, এর ঘনত্ব উচ্চতা বৃষ্ধির সঙ্গো হ্রাস পায়। সুনির্দিন্ট নির্ভরতা বায়ুমণ্ডলের তথাকথিত সূত্র (laws of atmosphere) দ্বারা দেওয়া হয়।

$$n_2 = n_1 \exp \left[-mg \left(h_2 - h_1 \right) / k_B T \right]$$

যেখানে n_1 এবং n_2 হলো যথাক্রমে h_1 এবং h_2 উচ্চতায় সংখ্যা ঘনত্ব। এ সম্পর্কটিকে তরলস্তন্তের ক্ষেত্রে প্রলম্বিত কোনো কণার অধ্যক্ষেপণ (Sedimentation) ভারসামের সমীকরণ প্রতিষ্ঠা করার জন্য ব্যবহার করো :

 $n_2 = n_1 \exp \left[-mg N_A (\rho - \rho') (h_2 - h_1)/(rRT)\right]$

যেখানে ho হল প্রলম্বিত কণার ঘনত্ব, এবং $\,
ho^\prime \,$ হল চারপাশের মাধ্যমের ঘনত্ব।

[N_A হলো অ্যাভোগ্রাড্রো সংখ্যা এবং R হলো সর্বজনীন গ্যাস ধ্রুবক] [ইঞ্জিত : প্রলম্বিত কণার আপাত ওজন বের করার জন্য আর্কিমিডিসের সূত্র প্রয়োগ করো]

পদার্থ	পারমাণবিক ভর (u)	যনত্ব (10³ kg m ³)
কার্বন (হীরক)	12.01	2.22
সোনা	197.00	19.32
নাইট্রোজেন (তরল)	14.01	1.00
লিথিয়াম	6.94	0.53
ফ্লোরিন (তরল)	19.00	1.14

13.14 নীচে কিছু কঠিন এবং তরল পদার্থের ঘনত্ব দেওয়া আছে। পদার্থগুলোর পরমাণুর আকারের আসন্নকাল নির্ণয় করো :

[ইঙ্গিত : ধরে নাও, কঠিন এবং তরল অবস্থায় পরমাণুগুলো 'দৃঢ়ভাবে আবদ্ধ' থাকে এবং অ্যাভোগাড্রো সংখ্যার জ্ঞাত মান ব্যবহার করো। তবে তোমরা বিভিন্ন পারমাণবিক আকারের জন্য প্রাপ্ত প্রকৃত সংখ্যাগুলো খুব সরাসরি (literally) প্রয়োগ করবে না। কারণ দৃঢ়ভাবে আবদ্ধ দৃঢ়তার অনুমান থেকে প্রাপ্ত ফলাফল নির্দেশ করে যে, পরমাণুর আকার শুধুমাত্র করেক Å পরিসরের মধ্যে থাকে।]

কম্পন (Oscillations)

14.1 ভূমিকা

- 14.2 পর্যাবৃত্ত এবং দোলগতি
- 14.3 সরল দোলগতি
- 14.4 সরল দোলগতি এবং সমবৃত্তীয় গতি
- 14.5 সরল দোলগতিতে বেগ এবং ত্বরণ
- 14.6 সরল দোলগতির ক্ষেত্রে বলের সূত্র
- 14.7 সরল দোলগতি যুক্ত কণার মোট শক্তি
- 14.8
 সরল দোলগতি সম্পাদনকারী কিছু

 সংস্থা
 সংস্থা
- 14.9 অবমন্দিত সরলদোলগতি
- 14.10 পরবশ কম্পন এবং অনুনাদ সারাংশ ভেবে দেখার বিষয়সমূহ অনুশীলনী অতিরিস্ত অনুশীলনী পরিশিউ

14.1 ভূমিকা (Introduction)

দৈনন্দিন জীবনে আমরা বিভিন্ন রকম গতির সম্মুখীন হই। তুমি এরমধ্যে কারও কারও সম্পর্কে জেনে নিয়েছ। যেমন সরলরৈথিক গতি এবং প্রাসের গতি। উভয় গতিরই পুনরাবৃত্তি ঘটে না। আমরা সমবৃত্তীয় গতি এবং সৌরজগতে গ্রহের কক্ষপথের গতি সম্পর্কেও জেনেছি। এক্ষেত্রে নির্দিন্ট সময় ব্যবধানে গতির পুনরাবৃত্তি হয়, অর্থাৎ এটি পর্যায়বৃত্ত। শৈশবে তুমি নিশ্চয়ই এপাশ ওপাশ দোলেছ অথবা দোলনায় দোলেছ। উভয়গতিই পুনরাবৃত্ত হয় কিন্ডু এরা গ্রহের পর্যাবৃত্ত গতি থেকে আলাদা। এক্ষেত্রে বস্থু সাম্যাবস্থার সাপেক্ষে আগেপিছে গতিশীল হয়। দেয়াল ঘড়ির দোলক একই প্রকার গতি সম্পন্ন করে। এরকম অগ্র-পশ্চাৎ পর্যায়বৃত্ত গতির প্রচুর উদাহরণ আছে: নদীতে নৌকার উঠানামা, স্টিমইঞ্জ্বিনের পিস্টনের আগেপিছে যাওয়া ইত্যাদি। এধরনের গতি দোলগতি নামে পরিচিত। এই অধ্যায়ে আমরা এই গতি নিয়ে অধ্যয়ন করব।

দোলগতি নিয়ে অধ্যয়ন পদার্থবিদ্যার একটি মৌলিক বিষয়; অনেক ভৌত ঘটনাবলী অনুধাবন করতে এর ধারণা থাকা প্রয়োজন। সেতার, গীটার অথবা বেহালার মতো বাদ্যযন্ত্রে আমরা কম্পমান তারগুলো থেকে মনোরম শব্দ উৎপন্ন হতে দেখি। ড্রামের পর্দা, টেলিফোনের ডায়াফ্রাম এবং স্পিকার সিস্টেম তাদের সাম্যাবস্থানের সাপেক্ষে এদিক-ওদিক কম্পিত হয়। বায়ুর অণুর কম্পনের ফলে শব্দের সঞ্চালন সম্ভব হয়। কঠিন পদার্থের ক্ষেত্রে পরমাণু সাম্যাবস্থার সাপেক্ষে কাঁপে, কম্পনের গড় শক্তি উস্নতার সঙ্গো সমানুপাতী। পরিবর্তী বিদ্যুৎ সরবরাহে বিভব, গড়মানের (শূন্য) সাপেক্ষে পর্যায়ক্রমে ধনাত্মক এবং ঋণাত্মক মানে কম্পিত হয়।

পর্যায়বৃত্ত গতির বর্ণনায় বিশেষ করে দোলগতির ক্ষেত্রে পর্যায়, কম্পাংক, সরণ, বিস্তার এবং দশার মতো কিছু মৌলিক ধারণার প্রয়োজন। এই ধারণাগুলো পরবর্তী অনুচ্ছেদে আলোচনা করা হয়েছে।

পদার্থবিদ্যা

14.2 পর্যায়বৃত্ত এবং দোলগতি (Periodic and Oscillatory motions)

14.1 নং চিত্রে কিছু পর্যায়বৃত্ত গতি দেখানো হয়েছে। ধর একটি পোকা একটি ঢাল বরাবর বেয়ে উঠে এবং নীচে নেমে আগের জায়গায় ফিরে আসে এবং প্রক্রিয়াটির হুবহু পুনরাবৃত্তি হয়। যদি তুমি সময়ের সাথে ভূপৃষ্ঠ থেকে তার উচ্চতার লেখ আঁক তবে এটি দেখতে অনেকটা 14.1 (a) নং চিত্রের মতো হবে। যদি একটি শিশু একটি সিঁড়ি বেয়ে উঠে নেমে আসে এবং প্রক্রিয়াটির পুনরাবৃত্তি হয়, তবে ভূপৃষ্ঠ থেকে এর উচ্চতার লেখচিত্র দেখতে 14.1 (b) নং চিত্রের মতো হবে। যখন তুমি একটি বলকে ভূমিতে ফেলো তখন ভূমির প্রতিক্ষেপের জন্য বলটি পুনরায় হাতে ফিরে আসে। এভাবে হাতের তালু এবং ভূমির মধ্যে বলকে নিয়ে খেলার সময় এর উচ্চতা বনাম সময়ের লেখ 14.1 (c) নং চিত্রের মতো হবে। লক্ষ করো 14.1 (c) নং চিত্রের লেখর উভয় বক্রঅংশ নিউটনের দেওয়া গতীয় সমীকরণ থেকে পাওয়া অধিবৃত্তের অংশ (অনুচ্ছেদ 3.6 দেখ)।

 $h = ut + \frac{1}{2}gt^2$ नीराइत फिल्कित भण्डित क्ष्मि...

 $h = ut - rac{1}{2}gt^2$ উপরের দিকের গতির ক্ষেত্রে,

প্রতিক্ষেত্রে u এর মান আলাদা। এগুলো পর্যায়বৃত্ত গতির উদাহরণ। তাই কোনো গতি নির্দিষ্ট সময় পরপর পুনরাবৃত্ত হলে তাকে **পর্যায়বৃত্ত গতি**

চিত্র 14.1 পর্যায়বৃত্ত গতির উদাহরণ। প্রতিক্ষেত্রে পর্যায়কাল T দেখানো হয়েছে।

প্রায় সময় পর্যায়বৃত্ত গতিতে দোলনরত বস্তুর গতিপথের কোনো বিন্দুতে সাম্যাবস্থা পাওয়া যায়। যখন বস্তু এই অবস্থানে থাকে তখন এর উপর কোনো নীট বাহ্যিক বল ক্রিয়া করে না। তাই একে ঐ স্থানে ছেড়ে দিলে সে ঐ স্থানে চিরদিনের জন্য স্থির থাকবে। যদি বস্তুটিকে এ বস্থা থেকে সামান্য সরানো হয় তবে একটি বল বস্তুটিকে সাম্যাবস্থানে ফিরে আনতে চেফ্টা করে এবং দোলন বা কম্পন সৃষ্টি করবে। যেমন একটি বলকে বাটিতে রাখলে এটি নীচে সাম্যাবস্থানে আসবে। একে এ অবস্থা থেকে সামান্য সরিয়ে ছেড়ে দিলে, এটি বাটিতে দোলন সম্পন্ন করবে। প্রতিটি দোলন পর্যায়বৃত্ত কিন্ডু প্রতিটি পর্যায়বৃত্ত গতি দোলগতি নাও হতে পারে। বৃত্তীয় গতি একটি পর্যায়বৃত্ত গতি কিন্ডু এটি দোলনগতি নায়।

দোলন এবং কম্পনে বিশেষ কোন তাৎপর্যপূর্ণ পার্থক্য নেই। দেখা যায় যখন কম্পাঙ্ক কম হয় তখন একে আমরা দোলন বলি (যেমন গাছের ডালপালার দোলন), আবার যখন কম্পাঙ্ক বেশি হয় তখন একে আমরা কম্পন বলি (যেমন বাদ্যযন্ত্রের তারে কম্পন)।

সরল দোলগতি হল দোলনগতির সরলতম রূপ। যখন কোনো দোলনরত বস্তুর উপর প্রযুক্ত বল মধ্য অবস্থান থেকে (যাকে সাম্যাবস্থানও বলে) সরণের সাথে সমানুপাতী হয় তখন এই গতির সৃষ্টি হয়। আবার এই দোলনের প্রতিটি বিন্দুতে এই বল সাম্যাবস্থানের দিকে ক্রিয়াশীল হয়।

বাস্তবে দোলনরত বস্তু, ঘর্ষণ এবং অন্যান্য **অপচিত** বলের জন্য অবশেষে সাম্যাবস্থানে স্থির অবস্থায় আসে। যদিও দোলনরত বস্তুকে কিছু বাহ্যিক পর্যায়বৃত্ত সংস্থার দ্বারা দোলন বজায় রাখতে হয়। আমরা পরে এই অধ্যায়ে **অবমন্দিত** এবং **পরবশদোলন** নিয়ে আলোচনা করব।

কোন জড়মাধ্যমকে বহুসংখ্যক যুগ্ম দোলনের সমবায়রুপে ভাবা যায়। মাধ্যমের উপাদানকণাগুলোর দোলনের সমবায় তরঙ্গারুপে উদ্ভাসিত হয়। তরঙ্গোর উদাহরণের মধ্যে অন্তর্ভুক্ত হল জলে সৃষ্ট তরঙ্গা, ভূকম্পন ঘটিত তরঙ্গা, তড়িৎ চুম্বকীয় তরঙ্গা।আমরা পরবর্তী অধ্যায়ে তরঙ্গের বিভিন্ন ঘটনাবলি নিয়ে আলোচনা করব।

14.2.1 পর্যায় এবং কম্পার্জক (Period and frequency)

আমরা দেখেছি কোন গতি নির্দিন্ট সময় পরপর পুনরাবৃত্ত হলে তাকে পর্যায়বৃত্ত গতি বলে। সবচেয়ে কম যে সময় ব্যবধানে গতির পুনরাবৃত্তি হয় তাকে পর্যায় বলে। আমরা পর্যায়কে *T* চিহ্নের দ্বারা প্রকাশ করি। এর SI একক হল সেকেন্ড। পর্যায়বৃত্ত গতির ক্ষেত্রে সেকেন্ড স্কেলের ভিত্তিতে যারা খুব দ্রুত বা ধীর, তাদের ক্ষেত্রে সময়ের অন্যান্য সুবিধাজনক এককের ব্যবহার হয়। কোয়ার্জ কেলাসের কম্পনের পর্যায় মাইক্রোসেকেন্ডে (10⁻⁶s) প্রকাশ করা হয় এবং সংক্ষেপে μ s রুপে প্রকাশ করা হয়। অপরদিকে বুধ গ্রহের প্রদক্ষিণ কাল (orbital period) হল ৪৪ পার্থিব দিন (earth days)। হ্যালির ধুমকেতু প্রতি 76 বছর পরপর দৃশ্যমান হয়।

T এর অনোন্যক দ্বারা প্রতি একক সময়ে পুনরাবৃত্তির সংখ্যা পাওয়া যায়। এই রাশিকে পর্যায় বৃত্তগতির কম্পাঙ্ক (frequency of the periodic motion) বলে। একে v দ্বারা প্রকাশ করা হয়। v এবং T এর সম্পর্ক হল —

$$v = 1/T \tag{14.1}$$

তাই v এর একক হল s⁻¹। বেতার তরঙ্গা আবিষ্কারক Heinrich Rudolph Hertz (1857–1894) এর নামানুসারে কম্পাঙ্কের একটি নতুন নাম হার্ৎজ (সংক্ষেপে Hz) দেওয়া হয়।

লক্ষকর কম্পাঞ্চ v অখণ্ডসংখ্যা নাও হতে পারে।

 উদাহরণ 14.1 মোটামুটিভাবে বলা যায় একজন মানুষের হুদপিণ্ড গড়ে মিনিটে 75 বার স্পন্দিত হয়। এর কম্পাঙ্ক এবং পর্যায়কাল নির্ণয় করো।

14.2.2 সরণ (Displacement)

4.2 নং অনুচ্ছেদে আমরা অবস্থান ভেক্টরের পরিবর্তনকে সরণ রুপে সংজ্ঞায়িত করেছি। এই অধ্যায়ে আমরা সরণকে আরও সাধারণ অর্থে ব্যবহার করব। এটি সময়ের সাথে বিবেচনাধীন কোন ভৌত ধর্মের পরিবর্তন বোঝায়। যেমন, কোনো তলে একটি স্টিলের বলের সরলরৈথিক গতির ক্ষেত্রে প্রাথমিক কোনো বিন্দু থেকে সময়ের অপেক্ষকটিই হল ইহার অবস্থান সরণ। মূলবিন্দু সুবিধাজনকভাবে নির্বাচন করা হয়। মনে কর, একটি ব্লক একটি স্প্রিং এর সাথে যুক্ত এবং এর অন্যপ্রাস্ত একটি দৃঢ় দেওয়ালের সাথে যুক্ত [14.2(a) নং চিত্র দেখ]। সাধারণত বস্তুর সরণ, এর সাম্যাবস্থান থেকে মাপা সুবিধাজনক। একটি দোলনরত সরল দোলকের সময়ের অপেক্ষক রূপে উলম্বের সাথে আনত কোণকে সরণরূপী চলরাশি হিসেবে বিবেচনা করা যেতে পারে [14.2(b) নং চিত্র দেখ]। সরণকে সবসময়

চিত্র 14.2(a) : একটি ব্লক স্প্রিং এর একপ্রান্তের সঞ্চো যুক্ত এবং অপরপ্রান্ত দৃঢ় দেওয়ালের সঙ্গো যুক্ত। ব্লকটি মসৃণ তল বরাবর গতিশীল। দেওয়াল থেকে দুরত্ব বা সরণ x এর সাহায্যে ব্লকের গতি বর্ণনা করা যায়।

চিত্র 14.2(b) : একটি দোলনরত সরল দোলক; এর গতি উল্লম্বের সাথে কৌণিক সরণ 🖯 এর সাপেক্ষে বর্ণনা করা যায়।

কেবল অবস্থানের পরিপ্রেক্ষিতেই বিবেচিত করা হয় না। সরণ চলরাশিটি বিভিন্ন রকমের হতে পারে। ধারকের দু-প্রান্তের বিভব কিংবা AC বর্তনীতে সময়ের সাথে বিভবের পরিবর্তনও সরণ চলরাশিকে বোঝায়। একইভাবে শব্দতরঙ্গোর সঞ্চালনে সময়ের সাথে চাপের পরিবর্তন, আলোক তরঙ্গো তড়িৎক্ষেত্র এবং চৌম্বকক্ষেত্রের পরিবর্তনগুলো অন্যরূপে সরণের উদাহরণ। সরণ চলরাশির মান ধনাত্মক বা ঋণাত্মক ধরা যায়। দোলনের পরীক্ষায় বিভিন্ন সময়ের জন্য সরণ পরিমাপ করা হয়।

সরণকে সময়ের গাণিতিক অপেক্ষকরূপে প্রকাশ করা যায়। পর্যায়বৃত্ত গতির ক্ষেত্রে এই অপেক্ষক সময়ের সাথে পর্যায়ক্রমে পরিবর্তিত হয়। সবচাইতে সরলতম পর্যায়ক্রমিক অপেক্ষক হল —

$$f(t) = A\cos\omega t \tag{14.3a}$$

যদি এই অপেক্ষকের কোণাঙ্ক (argument), *ωt* কে 2π রেডিয়ানের অখণ্ড গুণিতকে বৃদ্ধি করা হয়, তবে অপেক্ষকের মান অপরিবর্তিতথাকে। f(t) তখন পর্যায়বৃত্ত অপেক্ষক হবে এবং *T* হবে নিমন্থপ,

$$T = \frac{2\pi}{\omega} \tag{14.3b}$$

ফলে f(t) হল পর্যায়বৃত্ত অপেক্ষক যার পর্যায়কাল T,

$$f(t) = f(t+T)$$

যদি আমরা একটি sine অপেক্ষক $f(t) = A \sin \omega t$ বিবেচনা করি, তবে সেক্ষেত্রেও উপরের সম্পর্কটি অবশ্যই সত্যি হবে।

আবার $f(t) = A \sin \omega t + B \cos \omega t$ (14.3c) এর ন্যায় sine এবং cosine অপেক্ষকের রৈখিক সববায় ও একই T পর্যায়কালের পর্যায়বৃত্ত অপেক্ষক হবে।

ধরি,
$$A = D \cos \phi$$
 এবং $B = D \sin \phi$

∴ (14.3c) সমীকরণকে লেখা যায়

 $f(t) = D\sin(\omega t + \phi), \qquad (14.3d)$

এক্ষেত্রে D এবং ϕ হল ধ্রুবক যেখানে

$$D = \sqrt{A^2 + B^2}$$
 এবং $\phi = \tan^{-1}\left(\frac{B}{A}\right)$

ফ্রান্স গণিতজ্ঞ জিন্ব্যাপটাইসট্ জোসেফ্ ফুরিয়ার (Jean Baptiste Joseph Fourier 1768–1830) বলেন, "যে-কোন পর্যায়বৃত্ত অপেক্ষককে ভিন্ন পর্যায়কালের এবং উপযুক্ত সহগযুক্ত sine এবং cosine অপেক্ষকের উপরি পাতনরূপে প্রকাশ করা যায়।" এই উল্লেখযোগ্য প্রমাণিত ফলাফলের ভিত্তিতে বলা যায় sine এবং cosine পর্যায়বৃত্ত অপেক্ষক বিশেষ গুরুত্বপূর্ণ।

উত্তর :

(i) $\sin \omega t + \cos \omega t$ হল একটি পর্যায়বৃত্ত অপেক্ষক। একে আবার লেখা যায় $\sqrt{2} \sin (\omega t + \pi/4)$.

এখন $\sqrt{2} \sin(\omega t + \pi/4) = \sqrt{2} \sin(\omega t + \pi/4 + 2\pi)$

 $= \sqrt{2} \sin \left[\omega \left(t + 2\pi/\omega\right) + \pi/4\right]$

অপেক্ষকটির পর্যায়কাল হল 2π/ω.

- (ii) এটি একটি পর্যায়বৃত্ত গতির উদাহরণ। লক্ষ কর যে প্রতিটি পদ এক একটি ভিন্ন কৌণিক কম্পাকের পর্যায়বৃত্ত অপেক্ষক। যেহেতু পর্যায়কাল হল ন্যূনতম সময়কাল, যে সময় পর অপেক্ষকটির মান পুনরাবৃত্ত হয়, তাই sin ω এর পর্যায়কাল T₀=2π/ω; cos 2 ω এর পর্যায়কাল π/ω=T₀/2; এবং sin 4 ω আপেক্ষকের পর্যায়কাল 2π/4ω=T₀/4। প্রথম পদের পর্যায়কাল, শেষ দুটি পদের পর্যায়কালের গুণিতক। সুতরাং ন্যূনতম T₀ সময় পর তিনটি পদের সমন্বয়ে সৃন্ট পর্যায়বৃত্ত গতির পুনরাবৃত্তি হবে। তাই লব্ধি অপেক্ষকটি একটি 2π/ω পর্যায়কালের পর্যায়বৃত্ত অপেক্ষক।
- (iii) e^{-∞t} অপেক্ষক পর্যায়বৃত্ত অপেক্ষক নয়। এটি সময় বাড়ার সাথে সাথে খুব কম হ্রাস পায় এবং t → ∞ হলে অপেক্ষকটি শূন্যের নিকটবর্তী হয়। ফলে তার মানের কখনও পুনরাবৃত্তি হয় না।
- (iv) log(ωt) অপেক্ষক সময়ের সাথে খুব কম বৃদ্ধি পায়, তাই কখনও এর মানের পুনরাবৃত্তি হয় না। এবং এটি একটি অপর্যায়বৃত্ত অপেক্ষক। লক্ষ কর t → ∞ হলে log(ωt) এর মান বৃদ্ধি পেয়ে ∞ এর অভিমুখী হবে,সুতরাং এটি কোনোরূপ সরণকে প্রকাশ করে না।

14.3 সরল দোলগতি (Simple harmonic motion)

14.3 নং চিত্রের ন্যায় মনে কর একটি কণা x- অক্ষ বরাবর মূলবিন্দুর সাপেক্ষে +A এবং –A সীমার মধ্যে আগে পিছে দুলছে। এই

চিত্র : **14.3** একটি কণা x- অক্ষ বরাবর মূলবিন্দুর সাপেক্ষে +A এবং –A সীমার মধ্যে আগে পিছে দুলছে।

দোলগতিকে সরলদোলগতি বলা হবে যদি মূলবিন্দু থেকে কণার সরণ *x*, সময়ের সাথে নিন্মরূপে পরিবর্তিত হয় :

$$x(t) = A\cos(\omega t + \phi)$$
(14.4)
(যখানে A, ω এবং ϕ হল ধ্রবক।

14.4 নং চিত্রে সরল দোলগতিরও কোনো কণার বিভিন্ন পৃথক পৃথক সময়ে অবস্থান দেখানো হয়েছে, প্রতিটি সময় ব্যবধান *T*/4, যেখানে *T* হল গতির পর্যায়কাল। 14.5 নং চিত্রে t বনাম *x* এর

চিত্র : 14.4 সময়ের পৃথক পৃথক মান t = 0, T/4, T/2, 3T/ 4, T, 5T/4 এর ক্ষেত্রে সরল দোলগতি সম্পন্ন কণার অবস্থান। যে সময় পর গতির পুনরাবৃত্তি হয় তা হল T। প্রাথমিক অবস্থান (t = 0) তুমি যাই নির্বাচন কর না কেন, T এর মান অপরিবর্তিত থাকবে। শূন্য সরণের (x = 0) ক্ষেত্রে দ্রুতি সর্বোচ্চ এবং গতির প্রান্ত বিন্দুতে শূন্য হয়।

লেখচিত্র অঞ্চন করা হয়েছে যা থেকে সময়ের নিরবচ্ছিন্ন অপেক্ষক রূপে সরণের মান পাওয়া যায়। 14.6 নং চিত্রে সংক্ষেপে *A*, *ω* এবং ϕ এর সুনির্দিন্ট প্রমাণ নামগুলো দেওয়া হল যারা সরল দোলগতির বৈশিন্ট্যকে প্রকাশ করে। চল আমরা এই রাশিগুলো বুঝতে চেন্টা করি।

চিত্র : 14.5 সরল দোলগতির ক্ষেত্রে সরণ হল সময়ের নিরবচ্ছিন্ন অপেক্ষক।

x (t)	সময় t এর সাপেক্ষে সরণ (x) অপেক্ষক	
Α	বিস্তার	
ω	কৌণিক কম্পাঙ্ক	
$\omega t + \phi$	দশা (সময় - নির্ভর)	
ϕ	প্রাথমিক দশা	

চিত্র: 14.6 সুনির্দিষ্ট প্রমাণ চিহ্নগুলোর নাম (14.4 নং সমীকরণে)

সরল দোলগতির বিস্তার *A* হল কোন কণার সর্বোচ্চ সরণের মান। (লক্ষণীয় যে, *A* কে সাধারণত ধনাত্মক ধরা যায়)। যেহেতু সময়ের cosine অপেক্ষক +1 থেকে –1 এর মধ্যে পরিবর্তিত হয়, তাই সরণ *A* এবং – *A* এর মধ্যে পরিবর্তিত হয়। দুটি সরল দোলগতির *w* এবং *φ* একই কিন্তু বিভিন্ন বিস্তার *A* এবং *B* হতে পারে (চিত্র 14.7 (a) এর ন্যায়)।

চিত্র : 14.7 (a) 14.4 নং সমীকরণ থেকে $\phi = 0$ ধরে সময়ের অপেক্ষকরূপে সরণ।1 নং এবং 2 নং হল দুটি ভিন্ন বিস্তার A এবং B মান সম্পন্ন সরল দোলগতির লেখচিত্র।

যখন নির্দিষ্ট সরল দোলগতির ক্ষেত্রে *A* ধ্রুবক হয় তখন কোন *t* সময়ে কণার গতীয় অবস্থা (অবস্থান এবং বেগ) নির্ণীত হয় cosine অপেক্ষকের argument অর্থাৎ কোণাঙ্ক ($\omega t + \phi$) দ্বারা। এই সময় নির্ভর রাশি ($\omega t + \phi$) কে গতির দশা (*phase*) বলা হয়। t = 0সময়ে দশার মান হল ϕ এবং একে প্রাথমিক দশা (বা দশাকোণ) বলে। যদি বিস্তার জানা থাকে তবে t = 0 সময়ে সরণ থেকে ϕ নির্ণয় করা যাবে। 14.7 (b) চিত্রের মতো দুটি সরল দোলগতির *A* এবং ω একই কিন্তু ভিন্ন দশা কোণ ϕ হতে পারে।

চিত্র : 14.7 (b) 14.4 নং সমীকরণ থেকে লেখ অঙ্জন। 3 নং এবং 4 নং লেখ যথাক্রমে $\phi = 0$ এবং $-\pi/4$ এর জন্য। উভয় লেখ এর ক্ষেত্রে বিস্তার A একই।

অবশেষে আমরা দেখতে পারি যে ω রাশিটি গতির পর্যায়কাল T এর সঙ্গে সম্পর্কযুক্ত। 14.4 নং সমীকরণে $\phi = 0$ ধরে সমীকরণটি সরলীকৃত করে আমরা পাই

$$x(t) = A\cos\omega t \tag{14.5}$$

যেহেতু গতির পর্যায়কাল T, x(t) এর মান x(t+T) এর সমান হবে, অর্থাৎ, $A \cos \omega t = A \cos \omega (t+T)$ (14.6)

এখন cosine অপেক্ষক পর্যায়বৃত্ত এবং এর পর্যায়কাল 2π অর্থাৎ যখন কোণাঙ্ক 2π পরিমাণ পরিবর্তিত হবে তখন এটি প্রথমবার পুনরাবৃত্ত হবে। সুতরাং,

$$\omega(t+T) = \omega t + 2\pi$$

অর্থাৎ $\omega = 2\pi/T$ (14.7)

ω কে সরল দোলগতির কৌণিক কম্পাঙ্ক বলে। এর S.I. একক হল রেডিয়ান / সেকেন্ড। যেহেতু কম্পনের কম্পাঙ্ক হল 1/T, তাই *ω* হল কম্পাঙ্কের 2π গুণ। 14.8 নং চিত্রের ন্যায় সরল দোলগতির A এবং *φ*, একই কিন্তু *ω* ভিন্ন হতে পারে। এক্ষেত্রে (b) লেখচিত্রের পর্যায়কাল ও কম্পাঙ্ক, (a) লেখচিত্রের পর্যায়কাল ও কম্পাঙ্কের যথাক্রমে অর্ধেক ও দ্বিগুণ হবে।

চিত্র : 14.8 দুটি ভিন্ন পর্যায়কালে $\phi = 0$ এর জন্য (14.4) সমীকরণের লেখচিত্র।

উত্তর :

(a) $\sin \omega t - \cos \omega t$

$$= \sin \omega t - \sin (\pi/2 - \omega t)$$

= 2 cos (\pi/4) sin (\overline{\overlin

এই অপেক্ষক একটি সরল দোলগতিকে প্রকাশ করে যার

পর্যায়কাল $T = 2\pi/\omega$ এবং দশাকোণ $(-\pi/4)$ বা $(7\pi/4)$ (b)sin² ωt

 $= \frac{1}{2} - \frac{1}{2} \cos 2 \omega t$

অপেক্ষকটি পর্যায় বৃত্তাকার যার পর্যায়কাল $T = \pi/\omega$ এটিও একটি দোলগতিকে প্রকাশ করে যার সাম্যবিন্দু শূন্যের পরিবর্তে 1⁄2 হয়।

14.4 সরল দোলগতি এবং সমবৃত্তীয় গতি (Simple harmonic motion and uniform circular motion)

এই অংশে আমরা দেখব যে বৃত্তের ব্যাসের উপর লম্ব অভিক্ষেপ একটি সরল দোলগতি অনুসরণ করে। একটি সহজ পরীক্ষার (চিত্র 14.9) সাহায্যে এটি কল্পনা করতে আমাদেরকে সাহায্য করবে। একটি সুতোর এক প্রান্তে একটি বল বেঁধে এবং একে অনুভূমিক তলে একটি স্থির বিন্দুর সাপেক্ষে স্থির কৌণিক দ্রুতিতে ঘুরাও। বলটি তখন অনুভূমিক তলে বৃত্তীয় গতিসম্পন্ন করবে। গতীয় তলে তোমার দৃষ্টি রেখে পাশ থেকে বা সামনে থেকে বলটিকে লক্ষ্য কর। বলটি একটি অনুভূমিক রেখা বরাবর ঘূর্ণন বিন্দু (point of rotation)কে সাম্যাবস্থান ধরে অগ্র-পশ্চাদ গতিসম্পন্ন করছে বলে মনে হবে। তুমি অন্যভাবে বৃত্ততলের অভিলম্বে স্থাপিত দেওয়ালে বলের ছায়া লক্ষ করতে পার। এক্ষেত্রে দৃষ্টির অভিমুখের সঞ্চে লম্ব অভিমুখে বৃত্তের ব্যাস বরাবর বলের গতি আমরা লক্ষ করছি।

চিত্র : 14.9 কোনো তলে এক পাশ থেকে দেখলে একটি বলের বৃত্তগতি একটি সরল দোলগতি।

14.10 নং চিত্রে একই অবস্থা গাণিতিকভাবে বর্ণনা করা হল। ধর একটি কণা P সুষমভাবে *A* ব্যাসার্ধের বৃত্ত বরাবর *ω* কৌণিক বেগে ঘড়ির কাটার বিপরীতদিকে ঘুরছে। কণার প্রাথমিক অবস্থান ভেক্টর অর্থাৎ *t* = 0 সময়ে **OP** ভেক্টর *x* অক্ষের ধনাত্মক দিকের সঞ্চো φ কোণ সৃষ্টি করে। *t* সময়ে এটি আরও *ωt* পরিমাণ কোণে এগিয়ে গেলে এর অবস্থান ভেক্টর *x* অক্ষের ধনাত্মক দিকের সঙ্গো

চিত্র : 14.10

 $\omega t + \phi$ কোণ সৃষ্টি করে। এরপর x-অক্ষের উপর OP অবস্থান ভেক্টরের অভিক্ষেপ OP' বিবেচনা করি। P কণা বৃত্ত বরাবর ঘোরার সাথে সাথে x অক্ষের উপর P' এর অবস্থান নীচের সমীকরণ দ্বারা প্রকাশিত।

 $x(t) = A \cos\left(\omega t + \phi\right)$

যা সরল দোলগতির সমীকরণ নির্দেশ করে। এথেকে বোঝা যায় যে, যদি P একটি বৃত্ত বরাবর সুষম গতিতে গতিশীল হয়, তবে বৃত্তের ব্যাসের উপর এর অভিক্ষেপ P' সরল দোলগতি সম্পন্ন করে। P কণা এবং এটি যে বৃত্ত বরাবর গতিশীল হয় তাদের কখনো কখনো যথাক্রমে নির্দেশক কণা এবং নির্দেশক বৃত্ত বলা হয়।

আমরা গতিশীল P কণার যে কোন ব্যাস বরাবর, ধর y- অক্ষ বরাবর অভিক্ষেপ নিতে পারি। এক্ষেত্রে P' এর y অক্ষ বরাবর সরণ y (t) নিম্নলিখিত সমীকরণ দ্বারা প্রকাশিত

 $y = A \sin(\omega t + \phi)$

এটিও একটি সরল দোলগতি যা x-অক্ষের উপর অভিক্ষেপের ক্ষেত্রে যা বিস্তার ছিল তার সমান কিন্তু $\pi/2$ দশা পার্থক্যযুক্ত।

বৃত্তীয় গতি এবং সরল দোলগতির মধ্যে উক্ত সম্পর্ক থাকা সত্ত্বেও রৈখিক সরল দোলগতির ক্ষেত্রে কণার উপর প্রযুক্ত বলকণাকে সুষম বক্তপথে গতিশীল রাখতে প্রয়োজনীয় অভিকেন্দ্র বল এর থেকে আলাদা। উদাহরণ: 14.4 চিত্র 14.10 দুটি বৃত্তীয় গতিকে বর্ণনা করে। বৃত্তের ব্যাসার্ধ, ঘূর্ণনের পর্যায়কাল, প্রাথমিক অবস্থান এবং ঘূর্ণনের অভিমুখ চিত্রে নির্দেশ করা আছে। প্রতিক্ষেত্রে ঘূর্ণনশীল p কণার অবস্থান ভেক্টরের *x*- অভিক্ষেপ সরল দোলগতির সমীকরণ প্রতিষ্ঠা করে।

উত্তর :

 (a) t = 0 সময়ে OP, x অক্ষের ধনাত্মক দিকের সহিত 45° = π/4 rad কোণ সৃষ্টি করে। t সময় পর এটি ঘড়ির কাঁটার বিপরীত দিকে 2π/t কোণ ঘোরে এবং x-অক্ষের সহিত 2π/t + π/4

লেশ সৃষ্টি করে।

t সময়ে x অক্ষের উপর OP এর অভিক্ষেপ নিম্নলিখিত সমীকরণ দ্বারা প্রকাশ করা যায়,

$$x(t) = A \cos\left(\frac{2\pi}{T}t + \frac{\pi}{4}\right)$$
$$T = 4 \text{ s এর জন্য,}$$
$$x(t) = A \cos\left(\frac{2\pi}{4}t + \frac{\pi}{4}\right)$$

এটি একটি A বিস্তারের সরল দোলগতি যার পর্যায়কাল 4 s,

এবং প্রাথমিক দশা * =
$$\frac{\pi}{4}$$
.
b) এক্ষেত্রে $t = 0$ সময়ে OP, x অক্ষের সহিত 90° = $\frac{\pi}{2}$ কোণ

^{*} সাধারণ ভাবে কোণের একক হল রেডিয়ান, চাপ এবং ব্যাসার্ধের অনুপাত দ্বারা সংজ্ঞায়িত হয়। কোণ হল একটি মাত্রাহীন রাশি। সুতরাং যখন আমরা π এর গুণিতক বা গুণিতাংশ ব্যবহার করি তখন রেডিয়ান একক উল্লেখ করা সর্বদা নিম্প্রয়োজন। রেডিয়ান এবং ডিগ্রির মধ্যে রুপান্তর মিটার এবং সেন্টিমিটার বা মাইলের মধ্যে রুপান্তরের মতো নয়। যদি একটি ত্রিকোণোমিতি অপেক্ষকের কোনাজ্ঞ একক ছাড়া বিবৃত হয় তবে বুঝতে হবে যে একক হল রেডিয়ান। অপরদিকে যদি কোণের একক হিসেবে ডিগ্রি ব্যবহার করা হয় তখন একে স্পইডাবে প্রদর্শিত করা প্রয়োজন। যেমন sin(15°) বলতে বোঝায় 15 ডিগ্রির sin কিন্তু sine (15) বলতে বোঝায় 15 রেডিয়ানের sine। কাজেই আমরা প্রায়ই একক হিসেবে 'rad' বাদ দেই এবং বুঝতে হবে যে যখন কোণকে একক ছাড়া কোন সাংখিক মান দ্বারা প্রকাশ করা হয় তখন একে রেডিয়ান হিসেবে ধরা হয়।

সৃষ্টি করে। t সময় পর ঘড়ির কাটার দিকে এটি $\frac{2\pi}{T}t$ কোণ সৃষ্টি করে এবং x অক্ষের সহিত $\left(rac{\pi}{2} - rac{2\pi}{T}t
ight)$ কোণ সৃষ্টি করে। t সময়ে x- অক্ষের উপর OP এর অভিক্ষেপ নিম্নলিখিত সমীকরণ দ্বারা প্রকাশিত

$$x(t) = B \cos\left(\frac{\pi}{2} - \frac{2\pi}{T}t\right)$$
$$= B \sin\left(\frac{2\pi}{T}t\right)$$

T = 30 s হলে

$$x(t) = B\sin\left(\frac{\pi}{15}t\right)$$

এটিকে লেখা যায়, $x(t) = B \cos\left(\frac{\pi}{15}t - \frac{\pi}{2}\right)$ এবং (14.4) নং সমীকরণের সহিত তুলনা করে আমরা দেখতে পাই এটি B বিস্তারের এবং 30 s দোলনকালের একটি সরল দোলগতিকে প্রকাশ করে। এর প্রাথমিক দশা $-\frac{\pi}{2}$.

14.5সরল দোলগতির বেগ এবং ত্বরণ (Velocity and
acceleration in simple harmonic motion)

অর্থাৎ
$$v = \omega A$$
 (14.8)

t সময়ে বেগের অভিমুখ হল ঐ মুহূর্তে কণাটি বৃত্তের যে বিন্দুতে অবস্থিত তার স্পর্শক বরাবর। 14.11 নং চিত্রে জ্যামিতি থেকে একটি স্পষ্ট যে t সময়ে অভিক্ষেপ কণা P' এর বেগ হল

 $v(t) = -\omega A \sin (\omega t + \phi)$ (14.9)

চিত্র: 14.11 P' কণার বেগ v (t) হল নির্দেশক কণা P এর বেগ \overline{v} এর অভিক্ষেপ।

যেখানে ঋণাত্মক চিহ্ন দ্বারা বোঝায় যে v(t) এর অভিমুখ *x*-অক্ষের ধনাত্মক দিকের বিপরীত অভিমুখী। (14.9) নং সমীকরণ থেকে সরল দোলগতি সম্পন্নকারী কণার তাৎক্ষণিক বেগ পাওয়া যায় এবং সরণ (14.4) নং সমীকরণ দ্বারা নির্দেশিত। আমরা অবশ্য বেগের সমীকরণ জ্যামিতিকভাবে না করে সরাসরি *t* সাপেক্ষে (14.4) নং সমীকরণকে অবকলন করেও পেতে পারি :

$$v(t) = \frac{\mathrm{d}}{\mathrm{d}t} x(t) \tag{14.10}$$

একইভাবে নির্দেশক বৃত্ত পম্ধতির মাধ্যমেও সরল দোলগতি সম্পাদনকারী কণার তাৎক্ষণিক ত্বরণ পাওয়া যায়। আমরা জানি যে সুযম বৃত্তগতিতে গতিশীল কোনো কণার P এর অভিকেন্দ্র ত্বরণের মান v²/A বা ω²A এবং এটি কেন্দ্রাভিমুখী অর্থাৎ অভিমুখ PO বরাবর। তখন অভিক্ষিপ্ত কণা P' এর তাৎক্ষণিক ত্বরণ (14.12 চিত্র দেখ)

$$a(t) = -\omega^2 A \cos(\omega t + \phi)$$

= $-\omega^2 x(t)$ (14.11)

চিত্র : 14.12 P' কণার ত্বরণ a(t), হল নির্দেশক কণা P এর ত্বরণ a এর অভিক্ষেপ।

(14.11) নং সমীকরণ থেকে সরল দোলগতি সম্পন্নকারী কণার ত্বরণ পাওয়া যায়। আবার (14.9) নং সমীকরণে বেগ *v*(*t*) কে সময়ের সাপেক্ষে অবকলন করেও একই সমীকরণ পাওয়া যেতে পারে:

$$a(t) = \frac{\mathrm{d}}{\mathrm{d}t} v(t) \tag{14.12}$$

(14.11) নং সমীকরণ থেকে আমরা একটি গুরুত্বপূর্ণ ধর্ম লক্ষ করে পাই যে সরল দোলগতিসম্পন্ন কোনো কণার ত্বরণ সরণের সমানুপাতী। x(t) > 0, এর ক্ষেত্রে a(t) < 0 এবং x(t) < 0 এর ক্ষেত্রে a(t) > 0. তাই – A এবং A এর মধ্যে x এর যে-কোনো মানের ক্ষেত্রে ত্বরণ a(t) সর্বদা কেন্দ্রাভিমুখী হয়। সরলীকরণের জন্য আমরা ধরি, $\phi = 0$ এবং x(t), v(t) এবং a(t) এর রাশিমালাগুলোকে নিম্নরূপে প্রকাশ করি $x(t) = A \cos \omega t$, $v(t) = -\omega A \sin \omega t$, $a(t) = -\omega^2 A \cos \omega t$

14.13 নং চিত্রে এদের আনুষষ্ঠিক লেখচিত্র দেখানো হল। প্রতিটি রাশি সময়ের সাথে সাইনধর্মী অপেক্ষকরূপে পরিবর্তিত হয়; কেবলমাত্র তাদের সর্বোচ্চমান বিভিন্ন হবে এবং বিভিন্ন লেখ-এর দশা বিভিন্ন হবে। – A থেকে A এর মধ্যে x পরিবর্তিত হয়; – ωA থেকে ωA এর মধ্যে v(t) পরিবর্তিত হয় এবং – ω²A থেকে ω²A এর মধ্যে a(t) পরিবর্তিত হয়। সরণ লেখ এর সাপেক্ষে বেগের লেখ-এর দশা পার্থক্য π/2 এবং ত্বরণের লেখ এর দশাপার্থক্য π.

চিত্র : 14.13 সরল দোলগতি সম্পাদনকারী কোনো কণার সরণ, বেগ এবং ত্বরণ-এর পর্যায়কাল T একই হয়, কিন্তু এদের দশায় পার্থক্য থাকে।

উত্তর : বস্তুর কৌণিক কম্পাঞ্চ ω = 2π s⁻¹ এবং এর পর্যায়কাল T=1 s. t = 1.5 s সময়ে (a) সরণ = (5.0 m) cos [(2π s⁻¹) ×1.5 s + π/4] = (5.0 m) cos [(3π + π/4)] = -5 0 × 0 707 m

$$=-3.535 \,\mathrm{m}$$

$$\exists \sqrt[3]{4} \sqrt[4]{5} = -(5.0 \text{ m})(2\pi \text{ s}^{-1}) \sin [(2\pi \text{ s}^{-1}) \times 1.5 \text{ s} + \pi/4] \\ = -(5.0 \text{ m})(2\pi \text{ s}^{-1}) \sin [(3\pi + \pi/4)] \\ = 10 \pi \times 0.707 \text{ m s}^{-1} \\ = 22 \text{ m s}^{-1}$$

(c) 14.10 নং সমীকরণ ব্যবহার করে পাই —

বস্তুর ত্বরণ = -(2
$$\pi$$
 s⁻¹)² × সরণ
= - (2 π s⁻¹)² × (-3.535 m)
= 140 m s⁻²

14.6 সরল দোলগতির ক্ষেত্রে বলের সূত্র (Force law for
simple harmonic motion)

নিউটনের দ্বিতীয় গতিসূত্র এবং সরল দোলগতি সম্পাদনকারী কণার ত্বরণের রাশিমালা ব্যবহার করে (14.11 সমীকরণ), সরল দোলগতিতে *m* ভরের কণার উপর ক্রিয়াশীল বল

$$F(t) = ma$$
$$= -m\omega^2 x(t)$$

অর্থাৎ F(t) = -k x(t) (14.13)

যেখানে
$$k = m\omega^2$$
 (14.14a)

বা
$$\omega = \sqrt{\frac{k}{m}}$$
 (14.14b)

ত্বরণের মতো, বল সর্বদা সাম্যাবস্থানের দিকে ক্রিয়া করে — তাই একে কখনো কখনো সরল দোলগতির প্রত্যানয়ক বল বলে। এতক্ষণের আলোচনা থেকে সংক্ষেপে বলা যায়, সরল দোলগতিকে দুভাবে সংজ্ঞায়িত করা যায়, 14.4 নং সরণের সমীকরণ দ্বারা কিংবা 14.13 নং সমীকরণ দ্বারা যা থেকে এর বলের সূত্র পাওয়া যায়। দুবার অবকলন করে 14.4 নং সমীকরণ থেকে 14.13 নং সমীকরণে যাওয়া যায়। একইভাবে 14.13 নং বলের সূত্রের সমীকরণকে দুবার সমাকলন করে 14.4 নং সমীকরণে ফিরে যেতে পারি।

লক্ষ করো (14.13) নং সমীকরণে বল, x(t) এর সঞ্চো রৈখিকভাবে সমানুপাতিক। এরূপ বলের অধীনে একটি কণা দোলায়মান হলে তাকে রৈখিক সুসমঞ্জস স্পন্দক (linear harmonic oscillator) বলে। বাস্তবে বলের রাশিমালায় বলের সাথে x^2 , x^3 ইত্যাদির সমানানুপাতিক কিছু ক্ষুদ্র অতিরিক্ত পদ থাকতে পারে। তখন এদের **অরৈখিক স্পন্দক** (non-linear oscillators) বলে।

উদাহরণ: 14.6 m ভরের একটি ব্লকের দু-প্রান্তে k স্প্রীং ধ্রুবকের দুটি অনুরূপ স্প্রীং 14.14 চিত্রের ন্যায় দৃঢ় অবলম্বন ও ব্লকের মধ্যে যুক্ত করা হল। দেখাও যে যখন ব্লকটি সাম্যাবস্থান থেকে যে-কোনো দিকে সরিয়ে ছেড়ে দেওয়া হয় তখন এটি সরল দোলগতি সম্পন্ন করে। দোলনের পর্যায়কাল নির্ণয় করো।

পদার্থবিদ্যা

চিত্র : 14.14

উত্তর : 14.15 নং চিত্রের ন্যায় ধরো, ব্লকটিকে সাম্যাবস্থানের ডানদিকে অল্প দূরত্ব x সরানো হল। এ অবস্থায় বাঁদিকের স্প্রিং এর দৈর্ঘ্য x পরিমাণ প্রসারিত এবং ডানদিকের স্প্রিং-এর দৈর্ঘ্য একই পরিমাণ সংকুচিত হয়। ফলে ব্লকের উপর ক্রিয়াশীল বল হবে

চিত্র : 14.15

- F₁
 = -k x (বাদিকের স্প্রিং এর দ্বারা প্রযুক্ত বল ব্লকটিকে

 সাম্যাবস্থানের দিকে টানার চেস্টা করে)
- $F_2 = -k x$ (ডানদিকের স্প্রিং এর দ্বারা প্রযুক্ত বল ব্লকটিকে

 সাম্যাবস্থানের দিকে ঠেলে দিতে চেন্টা করে)

সেক্ষেত্রে ব্লকের উপর ক্রিয়াশীল লব্ধি বল

$$F = -2kx$$

ফলে ব্লকটির উপর প্রযুক্ত বল সরণের সঙ্গে সমানানুপাতিক এবং সাম্যাবস্থান অভিমুখী; সুতরাং ব্লকটির দ্বারা সম্পাদিত গতি সরল দোলগতি। দোলনের পর্যায়কাল,

$$T = 2\pi \sqrt{\frac{m}{2k}}$$

14.7 সরল দোলগতির ক্ষেত্রে শক্তি (Energy in simple harmonic motion)

সরল দোলগতি সম্পাদনকারী কোনো কণার গতি এবং স্থিতি উভয় শক্তি শূন্য এবং তাদের সর্বোচ্চ মানের মধ্যে পরিবর্তিত হয়।

14.5 অনুচ্ছেদে আমরা দেখেছি যে সরল দোলগতি সম্পাদনকারী কণার বেগ হল সময়ের অপেক্ষক। সরণের প্রান্তবিন্দুতে এর মান শূন্য। সুতরাং এরূপ কণার গতিশক্তিকে (*K*) নিম্নরূপে প্রকাশ করা যায়

$$K = \frac{1}{2} mv^{2}$$
$$= \frac{1}{2} m \omega^{2} A^{2} \sin^{2}(\omega t + \phi)$$
$$= \frac{1}{2} k A^{2} \sin^{2}(\omega t + \phi) \qquad (14.15)$$

সুতরাং গতিশস্তি সময়ের পর্যায়বৃত্ত অপেক্ষক। যখন সরণ সর্বোচ্চ তখন গতিশস্তি শৃন্য এবং যখন কণা সাম্যাবস্থানে থাকে তখন গতিশস্তি সর্বোচ্চ। লক্ষ করো *K* এর রাশিমালা *v* এর চিহ্নের উপর নির্ভর করে না এবং এজন্য *K* এর পর্যায়কাল *T*/2.

সরল দোলগতি সম্পাদনকারী কণার স্থিতিশক্তি (U) কী হবে ? যষ্ঠ অধ্যায়ে আমরা দেখেছি যে কেবলমাত্র সংরক্ষী বলের ক্ষেত্রেই স্থিতিশক্তির অস্তিত্ব থাকে। স্প্রিং বল F = -kx হল একটি সংরক্ষী বল এবং এক্ষেত্রে স্থিতিশক্তি

$$U = \frac{1}{2}k x^2$$
 (14.16)

সুতরাং সরল দোলগতি সম্পাদনকারী কণার স্থিতিশক্তি হল

$$U(x) = \frac{1}{2} k x^{2}$$
$$= \frac{1}{2} k A^{2} \cos^{2}(\omega t + \phi)$$
(14.17)

সুতরাং, সরল দোলগতি সম্পাদনকারী একটি কণার স্থিতিশস্তিও পর্যায়ক্রমিক যার পর্যায়কাল *T*/2 । সাম্যাবস্থানে স্থিতিশস্তি শূন্য এবং সরণের প্রান্তবিন্দুতে সর্বোচ্চ। E = U + K

(14.15) এবং (14.17) নং সমীকরণ থেকে বলা যায় সংস্থাটির মোট শক্তি *E* হলে,

$$= \frac{1}{2} k A^2 \cos^2(\omega t + \phi) + \frac{1}{2} k A^2 \sin^2(\omega t + \phi)$$
$$= \frac{1}{2} k A^2 \left[\cos^2(\omega t + \phi) + \sin^2(\omega t + \phi) \right]$$

(পরিচিত ত্রিকোণোমিতি অভেদাবলী ব্যবহার করে, বন্ধনীর রাশিমালার মান একক হওয়ায়)

$$E = \frac{1}{2} k A^2$$
 (14.18)

সুতরাং, সরল দোলকের মোট যান্ত্রিক শক্তি সময় নিরপেক্ষ যেমনটা যে-কোনো সংরক্ষী বলের অধীন গতির ক্ষেত্রে প্রত্যাশিত। একটি রৈখিক সরল দোলকের স্থিতিশক্তি ও গতিশক্তি, সময় এবং সরণের উপর কিভাবে নির্ভর করে তা 14.16 নং চিত্রে দেখানো হয়েছে।

চিত্র : 14.16 সরল দোলগতি সম্পন্ন কোনো কণার সময়ের অপেক্ষকরূপে (চিত্র *a*) এবং সরণের অপেক্ষক রুপে (চিত্র *b*) গতিশক্তি, স্থিতিশক্তি এবং মোট শক্তির প্রকাশ। *T/2* সময় পর গতিশক্তি এবং সিথতিশক্তি উভয়েই পুনরাবৃত্ত হয়। সমস্ত *t* বা *x* এর মানের জন্য মোট শক্তি ধ্রবক থাকে।

14.16 নং চিত্রে লক্ষ করো সরল দোলগতির দ্রুতির বর্গের সঙ্গে সমানানুপাতী তাই গতিশক্তি অবশ্যই কখনো ঋণাত্মক হতে পারে না। স্থিতিশক্তির সমীকরণে ধ্রুবককে সুবিধাজনকভাবে বেছে নেওয়ার কারণে স্থিতিশক্তি ধনাত্মক হয়। সরল দোলগতির প্রতি পর্যায়কালে স্থিতিশক্তি এবং গতিশক্তি উভয়েই দুবার সর্বোচ্চ মানে পৌঁছায়। x = 0 তে শক্তির সম্পূর্ণটাই কেবল গতিশক্তি এবং প্রান্তবিন্দুতে অর্থাৎ $x = \pm A$ বিন্দুতে সম্পূর্ণ শক্তিই স্থিতিশক্তি। উক্ত সীমার মধ্যবর্তী কোনো বিন্দুতে স্থিতিশক্তির হ্রাসের কারণে গতিশক্তি বৃদ্ধি পায় অথবা গতিশক্তির হ্রাসের কারণে স্থিতিশক্তি বৃদ্ধি পায়।

উদাহরণ : 14.7 1 kg ভরের একটি ব্লক একটি স্প্রিং এর সাথে বেধে দেওয়া হল। স্প্রিং এর স্প্রিং ধ্রুবক 50 N m⁻¹। ব্লকটিকে স্থির অবস্থা থেকে ঘর্ষণহীন তল বরাবর *t* = 0 সময়ে সাম্যাবস্থান *x* = 0 থেকে *x* = 10 cm দূরত্বে টানে নেওয়া হল। ব্লকটি যখন সাম্যাবস্থা থেকে 5 cm দূরে তখন তার গতিশক্তি, স্থিতিশক্তি এবং মোট শক্তি হিসেব করো।

উত্তর : ব্লকটি সরল দোলগতি সম্পাদন করে। 14.14b নং সমীকরণ অনুসারে এর কৌণিক কম্পাঙ্ক,

$$\omega = \sqrt{\frac{k}{m}}$$
$$= \sqrt{\frac{50 \text{ N m}^{-1}}{1 \text{ kg}}}$$

$$= 7.07 \text{ rad s}^{-1}$$

t সময়ে এর সরণ নিম্নলিখিত সমীকরণ দ্বারা প্রকাশ করা যায়,

$$x(t) = 0.1 \cos(7.07t)$$

সুতরাং, যখন কণাটি সাম্যাবস্থান থেকে 5 cm দুরে থাকে তখন আমরা পাই

$$0.05 = 0.1 \cos{(7.07t)}$$

বা,
$$\cos{(7.07t)} = 0.5$$
 এবং এ থেকে পাই —

$$\sin(7.07t) = \frac{\sqrt{3}}{2} = 0.866$$

এক্ষেত্রে x = 5 cm এ ব্লকটির বেগ = 0.1 × 7.07 × 0.866 m s⁻¹ = 0.61 m s⁻¹

সুতরাং ব্লকটির গতিশস্তি

$$= \frac{1}{2} m v^{2}$$
$$= \frac{1}{2} [1 \text{kg} \times (0.6123 \text{ m s}^{-1})^{2}]$$
$$= 0.19 \text{ J}$$

ব্লকটির স্থিতিশস্তি

$$= \frac{1}{2} k x^{2}$$

$$= \frac{1}{2} (50 \text{ N m}^{-1} \times 0.05 \text{ m} \times 0.05 \text{ m})$$

$$= 0.0625 \text{ J}$$

$$k = 5 \text{ cm এ ব্লকটির মোট শক্তি$$

$$= \text{K.E.} + \text{P.E.}$$

আমরা আরও জানি যে, সর্বোচ্চ সরণের ক্ষেত্রে গতিশক্তি শূন্য এবং এজন্য সংস্থার মোট শক্তি স্থিতিশক্তির সমান হয়। সুতরাং সংস্থাটির মোট শক্তি,

$$= \frac{1}{2} (50 \text{ N m}^{-1} \times 0.1 \text{ m} \times 0.1 \text{ m})$$

এটি 5 cm সরণের ক্ষেত্রে দুটি শক্তির যোগফলের সমান। এটি শক্তির সংরক্ষণ সূত্রের যথার্থতা মেনে চলে।

14.8 সরল দোলগতি সম্পাদনকারী কিছু সংস্থা (Some systems executing simple harmonic motion)

সম্পূর্ণ বিশুম্থ সরল দোলগতির কোনো বাস্তব উদাহরণ নেই। বাস্তবে আমরা যে সকল সংস্থার সম্মুখীন হই তা নির্দিষ্ট কিছু শর্ত সাপেক্ষে মোটামোটি সরল দোলগতি সম্পন্ন করে। পরবর্তী অনুচ্ছেদে আমরা এরকম কিছু সংস্থার গতি নিয়ে আলোচনা করব।

14.8.1 স্প্রিং এর জন্য দৌলন (Oscillations due to a Spring)

সরল দোলগতির সরলতম পর্যবেক্ষণমূলক উদাহরণ হল 14.17 নং প্রদত্ত চিত্রের ন্যায় স্প্রিংয়ের সাথে যুক্ত *m* ভরের একটি ব্লকের ক্ষুদ্র দোলন। স্প্রিং এর অপর প্রাস্ত একটি দৃঢ় দেওয়ালের সাথে যুক্ত। ব্লকটি একটি ঘর্ষণহীন অনুভূমিক তলের উপর রাখা আছে। যদি ব্লকটিকে একদিকে টেনে ছেড়ে দেওয়া হয় তবে এটি

চিত্র : 14.17 একটি রৈখিক সরল দোলক যা m ভরের একটি ব্লক যা কোনো একটি স্প্রিং এর সঙ্গে যুক্ত। ব্লকটি ঘর্ষণহীন তল বরাবর গতিশীল। ব্লকটি যখন টেনে অথবা ঠেলে ছেড়ে দেওয়া হয়, তখন এটি সরল দোলগতি সম্পন্ন করে।

সাম্যাবস্থানের সাপেক্ষে এদিক ওদিক গতি সম্পন্ন করবে। ধর x = 0 সাম্যাবস্থানের সাপেক্ষে এদিক ওদিক গতি সম্পন্ন করবে। ধর x = 0 সাম্যাবস্থানে ব্লকের ভরকেন্দ্রের অবস্থান নির্দেশ করে। -A এবং +A অবস্থান যথাক্রমে সাম্যাবস্থানের বাঁদিকে এবং ডানদিকের সর্বোচ্চ সরণ নির্দেশ করে। আমরা এর মধ্যে স্প্রিং এর বিশেষ ধর্মাবলী শিখেছি, যা সর্বপ্রথম ইংরেজি পদার্থবিদ রবাট হুক (Robert Hooke) আবিষ্কার করেন। তিনি দেখান যে এরকম সংস্থা যখন বিকৃত হয় তখন এর উপর একটি প্রত্যানয়ক বল ক্রিয়াশীল থাকে, যার মান বিকৃতি বা সরণের সাথে সমানানুপাতিক এবং বিপরীত অভিমুখে ক্রিয়াশীল। একে হুকের সূত্র (নবম অধ্যায়) বলে। স্থিং এর দৈর্ঘ্যের তুলনায় সরণ ক্ষুদ্র হলে তবেই এটি প্রযোজ্য। কোনো t সময়ে যদি ব্লকটির সাম্যাবস্থান থেকে সরণ x হয়, তবে ব্লকটির উপর ক্রিয়াশীল প্রত্যানয়ক বল

$$F(x) = -kx \tag{14.19}$$

সমানানুপাতি ধ্রুবক k কে স্প্রিং ধ্রুবক বলে, এর মান স্প্রিং এর স্থিতিস্থাপক ধর্মের উপর নির্ভরশীল। একটি দৃঢ় স্প্রিং এর ক্ষেত্রে k এর মান বেশি হয় এবং নরম স্প্রিং এর ক্ষেত্রে k এর মান কম হয়। (14.19) নং সমীকরণ সরল দোলগতির বলের সূত্রের অনুরূপ এবং এজন্য সংস্থাটি সরল দোলগতি সম্পন্ন করে। (14.14) নং সমীকরণ থেকে আমরা পাই —

$$\omega = \sqrt{\frac{k}{m}} \tag{14.20}$$

এবং দোলকের পর্যায়কাল T নীচের সমীকরণ থেকে পাওয়া যাবে,

$$T = 2\pi \sqrt{\frac{m}{k}} \tag{14.21}$$

দৃঢ় স্প্রিং এর ক্ষেত্রে k (স্প্রিং ধ্রুবক) এর মান বেশি হয়। (14.20) নং সমীকরণ অনুসারে একটি দৃঢ় স্প্রিং এর সঙ্গো যুক্ত ক্ষুদ্র *m* ভরের একটি ব্লকের দোলনের কম্পাজ্ঞ বেশি হয় বাস্তবেও তা প্রত্যাশিত। কম্পন

উদাহরণ : 14.8 500 N m⁻¹ স্প্রিং ধ্রবক বিশিষ্ট একটি স্প্রিং এর একপ্রান্ত (5kg) ভরবিশিষ্ট একটি বলয় (collar) যুক্ত আছে এটি একটি অনুভূমিক দণ্ডের উপর ঘর্ষণহীনভাবে গতিশীল। বলয়টিকে সাম্যাবস্থান থেকে 10.0 cm সরিয়ে ছেডে দেওয়া হল। বলয়টির (a) দোলনের পর্যায়কাল, (b) সর্বোচ্চ দ্রুতি এবং

(c) বলয়টির সর্বোচ্চ ত্বরণ নির্ণয় করো।

উত্তর : (a) (14.21) নং সমীকরণ অনুসারে দোলনের পর্যায়কাল,

$$T = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{5.0 \text{ kg}}{500 \text{ N m}^{-1}}}$$

= (2\pi/10) s
= 0.63 s

(b) সরল দোলগতি সম্পন্ন বলয়টির (collar) বেগ $v(t) = -A\omega\sin(\omega t + \phi)$

সর্বোচ্চ দ্রুতি,

$$v_m = A\omega$$

 $= 0.1 \times \sqrt{\frac{k}{m}}$
 $= 0.1 \times \sqrt{\frac{500 \text{ N m}}{5 \text{ kg}}}$
 $= 1 \text{ m s}^{-1}$

=

এবং এটি x = 0 বিন্দুতে ঘটে।

সাম্যবস্থান থেকে বলয়ের x (t) সরণে ত্বরনের মান, (c)

1

$$a(t) = -\omega^2 x(t)$$
$$= -\frac{k}{\omega} x(t)$$

т সুতরাং সর্বোচ্চ ত্বরণ,

$$a_{max} = \omega^2 A$$

= $\frac{500 \text{ N m}^{-1}}{5 \text{ kg}} \ge 0.1 \text{ m}$
= 10 m s⁻²

এবং এটি প্রান্তবিন্দুগুলোতে ঘটে।

14.8.2 সরল দৌলক (The Simple Pendulum)

এটা বলা হয় যে গ্যালিলিও (Galileo) কোনো এক গীর্জায় ঝাড়বাতির পর্যায়কাল তার হুদস্পন্দনের সাহায্যে মেপে দেখেন। তিনি লক্ষ করেন যে ঝাড়বাতির গতি পর্যায়বৃত্তাকার। সংস্থাটি একপ্রকার দোলক। তুমি প্রায় 100 cm লম্বা একটি অপ্রসার্য সুতোর

একপ্রান্তে একটুকরো পাথরখণ্ড বেঁধে নিজে একটি দোলক তৈরি করতে পারো। তোমার দোলকটিকে একটি সুবিধামতো অবলম্বন থেকে ঝোলাও যেন এটি মুক্তভাবে দুলতে পারে। পাথরখণ্ডটিকে একদিকে অল্প সরাও এবং এটিকে ছেড়ে দাও। পাথরখণ্ডটি এপাশ-ওপাশ পর্যায়ক্রমিকভাবে গতিশীল হবে এবং এর পর্যায়কাল হবে প্রায় দুই সেকেন্ড।

আমরা দেখাব যে সাম্যাবস্থান থেকে অল্প সরণের ক্ষেত্রে এই পর্যায়বৃত্ত গতি হল সরল দোলগতি। *m* ভরের একটি পিণ্ড একটি *L* দৈর্ঘ্যের ভরহীন অপ্রসার্য সূতোর সাথে বেঁধে একটি সরল দোলক বিবেচনা করো। সুতোর অপর প্রান্ত ছাদের দৃঢ় অবলম্বনের সাথে যুক্ত। দৃঢ় অবলম্বন বিন্দুগামী উলম্বরেখার সাপেক্ষে পিণ্ডটি একটি তল বরাবর দোলে। 14.18(a) চিত্রে সংস্থাটিকে দেখানো হয়েছে। 14.18(b) হল সরল দোলকের এক ধরনের 'মুক্ত বস্তু চিত্র' (freebody diagram) যেখানে পিন্ডের উপর প্রযুক্ত বল দেখানো হয়েছে।

চিত্র : 14.18 (a) সাম্যাবস্থানের সাপেক্ষে একটি পিণ্ড দোলনরত। (b) ব্যাসার্ধমুখী বল (radial force) T-mg $\cos\theta$ অভিকেন্দ্র বল সরবরাহ করে কিন্তু দৃঢ় অবলম্বনের সাপেক্ষে এর কোনো টর্ক থাকেনা।স্পার্শক বল (tangential force) mg sinθ প্রত্যানয়ক টর্ক সরবরাহ করে।

354

ধরো উলম্বের সঙ্গে সুতোটি heta কোণ সৃষ্টি করে। পিণ্ডটি যখন সাম্যাবস্থানে থাকে তখন heta=0

পিণ্ডের উপর কেবলমাত্র দুটি বল ক্রিয়া করে; সুতো বরাবর টান T এবং অভিকর্ষের জন্য উলম্ব বল mg। mg বলকে সুতো বরাবর উপাংশ mg cos θ এবং এর উলম্ব উপাংশ mg cos θ তে বিভাজিত করা যায়। যেহেতু পিণ্ডটি L ব্যাসার্ধের বৃত্ত বরাবর ঘোরে এবং এর অবলম্বনবিন্দুটি হল বৃত্তের কেন্দ্র, তাই পিণ্ডটির ব্যাসার্ধমুখী একটি ত্বরণ ($\omega^2 L$) এবং স্পর্শক বরাবর একটি ত্বরণ থাকবে; বৃত্তচাপ বরাবর গতি সুষম না হওয়ার জন্য স্পর্শক বরাবর ত্বরণ থাকবে; বৃত্তচাপ বরাবর লব্ধি বল T – mg cos θ এর জন্য ব্যাসার্ধ বরাবর ত্বরণ সৃষ্টি হয়। অন্যদিকে mg sin θ বলের জন্য স্পর্শক বরাবর ত্বরণ সৃষ্টি হয়। অবলম্বনের সাপেক্ষে টর্ক নিয়ে কাজ করা অনেক সুবিধাজনক কারণ ব্যাসার্ধ বরাবর বলের জন্য টর্ক শূন্য হয়। দৃঢ় অবলম্বনের সাপেক্ষে টর্ক τ পুরোপুরি স্পর্শক বরাবর বলের উপাংশের দ্বারা সরবরাহিত হয়

$$\tau = -L \left(mg \sin\theta \right) \tag{14.22}$$

উক্ত টর্ক হল প্রত্যানয়ক টর্ক যা কৌণিক সরণকে কমাতে চেষ্টা করে এবং এজন্য ঋণাত্মক চিহ্নু দেওয়া হয়েছে। আবর্ত গতির ক্ষেত্রে নিউটনের সূত্র অনুসারে,

$$\tau = I \alpha \tag{14.23}$$

যেখানে *I* হল দৃঢ় অবলম্বনের সাপেক্ষে সংস্থার জাড্য ভ্রামক এবং α হল কৌণিক ত্বরণ। ফলে

$$I\alpha = -mg\sin\theta L \tag{14.24}$$

বা,

$$\alpha = -\frac{m g L}{I} \sin \theta \tag{14.25}$$

আমরা যদি সরণ heta কে ক্ষুদ্র ধরে নেই তবে 14.25 নং সমীকরণকে সরলীকৃত করতে পারি। আমরা জানি যে sin heta কে নিম্নরূপে প্রকাশ করা যায়

$$\sin \theta = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \dots$$
যেখানে θ রেডিয়ানে প্রকাশিত।
(14.26)

এখন যদি *θ* ক্ষুদ্র হয়, তবে sin *θ* কে *θ* এর নিকটবর্তী ধরা যায় এবং তখন 14.25 সমীকরণকে লেখা হয়

$$\alpha = -\frac{mgL}{I}\theta \tag{14.27}$$

14.1নং সারণিতে, আমরা কোণ θ কে ডিগ্রিতে, এর তুল্য রেডিয়ান এককে এবং sin θ আপেক্ষকের মানে শ্রেণিভুক্ত করলাম।

সরল দোলগতির বিস্তার কত ক্ষুদ্র হওয়া উচিত ?

যখন তোমরা সরল দোলকের পর্যায়কাল নির্ণয়ের পরীক্ষাটি করো, তখন তোমার শিক্ষক মহাশয় তোমাকে সরল দোলকের বিস্তার কম রাখতে বলেন। কিন্তু, তোমরা কখনো জিজ্ঞেস করেছো কি, এই বিস্তার ছোট মানে কতটুকু ছোট? বিস্তার কত হওয়া উচিত 5°, 2°, 1°, অথবা 0.5°? অথবা, বিস্তার 10°, 20°, অথবা 30° হতে পারে কি?

বিষয়টিতে উৎসাহ প্রদানে আরও ভালো হবে যদি আমরা বড়ো মানের বিস্তার পর্যস্ত, বিভিন্ন বিস্তারের জন্য দোলকের পর্যায়কাল পরিমাপ করি। অবশ্যই, বড়মানের দোলনের জন্য তোমাকে লক্ষ্য রাখতে হবে, দোলকের দোলন যেন উল্লম্ব তলে থাকে। ধরা যাক, স্বল্প বিস্তার সম্পন্ন দোলনের জন্য পর্যায়কাল T(0) এবং θ_0 বিস্তারের জন্য পর্যায়কালকে $T(\theta_0) = cT(0)$ লিপিবন্দ্ব করা হল, যেখানে c হল গুণক (multiplying factor)। যদি তুমি c এবং θ_0 এর মধ্যে লেখ অঞ্চন কর তবে তমি অনেকটা এরকম মান পাবে :

θ_{0} :	200	45 ⁰	50°	70°	90 °
<i>c</i> :	1.02	1.04	1.05	1.10	1.18

এর অর্থ হলো, 20°বিস্তারের জন্য পর্যায়কালে ত্রুটি প্রায় 2%, 50° বিস্তারের জন্য পর্যায়কালে ত্রুটি প্রায় 5%, 70° বিস্তারের জন্য পর্যায়কালে ত্রুটি প্রায় 10% এবং 90° বিস্তারের জন্য পর্যায়কালে ত্রুটি 18%।

এ পরীক্ষায়, তুমি কখনো T(0) (পর্যায়কাল) পরিমাপ করতে পারবে না, কারণ এর অর্থ হল সেখানে কোনো দোলনই নেই। এমনকি তাত্ত্বিকভাবে $\theta = 0$ এর জন্যই শুধুমাত্র $\sin \theta$ এর মান সঠিকভাবে θ এর সমান হয়। θ এর অন্যান্য মানের জন্য সেখানে কিছুটা ত্রুটি আসে। এই ত্রুটি heta এর এর মান বাড়ার সঙ্গে সঙ্গে বৃদ্ধি পায়। সুতরাং, আমাদের সিদ্ধান্ত নিতে হবে যে, কতটুকু পর্যন্ত ব্রটি আমরা নিতে পারবো। বাস্তবে কোনো পরিমাপই পুরোপুরি ত্রটিমুক্ত নয়। তুমি এধরনের প্রশ্নও বিবেচনা করতে পারো : স্টপ ওয়াচের সঠিকতা কতটুকু? স্টপওয়াচ শুরু এবং বন্ধ করতে তোমার নিজস্ব সঠিকতা বা নির্ভুলতা কতটুকু ? তুমি বুঝতে পারবে যে, এ স্তরে তোমার পরিমাপের সঠিকতা কখনো 5% অথবা 10% থেকে বেশি হবে না। উপরের সারণি থেকে এটা স্পষ্ট যে অপেক্ষাকৃত অল্প বিস্তারের তুলনায় 50º বিস্তারের জন্য দোলকের পর্যায়কালের বৃদ্ধি 5% অপেক্ষা বেশি হয় না। সুতরাং তোমার পরীক্ষায় সুবিধাজনক পরিমাপের জন্য বিস্তার 50°তে রাখতে পারো।

সারণি থেকে দেখা যায় যে θ এর মান 20 ডিগ্রীর মধ্যে হলে, θ এর রেডিয়ানে প্রকাশিত মান এবং sin θ এর মান প্রায় সমান হবে।

সারণি 14.1 *θ* কোনের অপেক্ষকরূপে sin *θ*

<i>θ</i> (ডিগ্রি)	θ (রেডিয়ান)	$\sin heta$
0	0	0
5	0.087	0.087
10	0.174	0.174
15	0.262	0.259
20	0.349	0.342

14.27 নং এবং 14.11 নং সমীকরণ গাণিতিকভাবে অভিন্ন, কেবল চলরাশিটি হবে কৌণিক সরণ। অতএব প্রমাণিত হল যে 0 ক্ষুদ্র হলে পিণ্ডের গতি সরল দোলগতি। 14.27 এবং 14.11 সমীকরণ থেকে পাই—

$$\omega = \sqrt{\frac{mgL}{I}}$$

এবং

$$T = 2\pi \sqrt{\frac{I}{mgL}}$$
(14.28)

এখন যেহেতু সরল দোলকের সুতোটি ভরহীন তাই জাড্য ভ্রামক *I* হবে mL² । (14.28) নং সমীকরণ তখন সরল দোলকের বহুল পরিচিত পর্যায়কালের সূত্রকে নির্দেশ করে।

$$T = 2\pi \sqrt{\frac{L}{g}} \tag{14.29}$$

উদাহরণ 14.9 সেকেন্ড দোলকের কার্যকর দৈর্ঘ্য নির্ণয় করো।

উত্তর: 14.29 নং সমীকরণ থেকে সরল দোলকের পর্যায়কাল নিম্নরুপ

$$T = 2\pi \sqrt{\frac{L}{g}}$$

উক্ত সমীকরণ থেকে পাওয়া যায়,

$$L = \frac{gT^2}{4\pi^2}$$

সেকেন্ড দোলকের পর্যায়কাল 2 s । সুতরাং $g = 9.8~{
m m~s^{-2}}$ ধরে এবং $T = 2~{
m s}$ হওয়ায়

$$L = \frac{9.8(\text{m s}^{-2}) \times 4(\text{s}^2)}{4\pi^2}$$

= 1 m

14.9 অবমন্দিত সরল দোলগতি (Damped simple harmonic motion)

আমরা জানি যে, বায়ুতে দোলয়মান একটি সরল দোলক অবশেষে থেমে যায়। এরকম কেন ঘটে ? এরকম হওয়ার কারণ হল বায়ুর বাধা এবং দৃঢ় অবলম্বনের ঘর্ষণ দোলকের গতিকে বাধা দেয় এবং এর শক্তির ক্রমশ অপচয় হয়। বলা হয়, দোলকটি অবমন্দিত দোলন সম্পাদন করে। অবমন্দিত দোলনে, সংস্থার শক্তি অনবরত হ্রাস পায়; কিন্তু অবমন্দন অল্প হলে, দোলন প্রায় পর্যায় ক্রমিক হয়। অপচয়কারী বলগুলো হল সাধারণত ঘর্ষণ বলসমূহ। দোলকের দোলগতির উপর এরকম বাহ্যিক বলের প্রভাব বোঝাতে, 14.19 নং চিত্রের মতো একটি সংস্থা বিবেচনা করি। এক্ষেত্রে উলস্বভাবে দোলয়মান *m* ভরের একটি ব্লক *k* বল ধ্রুকের স্থিতিস্থাপক স্প্রিং এর সঞ্চো যুক্ত। ব্লকটি নীচের দিকে অল্প টেনে ছেড়ে দিলে 14.20 নং সমীকরণের মতো এর দোলনের কৌণিক কম্পাণ্ডক হবে

 $\omega = \sqrt{\frac{k}{m}}$ । যদিও বাস্তবে পারিপার্শ্বিক মাধ্যম (বায়ু) ব্লকটির গতির

উপর একটি অবমন্দক বল (damping force) প্রয়োগ করে এবং ব্লক-ম্প্রিং এর যান্ত্রিক শক্তি হ্রাস পাবে। শন্তির হ্রাস পারিপার্শ্বিকের (এবং ব্লকের) তাপশন্তিরূপে আত্মপ্রকাশ করবে। [14.19 নং চিত্র]

অবমন্দক বল পারিপার্শ্বিক মাধ্যমের প্রকৃতির উপর নির্ভর করে। যদি ব্লকটিকে একটি তরলে নিমজ্জিত করা হয় তবে অবমন্দনের মান অনেক বেশি হয় এবং শক্তির হ্রাস অনেক দ্রুত হবে। অবমন্দক বল সাধারণত পিণ্ডের বেগের সমানুপাতিক হয় [(10.19) নং সমীকরণ, স্টোকসের সূত্র মনে রেখে] এবং বেগের অভিমুখের বিপরীত অভিমুখে ক্রিয়াশীল হয়। যদি অবমন্দক বলকে \mathbf{F}_{d} দ্বারা প্রকাশ করা হয় তবে আমরা পাই

$$\mathbf{F}_{d} = -b \mathbf{v} \tag{14.30}$$

যেখানে ধনাত্মক ধ্রুবক *b* মাধ্যমের বৈশিষ্ট্য (উদাহরণ স্বরূপ সান্ত্রতা) ব্লকের আকার এবং আকৃতি ইত্যাদির উপর নির্ভর করে। 14.30 নং সমীকরণ সাধারণত অল্পমানের বেগের জন্যই প্রযোজ্য।

m ভরটিকে যখন স্প্রিং এর সঞ্চো যুক্ত করে ছেড়ে দেওয়া হয়, তখন স্প্রিং খানিকটা প্রসারিত হবে এবং ভরটি কোনো এক উচ্চতায় স্থির হবে। 14.19 নং চিত্রে এই অবস্থাকে O দ্বারা দেখানো হয়েছে, যা ভরটির সাম্যাবস্থা। যদি ভরটিকে নিচের দিকে খানিকটা টেনে অথবা উপরের দিকে খানিকটা ঠেলে দিলে, ব্লকটির উপর স্প্রিং এর জন্য প্রত্যানয়ক বল হয় $\mathbf{F}_{s} = -k\mathbf{x}$, যেখানে \mathbf{x} হল সাম্যাবস্থান থেকে সরণ *। তাই ভরটির উপর কোনো t সময়ে মোট প্রযুক্ত বল হল

 $\mathbf{F} = -k\mathbf{x} - b\mathbf{v}.$

যদি t সময়ে ভরটির ত্বরণ $\mathbf{a}(t)$ হয় তবে গতির অভিমুখে নিউটনের গতীয় সমীকরণ প্রয়োগ করে আমরা পাই

একমাত্রিক গতি নিয়ে আলোচনা করছি।

v (t) এবং a (t) কে যথাক্রমে x (t) এর প্রথম ও দ্বিতীয় অবকল রূপে ব্যবহার করে আমরা পাই

$$m\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + b\frac{\mathrm{d}x}{\mathrm{d}t} + k x = 0$$
(14.32)

(14.32) নং সমীকরণের সমাধান বেগের সমানানুপাতিক অবমন্দক বলের প্রভাবে ব্লকের গতিকে বর্ণনা করে। দেখা যায় সমাধান নিম্নরূপ হয়

$$x(t) = A e^{-b t/2m} \cos(\omega' t + \phi)$$
 (14.33)

যেখানে A হল বিস্তার এবং ω' হল অবমন্দকের কৌনিক কম্পাঞ্চ,

পদার্থবিদ্যা

$$\omega' = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}} \tag{14.34}$$

এই অপেক্ষকে কোসাইন অপেক্ষকের পর্যায়কাল $2\pi/\omega'$ কিন্ডু x(t) অপেক্ষকটি পুরোপুরি পর্যায়বৃত্তীয় নয় কারণ $e^{-b t/2m}$ গুণকটি সময়ের সাথে ক্রমশ হ্রাস পায়। তবে যদি একটি পর্যায়কালে হ্রাস খুব কম হয় তবে 14.33 নং সমীকরণটি প্রায় পর্যায়বৃত্তীয় গতি নির্দেশ করে।

14.33 সমীকরণ দ্বারা প্রকাশিত সমাধানটিকে 14.20 নং চিত্রে প্রদর্শিত চিত্রের দ্বারা প্রকাশ করা যায়। আমরা একে কোসাইন অপেক্ষক রূপে বিবেচনা করতে পারি, যার বিস্তার $Ae^{-b v 2m}$ সময়ের সাথে ক্রমশ হ্রাস পায়।

চিত্র : 14.20 দোলনের ক্রমহ্রাসমান বিস্তারের সাথে একটি অবমন্দিত দোলক প্রায় পর্যায়বৃত্তীয় হয়। অবমন্দন বেশি হলে দোলন দ্রুত হারে হ্রাস পায়।

অবমন্দন হয় না, এমন দোলকের যান্ত্রিক শক্তি হল 1/2 kA² । অবমন্দন হয় এমন দোলকের বিস্তার স্থির নয়, এটি সময়ের উপর নির্ভর করে। ক্ষুদ্র অবমন্দনের জন্য আমরা একই রাশিমালা ব্যবহার করতে পারি কিন্তু বিস্তারকে A e^{-bt/2m} হিসেবে বিবেচনা করতে পারি।

$$E(t) = \frac{1}{2} k A^2 e^{b t/m}$$
(14.35)

(14.35) নং সমীকরণ থেকে দেখা যায় যে সংস্থার মোট শক্তি সময়ের সাথে সূচকীয়ভাবে হ্রাস পায়। লক্ষ করো যে ক্ষুদ্র অবমন্দনের

অর্থ হল যে, $\left(rac{b}{\sqrt{k\,m}}
ight)$ হল 1 (এক) অপেক্ষা অনেক ক্ষুদ্র একটি মাত্রাহীন অনুপাত।

* অভিকর্ষের অধীন স্প্রিং এর সঙ্গে যুক্ত ব্লকটি 🛛 অবস্থানে সাম্যে আছে। এখানে x ঐ অবস্থান থেকে সরণকে প্রকাশ করে।

কম্পন

আমরা যদি b = 0 বসাই তবে এক্ষেত্রে অবশ্যই অবমন্দিত দোলকের সকল সমীকরণ অবমন্দিত নয় এমন দোলকের আনুযজ্গিক সমীকরণে পরিণত হবে আশা করা যায়।

উদাহরণ : 14.10 : 14.20 নং চিত্রে প্রদর্শিত অবমন্দিত দোলকের ক্ষেত্রে ব্লকটির ভর m হল 200 g, k = 90 N m⁻¹ এবং মন্দন ধ্রুবক b হল 40 g s⁻¹ । (a) দোলনের পর্যায়কাল নির্ণয় করো, (b) তার কম্পনের বিস্তার প্রাথমিক মানের অর্ধেক হ্রাস পেতে সময় নির্ণয় করো এবং (c) তার যান্ত্রিক শক্তি প্রাথমিক মানের অর্ধেক হ্রাস পেতে সময় নির্ণয় করো ।

উত্তর : (a) আমরা এক্ষেত্রে দেখতে পাই, $km = 90 \times 0.2 = 18 \text{ kg N}$ m⁻¹ = kg² s⁻²; সুতরাং, $\sqrt{km} = 4.243 \text{ kg s}^{-1}$ এবং b = 0.04 kgs⁻¹. সুতরাং, b এর মান \sqrt{km} এর চাইতে অনেক কম, তাই (14.34) নং সমীকরণ হতে পর্যায়কাল *T*কে নিম্নরূপে লেখা যায়

$$T = 2\pi \sqrt{\frac{m}{k}}$$
$$= 2\pi \sqrt{\frac{0.2 \text{ kg}}{90 \text{ N m}^{-1}}}$$
$$= 0.3 \text{ s}$$

(b) এখন 14.33 নং সমীকরণ থেকে বিস্তার তার প্রাথমিক মানের অর্ধেক হ্রাস পেতে সময় নেবে

$$T_{1/2} = \frac{\ln(1/2)}{b/2m}$$
$$= \frac{0.693}{40} \times 2 \times 200$$
$$= 6.93 \text{ s}$$

(c) তার যান্ত্রিক শক্তি প্রাথমিক মানের অর্ধেক হ্রাস পেতে নেওয়া সময় t_{1/2}, নির্ণয় করতে আমরা (14.35) নং সমীকরণ ব্যবহার করব। এই সমীকরণ থেকে আমরা পাই —

s

$$E(t_{1/2})/E(0) = \exp(-bt_{1/2}/m)$$

Or $\frac{1}{2} = \exp(-bt_{1/2}/m)$

$$\ln (1/2) = -(bt_{1/2}/m)$$

Or $t_{1/2} = \frac{0.693}{40 \text{ g s}^{-1}} \times 200 \text{ g}$

এটি বিস্তার হ্রাসের পর্যায়কালের ঠিক অর্ধেক এরকমই হওয়া উচিত, কেননা (14.33) নং এবং (14.35) নং সমীকরণ অনুসারে শক্তি, বিস্তারের বর্গের উপর নির্ভর করে। দুটি সূচকীয় রাশিমালার সূচক লক্ষ করে দেখো একটি গুণক 2 পাওয়া যাবে।

14.10 পরবশ দোলন এবং অনুনাদ (Forced oscillations and resonance)

যখন একটি সংস্থাকে (যেমন একটি সরল দোলক বা স্প্রিং এর সঙ্গে যুক্ত ব্লক) তার সাম্যাবস্থান থেকে সরিয়ে ছেড়ে দেওয়া হয় তখন এটি 💿 স্বাভাবিক কম্পাঞ্চ্বকে দুলবে এবং দোলনকে মুক্ত দোলন (free oscillations) বলা হয়। সকল মুক্ত দোলন সবসময় অবমন্দন বলের জন্য অবশেষে থেমে যায়। যদিও, একটি বাহ্যিক বলের সহায়তায় এই দোলন বজায় রাখা যায়। এদেরকে পরবশ বা চালিত দোলন (forced or driven oscillations) বলে। আমরা এমন এক পরিস্থিতি বিবেচনা করব যেখানে বাহ্যিক বলটি হবে $\omega_{
m d}$ চালক কম্পাঞ্চ্বের একটি পর্যায়বৃত্ত বল। পরবশ পর্যায়বৃত্ত দোলনের একটি গুরুত্বপূর্ণ বিষয় হল যে সংস্থাটি এর 🛷 স্বাভাবিক কম্পাঞ্চে দোলবে না, বাহ্যিক $\omega_{\rm d}$ চালক কম্পাঞ্চে দোলবে। অবমন্দনের জন্য মুক্ত দোলন আস্তে আস্তে থেমে যাবে। যখন বাগানে একটি শিশু দোলনায় দোলে তখন সে দোলন বজায় রাখতে মাটিতে পা দিয়ে চাপ দেয়। (বা কেউ একজন শিশুটিকে পর্যায়ক্রমিকভাবে ঠেলা দেয়)। এটি পরবশ দোলনের একটি পরিচিত উদাহরণ।

মনে করো সময়ের সঙ্গে পর্যায়ক্রমিকভাবে পরিবর্তনশীল F_0 বিস্তারের একটি বাহ্যিক বল F(t) একটি অবমন্দিত দোলকের উপর প্রয়োগ করা হল। এরকম বলকে নিম্নরূপে প্রকাশ করা যায়

$$F(t) = F_o \cos \omega_d t \tag{14.36}$$

রৈখিক প্রত্যানয়ক বল, অবমন্দন বল এবং সময় নির্ভরশীল 14.36 নং সমীকরণ দ্বারা প্রকাশিত চালক বলের অধীন একটি কণার গতিকে নিম্নরূপে প্রকাশ করা যায়

 $m a(t) = -k x(t) - bv(t) + F_o \cos \omega_d t$ (14.37a)

(14.37a) নং সমীকরণে ত্বরণের পরিবর্তে d²x/dt² বসিয়ে এবং একে পুনরায় সাজিয়ে আমরা পাই

$$m\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + b\frac{\mathrm{d}x}{\mathrm{d}t} + kx = F_o \cos \omega_d t \qquad (14.37b)$$

উপরের সমীকরণটি হল ω_d (কৌণিক) কম্পাঞ্চের পর্যায়বৃত্ত বলের অধীনে ক্রিয়াশীন *m* ভরের একটি দোলকের সমীকরণ। দোলকটি প্রথমে তার ω স্বাভাবিক কম্পাঞ্চ নিয়ে দোলে। যখন আমরা বাহ্যিক পর্যায়বৃত্ত বল প্রয়োগ করি, স্বাভাবিক কম্পাঞ্চের দোলন থেমে গেলে বস্তুটি বাহ্যিক পর্যায়বৃত্ত বলের (কৌণিক) কম্পাঞ্চে দোলতে থাকে। স্বাভাবিক দোলন বন্ধ হওয়ার পর এর সরণ নিম্নের সমীকরণ দ্বারা প্রকাশ করা যায়

$$x(t) = A\cos\left(\omega_d t + \phi\right) \tag{14.38}$$

যেখানে t হল পর্যায়বৃত্ত বল প্রয়োগ করার মুহূর্ত থেকে পরিমাপ করার সময়,

বিস্তার A হল পরবশ কম্পাঙ্ক ω_a এবং স্বাভাবিক কম্পাঙ্ক ω এর অপেক্ষন। বিশ্লেষণ করে A কে নিম্নরূপে লেখা যায়

$$A = \frac{F_o}{\left\{m^2 \left(\omega^2 - \omega_a^2\right)^2 + \omega_a^2 b^2\right\}^{1/2}}$$
(14.39a)

এবং $\tan \phi = \frac{-v_o}{\omega_a x_o}$ (14.39b)

যেখানে *m* হল কণার ভর এবং v_0 এবং x_0 হল t = 0 অর্থাৎ যে মুহূর্তে আমরা পর্যায়বৃত্ত বল প্রয়োগ করি সেই মুহূর্তে কণার বেগ এবং সরণ। (14.39) সমীকরণ পরবশ দোলনের বিস্তার যা চালক বলের (কৌণিক) কম্পাঙ্কের উপর নির্ভর করে। ω_d এর মান ω এর চাইতে অনেক বেশি বা নিকটবর্তী হলে আমরা দোলকের ভিন্ন ভিন্ন আচরণ দেখতে পাই। এখন আমরা এই দুটি ক্ষেত্র নিয়ে আলোচনা করব।

$$A = \frac{F_o}{m\left(\omega^2 - \omega_d^2\right)} \tag{14.40}$$

14.21 নং চিত্রে সংস্থায় বিভিন্ন মানের অবমন্দনের জন্য চালক বলের কৌণিক কম্পাজ্জের উপর দোলকের সরণের বিস্তারের নির্ভরতা দেখানো হয়েছে। লক্ষ করে দেখবে সব ক্ষেত্রগুলোর মধ্যে বিস্তার সর্বোচ্চ হবে যখন $\omega_d/\omega = 1$ । চিত্রে বরুরেখাগুলো থেকে দেখা যায় যে অবমন্দন কম হলে অনুনাদের চূড়া উঁচু এবং সরু হবে।

চিত্র : 14.21 একটি পরবশ দোলকে চালিত বলের কৌণিক কম্পাঞ্জের অপেক্ষকরুপে সরণ-বিস্তর। বিস্তারের মান সর্বোচ্চ হয় যখন w_d/w = 1 হয়, যা অনুনাদের শর্ত। সংস্থাটিতে ভিন্ন মানের তিনটি অবমন্দনের জন্য তিনটি লেখচিত্রকে দেখানো হয়েছে। 1 নং এবং 3 নং লেখচিত্র যথাক্রমে সর্বনিম্ন ও সর্বোচ্চ অবমন্দনকে প্রকাশ করছে।

আমরা যদি চালক কম্পাঞ্চ পরিবর্তিত করতে থাকি, তবে যখন এটি স্বাভাবিক কম্পাঞ্জের সমান হবে তখন দোলনের বিস্তার অসীমের নিকটবর্তী হবে। কিন্তু এটি শূন্য অবমন্দনের আদর্শ অবস্থা। কোনো বাস্তব ক্ষেত্রে এটি সম্ভব নয় কারণ অবমন্দন কোনো অবস্থায় সম্পূর্ণ শূন্য হতে পারে না। তুমি নিশ্চয় কখনো দোলনায় দোলার সময় এটা অনুভব করেছে যে, যখন তোমার প্রযুক্ত ধাক্কার পর্যায়কাল সম্পূর্ণরূপে দোলনের স্বাভাবিক পর্যায়কালের সমান হবে তখন তোমার দোলনের বিস্তার সর্বোচ্চ হবে, এই বিস্তার সর্বোচ্চ হবে কিন্তু অসীম হবে না, কেননা তোমার দোলনে সর্বদা কিছু না কিছু অবমন্দন থাকবেই। এটা পরবর্তী b অংশে স্পন্ট হবে।

(b) যখন চালক কম্পাঙ্ক স্বাভাবিক কম্পাঙ্কের নিকটবর্তী: $ω_d, ω$ এর খুব নিকটবর্তী হলে, b এর কোনো সুবিধাজনক মানের ক্ষেত্রে $m (\omega^2 - \omega_d^2), \omega_d b$ এর তুলনায় অনেক ক্ষুদ্র হবে এবং তখন (14.39) নং সমীকরণ পরিবর্তিত হয়ে দাঁড়াবে

$$A = \frac{F_{\circ}}{\omega_d b} \tag{14.41}$$

এ থেকে স্পন্টত যে কোনো প্রদত্ত চালক কম্পাঙ্কের জন্য সম্ভাব্য সর্বোচ্চ বিস্তার চালক কম্পাঙ্ক তথা অবমন্দনের উপর নির্ভরশীল এবং কখনো অসীম হবে না। যখন চালক কম্পাঙ্ক দোলকের স্বাভাবিক কম্পাঙ্কের খুব নিকটবর্তী হবে তখন দোলনের বিস্তার সর্বোচ্চ হবে। এরকম ঘটনাকে **অনুনাদ বলে**। আমাদের দৈনন্দিন জীবনে আমরা অনুনাদ সম্পর্কিত ঘটনার সম্মুখীন হই। তোমাদের দোলনায় দোলার অনুভব অনুনাদের একটি প্রকৃষ্ট উদাহরণ। তোমরা নিশ্চয় অধিক উচ্চতায় দোলনায় দোলার অভিজ্ঞতা ও কুশলতা আছে। এটা সম্ভব যখন ভূমিতে জোড় লাগাবার ছন্দ, দোলকের দোলার স্বাভাবিক কম্পাঞ্চের সঞ্চো মিলে যায়।

এই ব্যাপারটা আরও ভালো করে ব্যাখ্যা করতে, চলো একটি পরীক্ষা করি। প্রদন্ত 14.22 নং চিত্রের মতো একটি দড়ি থেকে বিভিন্ন কার্যকর দৈর্ঘ্যের পাঁচটি সরল দোলক ঝোলানো হল। 1 নং এবং 4 নং দোলকের কার্যকর দৈর্ঘ্য সমান এবং অন্যদের দৈর্ঘ্য বিভিন্ন, এখন 1 নং দোলককে দোলানো হল, এই দোলকের শস্ত্তি সংযোগকারী অনুভূমিক দড়ির মাধ্যমে অন্যান্য দোলকগুলির মধ্যে সঞ্চালিত হবে। ফলস্বর্প সেগুলি দোলতে থাকবে। অনুভূমিক সংযোগকারী দড়ির মধ্য দিয়ে চালক বল প্রদান করা হয়। এই চালক বলের কম্পাঙ্ক হল 1 নং দোলকের কম্পাঙ্কের সমান। যদি আমরা 2, 3, এবং 5 নং দোলকের প্রতিক্রিয়া লক্ষ্য করি তবে আমরা দেখব তারা প্রথমে

চিত্র : 14.22

একটি অনুভূমিক সাধারণ অবলম্বন থেকে বিভিন্ন দৈর্ঘ্যের পাঁচটি দোলক ঝোলানো হল। তাদের নিজ নিজ স্বাভাবিক কম্পাঞ্চে বিভিন্ন বিস্তার নিয়ে দোলবে। কিন্তু এই দোলন বেশি স্থায়ী হবে না, ক্রমশ অবমন্দিত হবে। তাদের দোলনের কম্পাঞ্চ্ক ধীরে ধীরে পরিবর্তিত হয়ে 1 নং দোলকের কম্পাঞ্চ্কে অর্থাৎ চালক বলের কম্পাঙ্কে ভিন্ন ভিন্ন বিস্তার নিয়ে দোলবে। তারা অল্প বিস্তার নিয়ে দোলবে। কিন্তু 4 নং দোলকের প্রতিক্রিয়া অন্য তিনটি দোলক থেকে বিপরীত হবে। এই দোলক 1 নং দোলকের কম্পাঙ্কে দোলবে কিন্তু এর বিস্তার ধীরে ধীরে বাড়তে থাকবে এবং এক সময় অনেক বেশি হবে। এক্ষেত্রে অনুনাদের মতো প্রতিক্রিয়া দেখা যায়। এটা ঘটার কারণ এতে অনুনাদের শর্ত পালিত হয় অর্থাৎ সংস্থার স্বাভাবিক কম্পাঙ্ক চালক বলের কম্পাঙ্কের সাথে মিলে যায়।

এতক্ষণ আমরা এমন দোলন সংস্থা বিবেচনা করি যার কেবল একটি স্বাভাবিক কম্পাঞ্চ্ক আছে। সাধারণত বলা যায় কোনো সংস্থার অনেক স্বাভাবিক কম্পাঙ্কও হতে পারে। তোমরা এরকম সংস্থার উদাহরণ পরবর্তী অধ্যায়ে দেখতে পাবে (কম্পমান তার, বায়ুস্তম্ভ ইত্যাদি)। কোনো যান্ত্রিক পরিকাঠামো যেমন কোনো একটি দালান, কোনো সেতৃ বা কোনো একটি বায়ুযানের অনেক স্বাভাবিক কম্পাঞ্চ সম্ভব। কোনো বাহ্যিক পর্যায়বৃত্ত বল অথবা আলোড়ন সংস্থাটিতে পরবশ দোলন আরোপ করে। যদি ঘটনাব্রুমে পরবশ কম্পাঙ্ক 🕰 সংস্থার একটি স্বাভাবিক কম্পাঞ্চের কাছাকাছি হয় তখন দোলনের বিস্তারের অত্যধিক বৃদ্ধি ঘটে (অনুনাদ), যার ফলস্বরূপ ক্ষতি হতে পারে। এজন্য সৈন্যদের সেতু পার হওয়ার সময় মার্চ করে যেতে নিষেধ করা হয়। একই কারণে ক্ষতিগ্রস্ত এলাকায় ভূমিকস্পে সকল দালানের ক্ষতি একরকম হয় না। যদিও তারা একই উপাদান ও একই ক্ষমতাসম্পন্ন হয়। দালানের স্বাভাবিক কম্পাঞ্চ্ক এর উচ্চতা, অন্যান্য আকার জনিত প্রাচল এবং দালানের উপাদানের প্রকৃতির উপর নির্ভর করে। যেসকল দালানের স্বাভাবিক কম্পাঞ্চ্ক, ভূমিকম্পের কম্পাঙ্কের নিকবর্তী হয় সেসকল ক্ষেত্রে ক্ষতিসাধন হওয়ার সম্ভাবনা সর্বাধিক হয়।

সারাংশ

- 1. যে গতি নিজ থেকে পুনরাবৃত্ত হয় তাকে **পর্যায়বৃত্ত** গতি বলে।
- একটি পূর্ণদোলন সম্পন্ন হতে বা একটি পুরো আবর্তনের প্রয়োজনীয় সময়কে পর্যায়কাল T বলা হয়। এটি কম্পাঙ্ক v এর সাথে নিমন্থপে সম্পর্কযুক্ত।

$$T = \frac{1}{v}$$

পর্যায়বৃত্তাকার বা দোলগতির কম্পাঞ্চ v হল একক সময়ে দোলনের সংখ্যা। SI এককে এটি হার্ৎজ (hertz) এককে পরিমাপ করা হয়:

1 hertz = 1 Hz = 1 প্রতিসেকেন্ডে একটি দোলন = $1 s^{-1}$

3. সরল দোলগতিতে (SHM) কোন কণার সাম্যাবস্থা থেকে সরণ x (t) নিমন্বুপে প্রকাশ করা যায়,

 $x(t) = A\cos(\omega t + \phi)$ (সরণ),

যেখানে A হল সরণের বিস্তার, $(\omega t + \phi)$ রাশিটি হল গতির দশা, এবং ϕ হল দশা ধ্রুবক (phase constant)। কৌণিক কম্পাজ্জ ω , গতির পর্যায়কাল এবং কম্পাজ্জের সঙ্গে নিম্নরূপে সম্পর্কযুক্ত।

$$\omega = \frac{2\pi}{T} = 2\pi v$$
 (কৌণিক কম্পাঞ্চক)

- 4. সমবৃত্তীয় গতির ক্ষেত্রে যে বৃত্ত বরাবর গতি সম্পন্ন হয় তার ব্যাসের উপর অভিক্ষেপ হল সরল দোলগতি।
- 5. সরল দোলগতির ক্ষেত্রে সময়ের অপেক্ষকরুপে কণার বেগ এবং ত্বরণ হবে নিম্নরূপ,

$$\begin{split} v\left(t\right) &= -\omega A \sin\left(\omega t + \phi\right) \qquad (বেগ),\\ a\left(t\right) &= -\omega^2 A \cos\left(\omega t + \phi\right) \\ &= -\omega^2 x\left(t\right) \qquad (\ensuremath{\mathbb{V}}\ensuremath{\mathbb{S}}\ensuremath{\mathbb{$$

সুতরাং, আমরা দেখতে পাই যে সরল দোলগতি সম্পাদনকারী একটি বস্তুর বেগ এবং ত্বরণ উভয়েই পর্যায়বৃত্ত অপেক্ষক, যার বেগের বিস্তার $v_m = \omega A$ এবং ত্বরণের বিস্তার $a_m = \omega^2 A$ ।

- 6. সরল দোলগতি সম্পাদনকারী কণার উপর ক্রিয়াশীল বল সরণের সমানানুপাতী এবং সর্বদাই গতীয়কেন্দ্র (centre of motion) অভিমুখী হয়।
- 7. কোনো মুহূর্তে সরল দোলগতি সম্পন্ন কোনো কণার গতিশক্তি K = ½ mv² এবং স্থিতিশক্তি U = ½ kx² । যদি কোনো ঘর্ষণ বল না থাকে তবে সংস্থার যান্ত্রিক শক্তি, E = K + U সর্বদা স্থির থাকে যদিও সময়ের সাথে সাথে K এবং U পরিবর্তিত হয়।
- হুকের সূত্রানুসারে F = k x প্রত্যানয়ক বলের প্রভাবে দোলনরত m ভরের একটি কণা সরল দোলগতি সম্পন্ন করবে যার ক্ষেত্রে

$$\omega = \sqrt{\frac{k}{m}}$$
 (কৌণিক কম্পাঙ্ক)
 $T = 2\pi \sqrt{\frac{m}{k}}$ (পর্যায়কাল)

এ ধরনের সংস্থাকে রৈখিক দোলক বলে।

9. ক্ষুদ্র কোণে দোলায়মান কোনো সরল দোলকের গতি প্রায় সরল দোলগতি। দোলনের পর্যায়কাল

$$T = 2\pi \sqrt{\frac{L}{g}}$$

10. বাস্তবে কোনো দোলায়মান সংস্থার যান্ত্রিক শক্তি দোলনরত অবস্থায় হ্রাস পেতে থাকে কেননা বাহ্যিক বল, যেমন প্রতিরোধক বল দোলনকে বাধা দিতে চেস্টা করে এবং যান্ত্রিক শক্তি তাপশস্তিতে রূপান্তরিত করে। বাস্তব
$$x(t) = A e^{-bt/2m} \cos(\omega' t + \phi)$$

যেখানে 🛯 হল অবমন্দিত দোলকের কৌণিক কম্পাঙ্ক যাকে নিম্নরূপে প্রকাশ করা যায়

$$\omega' = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}}$$

যদি অবমন্দন ধ্রুবক ক্ষুদ্র হয় তখন ω' ≈ ω, যেখানে ω হল অবমন্দিত নয় এমন দোলকের কৌণিক কম্পাঙ্ক। অবমন্দিত দোলকের যান্ত্রিক শক্তি E কে নিন্নরূপে প্রকাশ করা যায়।

$$E(t) = \frac{1}{2}kA^2e^{-bt/m}$$

11. যদি ω স্বাভাবিক কৌণিক কম্পাঙ্কের কোন দোলয়মান সংস্থায় ω_α কৌণিক কম্পাঙ্কের কোনো বাহ্যিক বল প্রয়োগ করা হয়, তবে ঐ সংস্থা ω_α কৌণিক কম্পাঙ্কে দুলতে থাকবে। এই দোলনের বিস্তার সর্বোচ্চ হবে যখন

$$\omega_d = \omega$$
 হয়,

যা হল অনুনাদের শর্ত।

প্রাকৃতিক রাশি	প্রতীক	মাত্রা	একক	মন্তব্য
পর্যায়কাল	Т	[T]	s	গতির স্বয়ং পুনরাবৃত্তির ন্যূনতম সময়
কম্পাজ্জ	$\nu(\operatorname{al} f)$	$[T^{-1}]$	s^{-1}	$v = \frac{1}{T}$
কৌণিক কম্পাঞ্চ্ক	ω	$[T^{-1}]$	\mathbf{s}^{-1}	$\omega = 2 \pi \nu$
দশাধুবক	φ	মাত্রাহীন	rad	সরল দোলগতির সরণের দশার প্রাথমিক মান
বলধুবক	k	$[\mathrm{MT}^{-2}]$	N m ⁻¹	সরল দোলগতির ক্ষেত্রে F=-k x

ভেবে দেখার বিষয়সমূহ:

- ন্যূনতম যে সময় পর গতি নিজ থেকে পুনরাবৃত্ত হয় তাকে পর্যায়কাল T বলে। ফলে nT সময় পর পর গতি নিজ থেকে পুনরাবৃত্ত হয়। যেকানে n হল একটি অখন্ড সংখ্যা।
- প্রতিটি পর্যায়বৃত্ত গতি সরল দোলগতি নয়। কেবলমাত্র এমন পর্যায়বৃত্ত গতিই সরল দোলগতি হবে যা F = k x বলের সূত্র মেনে চলে।
- বৃত্তিয় গতি উৎপন্ন হতে পারে ব্যস্তবর্গ বল (যেমন গ্রহের গতির ক্ষেত্রে) কিংবা দ্বিমাত্রিক সরল দোলগতি বলের জন্য যার মান –mw²r। শেষোক্ত ক্ষেত্রে দুটি লম্ব অভিমুখে (x এবং y) গতীয় দশা অবশ্যই π/2 দশা পার্থক্য থাকে। ফলে (0, A) প্রাথমিক অবস্থানে থাকা এবং (ωA, 0) বেগ বিশিষ্ট একটি কণা –mw²r বলের অধীনে A ব্যাসার্ধবিশিষ্ট বৃত্তপথে সুযমভাবে গতিশীল হবে।

- 5. উপরোক্ত 4 নং পয়েন্টে প্রদন্ত বিস্তার অথবা শক্তি এবং গতীয় দশাকে প্রাথমিক অবস্থান এবং প্রাথমিক বেগ দ্বারা নির্ধারণ করা যায়।
- 6. ইচ্ছাধীন বিস্তার এবং দশাযুক্ত দুটি সরল দোলগতির সংযোজন পর্যায়বৃত্তাকার নাও হতে পারে। এটি পর্যায়বৃত্তাকার গতি হবে একমাত্র যদি একটি গতির কম্পাঙ্ক অপর কম্পাঙ্কের অখণ্ড গুণিতক হয়। যদিও একটি পর্যায়বৃত্ত গতিকে সর্বদা উপযুক্ত বিস্তারের অসীমসংখ্যক দোলগতির সমষ্টিরপে প্রকাশ করা যায়।
- 7. সরল দোলগতির পর্যায়কাল, বিস্তার বা শক্তি বা দশা ধ্রুবকের উপর নির্ভর করে না। এটি মহাকর্যের অধীন গ্রহের কক্ষীয় পর্যায়কালের বিপরীত (কেপলারের তৃতীয় সূত্র)।
- 8. ক্ষুদ্র কৌণিক সরণের জন্য সরল দোলকের গতি সরল দোলগতি।
- 9. কোনো কণার গতি সরল দোলগতি হলে এর সরণ x নিচের যেকোনো একরুপে প্রকাশ করতে হবে :

$$x = A\cos\omega t + B\sin\omega t$$

 $x = A \cos(\omega t + \alpha), x = B \sin(\omega t + \beta)$

তিনটি রূপই পরস্পরের পরিপূরক (যেকোনো একটিকে অপর দুটি রূপের সাপেক্ষে প্রকাশ করা যায়)। তাই অবমন্দিত সরল দোলগতি [14.31নং সমীকরণ] পুরোপুরি সরল দোলগতি নয়। এটা কেবল 2m/b থেকে অনেক ক্ষুদ্র সময় ব্যবধানের জন্য প্রায় সরল দোলগতি হয়। যেখানে b হল অবমন্দন ধ্রুবক।

- 10. পরবশ দোলনের ক্ষেত্রে, কণা যখন সাম্যাবস্থায় আসে (পরবশ দোলন শেষ হওয়ার আগে) তখন তার গতি সরল দোলগতি হয় যার কম্পাঙ্ক চালক কম্পাঙ্ক ω_d এর সমান হয়, কিন্তু কণার স্বাভাবিক কম্পাঙ্ক ω এর সমান হয় না।
- 11. শূন্য অবমন্দনের আদর্শ ক্ষেত্রে, অনুনাদের সময় সরল দোলগতির বিস্তার অসীম হয়। তবে এ নিয়ে ভাবার কিছু নেই, কেননা সকল বাস্তব সংস্থায় কোনো না কোনো অবমন্দন অবশ্যই থাকবে, সে যতই ক্ষুদ্র হউক না কেন, আদর্শ অবস্থা কখনো আসে না।
- 12. পরবশ দোলনের অধীনে থাকাকালীন কণার সরল দোলগতির দশা চালক বলের দশা থেকে ভিন্ন হয়।

অনুশীলনী

- 14.1 নীচের কোন্ উদাহরণ পর্যায়বৃত্ত গতি নির্দেশ করে?
 - (a) একজন সাঁতারু নদীর এক তীর থেকে অপর তীরে যায় এবং ফিরে এসে তার পুরো যাত্রা সম্পূর্ণ করে।
 - (b) একটি মুক্তভাবে ঝুলানো দণ্ডচুম্বক তার N-S অভিমুখ থেকে সরিয়ে ছেড়ে দেওয়া হল।
 - (c) একটি হাইড্রোজেন অণু তার ভরকেন্দ্রের সাপেক্ষে ঘুরছে।
 - (d) ধনুক থেকে একটি তীর ছোড়া হল।
- 14.2 নীচের কোন্ উদাহরণ কোনো সরল দোলগতিকে মোটামুটিভাবে প্রকাশ করে এবং কোনটি পর্যায়বৃত্তাকার কিন্তু সরল দোলগতি নয়?
 - (a) পৃথিবীর নিজের অক্ষের সাপেক্ষে ঘোরা।
 - (b) একটি U নলে পারদস্তন্তের দোলন।
 - (c) একটি মসৃণ গোলীয় বাটির ভিতর একটি বল বেয়ারিংকে সর্বনিন্ন বিন্দু থেকে খানিকটা উপরে নিয়ে ছেড়ে দিলে বল বেয়ারিংটির গতি।
 - (d) কোনো বহু পরমাণুক অণুর সাম্যাবস্থার সাপেক্ষে সাধারণ কম্পন।
- 14.3 14.23 নং চিত্র একটি কণার রৈখিক গতির ক্ষেত্রে চারটি x-t লেখচিত্র বর্ণনা করছে। এদের মধ্যে কোনটি পর্যায়বৃত্ত গতি নির্দেশ করে? গতির পর্যায়কাল কি হবে (পর্যায়বৃত্ত গতির ক্ষেত্রে)?

চিত্র : 14.23

- 14.4 নিম্নলিখিত সময় অপেক্ষকগুলোর মধ্যে কোন্টি (a) সরল দোলগতি, (b) পর্যায়বৃত্ত গতি কিন্তু সরল দোলগতি নয় এবং (c) অপর্যাবৃত্ত গতি নির্দেশ করে? প্রতিটি পর্যাবৃত্ত গতির ক্ষেত্রে দোলনকাল নির্ণয় করো (ω হল কোনো ধনাত্মক ধ্রবক):
 - (a) $\sin \omega t \cos \omega t$
 - (b) $\sin^3 \omega t$
 - (c) $3\cos(\pi/4 2\omega t)$
 - (d) $\cos \omega t + \cos 3\omega t + \cos 5\omega t$
 - (e) $\exp(-\omega^2 t^2)$
 - (f) $1 + \omega t + \omega^2 t^2$
- 14.5 একটি কণা 10 cm দূরবর্তী দুটি কণা A এবং B বিন্দুর মধ্যে রৈখিক সরল দোলগতিতে দোলনরত। A থেকে B অভিমুখকে ধনাত্মক অভিমুখ ধরে কণার বেগ, ত্বরণ এবং কণার উপর প্রযুক্ত বলের চিহ্ন কি হবে যখন কণাটি :
 - (a) A প্রান্তে থাকবে,

- (b) B প্রান্তে থাকবে,
- (c) AB এর মধ্যবিন্দুতে এবং A বিন্দুগামী,
- (d) B প্রান্ত থেকে 2 cm দূরে এবং A বিন্দুগামী,
- (c) AB এর মন্যান পুডে এবং A বিন্দুগামা,
 (e) A প্রান্ত থেকে 3 cm দূরে এবং B বিন্দুগামাই এবং
- (f) B প্রান্ত থেকে 4 cm দূরে এবং A বিন্দুগামী।
- 14.6 ত্বরণ a এবং x এর মধ্যে নীচের কোন্ সম্পর্কটি সরল দোলগতি সম্পন্ন ?
 - (a) a = 0.7x (b) $a = -200x^2$
 - (c) a = -10x (d) $a = 100x^3$

14.7 নিম্নলিখিত সরণ অপেক্ষক দ্বারা সরল দোলগতি সম্পাদনকারী একটি কণার গতি নিম্নরূপে প্রকাশিত :

 $x(t) = A\cos\left(\omega t + \phi\right).$

যদি কণাটির প্রাথমিক অবস্থান 1 cm এবং প্রাথমিক বেগ $ω \, {
m cm/s^{-1}}\,$ হয়, তবে কণাটির বিস্তার এবং প্রাথমিক দশা কোণ কত হবে ? দেওয়া আছে কণাটির কৌণিক কম্পাঞ্চ π s⁻¹।

যদি কোসাইন অপেক্ষকের পরিবর্তে সাইন অপেক্ষকের সাহায্যে সরল দোলগতিকে প্রকাশ করা হয় অর্থাৎ যদি *x*(*t*) = *B sin* (*ωt* + *α*) হয়, তবে উল্লেখিত প্রাথমিক শর্তগুলোকে ব্যবহার করে কণাটির বিস্তার ও প্রাথমিক দশা নির্ণয় করো।

- 14.8 একটি স্প্রিং তুলার স্কেল 0 থেকে 50 kg পর্যন্ত পাঠ দিতে পারে। স্কেলটির দৈর্ঘ্য 20 cm। স্প্রিং তুলাটি থেকে একটি বস্তু ঝুলিয়ে দেওয়া হল। বস্তুটিকে তার সাম্যাবস্থান থেকে কিছুটা টেনে ছেড়ে দিলে বস্তুটি সরল দোলগতি সম্পন্ন করে। বস্তুটির গতির পর্যায়কাল 0.6 s হলে বস্তুর ওজন কত ?
- 14.9 1200 N m⁻¹ স্প্রিং ধ্রুবক সম্পন্ন একটি স্প্রিং-এর একপ্রান্ত একটি দেয়ালে আটকানো আছে। মসৃণ অনুভূমিক টেবিলের ওপর রাখা 3 kg ভরবিশিন্ট একটি বস্তুর সঙ্গো 14.24 নং চিত্রের ন্যায় এর অপর প্রান্ত যুক্ত। বস্তুটিকে টেবিল বরাবর 2.0 cm টেনে ছেড়ে দেওয়া হল।

চিত্র : 14.24

 (i) দোলগতির কম্পাৎক নির্ণয় করো, (ii) ভরটির সর্বোচ্চ তরণ নির্ণয় করো এবং (iii) ভরটির সর্বোচ্চ দ্রুতি নির্ণয় করো।

- 14.10 14.9 নং অনুশীলনীতে, যখন স্প্রিংটি অপ্রসারিত অবস্থায় থাকে তখন ভরটির অবস্থানকে x = 0 এবং বাঁদিক থেকে ডানদিকের অভিমুখকে x-অক্ষের ধনাত্মক অভিমুখ হিসেবে ধর। দোলনরত বস্তুর সরণ x কে সময় t এর অপেক্ষক রূপে প্রকাশ কর যদি স্টপ ওয়াচ শুরু করার মুহূর্তে (t = 0) ভরটির
 - (a) সাম্যাবস্থায় থাকে, (b) সর্বোচ্চ প্রসারিত অবস্থায় থাকে এবং
 - (c) সর্বোচ্চ সংকুচিত অবস্থায় তাকে।

সরল দোলগতির এই অপেক্ষকগুলো কম্পাঙ্কে, বিস্তার অথবা প্রাথমিক দশায় কিভাবে একে অপর থেকে ভিন্ন হয়?

14.11 14.25 নং চিত্রে দুটি বৃত্তীয় গতি দেখানো হয়েছে। প্রতিটি গতির বৃত্তপথের ব্যাসার্ধ, আবর্তনের পর্যায়কাল, প্রাথমিক অবস্থান এবং আবর্তনের অভিমুখ (অর্থাৎ বামাবর্তী বা দক্ষিণাবর্তী) দেখানো হয়েছে। প্রতিটি ক্ষেত্রে আবর্তনরত কণা p এর ব্যাসার্ধ ভেক্টরের x অক্ষের উপর অভিক্ষেপের সরল দোলগতির সমীকরণ নির্ণয় করো।

- 14.12 নিচের প্রতিটি সরল দোলগতির আনুষঞ্জিক নির্দেশক বৃত্ত অঙ্কন কর। কণার প্রাথমিক (t =0) অবস্থান, বৃত্তের ব্যাসার্ধ এবং ঘূর্ণায়মান কণার কৌণিক দ্রুতি নির্দেশ করো। সরলীকরণের জন্য প্রতিটি ক্ষেত্রে ঘূর্ণন বামাবর্তী ধরে নাও : (x কে cm এ এবং t কে সেকেন্ডে ধরে নাও)।
 - (a) $x = -2 \sin (3t + \pi/3)$ (b) $x = \cos (\pi/6 t)$
 - (c) $x = 3 \sin (2\pi t + \pi/4)$ (d) $x = 2 \cos \pi t$
- 14.13 k বল ধ্রুবক বিশিষ্ট একটি স্প্রিং এর একপ্রান্ত দেওয়ালের সাথে দৃঢ়ভাবে আটকানো হল এবং স্প্রিংটির মুক্ত প্রান্তের সাথে m ভরবিশিষ্ট একটি ব্লক যুক্ত করা হল (চিত্র14.26 (a))

ব্লকটির উপর একটি বল F প্রয়োগ করে স্প্রিংটিকে প্রসারিত করা হল। অনুরূপে একটি স্প্রিং-এর দুটি মুক্ত প্রান্তের সাথে *m* ভরবিশিষ্ট দুটি ব্লক যুক্ত করা হল (14.26 (b)) এক্ষেত্রে উভয় ব্লকের উপর F বল প্রয়োগ করে স্প্রিংটিকে প্রসারিত করা হল।

- (a) প্রতিটি ক্ষেত্রে স্প্রিং এর সর্বাধিক প্রসারণ কত হবে?
- (b) 14.26 (a) চিত্রে m ভরের ব্লকটিকে এবং 14.26 (b) চিত্রে m ভরের ব্লক দুটিকে ছেড়ে দিলে প্রতিক্ষেত্রে দোলনের পর্যায়কাল কত হবে?
- 14.14
 কোন গাড়ির ইঞ্জিনের সিলিন্ডারের শীর্ষে অবস্থিত পিস্টনের স্ট্রোক (বিস্তারের দ্বিগুণ) 1.0 m। যদি পিস্টন 200

 rad/min কৌণিক কম্পাঞ্জে সরল দোলগতিতে গতিশীল হয়, তবে তার সর্বোচ্চ দ্রুতি কত হবে?
- 14.15
 চন্দ্র পৃষ্ঠে মহাকর্ষজ ত্বরণ 1.7 m s⁻²। যদি পৃথিবী পৃষ্ঠে পর্যায়কাল 3.5 s হয় তবে চন্দ্রপৃষ্ঠে ঐ সরল দোলকের

 পর্যায়কাল কত হবে ? (পৃথিবীপৃষ্ঠে g হল 9.8 m s⁻²)
- 14.16 নিচের প্রশ্নগুলোর উত্তর দাও :
 - (a) সরল দোলগতিতে দোলনরত কোনো কণার আবর্তনকাল, বল ধ্রুবক k এবং কণার ভর m এর উপর নির্ভর করে : ^T = 2π√^m/_k. কোন সরল দোলক মোটামুটিভাবে সরল দোলগতি সম্পন্ন করে। তাহলে একটি দোলকের পর্যায়কাল দোলকের ভরের উপর নির্ভর করে না কেন?

 - (c) একজন লোক তার হাতে হাতঘড়ি নিয়ে মিনার এর শীর্ষ থেকে মুক্তভাবে পড়ে। মুক্তভাবে পড়ার সময় ঘড়িটি সঠিক সময় দেবে কি?
 - (d) অভিকর্ষের অধীন মুক্তভাবে পতনশীল কোনো কেবিনে রাখা একটি সরল দোলকের দোলনের কম্পাঙ্ক কি হবে ?
- 14.17 একটি গাড়িতে *l* দৈর্ঘ্যের এবং *M* ভরের পিন্ডের একটি সরল দোলক ঝোলানো আছে। গাড়ি *R* ব্যাসার্ধের বৃত্তীয় পথে *v* সমদ্রুতিতে গতিশীল। যদি দোলক সাম্যাবস্থার সাপেক্ষে ব্যাসার্ধ বরাবর ক্ষুদ্র দোলন সম্পন্ন করে তবে এর পর্যায়কাল কি হবে ?

14.18 ρ ঘনত্বের একটি চোঙাকৃতি কর্কের ভূমির ক্ষেত্রফল A এবং উচ্চতা h । কর্কটি ρ_i ঘনত্বের একটি তরলে ভাসছে । কর্কটিকে তরলের মধ্যে অল্প ডুবিয়ে ছেড়ে দিলে দেখাও যে কর্কটি ওপর-নিচে সরল দোলগতিতে কম্পিত হতে থাকবে যার পর্যায়কাল

$$T = 2\pi \sqrt{\frac{h\rho}{\rho_{\rm l}g}}$$

যেখানে ρ হল কর্কটির ঘনত্ব। (তরলের সান্দ্রতার জন্য অবমন্দনকে উপেক্ষা কর।)

14.19 পারদে ভর্তি কোনো একটি U নলের একপ্রান্ত একটি শোষক পাম্পের সঙ্গে যুক্ত এবং অপর প্রান্ত বায়ুমণ্ডলে উন্মুক্ত। দুটি স্তন্তের মধ্যে একটি ক্ষুদ্র চাপের পার্থক্য বজায় রাখা হয়। দেখাও যে যখন শোষক পাম্প সরিয়ে নেওয়া হয় তখন U নলের পারদস্তম্ভ সরল দোলগতি সম্পন্ন করবে।

অতিরিক্ত অনুশীলনী

14.20 // আয়তনবিশিষ্ট একটি পাত্রের সরু মুখটির প্রস্থচ্ছেদের ক্ষেত্রফল a (চিত্র14.27) পাত্রটির সরু মুখটির অভ্যন্তরে m ভরের একটি বল আটকে আছে যেটি ঘর্ষণহীনভাবে ওঠানামা করতে পারে। দেখাও যে বলটি যদি নিচের দিকে অল্প টেনে ছেড়ে দেওয়া হয়, তাহলে এটি সরল দোলগতি সম্পন্ন করে। আয়তনের সাথে সাথে বায়ুর চাপ সমোন্ন প্রক্রিয়ায় পরিবর্তিত হচ্ছে ধরে নিয়ে বলটির সরল দোলগতির দোলনকাল নির্ণয় করো। [চিত্র 14.27 দেখ].

Fig.14.27

- 14.21 তুমি কোনো 3000 kg. ভরের মোটর গাড়িতে ভ্রমণ করছো। ধরে নাও যে তুমি এই গাড়িটির প্রলম্বন প্রণালীর দোলন বৈশিষ্টের পরীক্ষা করছো। যখন সম্পূর্ণ গাড়িটি এর উপর রাখা হয় তখন প্রলম্বন15 cm চেপে যায়। আবার একটি পূর্ণ দোলনের ক্ষেত্রে দোলনের বিস্তার 50% হারে হ্রাস পায়। (a) স্প্রিং ধ্রুবক k এর মান বের কর এবং (b) স্প্রিং এবং চাকার ঘাত শোষক প্রণালীর জন্য অবমন্দন ধ্রুবক b এর মান (ধরে নাও প্রতিটি চাকা 750 kg.ভার বহন করে) নির্ণয় করো।
- 14.22 দেখাও যে রৈখিক সরল দোলগতি সম্পাদনকারী কোনো কণার ক্ষেত্রে দোলনের কোনো পর্যায়কালে গড় গতিশক্তি একই পর্যায়কালে গড় স্থিতিশক্তির সমান হয়।
- 14.23 10 kg ভরের কোনো বৃত্তাকার চাকতি একটি তার দ্বারা চাকতির কেন্দ্রের সাথে যুক্ত করে ঝোলানো হয়েছে। চাকতিটিকে ঘুরিয়ে তারে মোচড় দিয়ে ছেড়ে দেওয়া হল। ব্যাবর্ত দোলনের পর্যায়কাল দেখা গেল 1.5 s। চাকতির ব্যাসার্ধ হল 15 cm.। তারের ব্যাবর্ত স্প্রিং ধ্রুবক নির্ণয় করো। (ব্যাবর্ত স্প্রিং ধ্রুবক 'α'কে সংজ্ঞায়িত করা হয় *J* = –α θ সমীকরণের সাহায্যে, যেখানে *J* হল প্রত্যানয়ক দ্বন্দু এবং*θ* হল মোচড়কোন)।
- 14.24 একটি বস্তু 5 cm বিস্তারের এবং 0.2 s পর্যায়কালের সরল দোলগতি সম্পন্ন করছে। বস্তুটির ত্বরণ এবং বেগ নির্ণয় করো যখন বস্তুর সরণ (a) 5 cm (b) 3 cm (c) 0 cm.
- 14.25 একটি স্প্রিং এ যুক্ত একটি ভর ω কৌণিক বেগে, ঘর্ষণ বা অবমন্দন ছাড়া কোনো অনুভূমিক তলে মুক্তভাবে দোলছে। একে x₀ দুরত্বে টানা হল এবং t = 0 সময়ে v₀ বেগে কেন্দ্রাভিমুখে ঠেলে দেওয়া হল। ω, x₀ এবং v₀ প্রাচলগুলির সাপেক্ষে লব্ধি দোলনের বিস্তার নির্ণয় করো [সমাধান সংকেত : x = a cos (ωt+θ) সমীকরণ দিয়ে শুরু করো এবং লক্ষ করো প্রাথমিক বেগ ঋণাত্মক]

অধ্যায় : পঞ্জদশ

তরঙ্গ (Waves)

15.1 ভূমিকা

- 15.2 তির্যক ও অনুদৈর্ঘ্য তরঙ্গ
- 15.3 চল তরজো সরণ সম্পর্ক
- 15.4 চল তরঙ্গের বেগ
- 15.5 তরঞ্জের উপরিপাতের নীতি
- 15.6 তরঞ্জের প্রতিফলন
- 15.7 স্বরকম্প
- 15.8 ডপলার ক্রিয়া

সারসংক্ষেপ ভেবে দেখার বিষয়সমূহ অনুশীলনী অতিরিক্ত অনুশীলনী

15.1 ভূমিকা (Introduction)

পূর্ববর্তী অধ্যায়ে আমরা বিচ্ছিন্নভাবে দোলনশীল বস্তুর গতি সম্পর্কে জেনেছি। এরুপ বস্তুর সমন্বয়ে গঠিত সংস্থার ক্ষেত্রে কী ঘটে ? জড় মাধ্যম হল এমন এক উদাহরণ। এক্ষেত্রে, স্থিতিস্থাপক বল মাধ্যমের কণাগুলোকে পরস্পরের সাথে আবন্ধ রাখে এবং এর ফলে একটি কণার গতি অপর কণার গতিকে প্রভাবিত করে। যদি তুমি পুকুরের স্থির জলে একটি ঢিল ছুড়, জলতল আলোড়িত হয়। এই আলোড়ন কোনো একটি স্থানে সীমাবন্ধ থাকে না, বৃত্তাকারে বাইরের দিকে ছড়িয়ে পড়ে। তুমি যদি পুকুরে ক্রমাগত ঢিল ফেলতে থাক দেখবে, যেখানে জলতল আলোড়িত হয়েছিল সে বিন্দু থেকে কতগুলো বৃত্ত দ্রুতগতিতে বাইরের দিকে এগিয়ে যাচ্ছে। এটি এমন এক অনুভূতি জাগায় যে, আলোড়ন বিন্দু থেকে জল বাইরের দিকে এগিয়ে যাচ্ছে। তুমি যদি কিছু কর্কের টুকরোকে আলোড়িত জলতলের ওপর ছেড়ে দাও, তবে দেখা যায় কর্কের টুকরোগুলো উপরে-নীচে উঠা নামা করে কিন্তু আলোড়ন কেন্দ্র থেকে দূরে সরে যায় না। এতে প্রতীয়মান হয় যে, বৃত্তের সাথে জলকণা বাইরের দিকে প্রবাহিত হয় না বরং একটি গতিশীল আলোড়ন সৃষ্টি হয়। একইভাবে, আমরা যখন কথা বলি, বায়ু মাধ্যমের এক অংশ থেকে অন্য অংশে বায়ুর কোনো প্রবাহ ছাড়াই শব্দ আমাদের থেকে দূরে বাইরের দিকে এগিয়ে যায়। বায়ুতে সৃষ্ট এই আলোড়ন অবশ্যই অনেকটা কম হয় এবং একমাত্র আমাদের কান বা মাইক্রোফোন এদেরকে শনাক্ত করতে পারে। এরুপ আলোড়ন যা মাধ্যম কণার প্রকৃত স্থানান্তর ছাড়াই বা মাধ্যমের সামগ্রিক প্রবাহ ব্যতীত এগিয়ে চলে সেরুপ আলোড়নকে তরঙ্গা বলে। এ অধ্যায়ে আমরা এরুপ তরঙ্গা সম্পর্কে জানব।

তরঙ্গাগুলো শক্তি ও আলোড়নের রূপের সাথে জড়িত তথ্যগুলোকে এক বিন্দু থেকে অন্য বিন্দুতে সঞ্চালিত করে। আমাদের সার্বিক দুরসঞ্চার ব্যবস্থা মূলত তরঙ্গোর মাধ্যমে সংকেতের সঞ্চালনের উপর নির্ভরশীল। কথা বলার অর্থ হল বায়ুতে শব্দতরজোর সৃষ্টি করা এবং শোনা বলতে ওই শব্দতরঙ্গোর শনান্তুকরণকে বোঝায়। প্রায় সব যোগাযোগ ব্যবস্থাই বিভিন্ন তরঙ্গোর সঙ্গো সম্পর্কযুক্ত। উদাহরণস্বরূপ, শব্দ তরঙ্গাকে প্রথমে তড়িৎ সংকেতে রূপান্তরিত করা যেতে পারে যা পরে তড়িচ্চুম্বন্ধীয় তরজো রুপান্তরতি করে আলোকীয় রজ্জু দ্বারা বা উপগ্রহের মাধ্যমে সঞ্চারিত করা যেতে পারে। মূল সংকেতের পুনরূম্বার সাধারণত উপরোক্ত প্রক্রিয়ার বিপরীত প্রক্রিয়ায় করা হয়।

সব তরঞ্চোর বিস্তারলাভে মাধ্যমের প্রয়োজন হয় না। আমরা জানি, আলোকতরঞ্চা শূন্য মাধ্যমের মধ্যদিয়ে চলাচল করতে পারে। শতশত আলোকবর্ষ দূরে অবস্থিত নক্ষত্র কর্তৃক নিঃসৃত আলো আন্তঃনাক্ষত্রিক স্থান যা বাস্তবে শূন্য, এর মধ্য দিয়ে আমাদের কাছে এসে পৌঁছায়।

আমাদের অতি পরিচিত তরজাসমূহ যেমন স্প্রিং-এ সৃষ্ট তরজা, জলতরজা, শব্দ তরজা, ভূকম্পনে সৃষ্ট তরজা (seismic wave) প্রভৃতি হল তথাকথিত যান্ত্রিক তরজা। এসব তরজোর সঞ্চালনে জড় মাধ্যমের প্রয়োজন হয়। এরা শূন্য মাধ্যমে চলাচল করতে পারে না। এরুপ তরজা মাধ্যমের উপাদান কণাসমূহের কম্পন ও ওদের স্থিতিস্থাপক ধর্মের উপর নির্ভরশীল। তড়িৎ চুম্বকীয় তরজাসমূহ, যাদের সম্পর্কে তোমরা দ্বাদশ শ্রেণিতে পড়বে, এইগুলো ভিন্ন ধরনের তরজা। তড়িৎ চুম্বকীয় তরজোর বিস্তারের জন্য কোনো মাধ্যমের প্রয়োজন হয় না — এরা শূন্য মাধ্যমের মধ্য দিয়েও চলাচল করতে পারে। আলোক তরজা, বেতার তরজা, x-রশ্মি এরা সবই তড়িচ্চুম্বকীয় তরজা। শূন্য মাধ্যমে সব তড়িচ্চুম্বকীয় তরজা একই বেগ c নিয়ে চলে। c এর মান—

$$c = 299,792,458 \,\mathrm{ms}^{-1}.$$
 (15.1)

তৃতীয় প্রকারের এক তরজা আছে যাকে পদার্থবেরজা বলে। এরা পদার্থের উপাদান কণাসমূহ : ইলেকট্রন, প্রোটন, নিউট্রন, অণু ও পরমাণুর সজো জড়িত। প্রকৃতির বর্ণনায় কোয়ান্টাম বলবিদ্যায় পদার্থতরজোর অবতারণা করা হয়। এসম্পর্কে তোমরা পরবর্তীতে জানবে। যদিও ধারণার দিক থেকে যান্ত্রিক অথবা তড়িচ্চুম্বকীয় তরজোর তুলনায় পদার্থতরজা অনেক বেশি বিমূর্ত, তথাপি আধুনিক প্রযুক্তিবিদ্যার সজো সম্পর্কযুক্ত অনেক যন্ত্রাদিকে এদের প্রয়োগ ইতিমধ্যে হয়ে গেছে। ইলেকট্রন মাইক্রোস্কোপ যন্ত্রে ইলেকট্রনের সজো সংশ্লিফ্ট পদার্থতরজোর প্রয়োগ করা হয়।

এ অধ্যায়ে আমরা যান্ত্রিক তরঙ্গা সম্পর্কে পড়ব, যাদের বিস্তারলাভে একটি জড় মাধ্যমের প্রয়োজন হয়।

আদিকাল থেকেই কলা ও সাহিত্যে তরজোর নান্দনিক প্রভাব দেখা গেলেও সপ্তদশ শতাব্দীর প্রথম দিকেই সর্বপ্রথম তরজাগতির বৈজ্ঞানিক বিশ্লেষণ পাওয়া যায়। তরজাগতিবিদ্যার সাথে যুক্ত বিখ্যাত কয়েকজন বিজ্ঞানী হলেন খ্রিস্টিয়ান হাইগেনস্ (1629-1695), রবার্ট হুক এবং আইজ্যাক নিউটন প্রমুখ। তরজাগতিকে বুঝতে হলে প্রথমে স্প্রিং-এর সাথে যুক্ত একটি ভরের কম্পন এবং একটি সরল দোলকের দোলগতি সম্পর্কে জ্ঞানার্জন আবশ্যক। কোনো স্থিতিস্থাপক মাধ্যমে তরজোর গতি সুযম দোলগতির সঙ্গে অঙ্গাঞ্চিভাবে যুক্ত (টান করা তার, কুঙলিত স্প্রিং, বায়ু ইত্যাদি হল স্থিতিস্থাপক মাধ্যমের উদাহরণ)।

আমরা একটি সহজ উদাহরণের সাহায্যে এ সম্পর্ককে বিশদে আলোচনা করবো।

চিত্র 15.1 পরস্পরের সাথে যুক্ত কিছু স্প্রিংয়ের সমবায়। স্প্রিংয়ের 'A' প্রান্তকে হঠাৎ টেনে ছেড়ে দিয়ে উৎপন্ন করা এক আন্দোলন যা অপর প্রান্তে সঞ্জালিত হয়।

চিত্র 15.1 এর ন্যায় একে অন্যের সাথে যুক্ত এমন কিছু স্প্রিংয়ের সমবায় নেওয়া হল। এক প্রান্তের একটি স্প্রিংকে হঠাৎ টেনে ছেড়ে দিলে একটি আন্দোলন সৃষ্টি হয় যা স্প্রিংয়ের অপর প্রান্তে সঞ্চালিত হয়। এক্ষেত্রে কী ঘটে? প্রথম স্প্রিংটি তার সাম্যাবস্থার দৈর্ঘ্য থেকে আলোড়িত হয়। যেহেতু দ্বিতীয় স্প্রিংটি প্রথম স্প্রিংয়ের সাথে যুক্ত তাই এটি টান খায় বা সংকুচিত হয় এবং এমনটা পরপর ঘটতে থাকে। সৃষ্ট আলোড়ন একপ্রান্ত থেকে অপর প্রান্তে সঞ্চালিত হয়; কিন্তু প্রত্যেক স্প্রিংই শুধুমাত্র ওর সাম্যাবস্থানের সাপেক্ষে ক্ষুদ্র দোলন সম্পাদন করে। এরুপ অবস্থার ব্যাবহারিক উদাহরণরূপে রেলস্টেশনে দাঁড়ানো একটি স্থির রেলগাড়িকে ধরো। রেলগাড়ির বিভিন্ন বগিগুলো পরস্পর সংযোজক স্প্রিংয়ের সাহায্যে যুক্ত থাকে। এর একপ্রান্তের সঞ্চো যুক্ত ইঞ্জিন যখন পরবর্তী বগিতে একটি ধাক্কা দেয়, তখন ওই ধাক্কা সম্পূর্ণ রেলগাড়িকে স্থানচ্যুত না করে এক বগি থেকে অন্য বগিতে সঞ্চালিত হয়।

এখন আমরা বায়ুমাধ্যমে শব্দতরজ্ঞোর বিস্তার কৌশল সম্পর্কে জানব। বায়ুর মধ্য দিয়ে যাওয়ার সময় তরঙ্গা বায়ুর ক্ষুদ্র অংশের সংকোচন অথবা প্রসারণ ঘটায়। ধরো এর ফলে বায়ুর ওই অংশে ঘনত্বের $\delta
ho$ পরিবর্তন ঘটে। ধরো, ঘনত্বের এই পরিবর্তন ওই অংশের চাপের δρ পরিবর্তন ঘটায়। চাপ হল প্রতি একক ক্ষেত্রফলে প্রযুক্ত বল। অতএব, ওই স্থানে আলোড়নের সমানুপাতিক একটি প্রত্যানয়ক বল (Restoring force) — ক্রিয়াশীল থাকে, ঠিক যেমনটা থাকে স্প্রিংয়ের ক্ষেত্রে। এক্ষেত্রে (বায়ুর ক্ষেত্রে) স্প্রিংয়ের প্রসারণ ও সংকোচনের অনুরূপ রাশি হল ঘনত্বের পরিবর্তন। যদি কোনো একটি অঞ্চল সংকুচিত হয়, ওই অঞ্চলের বায়ুর অণুগুলো একসঙ্গে জোটবন্দ্র হয় এবং ওরা সংলগ্ন অঞ্চলের দিকে বেরিয়ে যেতে চায় এবং এভাবে সংলগ্ন অঞ্চলে বায়ুর ঘনত্ব বৃদ্ধি পায় তথা ঘনীভবনের সৃষ্টি হয়। যদি কোনো একটি অঞ্চল অপেক্ষাকৃত বেশি পরিমাণে তনুভূত হয় (বায়ুর অণুগুলো দুরে দুরে সরে যায়) তার পারিপার্শ্বিকের বায়ু দ্রুত বেগে ধেয়ে এসে তনুভবনটিকে ওর সংলগ্ন অঞ্জলে ঠেলে দেয়। এভাবে, ঘনীভবন ও তনুভবন একস্থান থেকে অন্যস্থানে চালিত হয়ে বায়ুমাধ্যমে আলোড়নের সঞ্চালনকে সম্ভবপর করে তোলে।

কঠিন মাধ্যমের ক্ষেত্রেও অনুরূপ যুক্তি দেওয়া যায়। কেলাসাকার কোনো কঠিন পদার্থে পরমাণুসমূহ বা পরমাণুগুচ্ছ এক পর্যায়ক্রমিক ল্যাটিস (a periodic lattice) এর আকারে সজ্জিত থাকে। এক্ষেত্রে প্রতিটি পরমাণু বা পরমাণুগুচ্ছ ওর পারিপার্শ্বিক পরমাণু কর্তৃক প্রযুক্ত বলের অধীনে সাম্যাবস্থায় থাকে। একটি পরমাণুকে ওর অবস্থানে স্থির রেখে অন্য একটি পরমাণুকে স্থানচ্যুত করলে একটি প্রত্যানয়ক বলের সৃষ্টি হয়, ঠিক যেমনটা স্থিয়ের ক্ষেত্রে হয়ে থাকে। অতএব আমরা কোনো একটি ল্যাটিসের পরমাণুগুলোকে স্প্রিংসমূহের প্রান্তবিন্দু হিসাবে ধরতে পারি, যাদের মাঝখানে রয়েছে একটি স্প্রিং।

এ অধ্যায়ের পরবর্তী পরিচ্ছেদগুলোতে আমরা তরঙ্গের বিভিন্ন বৈশিষ্ট্যমূলক ধর্মাবলি আলোচনা করব।

15.2 তির্যক তরঙ্গ ও অনুদৈর্ঘ্য তরঙ্গ (Transverse and longitudinal waves)

আমরা দেখেছি, যান্ত্রিক তরঙ্গের গতি মাধ্যমের উপাদান কণাসমূহের দোলনের সাথে সম্পর্কিত। মাধ্যমের কণাসমূহ তরঙ্গা বিস্তারের অভিমুখের সাথে লম্বভাবে কম্পিত হলে তরঙ্গাটিকে আমরা তির্যক তরঙ্গা বলি। আর যদি মাধ্যমের কণাসমূহ তরঙ্গা বিস্তারের অভিমুখে (বা সমান্তরালে) কম্পিত হয় তবে তঙ্গাটিকে আমরা অনুদৈর্ঘ্য তরঙ্গা বলি।

চিত্র 15.2 তে কোনো তারে একটি উপর-নীচ ঝাঁকুনির ফলে সৃষ্ট একটিমাত্র স্পন্দন তারটি বরাবর বিস্তারলাভ দেখাচ্ছে।স্পন্দনের মাত্রার

চিত্র 15.2 যখন টান করা তারের দৈর্ঘ্য বরাবর (x-অভিমুখে) কোনো স্পন্দন অগ্রসর হয় তখন তারের উপাদান কণাগুলো উপর-নীচে (y-অভিমুখে) কম্পিত হয়।

(size) তুলনায় তারটি যথেন্ট লম্বা হলে স্পন্দনটি তারের অপর প্রান্তে পৌঁছার পূর্বেই স্পন্দনটি দুর্বল হয়ে পড়ে এবং সে প্রান্ত থেকে স্পন্দনটির প্রতিফলনকে অগ্রাহ্য করা যায়। চিত্র 15.3 অনুরূপ আরেকটি অবস্থাকে বোঝাচ্ছে, কিন্তু এক্ষেত্রে বহিঃস্থ সংস্থাটি তারের একপ্রান্তে একনাগাড়ে উপর-নীচ পর্যায়ক্রমিক সাইনধর্মী (sinusoidal) ঝাঁকুনি দিচ্ছে। এর ফলে তারে উৎপন্ন আলোড়নটি একটি সাইনধর্মী তরজ্ঞা হয়। যখন স্পন্দন বা তরজাটি তাদের মধ্যদিয়ে অগ্রসর হয়, তখন উভয়ক্ষেত্রেই তাদের উপাদান কণাগুলো ওদের সাম্যাবস্থার গড় অবস্থানের সাপেক্ষে কম্পিত হতে থাকে। এই কম্পনগুলো তার বরাবর তরজাগতির অভিমুখের লম্বভাবে হয়, তাই এটি তির্যক তরজোর একটি উদাহরণ।

একটি তরঙ্গকে আমরা দুভাবে লক্ষ করতে পারি। আমরা সময়ের কোনো এক নির্দিন্ট মুহূর্তে শূন্যস্থানে তরঙ্গের একটি ছবি তুলতে পারি। এটি আমাদেরকে কোনো মুহূর্তে শূন্যস্থানে তরঙ্গের সার্বিক আকার সম্পর্কে ধারণা দেয়। অন্য এক উপায় হল, কোনো অবস্থানকে নির্দিন্ট করা অর্থাৎ তারের কোনো বিশেষ উপাদান অংশের প্রতি মনোযোগ নিবন্দ্ধ করে সময়ের সাথে ওর দোলনগতি লক্ষ করা।

চিত্র 15.4 অনুদৈর্ঘ্য তরঞ্জোর সুপরিচিত উদাহরণ শব্দ তরজোর বিস্তারের অবস্থা বর্ণনা করে । গ্যাসপূর্ণ একটি লম্বা নল নেওয়া হল, যার একপ্রাস্তে একটি পিস্টন যুক্ত আছে। হঠাৎ করে একবার মাত্র পিস্টনটিকে নলের ভিতরে ঠেলে দিয়ে সাথে সাথে টেনে আনলে, নলের অভ্যন্তরস্থ মাধ্যমে (বায়ুতে) একটি ঘনীভবন (উচ্চতর ঘনত্ব) ও একটি তনুভবন (নিম্নতর ঘনত্ব) বিশিষ্ট একটি আলোড়নের সৃষ্টি করে। পিস্টনটিকে নিরবচ্ছিন্ন ও পর্যায়বৃত্ত(সাইনধর্মী) ভাবে ঠেলা দিয়ে টেনে আনা হলে একটি সাইনধর্মী তরঞ্চা সৃষ্টি হয় এবং নলের দৈর্ঘ্য বরাবর বায়ুতে বিস্তার লাভ করে। এটি স্পষ্টতই অনুদৈর্ঘ্য তরঞ্চোর একটি উদাহরণ।

উপরে আলোকিত তির্যক ও অনুদৈর্ঘ্য তরঙ্গাসমূহ চলতরঙ্গা বা

চিত্র 15.4 : পিস্টনের উপর-নীচ গতির সাহায্যে বায়ুপূর্ণ নলে অনুদৈর্ঘ্য তরজ্ঞোর (শব্দ তরজ্ঞোর) উৎপাদন। তরজ্ঞা বিস্তারের অভিমুখের (বা বিস্তার রেখার) সমান্তরালে এক নির্দিষ্ট আয়তনের (volume element) বায়ু কম্পিত হয়। অগ্রগামী তরঞ্চা কেননা, এগুলো মাধ্যমের এক অংশ থেকে অন্য অংশে গমন করে তোমরা জেনেছ, এক্ষেত্রে জড় মাধ্যম সামগ্রিকভাবে স্থানান্তরিত হয় না। উদাহরণস্বরূপ, নদীতে জলের সামগ্রিক গতির ফলেই জলপ্রবাহের সৃষ্টি হয়। অন্যদিকে, জলতরজো শুধুমাত্র আলোড়নটি এগিয়ে যায়; সামগ্রিকভাবে জলের কোনো স্থানচ্যুতি ঘটে না। একইভাবে বায়ুপ্রবাহকে (বায়ুর সামগ্রিক গতি) শব্দতরঞ্চোর সাথে গুলিয়ে ফেলা উচিত নয় কেননা, শব্দতরঞ্চা হল বায়ুমাধ্যমের সামগ্রিক গতি ছাড়াই বায়ুর মধ্যদিয়ে আলোড়নের (চাপ ও ঘনত্বের) বিস্তার।

তির্যক তরঙ্গে, কণাসমূহের গতি তরঙ্গা বিস্তারের অভিমুখের সঙ্গো লম্বভাবে হয়। তাই তরজা বিস্তারের সাথে সাথে মাধ্যমের উপাদানগুলোতে কৃন্তন বিকৃতি ঘটে। অতএব তির্যক তরঙ্গা শুধুমাত্র সেই সকল মাধ্যমেই বিস্তারলাভ করতে পারে যে সকল মাধ্যমে কৃন্তন পীড়ন সহ্য করতে পারে, যেমন, কঠিন মাধ্যম কিন্তু প্রবাহী মাধ্যম নয়। প্রবাহী এবং কঠিন উভয় মাধ্যমই সংনমক বিকৃতি (Compressive strain) সহ্য করতে পারে; তাই সকল স্থিতিস্থাপক মাধ্যমেই অনুদৈর্ঘ্য তরঙ্গা বিস্তারলাভ করতে পারে। উদাহরণস্বরূপ, ইস্পাতের মতো মাধ্যমে তির্যক ও অনুদৈর্ঘ্য উভয় প্রকার তরঙ্গাই বিস্তারলাভ করতে পারে, যেখানে বায়ুমাধ্যমে শুধুমাত্র অনুদৈর্ঘ্য তরঙ্গের বিস্তার সম্ভব। জলতলের তরঙ্গাসমূহ দুই প্রকারের : কৈশিক তরঙ্গ (Capillary waves) এবং অভিকর্ষজ তরঙ্গা (Gravity waves)। প্রথমোক্ত তরঙ্গাসমূহ হল কয়েক সেন্টিমিটারের বেশি নয় এমন খুবই ক্ষুদ্র তরঙ্গাদৈর্ঘ্যের ঢেউতরঙ্গা (ripples) যা জলের পৃষ্ঠটান জনিত প্রত্যানয়ক বলের জন্যই সৃষ্টি হয়। অন্যদিকে অভিকর্ষজ তরঙ্গের তরঙ্গদৈর্ঘ্য মোটামুটিভাবে কয়েক মিটার থেকে কয়েকশত মিটার পর্যন্ত হয়ে থাকে। যে প্রত্যানয়ক বল এই তরজো সৃষ্টি করে তা হল অভিকর্ষীয় টান, যা জলতলকে তার সর্বনিম্ন অবস্থানে রাখতে চায়। এসকল তরজো মাধ্যমের কণাসমূহের দোলন শুধুমাত্র জলতলেই সীমাবন্ধ থাকে না, বরং ক্রমহ্রাসমান বিস্তার নিয়ে জলের সর্বনিম্ন তল পর্যন্ত পৌঁছায়। জল তরঙ্গে মাধ্যমের কণাসমূহের দোলনগতি অপেক্ষাকৃত জটিল — এক্ষেত্রে কণাসমূহ শুধুমাত্র উপরে-নীচে নয়, অগ্র-পশ্চাতেও আন্দোলিত হয়। মহাসাগরীয় জলতরঞ্চা হল অনুদৈর্ঘ্য তরঙ্গা ও তির্যকতরঙ্গা উভয় প্রকার তরঙ্গোর সমন্বয়।

সাধারণত দেখা যায় একই মাধ্যমে তির্যক তরঙ্গা ও অনুদৈর্ঘ্য তরঙ্গা বিভিন্ন বেগে অগ্রসর হয়।

- উদাহরণ 15.1 নীচে তরঙ্গাগতির কিছু উদাহরণ দেওয়া হল। প্রতিক্ষেত্রে তরঙ্গা গতিটি তির্যক, অনুদৈর্ঘ্য অথবা উভয়ের সমন্বয় কি না বলো:
- ক) একটি লম্বা স্প্রিংয়ের এক প্রান্তকে দৈর্ঘ্য বরাবর একপাশে প্রসারিত করা হলে, ওই স্প্রিংয়ের একটি কুগুলী শীর্ষের (kink) গতি।
- (খ) তরলপূর্ণ একটি চোঙের মুখের পিস্টনকে অগ্র-পশ্চাৎ গতিশীল করে উৎপন্ন তরজ্ঞা।
- (গ) জলে চলমান মোটর বোট দ্বারা জলে উৎপন্ন তরজা
- (ঘ) কম্পমান কোয়ার্জকেলাস দ্বারা বায়ুতে সৃষ্ট শব্দোত্তর তরঙ্গা।

উত্তর

- (ক) তির্যক ও অনুদৈর্ঘ্য
- (খ) অনুদৈর্ঘ্য
- (গ) তির্যক ও অনুদৈর্ঘ্য
- (ঘ) অনুদৈর্ঘ্য
- 15.3 চলতরজো সরণ সম্পর্ক (Displacement relation in a progressive wave)

চলতরজোর গাণিতিক ব্যাখ্যায় অবস্থান (x) ও সময় (t) উভয় সমন্বিত একটি অপেক্ষকের প্রয়োজন হয়। এর্প অপেক্ষক প্রতিমুহূর্তে তরজোর আকার সম্পর্কে ধারণা দেবে। আবার, প্রত্যেক অবস্থান (বা বিন্দুতে) অপেক্ষকটি ওই বিন্দুস্থিত মাধ্যমের উপাদান কণার গতি বর্ণনা করবে। আমরা যদি একটি সাইনধর্মী চলতরজাকে (যেমন 15.3 চিত্রে দেখানো হয়েছে) প্রকাশ করতে চাই, তবে আনুষজ্ঞিক অপেক্ষকটিকেও অবশ্যই সাইনধর্মী হতে হবে। সুবিধার্থে আমরা একটি তির্যক তরজ্ঞাকেই নেব যাতে মাধ্যমের উপাদান কণার অবস্থানকে x দ্বারা সূচিত করা হলে, ওর সাম্যাবস্থান হতে সরণকে y দ্বারা প্রকাশ করা যায়। সেক্ষেত্রে, একটি সাইনধর্মী চলতরক্ষাকে নিম্নরূপে প্রকাশ করা যায় :

$$y(x,t) = a\sin(kx - \omega t + \phi)$$
(15.2)

উপরের সাইন অপেক্ষকটির কোণাঙ্ক বা আরগুমেন্টের ϕ পদটি এক বিশেষ তাৎপর্যপূর্ণ; এক্ষেত্রে আমরা সাইন ও কোসাইন অপেক্ষকের সরল সমন্বয়কে (linear combination) বিবেচনা করছি:

y(x,t) = A sin(kx – ωt) + B cos(kx – ωt) (15.3) (15.2) নং ও (15.3) নং সমীকরণ থেকে পাওয়া যায়,

 $a = \sqrt{A^2 + B^2} \quad \text{and} \quad \phi = \tan^{-1}\left(\frac{B}{A}\right)$

(15.2) সমীকরণটি কেন একটি সাইনধর্মী চলতরঙ্গাকে প্রকাশ করে তা বুঝতে কোনো এক নির্দিন্ট মুহূর্তকে, ধরো *t* = *t*₀ নেওয়া হল । অতএব, (15.2) সমীকরণের সাইন অপেক্ষকটির কোণাঙ্ক হয় (*kx* + ধ্রুবক)। অর্থাৎ, (কোনো নির্দিন্ট মুহূর্তে) তরঙ্গাটির প্রকৃতি (বা আকৃতি) হয় *x* এর অপেক্ষকরূপী এক সাইন তরঙ্গা । অনুরূপে, একটি স্থির অবস্থান, ধরো *x* = *x*₀ নেওয়া হলে (15.2) নং সমীকরণের সাইন অপেক্ষকটির কোণাঙ্ক একটি ধ্রুবক মান (-*ωt*) হবে। অতএব, কোনো এক নির্দিন্ট অবস্থানে সরণ *y* সময়ের সাথে সাইনধর্মীভাবে পরিবর্তিত হয়। অর্থাৎ, বিভিন্ন অবস্থানে অবস্থিত মাধ্যমের কণাসমূহ সরল দোলগতি সম্পাদন করে। সর্বোপরি *t* এর মান বৃদ্ধি পেলে (*kx* – *ωt* + φ) এর মান ধ্রুবক রাখতে ধনাত্মক অভিমুখে *x* এর মানও অবশ্যই বাড়বে। অতএব (15.2) সমীকরণটি ধনাত্মক *x* অক্ষ অভিমুখী একটি সাইনধর্মী (দোলগতি সম্পন্ন) চলতরঙ্গাকে প্রকাশ করে। অন্যদিকে, একটি অপেক্ষক তরজা

$$y(x,t) = a\sin(kx + \omega t + \phi) \tag{15.4}$$

ঋণাত্মক x-অক্ষ অভিমুখী একটি চলতরঙ্গাকে প্রকাশ করে। (15.5) নং সমীকরণে ব্যবহৃত বিভিন্ন ভৌত রাশির নাম চিত্র (15.2) -এ দেওয়া হল এবং এখন আমরা এদের ব্যাখ্যা করব।

<u>_</u>		
$kx-\omega t+\phi$:	প্রাথমিক দশাকোণ $(a+x=0, t=0)$
k	:	কৌণিক তরঙ্গা সংখ্যা
ω	:	তরজোর কৌণিক কম্পাঙ্ক
а	:	তরঙ্গের বিস্তার
y(x,t)	:	অবস্থান x এবং সময় t এর অপেক্ষকরূপে সরণ

চিত্র 15.5 (15.2) নং সমীকরণে ব্যবহৃত বৈশিষ্ট্যসূচক সংকেত সমূহের নাম।

চিত্র 15.6 -এ সমান সময়ের ব্যবধানে সময়ের বিভিন্ন মানে (15.2) নং সমীকরণের লেখচিত্র দেখানো হল। কোনো একটি তরজো, তরজাশীর্য (crest) হল সর্বাধিক ধনাত্মক সরণ (বা বিস্তার) বিশিফ্ট বিন্দু এবং তরজাপাদ (trough) হল সর্বাধিক ঋণাত্মক সরণবিশিফ্ট বিন্দু। তরজা কীভাবে সঞ্চালিত হয় জানতে হলে কোনো একটি তরজাশীর্যের উপর আমাদের মনোনিবেশ করতে হবে এবং লক্ষ রাখতে হবে সময়ের সাথে ওই বিন্দুটি কীভাবে এগিয়ে চলে। চিত্রে তরজা শীর্ষটিকে একটি ক্রস (×) দ্বারা চিহ্নিত করা হয়েছে। একইভাবে কোনো এক নির্দিষ্ট অবস্থানে, ধরো *x*-আক্ষের মূলবিন্দুতে, মাধ্যমের একটি

চিত্র 15.6 : বিভিন্ন সময়ে ধনাত্মক X-অক্ষাভিমুখে অগ্রগামী একটি দোলতরণ্ঠা।

উপাদান কণার গতিও লক্ষ করতে পারি। এ কণার অবস্থানকে একটি ভরাট ডট (•) দ্বারা চিহ্নিত করা হয়েছে। চিত্র (15.6) এর লেখচিত্র থেকে বোঝা যায় যে, মূলবিন্দুস্থিত ভরাট ডটটি (•) পর্যাবৃত্ত গতিতে গতিশীল। অর্থাৎ তরঙ্গাটি যত অগ্রসর হয় মূলবিন্দুস্থিত কণাটি ওর মধ্যঅবস্থান (বা বিন্দুর) সাপেক্ষে কম্পিত হয়। এটি অন্যান্য যে-কোনো অবস্থানের জন্যও সত্য। আমরা আরও লক্ষ করি যে, ভরাট ডটটি (•) যে সময়ে এক পূর্ণ কম্পন সম্পন্ন করে সে সময়ে তরঙ্গাশীর্যটি আরও এক নির্দিন্ট দূরত্ব এগিয়ে যায়।

চিত্র 15.6 এর লেখচিত্রকে ব্যবহার করে আমরা (15.2) নং সমীকরণের বিভিন্ন রাশিকে সংজ্ঞায়িত করব।

15.3.1 বিস্তার ও দশা (Amplitude and Phase)

(15.2) সমীকরণে, সাইন অপেক্ষকটির মান 1 এবং -1 এর মধ্যে পরিবর্তিত হয়, তাই সরণ y(x,t), a এবং -a এর মধ্যে পরিবর্তিত হয়। সাধারণীকরণের কোনো অসুবিধা না ঘটিয়ে আমরা a কে একটি ধনাত্মক ধ্রুবক মান হিসাবে ধরে নিতে পারি। সেক্ষেত্রে a মাধ্যমের উপাদান কণাসমূহের সাম্যবস্থান থেকে ওদের সর্বোচ্চ সরণকে নির্দেশ করে। মনে রাখবে যে, সরণ y এর মান ধনাত্মক হতে পারে, কিন্তু a এর মান সর্বদাই ধনাত্মক হয়। একে তরজোর বিস্তার (amplitude) বলে।

(15.2) সমীকরণে সাইন অপেক্ষকের কোণাঙ্করুপে প্রকাশিত রাশি (kx – ωt + φ) কে তরঙ্গোর দশা (phase) বলে। প্রদন্ত বিস্তার a এর জন্য, কোনো নির্দিন্ট অবস্থানে এবং কোনো মুহুর্তে দশা তরঙ্গোর বিস্তারকে (বা সরণকে) নির্ধারণ করে। স্পন্টতই যখন x = 0 এবং t = 0; তখন দশা হয় φ । এজন্য φ কে প্রারম্ভিক দশা কোণ বলা হয়। x-অক্ষের উপর মূলবিন্দুর অবস্থান এবং প্রাথমিক সময়কে সুবিধামতো ধরে নিয়ে φ = 0 করা সম্ভব। অতএব φ কে বাদ দেওয়া হলে অর্থাৎ (15.2) সমীকরণে φ = 0 নেওয়া হলে সাধারণীকরণ প্রভাবিত হয় না।

15.3.2 তরজাদৈর্ঘ্য এবং কৌণিক তরজাসংখ্যা (Wavelength and Angular Wave Number)

সমদশা সম্পন্ন পরপর দুটি বিন্দুর মধ্যেকার ন্যূনতম দূরত্বকে তরজোর তরঙ্গাদৈর্ঘ্য বলে এবং একে সাধারণত λ দ্বারা সূচিত করা হয়। অতএব পরপর দুটি তরঙ্গাশীর্ষ অথবা তরঙ্গা পাদের মধ্যবর্তী দূরত্বই হল তরঙ্গা দৈর্ঘ্য। 15.2 সমীকরণো $\phi = 0$ বসালে, t = 0 মুহূর্তে সরণ,

$$y(x,0) = a\sin kx \tag{15.5}$$

যেহেতু প্রতি 2π কোণের পরিবর্তনে সাইন অপেক্ষকটির মান পুনরাবৃত হয়, অতএব

$$\sin kx = \sin(kx + 2n\pi) = \sin k \left(x + \frac{2n\pi}{k} \right)$$

পদার্থবিদ্যা

অর্থাৎ, x এবং $x + \frac{2n\pi}{k}$ বিন্দুসমূহে (যেখানে n=1,2,3,...) সরণ একই (সমান) হয়। n = 1 নেওয়া হলে, (প্রদন্ত কোনো এক মুহূর্তে) সমবিস্তার সম্পন্ন বিন্দুগুলোর মধ্যে সর্বনিম্ন দূরত্ব পাওয়া যায়। সেক্ষেত্রে তরঙ্গা দৈর্ঘ্য,

$$\lambda = \frac{2\pi}{k}$$
 বা $k = \frac{2\pi}{\lambda}$ (15.6)

k কে কৌণিক তরঙ্গা সংখ্যা বা বিস্তার ধ্রুবক (propagation constant) বলে এবং এর SI একক রেডিয়ান প্রতিমিটার বা $rad \ m^{-1}$ *

15.3.3পর্যায়কাল, কৌণিক কম্পাঙ্ক ও কম্পাঙ্ক (Period,
Angular Frequency and Frequency)

15.7 চিত্রে আবার একটি সাইনধর্মী বরুকে দেখানো হল। এটি কোনো নির্দিন্ট মুহূর্তে তরঞ্চোর আকৃতিকে প্রকাশ করে না, কিন্তু সময়ের অপেক্ষকরুপে (মাধ্যমের কোনো এক নির্দিন্ট অবস্থানে) একটি মাধ্যম কণার সরণকে প্রকাশ করে। সুবিধার্থে আমরা (15.2) সমীকরণে $\phi = 0$ ধরে x=0 অবস্থানে অবস্থিত একটি মাধ্যম কণার গতিকে পর্যবেক্ষণ করব। অতএব (15.2) সমীকরণ থেকে আমরা পাই,

চিত্র 15.7 : স্প্রিংয়ের মধ্য দিয়ে তরঙ্গের বিস্তারকালে কোনো এক নির্দিষ্ট অবস্থানে অবস্থিত স্প্রিংয়ের একটি উপাদান কণা a বিস্তার ও T পর্যায়কাল নিয়ে কম্পিত হচ্ছে।

 $y(0,t) = a\sin(-\omega t)$

 $= -a \sin \omega t$

এখন তরঙ্গের দোলনের পর্যায়কাল বলতে বোঝায় মাধ্যমের একটি উপাদান কণা একটি পূর্ণ কম্পন সম্পন্ন করতে যে সময় নেয়। অর্থাৎ,

 $-a\sin\omega t = -a\sin\omega(t+T)$

 $= -a\sin(\omega t + \omega T)$

যেহেতু সাইন অপেক্ষক প্রতি 2π অন্তর পুনরাবৃত হয় তাই,

$$\omega T = 2\pi \quad \text{an } \quad \omega = \frac{2\pi}{T} \tag{15.7}$$

 ω কে তরঞ্জের কৌণিক কম্পাঙ্ক (angular frequency) বলে। এর SI একক রেডিয়ান প্রতি সেকেন্ড বা rad s⁻¹। প্রতি সেকেন্ডে পূর্ণ কম্পন সংখ্যাকে কম্পাঙ্ক ν বলা হয়। সুতরাং,

$$v = \frac{1}{T} = \frac{\omega}{2\pi} \tag{15.8}$$

উপরের আলোচনায়, আমরা সর্বত্র একটি স্প্রিং বরাবর গতিশীল তরঞ্চা বা তির্যক তরঙ্গের পরিপ্রেক্ষিতে আলোচনা করেছি। অনুদৈর্ঘ্য তরঙ্গে মাধ্যমের উপাদানগুলোর সরণ, তরঞ্চা বিস্তারের অভিমুখের সমান্তরালে ঘটে। (15.2) সমীকরণে অনুদৈর্ঘ্য তরঙ্গের সরণ অপেক্ষকটিকে নিম্নরূপে প্রকাশ করা হয়েছে।

$$s(x, t) = a \sin (kx - \omega t + \phi)$$
(15.9)

যেখানে, *s*(*x*, *t*) হল তরঙ্গের বিস্তাররেখায় *x* অবস্থানে অবস্থিত মাধ্যমের কোনো একটি উপাদানের *t* সময়ে সরণ। (15.9) সমীকরণে *a* হল সরণের বিস্তার, অন্যান্য রাশিগুলো তির্যক তরঙ্গের ক্ষেত্রের ন্যায় একই অর্থে ব্যবহৃত শুধুমাত্র সরণ অপেক্ষক *y*(*x*, *t*) কে *s*(*x*, *t*) অপেক্ষক দ্বারা প্রতিস্থাপন করতে হয়।

উদাহরণ 15.2 একটি তার বরাবর গতিশীল তরজোর সমীকরণ y(x, t) = 0.005 sin (80.0 x - 3.0 t), যাতে সাংখ্যিক ধ্রুবকগুলোর SI একক (0.005 m, 80.0 rad m⁻¹, এবং 3.0 rad s⁻¹)। তরজাটির (a) বিস্তার, (b) তরজা দৈর্ঘ্য এবং (c) পর্যায়কাল এবং কম্পাজ্ক নির্ণয় করো এবং x = 30.0 cm দূরত্বে এবং t = 20 s সময়ে তরজোর সরণ y নির্ণয় করো।

উত্তর : প্রদত্ত সরণ সমীকরণটিকে (15.2) সমীকরণ

y (x, t) = a sin (kx - ωt) এর সাথে তুলনা করে

আমরা পাই —

(a) তরঙ্গা বিস্তার, 0.005 m = 5 mm.

(b) কৌণিক তরঞ্চা সংখ্যা k এবং কৌণিক কম্পার্জ্ঞ ω এর মান যথাক্রমে

$$k = 80.0 \, \mathrm{m^{-1}}$$
 এবং $\omega = 3.0 \, \mathrm{s^{-1}}$

^{*} এখানে আবার রেডিয়ান এককটিকে বাদ দেওয়া যেতে পারে এবং এর একক সাধারণত m^{-।} ধরা যেতে পারে। অতএব প্রতি একক দৈর্ঘ্যে তরঙ্গা সংখ্যার 2π গুণই হল k | অথবা সম্পূর্ণ দশা পার্থক্য] এবং এর SI একক হল m^{-।}।

আমরা তরঙ্গা দৈর্ঘ্য $\lambda ও k$ এর সম্পর্ক (15.6) নং সমীকরণ থেকে পাই ,

$$k = 2\pi/k$$

$$=\frac{1}{80.0 \text{ m}^{-1}}$$

 2π

$$= 7.85 \, \mathrm{cm}$$

(c) T এবং 🖉 এর সম্পর্ক থেকে পাই

$$T=2\pi/\omega$$

$$=\frac{2\pi}{3.0 \text{ s}^{-1}}$$

$$= 2.09$$
 s

এবং কম্পাজ্চ $_{\mathcal{V}}~=1/T\,{=}\,0.48~{
m Hz}$

 $x_{
m s}=30.0~{
m cm}$ এবং $t=20~{
m s}$ সময়ে সরণ

$$y = (0.005 \text{ m}) \sin (80.0 \times 0.3 - 3.0 \times 20)$$

= (0.005 m) sin (-36 + 12\pi)

 $=(0.005 \,\mathrm{m})\sin(1.699)$

 $=(0.005 \text{ m})\sin(97^{\circ})\simeq 5 \text{ mm}$

15.4 চলতরজ্গের দ্রুতি (The speed of a travelling wave)

একটি চলতরঞ্জের বিস্তার বেগ নির্ণয় করতে, তরঞ্জের উপরিস্থিত কোনো একটি বিন্দুর উপর (নির্দিষ্ট দশাকোণ বিশিষ্ট) আমাদের মনোযোগ নিবদ্ধ করতে হবে এবং কণাটি কীভাবে গতিশীল হয় তার প্রতি লক্ষ রাখতে হবে। তরঞ্জোর কোনো একটি তরঙ্গাশীর্ষের উপর লক্ষ রাখাই সুবিধাজনক। 15.8 চিত্রে একটি ক্ষুদ্র সময়ের ব্যবধান Δt তে দুটি নির্দিষ্ট মুহূর্তে তরঞ্জাটির আকৃতি দেখানো হয়েছে। দেখা যাচ্ছে সম্পূর্ণ তরজারুপটি ডানদিকে (*x*-আক্ষের ধনাত্মক দিকে) Δx দূরত্ব সরে গেছে

চিত্র 15.8 : t থেকেt + ∆t সময়ের এই ক্ষুদ্র ব্যবধান ∆t তে একটি দোলতরজোর বিস্তার। তরজারুপটি সামগ্রিকভাবে ডানদিকে সরে যায়। তরজাটির তরজাশীর্ষ (অথবা, যে-কোনো দশাবিশিন্ট একটি বিন্দু) এই ∆t সময়ে ডানদিকে ∆x দুরত্ব অতিক্রম করে।

বিশেষত ক্রস চিহ্নিত তরঙ্গাশীর্ষটি Δt সময়ে Δx দূরত্ব এগিয়ে যায়। অতএব, তরঙ্গাটির বেগ $\frac{\Delta x}{\Delta t}$ । আমরা অন্য যে-কোনো দশাসম্পন্ন অন্য কোনো একটি বিন্দুকেও ক্রশ বসিয়ে চিহ্নিত করতে পারি। এটিও একই দুতি v নিয়ে গতিশীল হবে (অন্যথায় তরঙ্গারূপটি অপরিবর্তিত থাকবে না)। তরঙ্গের উপরিস্থিত নির্দিষ্ট দশাসম্পন্ন একটি বিন্দুর গতিকে নীচের সমীকরণ দ্বারা প্রকাশ করা যায়:

kx – ωt = ধ্রুবক (15.10) অতএব, সময় *t* এর পরিবর্তনের সাথে সাথে নির্দিষ্ট দশাবিন্দুটির অবস্থান *x*ও অবশ্যই পরিবর্তিত হবে যেন ওর দশা সর্বদা ধ্রুবক হয়। সুতরাং,

$$kx - \omega t = k (x + \Delta x) - \omega (t + \Delta t)$$

বা $k \Delta x - \omega \Delta t = 0$

 Δx ও Δt কে অনন্তক্ষুদ্র ধরে নিলে উপরের সমীকরণটি নিম্নরূপ হয়,

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\omega}{k} = \upsilon \tag{15.11}$$

ω কে Tদ্বারা এবং k কে λ দ্বারা প্রকাশ করে পাওয়া যায়,

$$v = \frac{2\pi v}{2\pi / \lambda} = \lambda v = \frac{\lambda}{T}$$
(15.12)

সকল প্রকার চলতরজের সাধারণ সম্পর্ক, সমীকরণ (15.12) থেকে প্রতীয়মান হয় যে, মাধ্যমের যে-কোনো একটি উপাদান কণার এক পূর্ণ দোলনের জন্য প্রয়োজনীয় সময়ে তরঙ্গারূপটি তরঙ্গা দৈর্ঘ্যের সমান দূরত্ব অতিক্রম করে। এটা অবশ্যই মনে রাখতে হবে যে, কোনো যান্ত্রিক তরঙ্গো দ্রুতি মাধ্যমের জাড্যধর্ম (তারের রৈখিক ভর ঘনত্ব, সাধারণ ভর ঘনত্ব) এবং স্থিতিস্থাপক ধর্ম (রৈখিক মাধ্যমের ক্ষেত্রে ইয়ং গুণাঙ্ক, কৃন্তন গুণাঙ্ক, আয়তন বিকার গুণাঙ্ক) দ্বারা নির্ধারিত হয়। মাধ্যম তরঙ্গা দ্রুতিকে নির্ধারণ করে এবং প্রদত্ত দ্রুতির ক্ষেত্রে (15.12) সমীকরণ তরঙ্গা দের্ঘ্য ও কম্পাঙ্ককে সম্পর্কিত করে। আগেই উল্লেখ করা হয়েছে যে, মাধ্যমের মধ্য দিয়ে তির্যক তরঙ্গা ও অনুদৈর্ঘ্য তরঙ্গা, উভয় প্রকার তরঙ্গোরই সঞ্জালন ঘটে। কিন্তু একই মাধ্যমে উভয় তরঙ্গোর দ্রুতি বিভিন্ন হয়। এ অধ্যায়ের পরবর্তীতে, আমরা কিছু মাধ্যমে যান্ত্রিক তরঙ্গোর দ্রুতির নির্দিন্ট রাশিমালা প্রতিষ্ঠা করব।

15.4.1টান করা তারে তির্যক তরজোর দুতি (Speed of a
Transverse Wave on Stretched String)

কোনো মাধ্যমে যান্ত্রিক তরঙ্গের দ্রুতি মাধ্যমটিকে আলোড়িত করা হলে তাতে উৎপন্ন প্রত্যানয়ক বল এবং মাধ্যমের জাড্যধর্মের (ভর ঘনত্ব) দ্বারা নির্ধারিত হয়। তরঙ্গা দ্রুতি প্রথমটির (প্রত্যানয়ক বলের) সমানুপাতিক এবং পরেরটির (জাড্যধর্মের) সঙ্গো ব্যস্তানুপাতিক। তারে উৎপন্ন তরঙ্গের ক্ষেত্রে তারের টান T প্রত্যানয়ক বলের জোগান দেয়। আর জাড্য ধর্ম হল রৈখিক ভর ঘনত্ব μ , যা তারের ভরকে (*m*) ওর দৈর্ঘ্য (*L*) দ্বারা ভাগ করে পাওয়া যায়। নিউটনের গতিসূত্রাবলি ব্যবহার করে তারে তরঙ্গা দ্রুতির একটি যথার্থ সূত্র প্রতিষ্ঠা করা যায়, কিন্তু সেই প্রতিষ্ঠা পদ্ধতি এই বইয়ের পরিধির বাইরে। তাই আমরা মাত্রিক বিশ্লেষদের সাহায্য নেব। আমরা আগে থেকেই জানি যে, শুধুমাত্র মাত্রিক বিশ্লেষণ কখনোই যথার্থ সূত্র প্রতিষ্ঠা করতে পারে না। মাত্রিক বিশ্লেষণে সার্বিকভাবে মাত্রাহীন ধ্রুবকগুলো সর্বদাই অনির্ধারিত থেকে যায়।

 μ এর মাত্রা $[ML^{-1}]$ এবং বলের ন্যায় T এর মাত্রাও $[MLT^{-2}]$ । দুতির মাত্রা $[LT^{-1}]$ পেতে হলে মাত্রা দুটিকে সমন্বিত করা প্রয়োজন হয়। সাধারণ অনুসন্ধানেই বোঝা যায় $\frac{T}{\mu}$ এর প্রাসচ্চিাক মাত্রাটি হল,

$$\frac{\left[MLT^{-2}\right]}{\left[ML^{-1}\right]} = \left[L^2T^{-2}\right]$$

অতএব, T এবং μ কেই যদি প্রাসঞ্চিক ভৌত রাশিরুপে ধরা যায় তবে,

$$v = C \sqrt{\frac{T}{\mu}}$$
(15.13)

যেখানে *C* হল মাত্রিক বিশ্লেষণের অনির্ধারিত ধ্রুবক। যথার্থ সূত্রে C=1 হয়। টান করা তারে তির্যক তরঙ্গের দ্রুতির রাশিমালাটি হল:

$$\upsilon = \sqrt{\frac{T}{\mu}} \tag{15.14}$$

বিশেষভাবে লক্ষণীয় যে, তরঙ্গা দ্রুতি মাধ্যমের শুধুমাত্র দুটি ধর্ম *T* এবং μ এর উপর নির্ভরশীল (*T* হল বাহ্যিক বলের ক্রিয়ায় টান করা তারে সৃষ্ট একটি ধর্ম)। কিন্তু এটি তরজোর নিজস্ব তরঙ্গাদৈর্ঘ্য বা কম্পাঙ্কের উপর নির্ভর করে না। উচ্চতর শ্রেণিতে তোমরা এমন কতগুলো তরঙ্গা সম্পর্কে জানবে যাদের তরঙ্গা দ্রুতি কম্পাঙ্ক নিরপেক্ষ নয়। দুটি প্রাচল, আলোড়নের উৎসের তরঙ্গাদৈর্ঘ্য λ এবং কম্পাঙ্ক v উৎপন্ন তরজোর কম্পাঙ্ক v কে নির্ধারণ করে। কোনো মাধ্যমের একটি প্রদন্ত তরজোর দ্রুতি ও কম্পাঙ্কের মধ্যে সম্পর্ক (15.12) সমীকরণ দ্বারা সূচিত হবে।

$$\lambda = \frac{v}{v} \tag{15.15}$$

উদাহরণ 15.3 0.72 m লম্বা একটি ইস্পাত তারের ভর 5.0 ×10⁻³ kg। তারটি যদি 60 N টানে রাখা হয় তবে তারটিতে উৎপন্ন তির্যক তরঙ্গোর দ্রুতি কত হবে ?

দড়িতে একটি স্পন্দনের সঞ্জালন

তোমরা খুব সহজেই দড়িতে একটি স্পন্দনের গতিকে দেখতে পারো। তোমরা আরও দেখতে পারো কোনো দৃঢ় সীমানা (ধার) থেকে স্পন্দনটির প্রতিফলন এবং ওর গতির বেগ নির্ণয় করতে পারো। এর জন্য তোমার প্রয়োজন হবে 1 cm থেকে 3 cm ব্যাস বিশিষ্ট একটি দড়ি, দুটি হুক এবং কয়েকটি ভার বা বাটখারা। এই পরীক্ষাটি তোমরা তোমাদের শ্রেণিকক্ষে বা পরীক্ষাগারে করতে পারো।

1 cm থেকে 3 cm ব্যাসের একটি লম্বা দড়ি বা একটি তার নিয়ে কোনো হলঘর বা পরীক্ষাগারের দুই বিপরীত দেওয়ালের হুকের সাথে এমনভাবে বাঁধো যেন একটি প্রান্ত হুকের উপর দিয়ে গিয়ে ঝুলে পরে এবং ওই প্রান্তে কিছু ভার (প্রায় 1 থেকে 5 kg) ঝুলিয়ে দাও। দেওয়াল দুটি 3 থেকে 5 m দূরে হতে হবে।

একটি কাঠি বা রড নিয়ে দড়িটির কোনো একপ্রান্তের নিকটে সজোরে আঘাত করো। এরফলে দড়িটিতে একটি স্পন্দনের সৃষ্টি হয় যা দড়ি বরাবর অগ্রসর হয়। তোমরা দেখতে পাবে স্পন্দনটি

দড়ির অপর প্রান্তে পৌঁছাবে এবং সেখানে প্রতিফলিত হয়ে ফিরে আসছে। তোমরা আপাতত ও প্রতিফলিত স্পন্দন দুটির দশা সম্পর্ক পরীক্ষা করে দেখতে পারো। স্পন্দনটি নিঃশেষ হওয়ার পূর্বে দু-তিনটি প্রতিফলন তোমরা লক্ষ করতে পারবে। তোমরা একটি স্টপ ওয়াচ ব্যবহার করে দুটি দেয়ালের মধ্যবর্তী দূরত্ব অতিক্রমে স্পন্দনের প্রয়োজনীয় সময় বের করো এবং এভাবে ওর বেগ নির্ণয় করো। এবার (15.14) সমীকরণ ব্যবহার করে প্রাপ্ত মানের সাথে তোমার পরীক্ষালব্ধ মানের তুলনা করে দেখো।

কোনো বাদ্যযন্ত্রের সরু ধাতব তারের সাহায্যেও অনুরূপ পরীক্ষা করা যায়। দুক্ষেত্রে মূল পার্থক্য হবে যে, মোট দড়ির তুলনায় সরু তারে স্পন্দনের বেগ যথেস্ট বেশি হবে। কেননা, সরু তারের ক্ষেত্রে প্রতি একক দৈর্ঘ্যের ভর মোট দড়ির তুলনায় কম।

উত্তর : তারের প্রতি একক দৈর্ঘ্যের ভর

$$\mu = \frac{5.0 \times 10^{-3} \text{ kg}}{0.72 \text{ m}}$$

= 6.9 × 10⁻³ kg m⁻¹
টান, T = 60 N
:. তারে তরজা দুতি

$$\sqrt{\mu}$$
 $\sqrt{6.9 \times 10^{-3} \text{kg m}^{-1}}$ $\sqrt{50 \text{ m}^{-1}}$

15.4.2 অনুদৈর্ঘ্য তরঞ্জের দ্রুতি (শব্দের দ্রুতি) (Speed of a Longitudinal Wave [Speed of Sound])

অনুদৈর্ঘ্য তরঞ্চো মাধ্যমের উপাদানসমূহ তরঙ্গা বিস্তারের অভিমুখে অগ্র-পশ্চাৎ কম্পিত হয়। ইতোমধ্যেই আমরা জেনেছি যে, বায়ুর ক্ষুদ্র আয়তনিক উপাদানের পর্যায়ক্রমিক ঘনীভবন ও তনুভবনরূপে শব্দতরঙ্গা বায়ুমাধ্যমে বিস্তারলাভ করে। মাধ্যমের স্থিতিস্থাপক ধর্মটি যা বায়ুর সংকোচন বিকৃতিতে সৃষ্ট পীড়নকে নির্ধারণ করে তাই হল মাধ্যমের আয়তন বিকার গুণাঙ্ক (bulk modulus) (নবম অধ্যায় দেখো) যাকে নিম্নরূপে প্রকাশ করা যায়।

$$B = -\frac{\Delta P}{\Delta V / V} \tag{15.16}$$

এখানে ΔP চাপের পরিবর্তনে উৎপন্ন আয়তন বিকৃতি $\frac{\Delta V}{V}$ । B এর মাত্রা ও চাপের মাত্রা একই এবং এর SI একক পাস্কাল (Pa)। তরজ্ঞা বিস্তারের সাথে সম্পর্কযুক্ত মাধ্যমের জাড্য ধর্মটি হল ওর ভর ঘনত্ব ρ, যার মাত্রা [ML⁻³]। সরল নিরীক্ষণেই দেখা যায় B/ρ রাশিটির মাত্রা হল :

$$\frac{\left[\operatorname{M} \operatorname{L}^{-1} \operatorname{T}^{-2}\right]}{\left[\operatorname{M} \operatorname{L}^{-3}\right]} = \left[\operatorname{L}^{2} \operatorname{T}^{-2}\right]$$
(15.17)

এভাবে, যদি ধরে নেওয়া হয় কেবলমাত্র *B* এবং ρ -ই হল আনুযঞ্জিক ভৌতরাশি তবে,

$$v = C \sqrt{\frac{B}{\rho}}$$
(15.18)

যেখানে, আগের মতোই, *C* হল মাত্রিক বিশ্লেষণে অনির্ধারিত ধ্রুবক। সূত্রটির যথার্থ প্রতিষ্ঠায় দেখা যায় *C*=1। অতএব, কোনো মাধ্যমে অনুদৈর্ঘ্য তরঞ্চোর বেগের সাধারণ সূত্রটি হয়,

$$\upsilon = \sqrt{\frac{B}{\rho}} \tag{15.19}$$

কঠিন দণ্ডের ন্যায় কোনো রৈখিক মাধ্যমের ক্ষেত্রে দণ্ডের পার্শ্বীয়

প্রসারণ অতি নগণ্য হয় এবং আমরা ধরে নিতে পারি দন্ডের শুধুমাত্র অনুদৈর্ঘ্য বিকৃত ঘটে। সেক্ষেত্রে আনুষষ্ঠািক স্থিতিস্থাপক গুণাঙ্কটি হল ইয়ং গুণাঙ্ক, যার মাত্রা আয়তন বিকার গুণাঙ্কের মাত্রার সমান। এক্ষেত্রে মাত্রিক বিশ্লেষণ আগের মতোই এবং (15.18) সমীকরণের সমতুল্য সম্পর্ক প্রকাশ করে, যার যথার্থ প্রতিষ্ঠায় মাত্রিক বিশ্লেষণের অনির্ধারিত রাশি *C* এর মান 1 পাওয়া যায়। অতএব, কোনো কঠিন দণ্ডের মধ্য দিয়ে অনুদৈর্ঘ্য তরঙ্গের দ্রুতি,

$$\upsilon = \sqrt{\frac{Y}{\rho}} \tag{15.20}$$

যেখানে, Y হল দণ্ডের উপাদানের ইয়ং গুণাঙ্ক। সারণি 15.1 তে কিছু মাধ্যমে শব্দের বেগ দেওয়া আছে।

সারাণ 15.1	:	বোভন মাধ্যমে শ	ণব্দের বেগ

মাধ্যম	বেগ (m s ⁻¹)
গ্যাসীয় পদার্থ বায়ু (O°C) বায়ু (2O°C) হিলিয়াম হাইড্রোজেন	331 343 965 1284
তরল পদার্থ	
জল (0 °C) জল (20 °C) সমুদ্রজল	1402 1482 1522
কঠিন পদার্থ	
অ্যালুমিনিয়াম তামা ইস্পাত গ্রানাইট ভালকানাইজ	6420 3560 5941 6000 54

গ্যাসীয় পদার্থের তুলনায় কঠিন ও তরল পদার্থের শব্দের দ্রুতি সাধারণত বেশি হয়। [মনে রাখবে এখানে কঠিন পদার্থে শব্দের দ্রুতি বলতে অনুদৈর্ঘ্য তরঙ্গের দ্রুতিকে বোঝাচ্ছে।] এমনটা হয় কেননা, গ্যাসের তুলনায় কঠিন বা তরল পদার্থকে সংকুচিত করা অধিক কন্টসাধ্য এবং ওদের আয়তন বিকার গুণাঙ্ক উচ্চমানের হয়। কঠিন ও তরল পদার্থের এই বৈশিন্ট্য গ্যাসের তুলনায় তাদের উচ্চঘনত্বজনিত দ্রুতির হাসকে ছাপিয়ে যায়।

আদর্শ গ্যাস ধরে নিয়ে আমরা কোনো একটি গ্যাসে শব্দের দ্রুতি নির্ণয় করতে পারি।আদর্শ গ্যাসের চাপ *P*, আয়তন *V* এবং তাপমাত্রা T পরস্পর নিম্নরপে সম্পর্কিত (একাদশ অধ্যায় দেখ):

$$PV = Nk_{B}T$$
(15.21)

যেখানে, *N* হল *V* আয়তনে অণুর সংখ্যা, k_B হল বোলৎজাম্যান ধ্রুবক (Boltzmann constant) এবং *T* হল গ্যাসের তাপমাত্রা (কেলভিন স্কেলে)। অতএব, সমোয় প্রক্রিয়ার ক্ষেত্রে (15.21) সমীকরণ থেকে পাওয়া যায়,

 $V\Delta P + P\Delta V = 0$

বা $-\frac{\Delta P}{\Delta V / V} = P$

(15.16) সমীকরণে এই মান প্রতিস্থাপন করে পাওয়া যায়,

$$B = P$$

অতএব, (15.19) সমীকরণ থেকে পাওয়া যায়, আদর্শ গ্যাসে অনুদৈর্ঘ্য তরঞ্চোর দ্রুতি

$$v = \sqrt{\frac{P}{\rho}} \tag{15.22}$$

এই সম্পর্কটি নিউটন সর্বপ্রথম দিয়েছিলেন এবং এটি নিউটনের সূত্রনামে পরিচিত।

উদাহরণ 15.4 প্রমাণ তাপমাত্রা ও চাপে বায়ুতে শব্দের দ্রুতি নির্ণয় করো। এক মোল বায়ুর ভর 29.0 ×10⁻³ kg।

উত্তর : আমরা জানি, প্রমাণ তাপমাত্রা ও চাপে এক মোল যে কোনো গ্যাসের আয়তন 22.4 লিটার।অতএব, প্রমাণ তাপমাত্রা ও চাপে বায়ুর ঘনত্ব :

 $ho_{_{o}}=$ এক মোল বায়ুর ভর/ প্রমাণ তাপমাত্রা ও চাপে এক মোল বায়ুর আয়তন

$$= \frac{29.0 \times 10^{-3} \text{ kg}}{22.4 \times 10^{-3} \text{ m}^3}$$
$$= 1.29 \text{ kg m}^{-3}$$

কোনো মাধ্যমে শব্দের দ্রুতি সংক্রান্ত নিউটনের সূত্রানুসারে প্রমাণ তাপমাত্রা ও চাপে বায়ুতে শব্দের দ্রুতি

$$v = \left[\frac{1.01 \times 10^5 \text{ N m}^{-2}}{1.29 \text{ kg m}^{-3}}\right]^{1/2} = 280 \text{ m s}^{-1}$$
(15.23)

(15.23) সমীকরণে দেখানো শব্দের বেগের মান সারণি 15.1 এ প্রদন্ত পরীক্ষালব্ধ মানের তুলনায় প্রায় 15% কম। আমাদের কোথায় ভুল হয়েছিল ? নিউটন প্রাথমিকভাবে ধরে নিয়েছিলেন, শব্দের বিস্তার কালে মাধ্যমের মধ্যে চাপের পরিবর্তন হল সমোষ্ণ প্রক্রিয়া, কিন্তু যদি আমরা পরীক্ষা করি দেখতে পাব এটি সত্যি নয়। ল্যাপলাস বলেন যে, শব্দের বিস্তারকালে চাপের পরিবর্তন এত দ্রুত ঘটে যে সমতাপমাত্রা বজায় রাখতে তাপ প্রবাহের জন্য অতিক্ষুদ্র সময় পাওয়া যায়। অতএব, চাপের এই পরিবর্তন রুম্বতাপ, সমোষ্ণ নয়। রম্বাত্বাপ প্রক্রিয়ায় আদর্শ গ্যাস নীচের সম্পর্কটি মান্য করে।

$$PV^{\gamma} =$$
 ধ্রুবক
অর্থাৎ $\Delta(PV^{\gamma}) = 0$

বা $P \gamma V^{\gamma - l} \Delta V + V^{\gamma} \Delta P = 0$

অতএব, আদর্শ গ্যাসের ক্ষেত্রে রুম্বতাপ আয়তন বিকার গুণাঙ্ক হবে,

$$B_{ad} = -\frac{\Delta P}{\Delta V / V}$$
$$= \gamma P$$

যেখানে γ হল মোলার আপেক্ষিক তাপ ধারকত্বদ্বয়ের অনুপাত, C_v/C_v । অতএব, বায়ু মাধ্যমে শব্দের দ্রুতি,

$$\upsilon = \sqrt{\frac{\gamma P}{\rho}} \tag{15.24}$$

নিউটনের সূত্রের এই সংশোধনকে ল্যাপলাসের সংশোধন (Laplace correction) নামে অভিহিত করা হয়। বুয়ার $\gamma = 7/5$ । এখনে, (15.24) সমীকরণ ব্যবহার করে প্রমাণ তাপমাত্রা ও চাপে বায়ুতে শব্দের দ্রুতি নির্ণয় করে প্রাপ্ত মান 331.3 m s⁻¹ পাওয়া গেল যা পরিমাপগত দ্রুতির মানকে সমর্থন করে।

15.5 তরজ্যের উপরিপাতনের নীতি (The principle of superposition of waves)

দুটি তরঙ্গা পরস্পর বিপরীত দিক থেকে অগ্রসর হয়ে পরস্পর পরস্পরকে অতিক্রম করলে কী ঘটবে? দেখা যায় যে, পরস্পর পরস্পরকে অতিক্রমের পরও তরঙ্গা দুটি ওদের স্বকীয়তা বজায় রাখে। কিন্তু সমাপতন কালে তরঙ্গারুপটি প্রত্যেকটি তরঙ্গাস্পন্দন থেকে তিন্ন। 15.9 চিত্রে পরস্পর বিপরীত দিক থেকে পরস্পরের দিকে অগ্রসর হওয়া দুটি সমান কিন্তু বিপরীত আকৃতির তরঙ্গাস্পন্দনকে দেখানো হয়েছে। যখন স্পন্দন দুটি পরস্পর সমাপতিত হয়, লব্ঘি সরণ প্রত্যেকটি স্পন্দনের জন্য পৃথক পৃথক সরণের বীজগণিতিক সমন্টি। একেই তরঞ্জোর উপরিপাতনের নীতি (principle of superposition) বলে।

এই নীতি অনুসারে, অন্য কোনো স্পন্দনের অনুপস্থিতিতে প্রত্যেক স্পন্দন যেভাবে অগ্রসর হত সমাপতনের পরও স্পন্দনগুলো একইভাবে অগ্রসর হয়। অতএব মাধ্যমের উপাদানসমূহ এক সাথে উভয় স্পন্দনের দরুন সরণ লাভ করে এবং যেহেতু সরণ ধনাত্মক ও ঋণাত্মক হতে পারে তাই মোট সরণ, উভয় সরণের বীজগাণিতিক সমস্টি হয়। চিত্র 15.9 বিভিন্ন সময়ে তরঞ্চা আকৃতির রেখাচিত্র ফুটিয়ে

চিত্র 15.9 বিপরীত দিক থেকে অগ্রগামী দুটি সমান ও বিপরীতমুখী সরণ বিশিষ্ট দুটি স্পন্দন। (c) রেখাচিত্রে স্পন্দন দুটির সমাপতনের ফলে শূন্য সরণের সৃষ্টি হয়েছে।

তুলেছে। (c) রেখচিত্রে এক নাটকীয় ঘটনা লক্ষ করো, দুটি স্পন্দনের জন্য সৃষ্ট সরণ দুটি পরস্পর পরস্পরকে সম্পূর্ণভাবে নাকচ করছে এবং সেক্ষেত্রে সরণ শূন্য হয়।

তরঞ্জোর উপরিপাতনের নীতিকে গাণিতিকভাবে প্রকাশ করতে ধরা যাক দুটি তরঙ্গা (আলোড়নের) দরুন মাধ্যমে সরণ যথাক্রমে $y_1(x,t)$ এবং $y_2(x,t)$ । তরঙ্গা দুটি কোনো একটি অঞ্চলে যুগপৎ পৌঁছালে উভয়ের সমাপতন ঘটে এবং সে স্থানে লব্ধি সরণ, y(x,t) হবে।

$$y(x, t) = y_1(x, t) + y_2(x, t)$$
(15.25)

যদি মাধ্যমের মধ্য দিয়ে দুই বা তার অধিক তরঙ্গা গতিশীল হয় তবে লব্দি তরঙ্গা রূপটি হবে তরঙ্গা অপেক্ষকগুলোর সমষ্টি। অর্থাৎ, চলতরঙ্গাগুলোর তরঙ্গা অপেক্ষকগুলো যদি

$$y_1 = f_1(x - vt),$$

$$y_2 = f_2(x - vt),$$

$$\dots,$$

$$y_n = f_n(x - vt)$$

হয় তবে এর x অপেক্ষকটি যা মাধ্যমে আলোড়ন সৃষ্টি করে তা হল,

$$y = f_{1}(x - vt) + f_{2}(x - vt) + \dots + f_{n}(x - vt)$$
$$= \sum_{i=1}^{n} f_{i}(x - vt)$$
(15.26)

ব্যতিচারের মূলে রয়েছে তরঙ্গের উপরিপাতনের নীতি।

এর সরলীকরণে, ধরো একই কৌণিক কম্পাজ্ঞ *w*, কৌণিক তরজা সংখ্যা *k* এবং একই তরজা দৈর্ঘ্য *λ* বিশিষ্ট দুটি চল তরজা একটি টান করা তারের মধ্য দিয়ে অগ্রসর হচ্ছে। ওদের তরজা বেগ সমান হবে। আরও ধরা যাক, তরজা দুটি একই বিস্তারসম্পন্ন এবং উভয়ে ধনাত্মক *x*-অক্ষ অভিমুখে গতিশীল। তরজা দুটির শুধুমাত্র প্রারস্তিক দশা বিভিন্ন। সমীকরণ (15.2) অনুযায়ী তরজা দুটিকে নীচের দুটি অপেক্ষক দ্বারা প্রকাশ করা যায় —

$$y_1(x, t) = a \sin(kx - \omega t)$$
 (15.27)

এবং
$$y_2(x, t) = a \sin(kx - \omega t + \phi)$$
 (15.28)

উপরিপাতনের নীতি অনুযায়ী, লব্ধি সরণ

$$y(x, t) = a \sin(kx - \omega t) + a \sin(kx - \omega t + \phi)$$
(15.29)
$$= a \left[2 \sin\left\{\frac{(kx - \omega t) + (kx - \omega t + \phi)}{2}\right\} \cos\frac{\phi}{2} \right]$$
(15.30)

যেখানে, আমরা অতি পরিচিত ত্রিকোণমিতিক অভেদ sin A + sin B ব্যবহার করেছি।

অতএব,
$$y(x,t) = 2a \cos \frac{\phi}{2} \sin \left(kx - \omega t + \frac{\phi}{2} \right)$$
(15.31)

সমীকরণ (15.31) ও একই কম্পাঙ্ক ও তরঙ্গা দৈর্ঘ্য বিশিষ্ট ধনাত্মক x-অক্ষ অভিমুখী একটি দোল চলতরঙ্গা; যদিও এর প্রারম্ভিক দশাকোণ

 $rac{\phi}{2}$ । তাৎপর্যপূর্ণ বিষয় হল যে, এর বিস্তার উপরিপাতিত তরঙ্গা দুটির দশা পার্থক্যের অপেক্ষক—

$$A(\phi) = 2a\cos\frac{1}{2}\phi \tag{15.32}$$

যখন $\phi = 0$, অর্থাৎ উপরিপাতিত তরঙ্গাদুটি সমাদশা সম্পন্ন হয় তখন,

$$y(x,t) = 2a \sin(kx - \omega t)$$
(15.33)

সেক্ষেত্রে, লব্ধি তরজোর বিস্তার হয় 2a, যা A এর সর্বাধিক সম্ভাব্য

চিত্র 15.10 : উপরিপাতের নীতি অনুযায়ী সমবিস্তার ও সমতরঙ্গা দৈর্ঘ্য বিশিষ্ট দুটি দোলতরঙ্গের লব্দ্বিতরঙ্গা। লব্দ্বি তরঙ্গের বিস্তার উপরিপাতিত তরঙ্গা দুটির দশা পার্থক্য φ এর উপর নির্ভরশীল, যা (a) শূন্য এবং (b) তে π।

মান। যখন $\phi = \pi$ হয়, তরঙ্গটি সম্পূর্ণভাবে দশাশূন্য হয়ে পড়ে এবং সর্বদা, সর্বত্র লব্ধি সরণ শূন্য।

y (x, t) = 0 (15.34) সমীকরণ (15.33) দুটি তরজোর তথাকথিত গঠনমূলক ব্যতিচারকে

(constructive interference) সূচিত করে যেখানে লব্ধি তরজোর বিস্তার তরজা দুটির বিস্তারের যোগফলের সমান হয়। সমীকরণ (15.34) সূচিত করে ধ্বংসাত্মক ব্যতিচারকে (destructive intereference), যেখানে লব্ধি তরজো তরজা দুটির বিস্তার পরস্পরকে প্রতিমিত করে।চিত্র 15.10 উপরিপাতনের ফলে উৎপন্ন তরজোর ব্যতিচারের ওই দুটি ঘটনাকে প্রকাশ করছে।

15.6 তরঞ্জোর প্রতিফলন (Reflection of waves)

এ পর্যন্ত আমরা সীমাহীন মাধ্যমে বিস্তারলাভ করছে এমন সব তরঙ্গের কথাই বিবেচনা করেছি। কোনো স্পন্দন বা তরঙ্গা যদি মাধ্যমের সীমানার সম্মুখীন হয় তবে কী ঘটবে ? সীমানা দৃঢ় হলে স্পন্দন বা তরঙ্গা সেখানে প্রতিফলিত হয়। প্রতিধ্বনির (echo) সৃষ্টি হল দৃঢ় কোন সীমানা হতে তরঙ্গের প্রতিফলনের এক উদাহরণ। যদি সীমানাটি সম্পূর্ণ দৃঢ় না হয় অথবা দুটি স্থিতিস্থাপক মাধ্যমের অন্তঃপৃষ্ঠ হয় তবে অবস্থা কিছুটা জটিল হয়ে পড়ে। আপতিত তরজোর এক অংশ প্রতিফলিত এবং অপর অংশ দ্বিতীয় মাধ্যমে সঞ্চালিত হয়। যদি তরঙ্গাটি মাধ্যম দুটির সীমান্ততলে তির্যকভাবে আপতিত হয় তবে দ্বিতীয় মাধ্যমে সঞ্চালিত তরঙ্গাটিকে **প্রতিসৃত তরঙ্গা বলে**। আপতিত ও প্রতিসৃত তরঙ্গা **সেলের সূত্র** মেলে চলে এবং আপতিত ও প্রতিফলিত তরঙ্গা প্রতিফলনের সাধারণ সূত্র মেনে চলে।

15.11 চিত্রে টান করা তার বরাবর গতিশীল একটি তরঞ্চাকে দেখানো হয়েছে যা তাদের প্রান্তসীমা হতে প্রতিফলিত হয়েছে। তারের প্রান্তসীমানায় শস্তির কোনরূপ শোষণ ঘটে না ধরে নিলে প্রতিফলিত তরঞ্চোর আকৃতি আপতিত স্পন্দনের আকৃতির মতোই হয় কিন্ডু প্রতিফলনের ফলে এর দশার π বা 180° পরিবর্তন ঘটে। এর কারণ হল তারের প্রান্ত সীমানাটি দৃঢ় এবং সেখানে আলোড়নের বিস্তার সর্বদা শৃন্য হয়। তরঞ্চোর উপরিপাতনের নীতি অনুযায়ী এরূপ কেবলমাত্র সন্তবপর হয় যদি প্রতিফলিত ও আপতিত রশ্মির মধ্যে π দশার পার্থক্য থাকে এবং যার ফলে লব্দি সরণ শূন্য হয়। এই যুন্তিটি দৃঢ় **দেওয়ালের সীমানা** শর্তের (boundary condition) উপর ভিত্তিকরে প্রতিষ্ঠিত। বলবিদ্যার দৃষ্টিকোণ থেকেও আমরা একই ফল পেতে পারি। যখন স্পন্দনটি দেওয়ালে পৌঁছায় ওটি দেওয়ালের উপর একটি বল প্রয়োগ করে। নিউটনের তৃতীয় সূত্রানুসারে দেওয়াল ও তারের উপর একটি সমান ও বিপরীতমুখী বল প্রয়োগ করে তারে প্রতিফলিত স্পন্দন উৎপন্ন করে, যা আপতিত তরঞ্জার সাথে π দশা পার্থক্যে থাকে।

অন্যদিকে, প্রান্ত (সীমান্ত) বিন্দুটি দৃঢ় না হয়ে যদি সম্পূর্ণ মুক্তভাবে চলনক্ষম হয় (কোনো রডের উপর বাধাহীনভাবে নড়াচড়ায় সক্ষম একটি রিংয়ের সাথে বাঁধা তারের ক্ষেত্রে যেমনটা হয়), তবে প্রতিফলিত স্পন্দনের দশা ও বিস্তার আপতিত স্পন্দনের দশা ও বিস্তারের সমান হয় (ধরে নাও এখানে শক্তির কোনো অপচয় হয় না)। সেক্ষেত্রে সীমান্ডে লব্দি সর্বোচ্চ সরণ প্রত্যেক স্পন্দনের বিস্তারের দ্বিগুণ হয়। অদৃঢ় সীমানার একটি উদাহরণ হল অগ্যান নলের খোলা প্রান্ত।

সংক্ষেপে, একটি চলতরঙ্গা কোনো দৃঢ় সীমানায় (প্রতিফলকে) প্রতিফলিত হলে ওর π -পরিমাণ দশার পরিবর্তন ঘটে এবং মুক্ত প্রান্তে প্রতিফলিত হলে ওর দশার কোনো পরিবর্তন ঘটে না। একে গাণিতিকভাবে প্রকাশ করতে,

ধরা যাক, আপতিত চলতরঙ্গটি হল —

$$y_2(x,t) = a\sin(kx - \omega t)$$

কোনো দৃঢ় সীমান্তে প্রতিফলিত তরঙ্গটি হবে $y_r(x, t) = a \sin (kx - \omega t + \pi).$ $= -a \sin (kx - \omega t)$ (15.35) কোনো মুক্ত প্রান্তে প্রতিফলিত তরঙ্গাটি হবে $y_r(x, t) = a \sin (kx - \omega t + 0).$ $= a \sin (kx - \omega t)$ (15.36)

স্পম্টতই, দৃঢ় প্রান্তে সর্বদাই, $y = y_2 + y_r = 0$

15.6.1স্থানুতরঙ্গা এবং স্বাভাবিক রূপ (বা ধরণ) (Standing
Waves and Normal Modes)

আমরা কোনো একটি তলে উপরোক্ত প্রতিফলনটি বিবেচনা করি। কিন্তু এমন কিছু অতি পরিচিত অবস্থা আছে (উভয় প্রান্তে আটকানো তার অথবা যে কোনো প্রান্ত বন্দ্ব নলে আবন্দ্ব বায়ু স্তম্ভ) যেখানে দুই বা তার বেশি প্রান্তে প্রতিফলন ঘটে। উদাহরণস্বরূপ একটি তারের মধ্য দিয়ে ডান দিকে এগিয়ে চলা একটি তরঙ্গা এক প্রান্তে প্রতিফলিত হবে যা বিপরীত (বাম) দিকে এগিয়ে গিয়ে তারের অপর প্রান্তে প্রতিফলিত হবে। যতক্ষণ না পর্যন্ত তারে একটি স্থির তরঙ্গারূপ সৃষ্টি হচ্ছে, এরূপ প্রতিফলন ঘটতেই থাকবে। এরূপ তরঙ্গারুপকে **স্থির তরঙ্গা** (standing wave) বা **স্থানুতরঙ্গা** বলে। এর গাণিতিক বিশ্লেষদো ধরে নাও, একটি তরঙ্গা x-অক্ষের ধনাত্মক অভিমুখে অগ্রসর হচ্ছে এবং একই বিস্তার ও তরঙ্গা দৈর্ঘ্য বিশিষ্ট একটি প্রতিফলিত তরঙ্গা x-অক্ষের ঋণাত্মক অভিমুখে অগ্রসর হচ্ছে।(15.2) এবং (15.4), সমীকরণে $\phi = 0$, ধরে আমরা পাই

 $y_1(x, t) = a \sin(kx - \omega t)$ $y_2(x, t) = a \sin(kx + \omega t)$

তরজেঁর উপরিপাতনের নীতি অনুসারে তারে উৎপন্ন লব্ধি তরঙ্গাটি হবে :

 $y(x, t) = y_1(x, t) + y_2(x, t)$

$$= a \left[\sin \left(kx - \omega t \right) + \sin \left(kx + \omega t \right) \right]$$

অতি পরিচিত ত্রিকোণামিতিক অভেদ

Sin (A+B) + Sin (A-B) = 2 sin A cosB ব্যবহার করে পাই,

 $y(x, t) = 2a \sin kx \cos \omega t \tag{15.37}$

(15.2) বা (15.4) সমীকরণ দ্বারা প্রকাশিত তরজ্ঞোর সাথে (15.37) সমীকরণ দ্বারা প্রকাশিত তরঙ্গের গুরুত্বপূর্ণ পার্থক্যটি লক্ষ করো। kx এবং ωt পদ দুটি সমন্বিত kx - ωt হিসাবে না থেকে পৃথকভাবে রয়েছে। এই তরঙ্গটির বিস্তার $2a\sin kx$ । অতএব, লব্দি তরঙ্গটির বিস্তার এক বিন্দু থেকে অন্য বিন্দুতে পরিবর্তিত হয়, কিন্তু তারের প্রতিটি উপাদান কণা একই কৌণিক কম্পাঙ্ক ω ও পর্যায় কাল T নিয়ে কম্পিত হয়। তরঙ্গের বিভিন্ন অংশের কম্পনের দশার কোনো পার্থক্য থাকে না। তারটি সামগ্রিকভাবে একই দশায় কিন্তু বিভিন্ন বিন্দুতে বিভিন্ন বিস্তারে কম্পিত হয়। তরঙ্গারূপটি ডানে বা বামে অগ্রসর হয় না। এ কারণে এরূপ তরঙ্গাকে স্থির তরঙ্গা বা স্থানুতরঙ্গা বলা হয়। কোনো নির্দিষ্ট অবস্থানে তরঙ্গা বিস্তার নির্দিষ্ট, কিন্তু পূর্বেই উল্লেখ করা হয়েছে, বিভিন্ন অবস্থানে বিস্তার বিভিন্ন। যেসব বিন্দুতে বিস্তার শূন্য (অর্থাৎ কোনোরূপ গতিই থাকে না) তাদের নিঃস্পন্দ বিন্দু (nodes) বলে; আর যেসব বিন্দুতে বিস্তার সর্বাধিক, তাদের সুস্পন্দ বিন্দু (antinodes) বলে। 15.12 চিত্রে বিপরীত দিক হতে আসা দুটি অনুরূপ চলতরঙ্গের উপরিপাতনের ফলে সৃষ্ট একটি স্থানুতরঙ্গারুপ দেখানো হয়েছে।

স্থানুতরঞ্জোর এক তাৎপর্যপূর্ণ বৈশিষ্ট্য হল যে সীমানা শর্তের জন্যই সংখ্যাটির যে কোনো তরজা দৈর্ঘ্য সম্ভবপর নয়। সংস্থাটি যে কোনো কম্পাঙ্কে কম্পিত হতে পারে না (দোল চলতরজোর সাথে এর তুলনা করো), কিন্তু স্বাভাবিক কম্পাঙ্কের একটি সেট বা কম্পনের **এক সাধারণ** রীতি (normal modes) দ্বারা চিহ্নিত হয়। আমরা এখন দু-প্রান্তে আটকানো একটি টান করা তারের এসব সাধারণ ধরন নির্ধারণ করব।

প্রথমত, (15.37) সমীকরণ অনুসারে নিঃস্পন্দ বিন্দুসমূহের অবস্থান (যেখানে বিস্তার শূন্য) হবে

$$\sin kx = 0$$
.
 $kx = n \pi; n = 0, 1, 2, 3, ...$

যেহেতু, $k=2\pi/\lambda$, আমরা পাই

$$\therefore x = \frac{n\lambda}{2}$$
; $n = 0, 1, 2, 3, ...$ (15.38)

স্পষ্টতই, পরপর দু'টি নিঃস্পন্দ বিন্দুর মধ্যবর্তী দর্ত্ব $\frac{\lambda}{2}$ অনুরূপভাবে সুস্পন্দ বিন্দুসমূহের অবস্থান (যেখানে বিস্তার সর্বাধিক)গুলোতে sin *kx* এর মান সর্বোচ্চ হয় :

চিত্র 15.12 পরস্পর বিপরীত দিক থেকে এগিয়ে আসা দুটি দোল তরঙ্গের উপরিপাতনের ফলে সৃষ্ট স্থানুতরঙ্গা। লক্ষণীয়, শূন্য বিস্তার বিশিষ্ট বিন্দুর (নিঃস্পন্দ বিন্দু) অবস্থান সর্বদা স্থির রয়েছে।

 $|\sin kx| = 1$

 $kx = (n + \frac{1}{2}) \pi$; n = 0, 1, 2, 3, ...

যেহেতু $k=2\pi/\lambda$, আমরা পাই

$$\therefore x = (n + \frac{1}{2})\frac{\lambda}{2} ; n = 0, 1, 2, 3, \dots$$
 (15.39)

এক্ষেত্রে পরপর দুটি সুস্পন্দ বিন্দুর মধ্যবর্তী দূরত্ব $\frac{\lambda}{2}$ । দু-প্রাস্তে আটকানো L দৈর্ঘ্যের একটি টান করা তারের ক্ষেত্রে সমীকরণ (15.38) প্রয়োগ করা যায় । তারের একপ্রান্তের অবস্থান x = 0 ধরে নিলে সীমানাশর্তে (boundary condition) নিঃস্পন্দ বিন্দুর অবস্থান হবে x = 0 এবং x = L । x = 0 শর্তটি আগেই পূর্ণ হয়েছে । x = Lঅবস্থানে নিঃস্পন্দ বিন্দু হওয়ার শর্তে λ এর সাথে L এর সম্পর্ক হল :

$$L = n \frac{\lambda}{2}; \quad n = 1, 2, 3, \dots$$
 (15.40)

অতএব, স্থানুতরজোর সম্ভাব্য তরঙ্গা দৈর্ঘ্য নীচের সম্পর্ক দ্বারা নির্ধারিত হয় —

$$\lambda = \frac{2L}{n}; \quad n = 1, 2, 3, ...$$
 (15.41)

আনুষঞ্জিক কম্পাঞ্চসমূহ

$$v = \frac{nv}{2L}$$
, for $n = 1, 2, 3,$ (15.42)

এভাবে আমরা কোনো সংস্থার দোলনের স্বাভাবিক কম্পাঞ্চসমূহ ওই সংস্থার দোলনের সাধারণ ধরন থেকে জানতে পারি। সংস্থার সম্ভাব্য সর্বনিম্ন স্বাভাবিক কম্পাঞ্চকে ওর মূল সুর (fundamental mode) বা প্রথম সমমেল (first harmonic) বলে। উভয় প্রান্তে আটকানো

টান করা তারের জন্য মূল সুরের কম্পাঙ্ক হবে $v = \frac{v}{2L}$ । এখানে v হল মাধ্যমের তরঙ্গের দুতি যা মাধ্যমের ধর্মের দ্বারা নির্ধারিত হয়। n = 2এর আনুযঞ্জিক কম্পাঙ্ককে বলা হয় **দ্বিতীয় সমমেল**; n = 3 এর আনুষঞ্জিক কম্পাঞ্চ হল তৃতীয় সমমেল এবং পরবর্তী সমমেলসমূহ পাওয়া যায়। আমরা বিভিন্ন সমমেল সমূহকে v_n সংকেত দ্বারা প্রকাশ করতে পারি যেখানে n=1,2,...

15.13 চিত্রে দু-প্রান্তে আটকানো একটি টান করা তারের প্রথম ছয়টি সমমেল দেখানো হয়েছে। একটি তার প্রদর্শিত এ ধরন বা রীতিতেই কম্পিত হবে এমনটা নয়। সাধারণভাবে, একটি তারের কম্পন হল বিভিন্ন ধরনের কম্পনের উপরিপাতন; কোনো কোনো ধরন (modes) বেশ শক্তিশালী হয় আবার কিছু সংখ্যক কম শক্তিশালী হয়। সেতার, বেহালার মতো বাদ্যযন্ত্রগুলো এই মূলনীতির উপর প্রতিষ্ঠিত। তারের কম্পনের কোন্ ধরনটি অধিকতর প্রকট হবে তা নির্ধারিত হয় তারটির কোথায় টানা বা ঘযা হল তার দ্বারা।

এবার আমরা একমুখ বদ্ধ ও একমুখ খোলা নলে আবদ্ধ বায়ুস্তম্ভের কম্পন সম্পর্কে আলোচনা করব। একটি আংশিক জলপূর্ণ কাচনল এরুপ ব্যবস্থার এক সঠিক দৃষ্টান্ত। জলের স্পর্শে থাকা প্রান্তটিতে একটি নিঃস্পন্দ বিন্দু গঠিত হয়, খোলা প্রান্তে একটি সুস্পন্দ বিন্দু গঠিত হয়। নিঃস্পন্দ বিন্দুতে চাপের পরিবর্তন সর্বাধিক হয়, যেখানে বিস্তার সর্বনিম্ন (শূন্য)। নলের মুক্ত প্রান্তে তথা সুস্পন্দ বিন্দুতে বিপরীত ঘটনা ঘটে; চাপের পরিবর্তন হয় সর্বনিম্ন এবং সরণের বিস্তার সর্বাধিক। জলের সংস্পর্শ তলকে x = 0 ধরে নিলে নিঃস্পন্দ বিন্দুর শর্তটি (15.38 সমীকরণ) পুরণ হয়। অপরপ্রান্ত x = L এ সুস্পন্দ বিন্দু গঠিত হলে সমীকরণ (15.39) অনুসারে —

$$L = \left(n + \frac{1}{2}\right) \frac{\lambda}{2}, \ n = 0, 1, 2, 3, ...$$

সেক্ষেত্রে, সম্ভাব্য তরঙ্গা দৈর্ঘ্যসমূহের সম্পর্ক

$$\lambda = \frac{2L}{(n + 1/2)}, \ n = 0, 1, 2, 3, \dots$$
(15.43)

সংস্থার স্বাভাবিক কম্পাঞ্চসমূহ —

$$v = \left(n + \frac{1}{2}\right) \frac{v}{2L}$$
; $n = 0, 1, 2, 3, ...$ (15.44)

চিত্র 15.13 দু-প্রান্তে আটকানো একটি টান করা তারের কম্পনের প্রথম ছয়টি সমমেল।

n=0 এ আনুষষ্ঠিক মূল সুরের কম্পাঞ্চন $rac{v}{4L}$ উচ্চতর কম্পাঞ্চসমূহ অযুগ্ম সমমেল (odd harmonics)অর্থাৎ মূল সুরের কম্পাঞ্চের অযুগ্ম

গুণিতক : 3 $\frac{v}{4L}$, 5 $\frac{v}{4L}$, প্রভৃতি। 15.14 চিত্রে একমুখ বস্থ ও অন্য মুখ খোলা নলে আবন্দ বায়ুস্তন্তের কম্পনের প্রথম ছয়টি সমমেল দেখানো হয়েছে। উভয় প্রান্তে খোলা নলের ক্ষেত্রে উভয়প্রান্তে একটি করে সুস্পন্দ বিন্দু সৃষ্টি হয়। সেক্ষেত্রে সহজেই দেখানো যায় যে একটি মুক্ত বায়ুস্তন্তের কম্পনে যুগ্ম ও অযুগ্ম উভয় প্রকার সমমেল উৎপন্ন হয় (চিত্র15.15)। উপরের সংস্থাগুলো তারগুলো এবং বায়ুস্তম্ভগুলোও পরবশ কম্পনেও কম্পিত হয় (অধ্যায়-14)। বাহ্যিক পর্যাবৃত্ত বলের কম্পাঞ্চ

কোন একটি স্বাভাবিক কম্পাঞ্চের সমান বা খুব কাছাকাছি মানের হলে সংস্থায় অনুনাদের (resonance) সৃষ্টি হয়। তবলার পরিধি বরাবর দৃঢ়ভাবে আটকানো বৃত্তাকার পর্দার স্বাভাবিক কম্পনের ধরন যে সীমানা শর্ত দ্বারা নির্ধারিত হয় তা হল পর্দার পরিধির উপর অবস্থিত কোনো বিন্দুই কম্পিত হয় না। এরূপ সংস্থার কম্পনের কম্পাঙ্কসমূহ নির্ণয় করা অধিকতর জটিল। এক্ষেত্রে তরঙ্গাবিস্তার দ্বিমাত্রিক হয়। যদিও এক্ষেত্রেও কম্পন একই নিয়মে হয়।

উদাহরণ 15.5 30.0 cm দীর্ঘ একটি নলের দু-প্রান্ত খোলা। নলে উৎপন্ন কোন্ সমমেল 1.1 kHz উৎসের সাথে অনুনাদ সৃষ্টি করবে? নলটির একপ্রান্ত বন্থ করা হলে একই উৎসের সাথে অনুনাদ সৃষ্টি হবে কী? ধরে নাও, বায়ুতে শব্দের দ্রুতি 330 m s⁻¹.

উত্তর : প্রথম সমমেলের কম্পাঙ্ক হবে,

$$v_1 = \frac{v}{\lambda_1} = \frac{v}{2L}$$
 (মুক্ত নল)

যেখানে L হল নলের দৈর্ঘ্য।

n তম সমমেলের কম্পাঞ্চ হবে —

$$v_n = \frac{nv}{2L}, : n = 1, 2, 3, ... (মুস্ত নল)$$

15.14 চিত্রে প্রথম কিছু সমমেলের সৃষ্টি দেখানো হয়েছে। যেহেতু, $L=30.0~{\rm cm},$ $\upsilon=330~{\rm m~s^{-1}},$

চিত্র 15.14 : একমুখ খোলা ও অন্যমুখ বন্ধ নলে আবন্ধ বায়ু স্তম্ভের কম্পনের সাধারণ ধরন। শুধুমাত্র অযুগ্ম সমমেলগুলো সম্ভবপর হতে দেখা যাচ্ছে।

$$n_n = \frac{n\,330 \,(\mathrm{m\,s^{-1}})}{0.6 \,(\mathrm{m})} = 550 \,\mathrm{n\,s^{-1}}$$

স্পষ্টতই, 1.1 kHz কম্পাঙ্কের উৎস v_2 তথা দ্বিতীয় সমমেলের সাথে অনুনাদী হবে।

এখন নলটির একপ্রান্ত বন্ধ করে দেওয়া হলে (চিত্র 15.15), সমীকরণ (14.50) অনুযায়ী মুলসুরের কম্পাঙ্ক হবে —

$$v_{I} = \frac{v}{\lambda_{I}} = \frac{v}{4L}$$
 (একপ্রান্ত বন্ধ নল)

এবং এতে শুধুমাত্র অযুগ্ম সমমেলগুলোই উপস্থিত থাকে :

$$v_{_3}=~rac{3v}{4L}$$
, $v_{_5}=~rac{5v}{4L}$, এবং পরবর্তী সমমেলগুলো।

L = 30 cm এবং $\upsilon = 330 \text{ m s}^{-1}$ হলে একমুখ বন্ধ নলে উৎপন্ন মূলসুরের কম্পাঙ্ক হবে 275 Hz এবং উৎসের কম্পাঙ্ক এর চতুর্থ সমমেলের সমান। যেহেতু এই সমমেলটি সম্ভবপর নয়, সেহেতু নলের একপ্রাস্ত বন্ধ করে দেওয়া হলে অনুনাদ সৃষ্টি হবে না।

15.7 স্বরকম্প (Beats)

ι

তরঙ্গের ব্যতিচারের ফলে সৃষ্ট স্বরকম্প এক মজাদার ঘটনা। প্রায় কাছাকাছি (কিন্তু সমান নয়) কম্পাঙ্কের দুটি দোল শব্দ তরঙ্গা একই সময়ে শোনা গেলে, আমরা অনুরূপ কম্পাঙ্কের (দুটি প্রায় কাছাকাছি তরজা

Fig. 15.15 একটি খোলা নলে সৃষ্ট স্থানুতরঙ্গে চিত্রিত প্রথম চারটি সমমেল।

কম্পাঙ্কের গড়) একটি শব্দ শুনতে পাই, কিন্তু সাথে আরও কিছু শুনতে পাই। উপরিপাতিত শব্দতরজা দুটির কম্পাঙ্কের পার্থক্যের সমান কম্পাঙ্ক বিশিন্ট শব্দের প্রাবল্যের বৃদ্বি এবং হ্রাস (waxing and waning) আমরা সুস্পন্টরুপে শুনতে পাই। শিল্পীরা তাদের বাদ্যযন্ত্র পরস্পরের সাথে সুরকরণ (tuning) করতে এই ঘটনার ব্যবহার প্রায়ই করে থাকেন। তারা এ প্রক্রিয়া ততক্ষণ চালিয়ে যান, যতক্ষণ না পর্যন্ত তারা কোনো একটি স্বরকম্প শুনতে পান।

স্বরকম্পের গাণিতিক বিশ্লেষণে, প্রায় সমান কৌণিক কম্পাঞ্চ $ω_1$ ও $ω_2$ বিশিষ্ট দুটি দোল শব্দ তরঙ্গাকে ধরে নিলাম এবং সুবিধার্থে প্রাথমিক অবস্থান ধরা হল x = 0 । সুবিধাজনক দশা (উভয় তরজোর ক্ষেত্রে $\phi = \pi/2$) এবং উভয় তরজোর বিস্তার সমান ধরে নিলে সমীকরণ (15.2) থেকে পাওয়া যায় —

 $s_1 = a \cos \omega_1 t$ এবং $s_2 = a \cos \omega_2 t$ (15.45)

যেহেতু আমরা তির্যক সরণের পরিবর্তে অনুদৈর্ঘ্য সরণ প্রসঞ্জো আলোচনা করছি তাই এক্ষেত্রে y কে s দ্বারা প্রতিস্থাপিত করা হল। ধরি, দুটি কৌণিক কম্পাঙ্কের মধ্যে ω_1 সামান্য বেশি। তরঙ্গের উপরিপাতনের নীতি অনুসারে লব্দি সরণ,

 $s = s_1 + s_2 = a (\cos \omega_1 t + \cos \omega_2 t)$

অতি পরিচিত ত্রিকোণমিতিক অভেদ, $\cos A + \cos B$, ব্যবহার করে পাই —

$$s = 2 a \cos \frac{(\omega_1 - \omega_2)t}{2} \cos \frac{(\omega_1 + \omega_2)t}{2} \quad (15.46)$$

বা, $s = [2 a \cos \omega_b t] \cos \omega_a t$ (15.47) যেখানে,

সংগীত স্তম্ভ

(Musical Pillars)

বিভিন্ন মন্দিরে বাদ্যযন্ত্র বাদনরত মানব চিত্রখচিত কিছু কিছু স্তম্ভ থাকে; কিন্ডু কদাচিত কিছু স্তম্ভ নিজেরাই সংগীত (সুর) সৃষ্টি করে। তামিলনাড়ুর নেল্লাই আপ্পার (Nellaiappar temple)

মন্দিরে, একটিমাত্র পাথরে খোদাই করা স্তম্ভগুচ্ছে মৃদু আঘাত করলে ভারতীয় শাস্ত্রীয় সংগীতের (Indian classical music) মৃল সুরসমূহ সা, রে, গা, মা, পা, ধা, নি, সা সৃষ্টি হয়। স্তম্ভসমূহের কম্পন পাথরের স্থিতিস্থাপকতা, ঘনত্ব এবং আকৃতির উপর নির্ভর করে।

সুরস্তম্ভসমূহ তিনটি শ্রেণিতে বিভক্ত প্রথম প্রকারকে বলা হয় শ্রু**তি স্তন্ত**, এরা মূল সুরসমূহ বা স্বর সৃষ্টি করতে পারে। দ্বিতীয় প্রকারের স্তম্ভসমূহ বল **গানা থুগ্গল (Gana Thoongal)** যারা মূল সুর সৃষ্টি করে যাদের সমন্বয়ে তৈরি হয় রাগ। তৃতীয় প্রকারের স্তম্ভসমূহ হল **লয় থুগ্গল (Laya Thoongal)** — এদেরকে আঘাত করলে 'তাল' (beats) উৎপন্ন হয়। নেলাই আপ্পার মন্দিরের স্তম্ভসমূহ হল শ্রুতি স্তম্ভ ও লয়স্তম্ভের সমন্বয়।

প্রতাত্ত্বিক (Archaeologists) মতে নেল্লাই আপ্পার মন্দিরটি সপ্তম শতাব্দীর এবং এটি পাশ্ড রাজবংশের রাজারা তৈরি করিয়েছিলেন।

নেলাই আপ্পার মন্দির এবং হাম্পি, কন্যাকুমারী ও তিরুবন্তপুরম-এর মন্দিরগুলোর মতো দক্ষিণ-ভারতের বিভিন্ন মন্দিরের সুরস্তন্তসমূহ আমাদের দেশে অনন্য এবং পৃথিবীর অন্য কোথাও আর নেই।

এখন যদি ধরে নিই $|\omega_1 - \omega_2| <<\omega_1$ তথা $\omega_a >> \omega_b$, আমরা (15.47) সমীকরণটিকে নিম্নরূপে ব্যাখ্যা করতে পারি। লব্দি তরঙ্গাটি ω_a গড় কৌণিক কম্পাঙ্কে দোলায়িত হয়, যদিও এর বিস্তার বিশুন্ধ দোলত তরঙ্গের ন্যায় সময়ের সাথে ধ্রুবক থাকে না। $\cos \omega_b t$ পদটির সীমাস্থ মান +1 বা -1 নেওয়া হলে বিস্তার সর্বোচ্চ হয়। অন্যকথায়, লব্দি তরঙ্গোর তীব্রতা $2\omega_b = \omega_1 - \omega_2$ কৌণিক কম্পাঙ্কের সঙ্গে

পদার্থবিদ্যা

খোলা নলে শব্দের প্রতিফলন (Reflection of sound

in an open pipe)

যখন বায়ুর একটি উচ্চচাপ স্পন্দন একটি খোলা নলে নীচের দিকে অগ্রসর হয় নলের অপর প্রান্তে পৌঁছায়, এর ভরবেগ নলের বায়ুকে টেনে বাইরে নিয়ে আসে, যেখানে চাপ দ্রুত কমে বায়ুমণ্ডলীয় চাপে নেমে আসে। এর ফলে স্পন্দনের পেছনে আসা কিছু

বায়ুও নল থেকে বাইরে বেরিয়ে যায়। নলের খোলা প্রান্তের নিম্নচাপ নলের উপরিভাগের কিছু বায়ুকে টেনে নামিয়ে আনে। খোলা প্রান্তের দিকে নেমে আসা বায়ু নিম্নচাপ ক্ষেত্রকে উপর দিকে চালিত করে। ফলস্বরূপ নলের নীচের দিকে চলমান উচ্চচাপ স্পন্দন নিম্নচাপ স্পন্দনে রূপান্তরিত হয়ে নলের উপর দিকে উঠতে শুরু করে। আমরা বলতে পারি, একটি চাপ তরঙ্গা 180º দশার পরিবর্তন ঘটিয়ে নলের খোলা প্রান্ত থেকে প্রতিফলিত হয়েছে। এরূপ ঘটনার ফলেই বাঁশির মতো অর্গ্যান নলে স্থানুতরঞ্জোর সৃষ্টি হয়।

যখন একটি উচ্চচাপ বায়ুর স্পন্দন নলের বদ্ধ প্রান্তে পৌঁছালে যা ঘটে তার সাথে এর তুলনা করো : বদ্ধ প্রান্তের সাথে উচ্চচাপ স্পন্দনের সংঘাত ঘটে এবং এর ফলস্বরূপ বায়ু বিপরীত অভিমুখে ফিরে আসে। এক্ষেত্রে, আমরা বলতে পারি, দশা পার্থক্যের পরিবর্তন না ঘটিয়েই চাপ তরঞ্চা প্রতিফলিত হয়।

একটি স্থির শব্দ উৎসের দিকে দ্রুত দ্রুতিতে অগ্রসর হই তখন শব্দের তীক্ষ্ণতা শব্দ উৎসের প্রকৃত কম্পাঙ্ক অপেক্ষা বেশি মনে হয়। শ্রোতা শব্দ উৎস থেকে দূরে সরে যেতে থাকলে স্রোতার নিকট শব্দের তীক্ষ্ণতা বা কম্পাঙ্ক, উৎসের প্রকৃত কম্পাঙ্ক অপেক্ষা কম মনে হয়। গতির সাথে সম্পর্কিত কম্পাঙ্কের এরূপ পরিবর্তনকে ডপলার ক্রিয়া বলে। অস্ট্রিয়ান পদার্থবিদ জোহান ক্রিশ্চিয়ান ডপলার (Johann Christian Doppler) 1842 খ্রিস্টাব্দে সর্বপ্রথম এই প্রভাবের কথা প্রস্তাব করেন। 1845 খ্রিস্টাব্দে, বাইস ব্যালট পরীক্ষার সাহায্যে এটি প্রমাণ করেন। ডপলার ক্রিয়া এক তরঙ্গা বিষয়ক ঘটনা, এটি শুধুমাত্র শব্দ তরজোর ক্ষেত্রেই ঘটে তা নয়, তড়িচ্চুস্বকীয় তরজোর ক্ষেত্রেও ঘটে।যা হোক, এখানে আমরা শুধুমাত্র শব্দ তরঙ্গাকে নিয়েই আলোচনা করব।

উঠানামা করে। যেহেতু
$$\omega=2\pi
u$$
 স্বরকম্পের কম্পাঙ্জ

$$\mathbf{v}_{beat} = \mathbf{v}_1 - \mathbf{v}_2 \tag{15.48}$$

15.16 চিত্রে, 11 Hz এবং 9 Hz কম্পাঞ্চ বিশিষ্ট দুটি দোলতরজোর উপরিপাতনের ফলে স্বরকম্পের সৃষ্টি দেখানো হয়েছে। লব্ধি তরঙ্গা 2 Hz কম্পাঙ্কের স্বরকম্প উৎপন্ন করে।

চিত্র 15.16 দুটি দোলতরজোর উপরিপাতন, (a) একটির কম্পাজ্ঞ্র 11 Hz এবং (b) অপরটির কম্পাজ্ঞ্র 9 Hz; 2 Hz কম্পাজ্ঞ বিশিষ্ট স্বরকম্পের সৃষ্টি করেছে (c)।

উদাহরণ 15.6 দুটি সেতার তার A এবং B তে 'ধা' সুরটি সামান্য সুর পার্থক্যে বেজে 5 Hz কম্পাঙ্কের স্বরকম্প সৃষ্টি করে। B তারের টান সামান্য বাড়ালে স্বরকম্পের কম্পাঙ্ক কমে 3 Hz হয়। A তারের কম্পাঙ্ক 427 Hz হলে B তারের মূল কম্পাঙ্ক কত ?

উত্তর ঃ তারের টান বৃদ্ধিতে তারটির কম্পাঙ্ক বৃদ্ধি পায়। যদি B তারের মূল কম্পাঙ্ক v_B , A তারের মূল কম্পাঙ্ক v_A অপেক্ষা বেশি হয় তবে v_B এর আরও বৃদ্ধির ফলে স্বরকম্পের কম্পাঙ্ক বৃদ্ধি পাওয়া উচিত। কিন্তু এক্ষেত্রে স্বরকম্পের কম্পাঙ্ক হ্রাস পেয়েছে। অতএব, v_B $< v_A$ । যেহেতু $v_A - v_B = 5$ Hz, এবং $v_A = 427$ Hz, সুতরাং $v_B = 422$ Hz.

15.8 ডপলার ক্রিয়া (Doppler effect)

এটি এক দৈনন্দিন অভিজ্ঞতা যে দূরে সরে যেতে থাকা একটি দ্রুতগামী ট্রেনের বাঁশির বা হর্নের তীক্ষ্ণতা বা কম্পাঙ্ক কমতে থাকে। আমরা যখন আমরা তিনটি বিভিন্ন পরিস্থিতিতে কম্পাজ্জের পরিবর্তন বিশ্লেষণ করব : (1) শ্রোতা স্থির কিন্তু উৎস গতিশীল, (2) শ্রোতা গতিশীল কিন্তু উৎস স্থির এবং (3) শ্রোতা ও উৎস উভয়েই গতিশীল। শ্রোতা এবং মাধ্যমের মধ্যে আপেক্ষিক গতি থাকা অথবা না থাকার কারণে পরিস্থিতি (1) এবং (2) পরস্পর ভিন্ন হয়। অধিকাংশ তরজোর সঞ্জালনের জন্য একটি মাধ্যমের প্রয়োজন হয় : যদিও তড়িচ্চুম্বকীয় তরজোর সঞ্জালনের জন্য কোনো মাধ্যমের প্রয়োজন হয় না। যদি কোনো মাধ্যম না থাকে তবে দুটি পরিস্থিতির মধ্যে পার্থক্য করার কোনো উপায় থাকে না, ফলে উৎস গতিশীল হোক কিংবা শ্রোতা গতিশীল হোক ডপলার সরণ একই হয়।

15.8.1উৎস গতিশীল : পর্যবেক্ষক স্থির (Source Moving ;Observer Stationary)

চলো আমরা পর্যবেক্ষক থেকে উৎসের দিকে বেগের অভিমুখকে বেগের ধনাত্মক অভিমুখ ধরে নিই। মনে করি, একটি উৎস 'S' v_s বেগে গতিশীল এবং একজন পর্যবেক্ষক এমন একটি নির্দেশতন্ত্রে স্থির অবস্থায় আছে যেখানে মাধ্যমও স্থির অবস্থায় আছে। ধরে নিই, মাধ্যমের সাপেক্ষে স্থির অবস্থায় থাকা কোনো পর্যবেক্ষক দ্বারা পরিমাপ করা ω কৌণিক কম্পাজ্জ ও T_o পর্যায়কাল বিশিষ্ট একটি তরজোর দ্রুতি v এবং পর্যবেক্ষকের কাছে একটি শনান্তকারী (detector) যন্ত্র আছে যা ওর কাছে পৌঁছানো প্রত্যেক তরঙ্গাশীর্য গণনা করে। চিত্র 15.17 এ যেমনটা দেখানো হয়েছে t = 0 সময়ে উৎসটি পর্যবেক্ষক থেকে L দূরত্বে S₁বিন্দুতে অবস্থিত এবং একটি তরঙ্গাশীর্ষ উৎপন্ন করেছে যা $t_1 = \frac{L}{v}$ সময়ে পর্যবেক্ষকের নিকট পৌঁছায়। $t = T_o$ সময়ে উৎসটি $v_s T_o$ দূরত্ব অতিক্রম করে পর্যবেক্ষক থেকে $(L + v_s T_o)$ দূরত্বে অবস্থিত S₂ বিন্দুতে

পৌঁছায়। S2 বিন্দুতে উৎস দ্বিতীয় একটি তরঙ্গাশীর্ষ উৎপন্ন করে। এটি

চিত্র 15.17 যখন উৎস গতিশীল এবং পর্যবেক্ষক মাধ্যমে স্থির অবস্থায় আছে এমন ক্ষেত্রে ডপলার ক্রিয়া (তরঙ্গের কম্পাঙ্কের পরিবর্তন) শনাক্তকরণ।

পর্যবেক্ষকের নিকট t_2 সময়ে পৌঁছায়।

যেখানে
$$t_2 = T_0 + \frac{\left(L + v_s T_0\right)}{v}$$

n T_o সময়ে উৎস (n+1) তম তরঙ্গাশীর্ষ উৎপন্ন করে যা পর্যবেক্ষকের নিকট পৌঁছায়

$$t_{n+1} = n T_0 + \frac{(L + nv_s T_0)}{v}$$
 সময়ে

অতএব,

বা

$$\left[nT_0 + \frac{\left(L + nv_sT_0\right)}{v} - \frac{L}{v}\right]$$

সময়ের ব্যবধানে পর্যবেক্ষকের শনাক্তকারী যন্ত্র n সংখ্যক তরঙ্গাশীর্ষ গণনা করে এবং পর্যবেক্ষক তরঙ্গোর যে পর্যায়কাল, লিপিবন্ধ করে তা হল —

$$T = \left\lfloor nT_0 + \frac{(L + nv_sT_0)}{v} - \frac{L}{v} \right\rfloor / n$$
$$= T_0 + \frac{v_sT_0}{v}$$
$$T = T_0 \left(1 + \frac{v_s}{v}\right)$$
(15.49)

সমীকরণ (15.49) কে কম্পাঙ্কের v_o সাহায্যেও লেখা যায়। যদি উৎস ও পর্যবেক্ষক উভয়ে স্থির থাকে তবে এই কম্পাঞ্জ (v_o) পরিমাপ করা হয় এবং উৎসটির গতিশীল অবস্থায় নির্ণাত কম্পাঞ্জ v হলে

$$v = v_0 \left(1 + \frac{v_s}{v} \right)^{-1}$$
(15.50)

তরঙ্গাবেগ v এর তুলনায় উৎসের বেগ v, ক্ষুদ্র হলে, দ্বিপদ বিস্তৃতির ৩,/v এর একঘাতের পদ পর্যন্ত নিয়ে এবং উচ্চঘাতের পদগুলোকে অগ্রাহ্য করে পাওয়া (15.50) সমীকরণের আসন্নরুপটি হবে

$$v = v_0 \left(1 - \frac{v_s}{v} \right) \tag{15.51}$$

পর্যবেক্ষকের দিকে এগিয়ে আসা উৎসের ক্ষেত্রে v_s কে – v_sদ্বারা প্রতিস্থাপন করে পাওয়া যায়

$$v = v_0 \left(1 + \frac{v_s}{v} \right) \tag{15.52}$$

এভাবে, পর্যবেক্ষকের নিকট তার থেকে দূরে সরে যাওয়া উৎসের কম্পাঙ্ককে, উৎসটি স্থির থাকা অবস্থায় কম্পাঙ্ক অপেক্ষা কম মনে হবে। আবার যখন উৎসটি তার দিকে এগিয়ে আসে তখন উচ্চ কম্পাঙ্ক পরিমাপ করে।

15.8.2পর্যবেক্ষক গতিশীল; উৎস স্থির (Observer Moving;
Source Stationary)

এখন, স্থির উৎসেব দিকে v_o বেগে গতিশীল পর্যবেক্ষকের ক্ষেত্রে ডপলার সরণ নির্ণয় করতে আমরা এক ভিন্ন পম্বতিতে অগ্রসর হব। আমরা গতিশীল পর্যবেক্ষকের নির্দেশতন্ত্রেই কাজ করব। এই নির্দেশতন্ত্রে উৎস এবং মাধ্যম উভয়েই v_o দুতিতে পর্যবেক্ষকের দিকে অগ্রসর হচ্ছে এবং ফলে তরঙ্গাটি অগ্রসর হচ্ছে ($v_o + v$) দুতিতে। পূর্বের মতো একই পম্ধতি অনুসরণ করে আমরা দেখতে পাব যে পর্যবেক্ষকের নিকট প্রথম ও (n+1) তম তরঙ্গাশীর্য পৌঁছার মধ্যে সময়ের ব্যবধান হয়,

$$t_{n+1} - t_1 = n T_0 - \frac{n v_0 T_0}{v_0 + v}$$

এভাবে, পর্যবেক্ষক তরঙ্গটির পর্যায়কালের যে মান পাবে তা হবে,

$$T = T_0 \left(1 - \frac{v_0}{v_0 + v} \right)$$
$$= T_0 \left(1 + \frac{v_0}{v} \right)^{-1}$$

এবং কম্পাঙ্কের প্রেক্ষিতে পাওয়া যায় —

$$v = v_0 \left(1 + \frac{v_0}{v} \right) \tag{15.53}$$

যেহেতু সমীকরণ (15.52) এবং আসন্ন সম্পর্কের সমীকরণ (15.53)

একই, তাই পর্যবেক্ষক বা উৎস যেটিই গতিশীল হোক না কেন, $\frac{v_0}{v}$ ক্ষুদ্র হলে ডপলার সরণ প্রায় একই হয়।

15.8.3উৎস এবং পর্যবেক্ষক উভয়েই গতিশীল (Both Source and Observer Moving)

আমরা এখন ডপলার সরণের এক সাধারণ রাশিমালা নির্ণয় করব, যখন উৎস ও পর্যবেক্ষক উভয়েই গতিশীল। পূর্বের মতোই পর্যবেক্ষক থেকে উৎসের দিককেই বেগের ধনাত্মক অভিমুখ হিসাবে ধরে নেব। ধরে নিই, উৎস এবং পর্যবেক্ষক উভয়ে যথাক্রমে v, এবং v, বেগে গতিশীল, যেমনটা 15.18 চিত্রে দেখানো হয়েছে। ধরি, t = 0 সময়ে পর্যবেক্ষক ও উৎসের অবস্থান যথাক্রমে O_1 এবং $\mathrm{S}_1, \mathrm{O}_1, \mathrm{S}_1$ এর বাঁদিকে অবস্থিত। উৎসটি v তরজা বেগ, v কম্পাঙ্ক ও T₀ পর্যায়কাল বিশিষ্ট তরজা নিঃ সরণ করছে; এখানে v, v, T₀ সবকটি রাশি মাধ্যমের সাপেক্ষে স্থির কোনো পর্যবেক্ষকের দ্বারা পরিমাপ করা। ধরি, t = 0, সময়ে যখন উৎস প্রথম তরঙ্গাশীর্ষটি নিঃসরণ করে তখন O_1 এবং S_1 এর মধ্যবর্তী দূরত্ব L। যেহেতু পর্যবেক্ষক গতিশীল তাই পর্যবেক্ষকের সাপেক্ষে তরজা $v+v_0$ । অতএব, প্রথম তরঙ্গশীর্ষটি বেগ হল $t_1 = L/(v + v_0)$ সময় পর পর্যবেক্ষকের নিকট পৌঁছায়। $t = T_0$ সময়ে পর্যবেক্ষক ও উৎস উভয়েই অগ্রসর হয়ে ওদের নতুন অবসান যথাক্রমে O_2 এবং S_2 তে পৌঁছায়। পর্যবেক্ষক ও উৎসের নতুন দূরত্ব $\mathrm{O}_2 S_2$ হবে $L+(v_{s}-v_{0}) T_{0} \mid S_{2}$ অবস্থানে উৎস দ্বিতীয় তরঙ্গাশীর্ষ নিঃসরণ করে যা পর্যবেক্ষকের নিকেট পৌঁছাতে সময় লাগে।

চিত্র 15.18 উৎস ও পর্যবেক্ষক উভয়েই যখন বিভিন্ন বেগে গতিশীল সেক্ষেত্রে ডপলার ক্রিয়া।

ডপলার ক্রিয়ার প্রয়োগ

সেনাবাহিনী, চিকিৎসা বিজ্ঞান, জ্যোতির্বিজ্ঞান এর মতো বিভিন্ন ক্ষেত্রে ডপলার ক্রিয়ার প্রভাবে গতিশীল বস্তুর কম্পাঙ্কের পরিবর্তনকে বস্তুর গতিবিগে নির্ণয়ে ব্যবহার করা হয়। বেশি বেগে গতিশীল যানবাহন নিরীক্ষণে পুলিশ বিভাগে ও ডপলার ক্রিয়া প্রয়োগ করা হয়। একটি জানা কম্পাঙ্কের শব্দতরজ্ঞা বা তড়িচ্চুম্বকীয় তরজাকে একটি

গতিশীল বস্থুর দিকে পাঠানো হয়। তরঙ্গটির কিছু অংশ গতিশীল বস্থু থেকে প্রতিফলিত হয় এবং নিয়ন্ত্রণ স্টেশানে / পর্যবেক্ষণ স্টেশনে (monitoring station)-এ প্রতিফলিত তরঙ্গের কম্পাঞ্চ শনাস্তু করা হয়। কম্পাঞ্চের এ পরিবর্তনকে **ডপলার সরণ** (Doppler shift) বলে।

বিমান বন্দরে বায়ুযানের (aircraft) চলাচল নিয়ন্ত্রণে এবং শত্রু বায়ুযান সনাস্ত করলে সেনাবাহিনীতে ডপলার ক্রিয়া প্রয়োগ করা হয়। নক্ষত্রদের বেগ নির্ণয়ে জ্যোতির্বিজ্ঞানীরা এ ক্রিয়ার প্রয়োগ করে থাকেন। ডাক্তাররা এর ব্যবহার করেন হৃদস্পন্দন নির্ণয়ে ও বিভিন্ন অংশে রক্তপ্রবাহ সম্পর্কিত অধ্যয়নে। এক্ষেত্রে তারা শব্দোন্ডর তরঙ্গা ব্যবহার করেন এবং সাধারণ ব্যবহারিক ক্ষেত্রে একে সোনোগ্রাফি বলা হয়। এক্ষেত্রে শব্দোন্ডর তরঙ্গা ব্যবহারিক ক্ষেত্রে একে সোনোগ্রাফি বলা হয়। এক্ষেত্রে শব্দোন্ডর তরঙ্গা ব্যবহারিক ক্ষেত্রে একে সোনোগ্রাফি বলা হয়। এক্ষেত্রে শব্দোন্ডর তরঙ্গা ব্যব্তির শরীরে প্রবেশ করে, এর কিছু অংশ প্রতিফলিত হয়ে ফিরে আসে এবং রক্তপ্রবাহ ও হৃদপিন্ডের কপটিকার স্পন্দন বিষয়ক এবং ভ্রুনের হৃদস্পন্দন সম্পর্কিত তথ্য প্রদান করে। হৃৎপিণ্ডের ক্ষেত্রে যে চিত্র উৎপন্ন হয় তাকে **ইকোকার্ডিও গ্রাম** বলে।

$$t_2 = T_o + [L + (v_s - v_o)T_o)]/(v + v_o)$$

nT_o সময়ে উৎসটি ওর (n+1) তম তরঙ্গাশীর্ষ নিঃসরণ করে এবং এটি পর্যবেক্ষকের নিকট পৌঁছাতে সময় লাগে

$$t_{n+1} = nT_o + [L + n(v_s - v_o)T_o)]/(v + v_o)$$

অতএব, t_{n+1} –t₁, অর্থাৎ

$$nT_{o} + [L + n(v_{s} - v_{o})T_{o}]/(v + v_{o}) - L/(v + v_{o}),$$

সময়ের ব্যবধানে পর্যবেক্ষক *n* সংখ্যক তরঞ্চাশীর্ষ গণনা করে এবং পর্যবেক্ষক তরজ্ঞোর যে পর্যায়কাল *T* লিপিবন্দ্ব করে তা হল —

$$T = T_0 \left(1 + \frac{v_s - v_o}{v + v_0} \right) = T_0 \left(\frac{v + v_s}{v + v_0} \right) \quad (15.54)$$

পর্যবেক্ষক কর্তৃক পর্যবেক্ষণ করা কম্পাঙ্জ হল —

$$\mathbf{v} = \mathbf{v}_0 \left(\frac{\boldsymbol{v} + \boldsymbol{v}_0}{\boldsymbol{v} + \boldsymbol{v}_s} \right) \tag{15.55}$$

সোজা (straight) ট্র্যাকে গতিশীল একটি ট্রেনে বসা একজন যাত্রীর কথা বিবেচনা করা যাক। ধরে নাও সে ট্রেনের চালকের দ্বারা বাজানো বাঁশির (whistle) শব্দ শুনছে। সে কোনো কম্পাঙ্ক মাপবে বা শুনবে। এখানে পর্যবেক্ষক এবং উৎস উভয়ে একই বেগে গতিশীল, তাই এক্ষেত্রে কম্পাঙ্কের কোনো ডপলার সরণ হবে না এবং যাত্রী স্বাভাবিক কম্পাঙ্কই শুনবে। কিন্তু ট্রেনের বাইরে থাকা ট্র্যাকের সাপেক্ষে স্থির একজন পর্যবেক্ষক একটি উচ্চতর কম্পাঙ্কের শব্দ শুনবে যদি ট্রেনটি তার দিকে এগিয়ে আসতে থাকে এবং একটি নিম্নতর কম্পাঙ্কের শব্দ শুনবে যদি ট্রেনটি তার থেকে দরে সরে যেতে থাকে।

लक्षकत्ता, আমরা পর্যবেক্ষক থেকে উৎসের দিককে ধনাত্মক দিক ধরে নিয়েছি। তাই, যদি পর্যবেক্ষক উৎসের দিকে গতিশীল হয় তবে v_0 ধনাত্মক (সাংখ্যমান বিশিষ্ট) হয় আর যদি পর্যবেক্ষক (O) উৎস S হতে দূরে সরে যেতে থাকে তবে v_0 ঋণাত্মক মানবিশিষ্ট হয়। অপরপক্ষে, যদি S, O থেকে দূরে সরে যেতে থাকে তবে v_s ধনাত্মক মানবিশিষ্ট আর যদি S, O এর দিকে অগ্রসর হতে থাকে তবে v_s খনাত্মক মানবিশিষ্ট হয়। উৎস কর্তৃক নিঃসৃত শব্দ সবদিকেই গমন করে। এটি হল শব্দের সেই অংশ যা পর্যবেক্ষকের দিকে আসে ও পর্যবেক্ষক তা গ্রহণ ও সনাক্ত করে। তাই, পর্যবেক্ষকের সাপেক্ষে শব্দের আপেক্ষিক বেগ সবক্ষেত্রেই $v+v_0$ । উদাহরণ 15.7 একটি রকেট 200 m s⁻¹ দ্রুতিতে একটি লক্ষ্যবস্তুর দিকে গতিশীল অবস্থায় 1000 Hz কম্পাজ্জের তরঙ্গা নিঃসরণ করছে। লক্ষ্যবস্তুতে পৌঁছানো শব্দের কিছু অংশ প্রতিফলিত হয়ে প্রতিধ্বনিরুপে রকেটে ফিরে আসে। (1) লক্ষ্যবস্তু কর্তৃক শনাস্ত করা শব্দের কম্পাজ্জ এবং (2) রকেট কর্তৃক শনাস্ত করা প্রতিধ্বনির কম্পাজ্জ নির্ণয় করো।

উত্তর : (1) পর্যবেক্ষক স্থির এবং উৎস 200 m s⁻¹ বেগে গতিশীল। যেহেতু এই বেগ শব্দের বেগ 330 m s⁻¹ এর সাথে তুলনীয়, আমরা অবশ্যই আসন্নমানের সমীকরণ (15.51) এর পরিবর্তে (15.50) সমীকরণ ব্যবহার করব। উৎসটি স্থির লক্ষ্যবস্তুর দিকে এগিয়ে যাচ্ছে, তাই $v_{g} = 0$ এবং v_{g} কে $-v_{g}$ দ্বারা প্রতিস্থাপন করতে হবে। অতএব,

$$v = v_0 \left(1 - \frac{v_s}{v} \right)^{-1}$$

v = 1000 Hz × [1 - 200 m s⁻¹/330 m s⁻¹]⁻¹

 $\simeq 2540 \, \text{Hz}$

(2) এক্ষেত্রে লক্ষ্যবস্তুটিই উৎস, (কেননা এটিই প্রতিধ্বনির উৎস) এবং রকেটের সনান্তকারী যন্ত্র হল পর্যবেক্ষক (কেননা এটি প্রতিধ্বনিকে শনান্ত করে)। অতএব, v_s = 0 এবং v_s ধনাত্মক মানবিশিন্ট। উৎস কর্তৃক নিসৃত শব্দের কম্পাজ্জ অর্থাৎ লক্ষ্যবস্তু কর্তৃক শনান্তু কম্পাজ্জ v; মূল কম্পাজ্জ v_s নয়। অতএব, রকেট কর্তৃক নিবন্থিকৃত শব্দের কম্পাজ্জ

$$v' = v \left(\frac{v + v_0}{v} \right)$$
$$= 2540 Hz \times \left(\frac{200 m s^{-1} + 330 m s^{-1}}{330 m s^{-1}} \right)$$
$$\simeq 4080 \text{ Hz}$$

সারসংক্ষেপ

- 1. যান্ত্রিক তরঙ্গা (Mechanical waves) জড় মাধ্যমেই সন্তব এবং এরা নিউটনের সূত্র দ্বারা নিয়ন্ত্রিত।
- তির্যক তরঙ্গা (Transverse waves) হল এমন তরঙ্গা যে তরঙ্গো মাধ্যমের কণাগুলো তরঙ্গা বিস্তারের অভিমুখের সাথে লম্বভাবে কম্পিত হয়।
- 3. অনুদৈর্ঘ্য তরঙ্গা (Longitudinal waves) হল এমন তরঙ্গা যে তরঙ্গো মাধ্যমের কণাগুলো তরঙ্গা বিস্তারের অভিমুখ বরাবর কম্পিত হয়।
- 4. চলতরঙ্গা (Progressive wave) এমন এক তরঙ্গা যা মাধ্যমের এক বিন্দু থেকে অন্য বিন্দুতে গমন করে।
- 5. ধনাত্মক x -অক্ষ অভিমুখে সঞ্চারণশীল একটি সাইনধর্মী তরঙ্গা সরণ

$$y(x, t) = a \sin(kx - \omega t + \phi)$$

যেখানে, *a* হল বিস্তার, *k* কৌণিক তরঙ্গসংখ্যা, *w* কৌণিক কম্পাঙ্ক, (*kx* – *wt* + *φ*) দশা এবং *φ* হল দশাধ্রুবক বা দশকোণ।

- চলতরজ্ঞাের তরঙ্গা দৈর্ঘ্য λ বলতে বুঝায় কোনাে এক মুহুর্তে পরপর দুটি সমদশাসম্পন্ন বিন্দুর মধ্যবর্তী দূরত্বকে। স্থানুতরঙ্গের ক্ষেত্রে এটি পরপর দুটি সুস্পন্দ বা নিস্পন্দ বিন্দুদ্বয়ের মধ্যবর্তী দূরত্বের দ্বিগুণ।
- একটি তরজ্গের দোলনের পর্যায়কাল T হল যে সময়ে কোনো একটি মাধ্যম কণা একটি পূর্ণ দোলন সম্পন্ন করে। এটি কৌণিক কম্পাঙ্ক ω এর সাথে নিম্ন রূপে সম্পর্কিত।

$$T = \frac{2\pi}{\omega}$$

8. 1/T কে তরজোর কম্পাঙ্ক বলে এবং এটি কৌণিক কম্পাঙ্কের সাথে নিম্নরুপে সম্পর্কিত।

$$v = \frac{\omega}{2\pi}$$

- 9. চলতরজোর তরজাবেগ $v = \frac{\omega}{k} = \frac{\lambda}{T} = \lambda v$
- 10. কোনো টান করা তারে তির্যক তরঙ্গের বেগ তারের ধর্মাবলি দ্বারা নিয়ন্ত্রিত হয়। *T* টানে টান করা μ রৈখিক ভর ঘনত্ব বিশিষ্ট তারে তির্যক তরঙ্গের বেগ

$$v = \sqrt{\frac{T}{\mu}}$$

11. শব্দতরঙ্গা একধরনের অনুদৈর্ঘ্য যান্ত্রিক তরঙ্গা যা কঠিন, তরল অথবা গ্যাসীয় মাধ্যমে সঞ্চালিত হতে পারে। *B* আয়তনবিকার গুণাঙ্ক ও ρ ঘনত্ববিশিষ্ট কোনো প্রবাহী মাধ্যমে শব্দের বেগ

$$v = \sqrt{\frac{B}{\rho}}$$

কোন ধাতবদণ্ডে অনুদৈর্ঘ্য তরঙ্গের বেগ

$$v = \sqrt{\frac{Y}{\rho}}$$

গ্যাসীয় মাধ্যমে, যেহেতু $B = \gamma P$ তাই শব্দের বেগ

$$v = \sqrt{\frac{\gamma P}{\rho}}$$

12. যখন দুই বা তার বেশি তরঙ্গা একই মাধ্যমে সঞ্জালিত হয় সেক্ষেত্রে মাধ্যমের কোন একটি উপাদান কণার সরণ, প্রত্যেকটি তরঙ্গোর জন্য পৃথক পৃথক সরণের বীজগাণিতিক সমন্টির সমান হয়। এটি তরঙ্গোর উপরিপাতনের নীতি নামে পরিচিত।

$$y = \sum_{i=1}^n f_i(x - vt)$$

13. একই তারে সঞ্চালিত দুটি তরঙ্গা **উপরিপাতনের নীতি অনুযা**য়ী **ব্যতিচার** (*interference*), সংযোজন অথবা নাকচকরণ প্রদর্শন করে। যদি একই বিস্তার *a* এবং একই কম্পাঙ্ক বিশিষ্ট কিন্তু দশাধ্রুবক দশা পার্থক্যে *φ* থাকা দুটি তরঙ্গা কোনো মাধ্যমে একই অভিমুখে গতিশীল হয় তবে এদের লম্বি একই কৌণিক কম্পাঙ্ক *ω* বিশিষ্ট একটিমাত্র তরঙ্গা হয় :

$$y(x, t) = \left[2\alpha\cos\frac{1}{2}\phi\right]\sin\left(kx - \omega t + \frac{1}{2}\phi\right)$$

যদি $\phi = 0$ অথবা 2π এর সরল গুণিতক হয় তবে তরঙ্গা দুটি সমদশাসম্পন্ন হয় এবং ব্যতিচার গঠনাত্মক হয়। যদি ϕ = π হয় তবে ওরা সম্পূর্ণভাবে বিপরীত দশায় থাকে এবং ব্যতিচার ধ্বংসাত্মক হয়।

 একটি চলতর
 কোনো দৃঢ় সীমান্তে (rigid boundary) অথবা বন্ধ প্রান্তে বিপরীত দশায় প্রতিফলিত হয় কিন্তু মুক্ত সীমান্তে প্রতিফলনের ক্ষেত্রে দশার পরিবর্তন ঘটে না।

একটি আপতিত তরজা

$$y_i(x, t) = a \sin(kx - \omega t)$$
 ध्रत

কোনো দৃঢ় সীমান্তে প্রতিফলিত তরজা

 $y_r(x, t) = -a \sin(kx + \omega t)$ এবং কোনো মুক্ত সীমান্তে প্রতিফলিত তরঙ্গা $y_r(x, t) = a \sin(kx + \omega t)$

15. পরস্পর বিপরীত দিক থেকে এগিয়ে আসা দুটি অভিন্ন তরঙ্গের উপরিপাতন স্থানুতরঞ্জের (standing waves) সৃষ্টি করে। দু 'প্রান্তে দৃঢ়ভাবে আটকানো টান করা তারে উৎপন্ন স্থানুতরঙ্গা :

 $y(x, t) = [2a \sin kx] \cos \omega t$

স্থানুতরঙ্গের শূন্য সরণ বিশিষ্ট অবস্থানগুলোকে **নিঃস্পন্দ বিন্দু** (nodes) বলে এবং সর্বোচ্চ সরণ বিশিষ্ট অবস্থানগুলোকে **সুস্পন্দ বিন্দু** (antinodes) বলে। পরপর দুটি সুস্পন্দ বা নিঃস্পন্দ বিন্দুর মধ্যে ব্যবধান $\lambda/2$ ।

উভয়প্রান্তে আটকানো L দৈর্ঘ্যের একটি টান করা তারের কম্পনের কম্পাধ্ক

$$v = \frac{nv}{2L}$$
, $n = 1, 2, 3, ...$

উপরের সম্পর্কে দেওয়া কম্পাজ্ঞসমূহের সেটকে সংস্থাটির কম্পনের **স্বাভাবিক কম্পাঙ্ক** (normal modes) বলে। সর্বনিম্ন কম্পার্জ্ঞকে মূ**লসুর বা প্রথম সমমেল** (first harmonic) বলে। দ্বিতীয় সমমেল হল *n* = 2 তে কম্পনের ধরণ এবং পরবর্তী সমমেলসমূহ।

L দৈর্ঘ্যের একপ্রান্ত বন্ধ ও একপ্রান্ত খোলা নলে আবন্ধ বায়ুস্তন্তের কম্পাঞ্চসমূহ হল

$$v = (n + \frac{1}{2}) \frac{v}{2L}, \qquad n = 0, 1, 2, 3, ...$$

উপরের সম্পর্ক দ্বারা প্রকাশিত কম্পাঙ্কের সেটকে সংস্থাটির মূলধরনের কম্পনের **স্বাভাবিক কম্পাঙ্ক** বলে। সর্বনিম্ন কম্পাঙ্ক *v*/4L হল মূল সুরের কম্পাঙ্ক বা প্রথম সমমেল।

- 16. *L* দৈর্ঘ্যের উভয়প্রান্তে আটকানো একটি তার কিংবা একপ্রান্ত বন্দ ও অপর প্রান্ত খোলা নলে আবন্দ বায়ুস্তম্ভ ওদের স্বাভাবিক কম্পাধ্জে কম্পিত হয়। এসব কম্পাধ্জের প্রত্যেকে ওই সংস্থার **অনুনাদী কম্পা**ধ্জ (*resonant frequency*)।
- 17. সামান্য ভিন্ন দুটি কম্পাঞ্চক _{V1} ও _{V2} এবং পরস্পর তুলনীয় বিস্তার বিশিষ্ট দুটি তরজোর উপরিপাতনের ফলে স্বরকম্প (beat) সৃষ্টি হয়। স্বরকম্পের কম্পাঞ্চক

$$v_{beat} = v_1 \sim v_2$$

18. মাধ্যমের সাপেক্ষে যখন উৎস ও পর্যবেক্ষক গতিশীল হয় তখন তরজোর কম্পাজ্জের যে পরিবর্তন পরিলক্ষিত হয় তাকে ডপলার ক্রিয়া (Doppler effect) বলে। শব্দতরজোর ক্ষেত্রে উৎসের কম্পাজ্জ v_a এর সাহায্যে প্রকাশিত, পরিলক্ষিত কম্পাজ্জ

$$v = v_o \left(\frac{v + v_0}{v + v_s} \right)$$

এখানে, *v* হল মাধ্যমে শব্দের বেগ, *v*, মাধ্যমের সাপেক্ষে পর্যবেক্ষকের বেগ এবং *v*, মাধ্যমের সাপেক্ষে উৎসের বেগ। এ সূত্রটি ব্যবহারের ক্ষেত্রে OS অভিমুখী বেগসমূহকে ধনাত্মক এবং এর বিপরীত অভিমুখী বেগসমূহকে ঋণাত্মক ধরা হবে।

ভৌত রাশি	চহ্ন	মাত্রা	একক	মন্তব্য
তরজ্ঞা দৈর্ঘ্য	λ	[L]	m	পরপর দুটি সমদশা সম্পন্ন বিন্দুর মধ্যবর্তী দূরত্ব
বিস্তার ধ্রুবক	k	$[L^{-1}]$	m^{-1}	$k = \frac{2\pi}{\lambda}$
তরজ্ঞাবেগ	υ	$[LT^{-1}]$	$\mathbf{m}\;\mathbf{s}^{^{-1}}$	$v = v\lambda$
স্বরকস্পের কম্পাঙ্ক	v_{beat}	$[T^{-1}]$	\mathbf{S}^{-1}	উ পরিপাতিত তরঙ্গদ্বয়ের কাছাকাছি দুটি কম্পাঞ্চের পার্থক্য

ভেবে দেখার বিষয়সমূহ

- তরঙ্গা মাধ্যমের মধ্যে পদার্থের সামগ্রিক গতি নয়। বায়ু মাধ্যমে শব্দতরঙ্গা হতে বায়ুপ্রবাহ ভিন্ন। বায়ুপ্রবাহের সাথে বায়ুর একস্থান থেকে অন্যস্থানে বায়ুর গতি জড়িত। বায়ুস্তর সমূহের ঘনীভবন (compressions) ও তনুভবনের (rarefactions) ফলে শব্দ তরঙ্গোর সঞ্চালন ঘটে।
- 2. তরঙ্গো, এক বিন্দু থেকে অন্য বিন্দুতে শক্তির সঞ্চালন ঘটে কিন্তু পদার্থের নয়।
- মাধ্যমের পাশাপাশি থাকা স্পন্দনশীল অংশগুলোর মধ্যে ক্রিয়াশীল স্থিতিস্থাপক বলের সংযোগের ফলেই শক্তির সঞ্জালন ঘটে।
- শুধুমাত্র স্থিতিস্থাপক কৃন্তন গুণাজ্ঞ্ব (shear modulus) বিশিষ্ট মাধ্যমেই তির্যক তরঙ্গা বিস্তারলাভ করতে পারে। অনুদৈর্ঘ্য তরঙ্গোর ক্ষেত্রে স্থিতিস্থাপকতার আয়তন বিকার গুণাঙ্গ্রের (bulk modulus) প্রয়োজন হয় এবং তাই কঠিন, তরল ও গ্যাস সব মাধ্যমেই অনুদৈর্ঘ্য তরঙ্গোর বিস্তারলাভ সম্ভব।
- 5. কোনো প্রদন্ত কম্পাজ্জের একটি দোল চলতরজ্ঞার ক্ষেত্রে মাধ্যমের সব কণাই সমবিস্তার সম্পন্ন হয় কিন্তু সময়ের কোনো নির্দিন্ট মুহূর্তে ওদের দশা বিভিন্ন হয়। স্নানুতরজ্ঞোর ক্ষেত্রে, পরপর দুটি নিঃস্পন্দ বিন্দুর মধ্যবর্তী অংশের কণাগুলো সময়ের কোনো নির্দিন্ট মুহূর্তে, সমদশা সম্পন্ন হয় কিন্তু ওদের বিস্তার বিভিন্ন হয়।
- কোনো মাধ্যমে স্থির অবস্থায় থাকা কোনো পর্যবেক্ষকের সাপেক্ষে ওই মাধ্যমে যান্ত্রিক তরজের বেগ শুধুমাত্র মাধ্যমের স্থিতিস্থাপকতা ও অন্যান্য ধর্মাবলির (যেমন, ভর ঘণত্ব) উপর নির্ভর করে। কিন্তু এটি কোনোভাবেই উৎসের বেগের উপর নির্ভর করে না।
- মাধ্যমের সাপেক্ষে v, বেগে গতিশীল কোনো পর্যবেক্ষকের ক্ষেত্রে তরঙ্গের আপাত বেগ, অবশ্যই প্রকৃত বেগের থেকে ভিন্ন হয় এবং ওই বেগ v ± v, হয়।

অনুশীলনী

- 15.1
 2.50 kg ভরের একটি তারকে 200 N টানে রাখা আছে। টান করা তারটির দৈর্ঘ্য 20.0 m। তারটির একপ্রান্তে অনুপ্রস্থাভাবে সামান্য ঝাঁকুনি দিলে সে আলোড়ন তারের অপরপ্রান্তে পৌঁছাতে কত সময় নেবে ?
- 15.2 300 m উঁচু কোনো স্তন্তের উপর থেকে ফেলা একটি পাথর স্তন্তের পাদদেশের একটি পুকুরের জলে পড়ল। কত সময় পর স্তন্তের চূঁড়ায় জল ছিটানোর শব্দ শোনা যাবে ? দেওয়া আছে বায়ুতে শব্দের দ্রুতি 340 m s⁻¹, (g = 9.8 m s⁻²)।
- 15.3 একটি ইস্পাততারের দৈর্ঘ্য 12.0 m এবং ভর 2.10 kg. । তারে কত টান প্রয়োগ করলে তারটিতে তির্যক তরঞ্চোর দুতি 20<u>°C</u> উন্নতার শুষ্ক বায়ুতে শব্দের দুতি 343 m s⁻¹ -এর সমান হবে ?

15.4 v =
$$\sqrt{\frac{\gamma r}{r}}$$
 সূত্র প্রয়োগ করে ব্যাখ্যা করো, কেন বায়ুতে শব্দের দ্রুতি

- (a) চাপ নিরপেক্ষ,
- (b) উন্নতা বৃদ্ধিতে বৃদ্ধি পায়,
- (c) আর্দ্রতা বৃদ্ধিতে বৃদ্ধি পায়।
- 15.5 তোমরা শিখেছ যে, কোনো একটি একমাত্রিক চলতরঙ্গাকে y = f (x, t) অপেক্ষক দ্বারা প্রকাশ করা হয়; যেখানে x এবং t অবশ্যই x + v t এবং x v t এর সমন্বিতরূপে থাকে অর্থাৎ y = f (x ± v t) । এর বিপরীত বন্তুব্যটি সত্য কি ? নিচে দেওয়া y এর অপেক্ষকগুলোকে যাচাই করে বলো এরা সম্ভাব্য কোনো চলতরঙ্গাকে প্রকাশ করে কিনা
 - (a) $(x vt)^2$
 - (b) $\log [(x + vt)/x_0]$
 - (c) 1/(x + vt)
- 15.6 একটি বাদুর বায়ুতে 1000 kHz কম্পাঙ্কের শব্দোত্তর শব্দ নিঃসরণ করে। যদি শব্দটি কোনো জলতলের সম্মুখীন হয় তবে (a) প্রতিফলিত শব্দের, (b) জলে প্রতিসৃত শব্দের তরঙ্গা দৈর্ঘ্য কতো হবে ? বায়ু ও জলে শব্দের দ্রুতি যথাক্রমে 340 m s⁻¹ এবং 1486 m s⁻¹।
- 15.7
 এক হাসপাতালে দেহকলায় টিউমারের অবস্থান নির্ণয়ে শব্দোত্তর স্ক্যানার (ultrasonic scanner) ব্যবহৃত হয়।

 যে দেহকলায় শব্দের বেগ 1.7 km s⁻¹ সে দেহকলায় শব্দের তরঙ্গা দৈর্ঘ্য কত হবে?
- 15.8 একটি তারে একটি তির্যক দোলতরঙ্গাকে নিচের সমীকরণ দ্বারা প্রকাশ করা যায়

 $y(x, t) = 3.0 \sin (36 t + 0.018 x + \pi/4)$

যেখানে, x এবং y, cm এককে এবং t sec এককে প্রকাশিত। বাম থেকে ডানদিকে x এর অভিমুখ ধনাত্মক।

(a) তরজাটি চল তরজা না স্থানুতরজা?

যদি এটি একটি চলতরঙ্গা হয়, এর সঞ্জালনের দ্রুতি ও অভিমুখ কী হবে?

- (b) তরজাটির বিস্তার ও কম্পাজ্ঞ্ব কত ?
- (c) মূলবিন্দুতে তরঙ্গাটির প্রারম্ভিক দশা কত?
- (d) তরঙ্গাটিতে পরপর দুটি তরঙ্গাশীর্ষের মধ্যবর্তী ন্যূনতম দূরত্ব কত?
- 15.9 15.8 অনুশীলনীতে বর্ণিত তরজোর ক্ষেত্রে x = 0, 2 এবং 4 cm এরজন্য সরণ (y) বনাম সময় (t) লেখচিত্র আঁকো। এ লেখচিত্রগুলোর আকৃতি কীরূপ ? কোন্ প্রেক্ষিতে কোনো চলতরজো কণার দোলন এক বিন্দু হতে অন্য বিন্দুতে পৃথক হয় : বিস্তার, কম্পাঙ্ক না দশা ?

15.10 কোনো চলতরজোর সমীকরণ

 $y(x, t) = 2.0 \cos 2\pi \left(10t - 0.0080 x + 0.35\right)$

যেখানে x এবং y, cm এককে এবং t, s এককে প্রকাশিত। তরঙ্গটির দুটি বিন্দুর দোলনের দশা পার্থক্য নির্ণয় করো যখন বিন্দু দুটির দূরত্ব

- (a) 4 m,
- (b) 0.5 m,
- (c) $\lambda/2$,
- (d) 3λ/4
- 15.11 দুপ্রান্তে দৃঢ়ভাবে আটকানো একটি তারের তির্যক সরণ

 $y(x, t) = 0.06 \sin\left(\frac{2\pi}{3}x\right) \cos(120 \pi t)$

যেখানে, x ও y m এককে এবং t, s এককে প্রকাশিত। তারটির দৈর্ঘ্য 1.5 m এবং এর ভর 3.0 ×10⁻² kg। নীচের প্রশ্নগুলো উত্তর দাও :

- (a) অপেক্ষকটি চলতরঙ্গাকে প্রকাশ করে না কি স্থানুতরঙ্গাকে?
- (b) পরস্পর বিপরীত দিকে গতিশীল দুটি তরজোর উপরিপাতনের ফলে সৃষ্ট তরজারুপে একে ব্যাখ্যা করো। প্রত্যেক তরজোর তরজা দৈর্ঘ্য কম্পাজ্ফ এবং তরজা দুতি নির্ণয় করো।
- (c) তারটির টান নির্ণয় করো।
- 15.12 (i) 15.11 অনুশীলনীতে বর্ণিত তারে উৎপন্ন তরজোর ক্ষেত্রে তারের প্রত্যেকটি বিন্দুই কি একই (a) কম্পার্জে,
 (b) দশায়, (c) বিস্তারে কম্পিত হয় ? তোমার উত্তরটি ব্যাখ্যা করো। (ii) কোনো একপ্রান্ত হতে 0.375 m দূরের কোনো একটি বিন্দুতে কম্পনবিস্তার কত ?
- 15.13 নীচে x ও t এর কিছু অপেক্ষক দেওয়া হল যারা কোনো স্থিতিস্থাপক তরজোর (তির্যক বা অনুদৈর্ঘ্য) সরণকে প্রকাশ করে। এদের কোনটি (i) একটি চলতরজাকে, (ii) একটি স্থানুতরজাকে বা (iii) কোনোরূপ তরজাকেই প্রকাশ করে না :
 - (a) $y = 2 \cos(3x) \sin(10t)$
 - (b) $y = 2\sqrt{x vt}$
 - (c) $y = 3 \sin (5x 0.5t) + 4 \cos (5x 0.5t)$
 - (d) $y = \cos x \sin t + \cos 2x \sin 2t$
- 15.14
 দুটি দৃঢ় অবলম্বনের মাঝে টান করে রাখা একটি তার 45 Hz , মূলসুরের কম্পাঙ্কে কম্পিত হচ্ছে। তারটির ভর

 3.5 × 10⁻² kg এবং এর রৈখিক ভর ঘনত্ব 4.0 × 10⁻² kg m⁻¹ । (a) তারটিতে তির্যক তরঙ্গোর দ্রুতি এবং (b)

 তারের টান কত ?
- 15.15 এক মিটার লম্বা একটি নলের একপ্রান্ত খোলা, অপর প্রান্তে একটি চলনক্ষম পিশ্টন যুক্ত আছে। একটি স্থির কম্পাজ্জের উৎস 340 Hz কম্পাজ্জের সুরশলাকার সাথে নলটিতে যখন বায়ুস্তন্তের দৈর্ঘ্য 25.5 cm এবং 79.3 cm হয় তখন অনুনাদ সৃষ্টি করে। পরীক্ষাকালীন তাপমাত্রায় বায়ুতে শব্দের বেগ নির্ণয় করো। (প্রান্তিয় ত্রুটি উপেক্ষণীয়)।
- 15.16 100 cm দীর্ঘ একটি ইস্পাত দণ্ড ঠিক মাঝখানে দৃঢ় করে আটকানো আছে। দণ্ডটির অনুদৈর্ঘ্য কম্পনের মূলসুরের কম্পাঙ্ক 2.53 kHz হলে ইস্পাতে শব্দের দ্রুতি কত ?

- 15.17
 20 cm দীর্ঘ একটি নলের একমুখ বন্দ্ব। নলটির কোন সমমেল একটি 430 Hz উৎসের সাথে অনুনাদ সৃষ্টি করে ?

 নলটি উভয় প্রান্ত খোলা হলে, একই উৎস নলটির সাথে অনুনাদী হবে কি ? (বায়ুতে শব্দের দুতি 340 m s⁻¹)।
- 15.18 দুটি সেতার তার A ও B তে 'গা' সুরটি সামান্য সুর পার্থক্যে বেজে 6 Hz কম্পাঙ্কের স্বরকম্প সৃষ্টি করে। A তারে টান সামান্য কমানো হলে দেখা যায় স্বরকম্পের কম্পাঙ্ক কমে 3 Hz হয়। A তারের প্রকৃত কম্পাঙ্ক 324 Hz হলে B তারের কম্পাঙ্ক কত ?
- 15.19 ব্যাখ্যা করো কেন (অথবা কীভাবে) :
 - (a) শব্দ তরজো একটি সরণের নিঃস্পন্দ বিন্দু হলো চাপের সুস্পদ বিন্দু এবং বিপরীতক্রমেও এটি সত্য,
 - (b) কোনো 'চোখ' ছাড়াই বাদুর কোন প্রতিবন্ধকের দূরত্ব, দিক, প্রকৃতি ও আকৃতি নিরূপণ করতে পারে,
 - (c) একটি বেহালা ও একটি সেতারের সুরের কম্পাঞ্চ একই, তথাপি আমরা সুর দুটির পার্থক্য বুঝতে পারি,
 - (d) কঠিন মাধ্যমে অনুদৈর্ঘ্য ও তির্যক উভয় প্রকার তরঙ্গা বিস্তারলাভ করে, কিন্তু গ্যাসীয় মাধ্যমে শুধুমাত্র অনুদৈর্ঘ্য তরঙ্গা বিস্তারলাভ করে, এবং
 - (e) কোনো বিচ্ছুরক মাধ্যমের মধ্যদিয়ে বিস্তারকালে স্পন্দনের আকৃতির বিকৃত হয়।
- একটি রেল স্টেশনের বাইরের সিগন্যাল এ দাঁড়ানো একটি ট্রেন স্থির বায়ুতে 400 Hz কম্পাজ্জের বাঁশি বাজাচ্ছে।
 (i) প্ল্যাটফর্মে দাঁড়ানো পর্যবেক্ষকের কাছে ওই বাঁশির কম্পাজ্জ কত হবে, যখন ট্রেনটি (a) 10 m s⁻¹ দ্রুতিতে প্ল্যাটফর্মের দিকে অগ্রসর হয়, (b) 10 m s⁻¹ দ্রুতিতে প্ল্যাটফর্ম থেকে দূরে সরে যায়? (ii) প্রতিটি ক্ষেত্রে শব্দের দ্রুতি কতো? ধরে নাও, স্থির বায়ুতে শব্দের দ্রুতি 340 m s⁻¹।
- 15.21 স্টেশন চত্বরে দাঁড়ানো একটি ট্রেন স্থির বায়ুতে 400 Hz কম্পাঙ্কের একটি বাঁশি (হুইসেল) বাজাচ্ছে। স্টেশন চত্বর থেকে স্টেশানের অভিমুখে 10 m s⁻¹ দ্রুতিতে বাতাস বইতে শুরু করলো। স্টেশান প্ল্যাটফর্মে দাঁড়ানো একজন পর্যবেক্ষকের কাছে বাঁশির শব্দের কম্পাঙ্ক, তরঙ্গাদৈর্ঘ্য এবং বেগ কতো? যদি বায়ুস্থির থাকত এবং পর্যবেক্ষক স্টেশানচত্বরের দিকে 10 m s⁻¹ দ্রুতিতে দৌড়াতো, সেক্ষেত্রেও কী ঠিক অনুরূপ অবস্থার সৃষ্টি হতো? ধরে নাও, স্থির বায়ুতে শব্দের দ্রুতি 340 m s⁻¹।

অতিরিক্ত অনুশীলনী

15.22 কোনো তারে সৃষ্ট চল দোল তরঙ্গাকে নীচের সমীকরণ দ্বারা প্রকাশ করা যায়—

 $y(x, t) = 7.5 \sin (0.0050x + 12t + \pi/4)$

- (a) *t* = 1 s এ *x* = 1 cm অবস্থানে কোনো বিন্দুর দোলন বিস্তার এবং বেগ কত ? এ বেগ কী তরঙ্গের বিস্তারের বেগের সমান ?
- (b) তারের সেসব বিন্দুর অবস্থান চিহ্নিত করো, যে সব বিন্দুতে অনুপ্রস্থ সরণ ও বেগ t = 2 s, 5 s এবং 11 s সময়ে তারের x = 1 cm বিন্দুতে যে অনুপ্রস্থ সরণ ও বেগ ছিল তার সমান।
- 15.23 ক্ষণস্থায়ী একটি শব্দস্পন্দন (উদাহরণ স্বরূপ বাঁশির একটি পিপ (pip) শব্দ) মাধ্যমের মধ্য দিয়ে পাঠানো হলো। (a) স্পন্দনটির কি কোনো নির্দিষ্ট (i) কম্পাজ্জ, (ii) তরজা দৈর্ঘ্য, (iii) বিস্তার দ্রুতি আছে? (b) স্পন্দন হার প্রতি 20 s পর 1 বার হয় (অর্থাৎ প্রতি 20 s পরপর মুহূর্তের জন্য বাঁশিটি বাজানো হল) তবে কী বাঁশির দ্বারা সৃষ্ট সুরের কম্পাজ্ক 1/20 বা 0.05 Hz হবে?
- 15.24 8.0 × 10⁻³ kg m⁻¹ রৈখিক ভর ঘনত্বের একটি লম্বা তারের একপ্রান্ত 256 Hz কম্পাঙ্কের একটি তড়িৎচালিত সুরশলীকার সাথে যুক্ত করা আছে। তারটির অপর প্রান্ত একটি কপিকলের উপর দিয়ে গিয়ে 90 kg ভর সমন্বিত একটি তুলাপাত্রের সাথে দৃঢ়ভাবে আটকানো। কপিকল প্রান্ত আগত শক্তির পুরোটাই শোষণ করে নেয় যেন ওই

প্রান্তে প্রতিফলিত তরঙ্গের বিস্তার নগণ্য হয়। *t* = 0 সময়ে তারের বাঁ প্রান্তে (সুরশলীকা প্রান্তে) *x* = 0 অবস্থানে তির্যক সরণ (transverse displacement) *y* = 0 হয় এবং *y*-অক্ষের ধনাত্মক অভিমুখ বরাবর অগ্রসর হয়। তরঙ্গাটির বিস্তার 5.0 cm । তির্যক সরণ *y* কে *x* এবং *t* এর অপেক্ষকরুপে লেখো যেন সে অপেক্ষকটি তারে উৎপন্ন তরঙ্গাকে প্রকাশ করে।

- 15.25
 একটি ডুবোজাহাজ এর সাথে যুক্ত ব্যবস্থা 40.0 kHz কম্পাঙ্কে কাজ করছে। একটি শত্রু পক্ষের ডুবো জাহাজ ওই

 SONAR ব্যবস্থার দিকে 360 km h⁻¹ বেগে অগ্রসর হচ্ছে। SONAR থেকে নির্গত তরঙ্গা ওই শত্রু ডুবোজাহাজ

 থেকে প্রতিফলিত হলো। প্রতিফলিত তরঙ্গোর কম্পাঙ্ক কত হবে? ধরে নাও জলে শব্দের দ্রুতি 1450 m s⁻¹।
- 15.26 ভূমিকম্প পৃথিবীর অভ্যন্তরে শব্দতরঙ্গা উৎপন্ন করে। পৃথিবী তির্যক (S) এবং অনুদৈর্ঘ্য (P) উভয় প্রকার তরঙ্গাকে সঞ্চালিত করতে পারে। প্রতীকী S তরঙ্গোর দ্রুতি প্রায় 4.0 km s⁻¹ এবং P তরঙ্গোর দ্রুতি 8.0 km s⁻¹। একটি সিসমোগ্রাফ কোনো এক ভূমিকম্পের উভয় তরঙ্গাকে নথিভুক্ত করে। প্রথম P তরঙ্গা, প্রথম S তরঙ্গোর 4 min পূর্বে পৌঁছায়। তরঙ্গাগুলো সরলরেখায় চলে ধরে নিয়ে, কত দূরত্বে ভূমিকম্পের সৃষ্টি হয়েছে নির্ণয় করো।
- 15.27 একটি গুহার মধ্যে একটি বাদুর শব্দোত্তর তরঙ্গা নিঃসৃত করতে করতে অস্থিরভাবে উড়ে বেড়াচ্ছে। ধরে নাও বাদুরের নিঃসৃত শব্দের কম্পাঙ্ক 40 kHz। সম্মুখস্থ একটি সমতল দেওয়ালের দিকে সরাসরি প্রথম ছোঁ মারার সময় বাদুরটির বেগ বায়ুতে শব্দের বেগের 0.03 গুণ ছিল। দেওয়াল থেকে প্রতিফলিত কত কম্পাঙ্কের শব্দ বাদুরটি শুনতে পায় ?

উত্তরমালা

অধ্যায় : নবম

- **9.1** 1.8
- 9.2 (a) প্রদত্ত লেখচিত্র থেকে $150 imes 10^6 \ {
 m M} \ {
 m m}^{-2}$ পীড়নের জন্য বিকৃতি হল $\ 0.002$
 - (b) পদার্থটির পরাভব পীড়নের (yield strength) মান হলো $3 imes 10^8$ N m $^{-2}$ (প্রায়)।
- 9.3 (a) পদার্থ (A)।
 - (b) কোনো বস্তুর দৃঢ়তা বলতে বুঝায় সর্বোচ্চ কত পীড়নের উপর এতে স্থায়ী ফাটলের সৃষ্টি হয়। পদার্থ (A), পদার্থ (B) অপেক্ষা বেশি দৃঢ়।
- 9.4 (a) ভুল (b) সঠিক
- **9.5** 1.5 × 10⁻⁴ m (স্টিল); 1.3 × 10⁻⁴ m (পিতল)।
- **9.6** বিক্ষেপন = 4×10^{-6} m
- **9.7** 2.8×10^{-6}
- **9.8** 0.127
- **9.9** 7.07×10^4 N
- **9.10** D_{তামা}/D_{লোহা} = 1.25
- **9.11** $1.539 \times 10^{-4} \text{ m}$
- **9.12** 2.026×10^9 Pa
- **9.13** $1.034 \times 10^3 \text{ kg/m}^3$
- **9.14** 0.0027
- **9.15** 0.058 cm³
- **9.16** $2.2 \times 10^6 \,\text{N/m}^2$

- 9.17 নেহাই-এর তীক্ষ্ণ প্রান্তে চাপ হলো $2.5 imes 10^{11} \, {
 m Pa}$
- **9.18** (a) 0.7 m (b) 0.43 m স্টিলের তারের জন্য,
- 9.19 প্রায় 0.01 m
- 9.20 260 kN
- **9.21** $2.51 \times 10^{-4} \, m^3$

অধ্যায় : দশম

- 10.3 (a) হ্রাস পাবে, (b) উন্নতা বৃষ্ধির সঙ্গে গ্যাসের সান্দ্রতাংক বৃষ্ধি পায়, কিন্তু তরলের সান্দ্রতাংক হ্রাস পায়, (c) কৃন্তন বিকৃতি, কৃন্তন বিকৃতির হার, (d) ভরের সংরক্ষণ নীতি, বার্নোলির সমীকরণ, (e) বেশি।
- **10.5** 6.2×10^6 Pa
- **10.6** 10.5 m
- 10.7 সমুদ্রের ওই নির্দিষ্ট গভীরতায় চাপ প্রায় 3 × 10⁷ Pa। এই গঠনটির গ্রহণযোগ্যতা বেশি কারণ এটা বেশি চাপ বা পীড়ন সহ্য করতে পারে।
- **10.8** 6.92 × 10⁵ Pa
- **10.9** 0.800
- 10.10 স্পিরিটপূর্ণ বাহুতে পারদ উপরে উঠবে। পারদের তলের পার্থক্য হবে 0.221 cm।
- 10.11 না, বার্নোলির উপপাদ্য কেবলমাত্র ধারারেখ প্রবাহ বা শান্ত প্রবাহের ক্ষেত্রে প্রযোজ্য।
- 10.12 না, যে দুটি বিন্দুতে বার্নোলির সমীকরণ প্রয়োগ করা হচ্ছে, ওই দুটি বিন্দুতে বায়ুমণ্ডলীয় চাপ যতক্ষণ না পর্যন্ত তাৎপর্যপূর্ণভাবে পথক হয়।
- 10.13 9.8 × 10² Pa (যেহেতু রেনল্ডস-এর সংখ্যা প্রায় 0.3 হয়, তাই প্রবাহটি স্তরিত বা শান্ত প্রবাহ হবে।)
- **10.14** 1.5×10^3 N
- 10.15 চিত্র (a) টি সঠিক নয় (কারণ, নলের ক্ষুদ্র প্রস্থচ্ছেদের ক্ষেত্রফলের জন্য তরলের দ্রুতি বেশি হয়, ভরের সংরক্ষণ নীতি অনুযায়ি। আবার বার্নোলির উপপাদ্য অনুযায়ি ওই বিন্দুতে চাপ কম হবে। আমরা তললটিকে অসংনম্য বিবেচনা করেছি)।
- **10.16** 0.64 m s⁻¹
- **10.17** $2.5 \times 10^{-2} \text{ N m}^{-1}$
- 10.18 4.5 × 10⁻² N | (b) এবং (c) এর জন্য, (a) এর জন্য একই।
- 10.19 অতিরিক্ত চাপ = 310 Pa, মোট চাপ = 1.0131 × 10⁵ Pa। যেহেতু তথ্যগুলো তিনঘর তাৎপর্যপূর্ণ অংক সংখ্যা পর্যন্ত সঠিক, তাই তরল ফোঁটাটির অভ্যন্তরে মোট চাপ 1.01 × 10⁵ Pa।
- 10.20 সাবানের বুদবুদের অভ্যন্তরে অতিরিস্তু চাপ হল 20.0 Pa। সাবানের জলে বায়ু বুদবুদের ভিতরে অতিরিস্তু চাপ = 10.0 Pa। বায়ু বুদবুদের বাইরে চাপ = 1.01 × 10⁵ + 0.4 × 10³ × 9.8 × 1.2 = 1.06 × 10⁵ Pa । অতিরিস্তু চাপ (তিনটি তাৎপর্য পূর্ণ অংক সংখ্যা পর্যন্ত) এতো ক্ষুদ্র হয় যে, বায়ু বুদবুদের ভিতরে মোট চাপ হবে 1.06 × 10⁵ Pa ।
- 10.21 55 N (উল্লেখ্য : পাত্রের প্রস্থচ্ছেদের ক্ষেত্রফল এই ফলাফলকে প্রভাবিত করে না)।
- 10.22 (a) পরম চাপ = 96 cm উচ্চতায় পারদস্তন্তের চাপ, গজ চাপ = 20 cm উচ্চতায় পারদস্তন্তের চাপ (a) এর জন্য। পরম চাপ = 58 cm উচ্চতায় পারদস্তন্তের চাপ, গজ চাপ = -18 cm উচ্চতায় পারদস্তন্তের চাপ, (b) এর জন্য।
 - (b) বাম দিকের বাহুতে পারদ উপরে উঠবে যাতে দুটি বাহুতে পারদের তলের উচ্চতার পার্থক্য 19 cm হয়।
- 10.23 সমান প্রস্থচ্ছেদের ক্ষেত্রফলের দুটি তলে চাপ (এবং বল) সৃশ হবে। পাত্রের চারপাশের তলগুলো যদি ভূমির সাপেক্ষে উল্লম্ব না হয়, তবে পাত্রে অবস্থিত জল কর্তৃক দেওয়ালে প্রযুক্ত বলের একটি উল্লম্ব উপাংশ থাকবে। জল কর্তৃক দেওয়ালে প্রযুক্ত বলের মোট উল্লম্ব উপাংশ প্রথম পাত্রের ক্ষেত্রে দ্বিতীয় পাত্র অপেক্ষা তুলনামূলক বেশি হয়। তাই ওই দুটি পাত্রে ওজন বিভিন্ন, যদিও পাত্রগুলোর ভূমিতে একই পরিমাণ বল প্রযুক্ত হচ্ছে।

10.24 0.2 m

- 10.25 (a) চাপের অবনমন বেশি হবে। (b) প্রবাহের গতি বৃদ্ধির সঞ্চো এর গুরুত্ব বৃদ্ধি পায়।
- **10.26** (a) 0.98 m s⁻¹; (b) 1.24×10^{-5} m³ s⁻¹
- **10.27** 4393 kg
- **10.28** 5.8 cm s⁻¹, 3.9×10^{-10} N
- **10.29** 5.34 mm
- 10.30 প্রথম গর্তের জন্য, অবতল ও উত্তল তলের মধ্যে চাপের পার্থক্য = 2 × 7.3 × 10⁻² / 3 × 10⁻³ = 48.7 Pa । অনুরূপভাবে দ্বিতীয় গর্তের জন্য, চাপের পার্থক্য = 97.3 Pa ।

ফলে ওই দুটি গর্তে তরল স্তম্ভের লেভেলের বা তলের পার্থক্য [48.7 / ($10^3 imes 9.8$)] m = 5.0 mm.

সরু গর্তে তলটি একটু উপরে আছে। (বিশেষভাবে উল্লেখযোগ্য হবে যদি স্পর্শ কোণ শূন্য হয়, তরলের উপরিতলের বক্রতলের ব্যাসার্ধ এবং গর্তের ব্যাসার্ধ সমান হবে। উভয় গর্তের ক্ষেত্রে তররে অবতল অংশে বায়ুচাপ = 1 বায়ুমণ্ডলীয় চাপের সমান হবে)।

10.31 (b) 8 km, যদি উচ্চতার সঙ্গো অভিকর্ষজ ত্বরণের পরিবর্তনকে আমরা বিবেচনা করি, তবে উচ্চতাটি প্রায় 8.2 km হবে।

অধ্যায় : একাদশ

- 11.1 নিয়ন: -248.58 °C = -415.44 °F; CO₂: -56.60 °C = -69.88 °F
 - ($t_{\rm F} = \frac{9}{5} t_c + 32$) (এই সমীকরণকে ব্যবহার করে)
- **11.2** $T_{\rm A} = (4/7) T_{\rm B}$
- **11.3** 384.8 K
- 11.4 (a) ত্রিদশা বিন্দুর একটিই মাত্র উন্নতা থাকে। গলনাংক এবং স্ফুটনাংক চাপের উপর নির্ভরশীল। (b) আরেকটি স্থির বিন্দু হল পরম শূন্য উন্নতা। (c) ত্রিদশা বিন্দুর উচ্চতা হল 0.01°C, 0 °C উন্নতা নয়। (d) 491.69.
- 11.5 (a) T_A = 392.69 K, T_B = 391.98 K; (b) এই গরমিল হয়, কারণ গ্যাসগুলো আদর্শ গ্যাস নয়। এই গরমিলকে কমানোর জন্য নিম্ন থেকে নিম্নতর চাপের পাঠগুলো নিয়ে গ্যাসের ত্রিদশাবিন্দুতে পরিমিত তাপমাত্রা বনাম পরম চাপের লেখ অংকন করা উচিত এবং এর থেকে লেখ-বিস্তিৃতির (extrapolated method) পদ্ধতিতে চাপের প্রায় শূন্য সীমায় উন্নতা

নির্ণয় করতে হবে; যখন গ্যাসটি আদর্শ গ্যাসের কাছাকাছি আচরণ করে।

- 11.6 45.0 °C উন্নতায় একটি দণ্ডের প্রকৃত দৈর্ঘ্য = (63.0 + 0.0136) cm = 63.0136 cm । (তিনটি তাৎপর্যপূর্ণ সংখ্যা পর্যন্ত দণ্ডটির দৈর্ঘ্য বৃদ্ধি 0.0136 cm, কিন্তু দণ্ডটির তিনটি তাৎপর্যপূর্ণ সংখ্যা পর্যন্ত মোট দৈর্ঘ্য 63.0 cm, 27.0 °C উন্নতায় ওই একই দণ্ডের দৈর্ঘ্য = 63.0 cm)
- 11.7 যখন গাড়ির চাকার ভিতরের বেড়টিকে 69°C উয়তার ঠাণ্ডা করা হয়, তখন বাইরের চাকাটি বেড় বরাবর পিছলিয়ে যায়।
- **11.8** ব্যাসের বৃদ্ধি = 1.44×10^{-2} cm.
- **11.9** 3.8×10^2 N
- 11.10 যেহেতু দুটি দণ্ডের সংযুক্তিতে, এদের প্রান্তগুলো দৃঢ়ভাবে আটকানো নয়, তাই উভয় দণ্ড মুক্তভাবে প্রসারিত হতে পারে।

 $\Delta l_{\text{formal}} = 0.21 \text{ cm}, \Delta l_{\text{formal}} = 0.126 \text{ cm} = 0.13 \text{ cm}$

সুতরাং, দৈর্ঘ্যের মোট পরিবর্তন = 0.34 cm। দণ্ডগুলোর সংযোগ প্রান্তে কোনো তাপীয় পীড়ন উদ্ভব হবে না, কারণ ওই প্রান্তগুলো মুক্তভাবে প্রসারিত হয়।

- **11.11** 0.0147 = 1.5×10^{-2}
- **11.12** 103 °C
- **11.13** 1.5 kg
- **11.14** 0.43 J g ⁻¹ K⁻¹ ; ক্ষুদ্র।
- 11.15 গ্যাসগুলো দ্বিপরমাণুক এবং এদের রৈখিক গতির স্বাধীনতার মাত্রা ছাড়াও আরো অন্যান্য সম্ভাব্য গতির স্বাধীনতার মাত্রা থাকে (বিভিন্ন রকম গতির জন্য)। গ্যাসটিরগ উন্নতা একটি নির্দিন্ট মানে বৃদ্ধি করার জন্য, তাপশন্তির প্রয়োজন হয় এবং ওই সরবরাহকৃত তাপশন্তি সব ধরনের গতির গড় শন্তিকে বৃদ্ধি করে। ফলে দ্বিপরমাণুক গ্যাসের আনবিক আপেক্ষিক তাপ এক পরমাণুক গ্যাসের আপেক্ষিক তাপ অপেক্ষা বেশি হয়। যদি দ্বিপরমাণুক গ্যাসের ক্ষেত্রে আবর্তন গতি বিবেচনা করা হয়, তবে দেখানো যায়, দ্বিপরমামুক গ্যাসের আণবিক আপেক্ষিক তাপ প্রায় (5/2) R হয়, যা সারণিতে বর্ণিত ক্লোরিণ দ্বারা সকল গ্যাসের পর্যবেক্ষণে একই ফলাফল দেয়। ক্লোরিণের আণবিক আপেক্ষিক তাপ খুবই উচ্চ হয়। ক্লোরিণের আবর্তন গতি থাকে। অর্থাৎ ঘরের উন্নতায় যাকে কম্পন গতি বলে। ক্লোরিণের অণুর ঘরের উন্নতার আবর্তন গতি ছাড়াও কম্পন গতি থাকে। অর্থাৎ ঘরের উন্নতায় ক্লোরিণের অণুগুলো রৈখিক গতি, আবর্তন গতি, কম্পণ গতির অধিকারী হয়। তাই ক্লোরিণের অণুর আণবিক আপেক্ষিক তাপ বেশি হয়।
- **11.16** 4.3 g/min
- 11.17 3.7 kg
- 11.18 238 °C
- 11.20 9 min
- 11.21 (a) ত্রিদশা বিন্দুতে উন্নতা = 56.6 °C এবং চাপ = 5.11 বায়ুমগুলীয় চাপ (atm)।
 - (b) কার্বন ডাইঅক্সাইডের স্ফুটনাংক এবং কঠিনাংক, উভয়ই চাপ হ্রাসে, হ্রাস পায়।

(c) কার্বন ডাইঅক্সাইডের সংকট উন্নতা এবং চাপ যথাক্রমে 31.1 °C এবং 73.0 বায়ুমণ্ডলীয় চাপ। ওই উন্নতার উপরে CO₂ কে উচ্চ চাপ প্রয়োগ করেও তরলে রূপান্তরিত করা যাবে না।

(d) (a) বাম্প (b) কঠিন (c) তরল।

- 11.22 (a) না, বাষ্প সরাসরি কঠিনে ঘনীভূত হয় না।
 - (b) এটা তরল দশায় রূপান্তরিত হওয়া ছাড়াই কঠিনে সরাসরি ঘনীভূত হয়।
 - (c) এটা প্রথমে তরলে পরিণত হয় এবং এরপর বাম্পে পরিণত হয়। P-T লেখচিত্রে 10 বায়ুমণ্ডলীয় ধ্রুবক চাপে অনুভূমিক রেখাটি গলন বক্ররেখা ও বাষ্পীভবনের বক্ররেখাকে যে বিন্দুতে ছেদ করে, ওই বিন্দুগুলোই গলনাংক ও স্ফুটনাংক নির্দেশ করে।
 - (d) এটা তরলে রূপান্তরের কোনো সুস্পষ্ট নিদর্শন দেখাবে না। চাপ বৃদ্ধির ফলে এটি আদর্শ গ্যাসের আচরণ থেকে অনেক অনেক বেশি বিচ্যুত হয়।

অধ্যায় : দ্বাদশ

- **12.1** 16 g / min
- **12.2** 934 J
- **12.4** 2.64
- **12.5** 16.9 J
- 12.6 (a) 0.5 বায়ুমঙলীয় চাপ (b) শূন্য (c) শূন্য (আদর্শ গ্যাস বিবেচনা করা হয়েছে) (d) না, যেহেতু এই প্রক্রিয়াটি দ্রুত গতি সম্পন্ন এবং এটাকে নিয়ন্ত্রণ করা যায় না। মাঝখানের অবস্থাগুলো অস্থির সাম্যবস্থায় থাকে এবং গ্যাসের সমীকরণকে মানে না। এই অবস্থায় গ্যাসটি সুস্থির সাম্যে ফিরে আসতে পারে।
- **12.7** 15%, 3.1×10⁹ J
- **12.8** 25 W
- **12.9** 450 J
- **12.10** 10.4

অধ্যায় : ত্রয়োদশ

- **13.1** 4 × 10⁻⁴
- 13.3 (a) বিন্দু অঞ্চিত (dotted) লেখচিত্রটি আনুষঞ্জিক আদর্শ গ্যাস আচরণকে প্রকাশ করে; (b) T₁ > T₂; (c) 0.26 J K⁻¹;
 (d) না, 6.3 × 10⁻⁵ kg ভরের হাইড্রোজেন গ্যাস একই মান দেবে।
- **13.4** 0.14 kg
- **13.5** $5.3 \times 10^{-6} \text{ m}^3$
- **13.6** 6.10 × 10²⁶
- **13.7** (a) 6.2×10^{-21} J (b) 1.24×10^{-19} J (c) 2.1×10^{-16} J

- 13.8 হ্যাঁ, অ্যাভোগাড্রোর সূত্র অনুযায়ী। না, তিনটি গ্যাসের মধ্যে সবচেয়ে হালকা গ্যাসটির অণুগুলোর r.m.s. গতিবেগ ($v_{
 m rms}$) সবচেয়ে বেশি হবে: নিয়ন।
- **13.9** $2.52 \times 10^3 \,\mathrm{K}$
- 13.10 গড়মুক্ত পথের রাশিমালাটি ব্যবহার করে পাই,

$$\bar{l} = \frac{1}{\sqrt{2}\pi nd^2}$$

যেখানে d হল একটি অণুর ব্যাস। প্রদন্ত চাপ ও উন্নতায় $N/V = 5.10 \times 10^{25} \text{ m}^{-3}$ এবং $\overline{l} = 1.0 \times 10^{-7} \text{ m}, v_{\text{rms}} = 5.1 \times 10^2 \text{ m s}^{-1}$.

সংঘাত কম্পাঞ্চ = $\frac{v_{\rm rms}}{\bar{l}} = 5.1 \times 10^9 \,{\rm s}^{-1}$ । সংঘাতের জন্য সময় অবকাশ = $d / v_{\rm rms} = 4 \times 10^{-13} \,{\rm s}$ । পর পর দুটি সংঘাতের মধ্যে সময়কাল = $1 / v_{\rm rms} = 2 \times 10^{-10} \,{\rm s}$ । তাই পর পর দুইটি সংঘাতের মধ্যে সময়কাল, একটি সংঘাতের জন্য ব্যয়িত সময়ের 500 গুণ । তাই গ্যাসের অণু বেশিরভাগ সময়ই মুক্তভাবে সঞ্জরণশীল ।

- 13.11 প্রায় 24 cm দৈর্ঘ্যের পারদস্তম্ভ বেরিয়ে যাবে। 52 cm দৈর্ঘ্যের পারদ স্তম্ভ এবং এর উপরে 48 cm দৈর্ঘ্যের বায়ুস্তন্ডের মোট চাপ বাইরের বায়ুচাপের সঙ্গে সাম্যাবস্থায় থাকবে। (এইক্ষেত্রে উন্নতার কোনো পরিবর্তন বিবেচনা করা হয়নি।)
- 13.12 অক্সিজেন
- 13.14 কার্বন [1.29 Å]; স্বর্ণ [1.59 Å]; তরল নাইট্রোজেন [1.77 Å]; লিথিয়াম [1.73 Å]; তরল ফ্রোরিন [1.88 Å]

অধ্যায় : চতুদর্শ

- **14.1** (b), (c)
- 14.2 (b) এবং (c): সরল দোলগতি; (a) এবং (d) পর্যায়বৃত্ত গতি নির্দেশ করে কিন্তু সরলদোলগতি নির্দেশ করে না। (একটি বহু পরমাণুক অণুর অনেকগুলো নিজস্ব কম্পাংক থাকে। সাধারণত এদের কম্পন অনেকগুলো বিভিন্ন কম্পাংকের সরল দোলগতির উপরিপাতনের ফলে হয়। এই উপরিপাতন পর্যায়বৃত্ত হয় কিন্তু সরল দোলগতি হয় না।)
- 14.3 (b) এবং (d) হল পর্যায়বৃত্ত গতি এবং প্রতিটির পর্যায়কাল 2 সেকেণ্ড; (a) এবং (c) পর্যায়বৃত্ত গতি নয়। [(c) এর ক্ষেত্রে উল্লেখ্য একটি অবস্থানের বারংবার পরিবর্তনই পর্যায়বৃত্ত গতির জন্য যথেন্ট নয়, এক পর্যায়কালের মধ্যে সম্পূর্ণ গতিটি একের পর এক পুনরাবৃত্তি হবে]।
- 14.4 (a) সরল দোলন, $T = (2\pi/\omega)$; (b) পর্যায়বৃত্ত, $T = (2\pi/\omega)$ কিন্তু সরলদোলগতি নয়; (c) সরল দোলন, $T = (\pi/\omega)$; (d) পর্যায়বৃত্ত, $T = (2\pi/\omega)$ কিন্তু সরল দোলগতি নয়; (e) পর্যায়বৃত্ত নয় ; (f) পর্যায়বৃত্ত নয় (বাস্তবে গ্রহণযোগ্য নয়, কারণ $t \to \infty$ হলে, ওই অপেক্ষকটি অসীম হবে)।
- **14.5** (a) 0, +, +; (b) 0, -, -; (c) -, 0,0; (d) -, -, -; (e) +, +, +; (f) -, -, -|
- 14.6 (c) সরলদোলগতি প্রকাশ করে।
- **14.7** A = $\sqrt{2}$ cm, $\phi = 7\pi/4$; B = $\sqrt{2}$ cm, $a = \pi/4$.
- **14.8** 219 N

400

14.9 কম্পাংক $3.2~{
m Hz}$; কণাটির সর্বোচ্চ ত্বরণ $8.0~{
m m~s^{-2}}$; কণাটির সর্বোচ্চ দ্রুতি $0.4~{
m m~s^{-1}}$ ।

14.10 (a)
$$x = 2 \sin 20t$$

(b) $x = 2 \cos 20t$

(c) $x = -2 \cos 20t$

যেখানে x হল cm এককে। এই অপেক্ষকগুলোর বিস্তার এবং কম্পাংক একই, কিন্তু এদের প্রারম্ভিক দশা বিভিন্ন।

14.11 (a) x = - 3 sin πt যেখানে x হল cm এককে।

(b)
$$x = -2 \cos \frac{\pi}{2} t$$
 যেখানে x হল cm এককে

14.13 (a) (a) ও (b) উভয়ের জন্য F/k।

(b) (a) এর জন্য পর্যায়কাল
$$T=2\pi\sqrt{\frac{m}{k}}$$
 এবং (b) এর জন্য পর্যায়কাল $2\pi\sqrt{\frac{m}{2k}}$

14.14 100 m/min

14.15 8.4 s

- 14.16 (a) একটি সরল দোলকের জন্য k এর মান, m এর সঙ্গো সমানুপাতিক, তাই m অপসারিত হয়।
 - (b) sin θ < θ; প্রত্যানায়ক বল mg sin θ কে mgθ দ্বারা প্রতিস্থাপিত করা হল, বেশি বিক্ষেপণ কোণের জন্য, g এর মান কমে এবং তাই পর্যায়কাল বৃদ্ধি পায়। T = 2π √ l/g, এই সমীকরণের জন্য sinθ = θ বিবেচনা করা হয়েছে।</p>
 - (c) হাঁা, একটি হাত্যড়ির কাটার ঘূর্ণন স্প্রিং ক্রিয়ার উপর নির্ভরশীল এবং তাই এতে অভিকর্ষজ ত্বরণের কোনো প্রভাব থাকে না।
 - (d) মুক্তভাবে পতনশীল ব্যক্তির ত্বরণ শূন্য, তাই এক্ষেত্রে কম্পাংক শূন্য।

14.17 T = 2π √ $\frac{l}{\sqrt{g^2 + v^4 \, / R^2}}$ (সংকেত : অনুভূমিক সমতলে ব্যাসার্ধমুখী ত্বরণের জন্য কার্য্যকরী অভিকর্ষজ ত্বরণের হ্রাস ঘটে।)

14.18 সাম্যাবস্থায় ভাসমান কর্কটির ওজন প্লবতা বলের সমান। কর্কটির x পরিমাণ অবনমনের জন্য ঊর্ধ্বমুখী লব্ধি বলের মান Axp_lg। তাই বল ধ্রুবক হল k = Ap_lg, m = Ahp । T = 2π √ m/k , এই সমীকরণটিতে (k, m) ব্যবহার করে উপরের সময়কালের রাশিমালা পাওয়া যায়।

14.19 যখন উভয় প্রান্ত বায়ু মাধ্যমের দিকে খোলা থাকে, তখন দুই বাহুতে তরল তলের পার্থক্য হল h, তরল স্তন্তে লব্ধি বল হল

,Ah
ho g, যেখানে A হল নলের প্রস্থচ্ছেদের ক্ষেত্রফল এবং ho হল তরলের ঘনত্ব। যেহেতু প্রত্যানয়ক বল h এর সঙ্গো সমানুপাতিক, তাই গতিটি সরল দোলগতি হবে।

14.20 $T = 2\pi \sqrt{\frac{Vm}{Ba^2}}$ যেখানে B হল বায়ুর আয়তন বিকৃতি গুণাংক। সমোষ্ণ প্রক্রিয়ার ক্ষেত্রে B = P।

14.21 (a) 5×10^{4} N m⁻¹; (b) 1344.6 kg s⁻¹

14.22 সংকেত : গড় গতিশক্তি =
$$\frac{1}{T} \int_{0}^{T} \frac{1}{2} m v^2 dt$$
; গড় স্থিতিশক্তি = $\frac{1}{T} \int_{0}^{T} \frac{1}{2} k x^2 dt$

14.23 সংকেত : একটি ব্যবর্ত দোলকের পর্যায়কাল $T=2\pi\sqrt{rac{I}{lpha}}$, যেখানে I হল ঘূর্ণন অক্ষের সাপেক্ষে জাড্য ভ্রামক। এক্ষেত্রে

 $I=rac{1}{2}MR^2$, M হল চাক্তিটির ভর এবং R হল ব্যাসার্ধ। এই মানগুলোকে বসিয়ে lpha এর মান পাওয়া যায় $lpha=2.0~{
m N~m~rad^{-1}}.$

14.24 (a) $-5\pi^2 \text{ m s}^{-2}$; 0; (b) $-3\pi^2 \text{ m s}^{-2}$; 0.4 $\pi \text{ m s}^{-1}$; (c) 0; 0.5 $\pi \text{ m s}^{-1}$

14.25
$$\sqrt{\left(x_0^2 + \frac{v_0^2}{\omega^2}\right)}$$

অধ্যায় : পঞ্জদশ

15.1 0.5 s

- **15.2** 8.7 s
- **15.3** $2.06 \times 10^4 \,\mathrm{N}$

15.4 আদর্শ গ্যাস সমীকরণ বিবেচনা করে পাই, $P = rac{
ho \, RT}{M}$, যেখানে ho হল ঘনত্ব, M হল আণবিক ভর এবং T হল গ্যাসের উন্নতা। উপরিউক্ত সমীকরণ থেকে পাই, $_{
m V=}\sqrt{rac{\gamma RT}{M}}$, এই সমীকরণ থেকে দেখা যায় v হল,

(a) চাপ নিরপেক্ষ,

(b)
$$\sqrt{T}$$
 এর সঙ্গে সমানুপাতিক,

(c) জলের আণবিক ভর (18) যাহা N₂ (28) এবং O₂ (32) থেকে কম।

আর্দ্রতা বৃদ্ধি পেলে, বায়ুর কার্য্যকরী আণবিক ভর হ্রাস পায় এবং তাই v বৃদ্ধি পায়।

- 15.5 বিপরীতক্রমে এটা সত্যি নয়। একটি চল তরঙ্গের জন্য প্রয়োজনীয় গ্রহণযোগ্য অপেক্ষকের শর্ত হল, চলতরঙ্গাটি সকল সময়ের জন্য এবং সকল স্থানে সসীম হবে। শুধুমাত্র (c) অপেক্ষকটি এই প্রয়োজনীয় শর্তটি মানে কিন্তু বাকি অপেক্ষকগুলো চলতরঙ্গকে প্রকাশ করে না।
- **15.6** (a) 3.4×10^{-4} m (b) 1.49×10^{-3} m
- **15.7** 4.1×10^{-4} m
- 15.8 (a) একটি চলতরঙ্গা। এটা ডান দিক থেকে বাম দিকে ${
 m ms}^{-1}$ দ্রুতি নিয়ে চলে।
 - (b) 3.0 cm, 5.7 Hz
 - (c) π/4
 - (d) 3.5 m
- 15.9 সকল লেখচিত্রগুলো সাইন এবং কোসাইন ধর্মী। এদের বিস্তার এবং কম্পাংক একই কিন্তু প্রারন্তিক দশা কোণ বিভিন্ন।
- **15.10** (a) 6.4 π রেডিয়ান
 - (b) 0.8 π রেডিয়ান
 - (c) π রেডিয়ান
 - (d) (π/2) রেডিয়ান
- 15.11 (a) স্থানু তরজা।
 - (b) l = 3 m, n = 60 Hz, এবং $v = 180 \text{ m s}^{-1}$ প্রতি তরঞ্জোর জন্য।
 - (c) 648 N
- 15.12 (a) তারের সকল বিন্দুর কম্পাংক এবং দশা একই (শুধুমাত্র নিঃস্পন্দ বিন্দু ছাড়া), কিন্তু বিন্দুগুলোর বিস্তার একই হবে না।
 - (b) 0.042 m
- 15.13 (a) স্থানু তরঙ্গ।
 - (b) যে-কোনো তরজোর জন্য অগ্রহণীয় অপেক্ষক।
 - (c) সরলদোলগতীয় চলতরঞ্চা।
 - (d) দুটি স্থানুতরজোর উপরিপাতন।
- **15.14** (a) 79 m s⁻¹
 - (b) 248 N

15.15 347 m s⁻¹

সংকেত :
$$v_n = \frac{(2n-1)v}{4l}$$
 ; $n = 1, 2, 3, \dots$ [একমুখ বন্ধ নলের ক্ষেত্রে]

- ${\color{red}{\bf 15.16}} \hspace{0.1 cm} 5.06 \hspace{0.1 cm} km \hspace{0.1 cm} s^{_{-1}}$
- **15.17** প্রথম সমমেল বা মূলসুরের কম্পাংক; না।
- **15.18** 318 Hz
- **15.20** (i) (a) 412 Hz, (b) 389 Hz, (ii) 340 m s⁻¹ প্রতিক্ষেত্রে
- 15.21 400 Hz, 0.875 m, 350 m s⁻¹। না, কারণ এইক্ষেত্রে মাধ্যমের সাপেক্ষে দর্শক এবং উৎস উভয়ই গতিশীল।
- **15.22** (a) 1.666 cm, 87.75 cm s⁻¹; না, তরজাবেগ 24 m s⁻¹
 - (b) $n \lambda r_{j}$ stars a stars for $n = \pm 1, \pm 2, \pm 3, ...$) (at the set of $\lambda = 12.6 \text{ m}, x = 1 \text{ cm}$ for γr_{j} and $\lambda = 12.6 \text{ m}, x = 1 \text{ cm}$ for γr_{j} and $\lambda = 12.6 \text{ m}, x = 1 \text{ cm}$ for γr_{j} and $\lambda = 12.6 \text{ m}, x = 1 \text{ cm}$ for γr_{j} and $\lambda = 12.6 \text{ m}, x = 1 \text{ cm}$ for γr_{j} and γ
- 15.23 (a) তরঙ্গাটির কোনো নির্দিন্ট তরঙ্গদৈর্ঘ্য বা কম্পাংক নেই, কিন্তু অগ্রগমনের একটি নির্দিন্ট দ্রুতি থাকে (যে মাধ্যমে বিচ্ছুরণ হয় না)।
 - (b) না।
- **15.24** $y = 0.05 \sin(\omega t kx)$; এখানে $\omega = 1.61 \times 10^3 \text{ s}^{-1}$, $k = 4.84 \text{ m}^{-1}$; (x ও y মিটার এককে)
- **15.25** 45.9 kHz
- 15.26 1920 km
- 15.27 42.47 kHz

BIBLIOGRAPHY

TEXTBOOKS

For additional reading on the topics covered in this book, you may like to consult one or more of the following books. Some of these books however are more advanced and contain many more topics than this book.

- 1. Ordinary Level Physics, A.F. Abbott, Arnold-Heinemann (1984).
- 2. Advanced Level Physics, M. Nelkon and P. Parker, 6th Edition Arnold-Heinemann (1987).
- **3.** Advanced Physics, Tom Duncan, John Murray (2000).
- **4. Fundamentals of Physics**, David Halliday, Robert Resnick and Jearl Walker, 7th Edition John Wily (2004).
- 5. **University Physics**, H.D. Young, M.W. Zemansky and F.W. Sears, Narosa Pub. House (1982).
- **6. Problems in Elementary Physics**, B. Bukhovtsa, V. Krivchenkov, G. Myakishev and V. Shalnov, MIR Publishers, (1971).
- 7. Lectures on Physics (3 volumes), R.P. Feynman, Addision Wesley (1965).
- 8. Berkeley Physics Course (5 volumes) McGraw Hill (1965).
 - a. Vol. 1 Mechanics: (Kittel, Knight and Ruderman)
 - b. Vol. 2 Electricity and Magnetism (E.M. Purcell)
 - c. Vol. 3 Waves and Oscillations (Frank S. Craw-ford)
 - d. Vol. 4 Quantum Physics (Wichmann)
 - e. Vol. 5 Statistical Physics (F. Reif)
- Fundamental University Physics, M. Alonso and E. J. Finn, Addison Wesley (1967).
- 10. College Physics, R.L. Weber, K.V. Manning, M.W. White and G.A. Weygand, Tata McGraw Hill (1977).
- **11. Physics: Foundations and Frontiers**, G. Gamow and J.M. Cleveland, Tata McGraw Hill (1978).
- **12. Physics for the Inquiring Mind**, E.M. Rogers, Princeton University Press (1960)
- **13. PSSC Physics Course**, DC Heath and Co. (1965) Indian Edition, NCERT (1967)
- **14. Physics Advanced Level**, Jim Breithampt, Stanley Thornes Publishers (2000).
- **15. Physics**, Patrick Fullick, Heinemann (2000).

- 16. Conceptual Physics, Paul G. Hewitt, Addision-Wesley (1998).
- College Physics, Raymond A. Serway and Jerry S. Faughn, Harcourt Brace and Co. (1999).
- **18. University Physics,** Harris Benson, John Wiley (1996).
- **19. University Physics,** William P. Crummet and Arthur B. Western, Wm.C. Brown (1994).
- **20. General Physics,** Morton M. Sternheim and Joseph W. Kane, John Wiley (1988).
- **21. Physics,** Hans C. Ohanian, W.W. Norton (1989).
- 22. Advanced Physics, Keith Gibbs, Cambridge University Press(1996).
- 23. Understanding Basic Mechanics, F. Reif, John Wiley (1995).
- 24. College Physics, Jerry D. Wilson and Anthony J. Buffa, Prentice-Hall (1997).
- 25. Senior Physics, Part I, I.K. Kikoin and A.K. Kikoin, Mir Publishers (1987).
- 26. Senior Physics, Part II, B. Bekhovtsev, Mir Publishers (1988).
- **27. Understanding Physics,** K. Cummings, Patrick J. Cooney, Priscilla W. Laws and Edward F. Redish, John Wiley (2005)
- **28.** Essentials of Physics, John D. Cutnell and Kenneth W. Johnson, John Wiley (2005)

GENERAL BOOKS

For instructive and entertaining general reading on science, you may like to read some of the following books. Remember however, that many of these books are written at a level far beyond the level of the present book.

- 1. Mr. Tompkins in paperback, G. Gamow, Cambridge University Press (1967).
- 2. The Universe and Dr. Einstein, C. Barnett, Time Inc. New York (1962).
- 3. Thirty years that Shook Physics, G. Gamow, Double Day, New York (1966).
- 4. Surely You're Joking, Mr. Feynman, R.P. Feynman, Bantam books (1986).
- 5. One, Two, Three... Infinity, G. Gamow, Viking Inc. (1961).
- **6. The Meaning of Relativity**, A. Einstein, (Indian Edition) Oxford and IBH Pub. Co (1965).
- 7. Atomic Theory and the Description of Nature, Niels Bohr, Cambridge (1934).
- **8.** The Physical Principles of Guantum Theory, W. Heisenberg, University of Chicago Press (1930).
- **9.** The Physics- Astronomy Frontier, F. Hoyle and J.V. Narlikar, W.H. Freeman (1980).
- **10.** The Flying Circus of Physics with Answer, J. Walker, John Wiley and Sons (1977).
- **11. Physics for Everyone** (series), L.D. Landau and A.I. Kitaigorodski, MIR Publisher (1978).
 - Book 1: Physical Bodies
 - Book 2: Molecules
 - Book 3: Electrons
 - Book 4: Photons and Nuclei.
- 12. Physics can be Fun, Y. Perelman, MIR Publishers (1986).
- 13. Power of Ten, Philip Morrison and Eames, W.H. Freeman (1985).
- 14. Physics in your Kitchen Lab., I.K. Kikoin, MIR Publishers (1985).
- **15.** How Things Work : The Physics of Everyday Life, Louis A. Bloomfield, John Wiley (2005)
- **16. Physics Matters : An Introduction to Conceptual Physics,** James Trefil and Robert M. Hazen, John Wiley (2004).

জ্ঞাতব্য বিশেষ শব্দসমূহ

অ		আপেক্ষিক বেগ	51
অভিকর্ষজ ত্বরণ	49.189	আপেক্ষিক তাপ ধারকত্ব	285, 308
অভিকেন্দ্র ত্বরণ	81	<u>র</u>	
অভিকেন্দ্র বল	104	ইয়ং গুণাজ্ঞ	239
অবস্থান ভেক্টর এবং সরণ	73	উ	
অবস্থার পরিবর্তন	287	উত্তপ জাপাস	212
অবমন্দিত দোলন	355	ভণ্ডত আবান উদ্দস্থৈতিক বেক	255 256
অবমন্দিত সরল দোলগতি	355	ন্দ্র দেশা দেশা দেশা দেশ্য কলালক	255, 256
অবমন্দিত ধ্রুবক	355	জনিক সন্থায়ি আছিক সন্থায়ি	255
অবমন্দিত বল	355	নাজন দলাগ উদ্যস্থাতিক চাপ	200
অবকলন	61	উদ্দস্থোতিক প্রীদ্দন	230
অসহ পীড়ন বিন্দু	238	উদ্দস্থৈ থাত কণা তৃত্য উদ্দস্থৈতিক কট	250, 243
অস্থিতিস্থাপক সংঘর্ষ	129	উদ্ধি থাত্ব _হ ত উদ্ধিপাতন	294
অনুভূমিক প্রসার	78	উপবিপাতনের নীতি	378
অ্যাংস্ট্রম	21	উদ্দেয়ণকাল	78
অ্যাভোগাড্রোর সূত্র	325		10
অভিকর্ষীয় তরঙ্গা	370	Ч	
অনুনাদ	358	এস. আই একক	16
অযুগ্ম সমমেল	382	একমুখ খোলা নল	381
অনুদৈর্ঘ্য বিকৃতি	236, 239	এককের পদ্ধতি	16
অনুদৈর্ঘ্য পীড়ন	236	এরোফয়েল	262
অনুদৈর্ঘ্য তরঙ্গা	369, 376	একক ভেক্টর	70
অপ্রত্যাবর্তী ইঞ্জিন	315, 317	ক	
অপ্রত্যাবর্তী প্রক্রিয়া	315	ক্রিয়া-প্রতিক্রিয়া	97
আ		কৌণিক ত্বরণ	154
আরকিমিডিসের নীতি	255	কেলভিন-প্ল্যাঞ্চ্বের বিবৃতি	315
আল্ট্রাসোনিক তরঙ্গা	387	কম্পনের ধরন	380
আয়তন প্রসারণ	281	কম্পনের স্বাভাবিক ধরন	381, 382, 384
আয়তন পীড়ন	238	কক্ষীয় বেগ/ দুতি	194
আভ্যন্তরীণ শক্তি	306, 330	কৃন্তন গুণাখ্ক	242
আয়তন বিকৃতি গুণাঙ্ক	242	কৃন্তন বিকৃতি	237
আয়তন প্রসারণ গুণাঙ্ক	281	কৃন্তন পীড়ন	237, 243
আবর্ত প্রক্রিয়া	312	কঠিনের আপেক্ষিক তাপ ধারকত্ব	308, 335
আদর্শ গ্যাস সমীকরণ	280	কম্পন	341
আদর্শ গ্যাস	280, 325	কাৰ্য	116
আদর্শ গ্যাসের চাপ	328	কার্য-শক্তির উপপাদ্য	116
আপেক্ষিক তাপ ধারকের অনুপাত	334	কার্যকরী উপাদান	313

ANTI-AT	100	দল তবজা	380
ক্ষাও। কৌথিক মূৰণ	128	হা বি নাল	250
রেন।গন পারণ কৌথিক কম্পাঞ্চক	342	চল তবজা	373
কৌধিক <u>অববে</u> ধ	344, 373	চকগতির ব্যাসার্ধ	164
কোনিক বন্ধ কৌনিক বন্ধ	155	জ	104
বেগাণক বেগ ক্রীরিক ত্রুরাজ্যমধ্যায	152	্য জলের আপেক্ষিক তাপ গারকত	335
	372	জোদের সত্র জোদের সত্র	90
বশার সাম্যবস্থা কৌরিক ভারবের্ধের মধ্রক্ষণ	99	জাতোর বুল জাতোর বা জাতেলোমক	163
কেন্স্যাপক ভরবেসের সংরক্ষণ কন্স্যেপ্রদের বিরক্তি	157, 175		105
মুগ্রাসমাবের বিষ্টাত কালেরিসিটার	313	< টানটান তাবের তীর্যক তরজোর দ্রতি	375 376
ব্যালায়ামচায় কোমাইনের মার	280	টান টান তাবে টান টান তাব	374
বেগসাহলের সূত্র স্ক্রিক উজ্জান	12		154
কোশক ওখান ইকসিক ভবাপ	268	উক্ত টবেসেলীন মত	250, 260
(কাশক তরজা কলে ইজিন	370	তরেলেলার সূত্র তে	259,200
কানো হাঞ্জন কেন্দ্রীয় বন্দ	316	আলটনের আংগিক চাপ মত্র	205
(কেশ্বার বল ক্রিয়ার প্রমানক একাজন	186	ভাগাস্যেন আনেশন স্থ দ্বাহাস্যেনলিক কিয়া	020
ক্ষেত্রার প্রসারণ গুণাজ্ফ ক্রান্টার প্রসারণ	283	ভারাদেশালান দ্রন্যা দল্পলার কিয়া	205 206
ক্ষেত্রার প্রসারণ ব	281	তগলার অব্য ডেপ্লেখন চাতি	300, 300
			307
গড় ত্বরণ পদ দলি	45, 74	ত জনগ (নৈখিক)	45
গড় ধুতি	42	ধন্য (জোনন) জনগণ্ধসীয	40
গড় বেগ	42	তর্গুলাবি জুদ্দিকুমুরুরুর	3/1
	287	তাভৃৎচুৰ্বন্দার বল কার্থনিক্রিয়ার প্রথম মার	0
গ্যাসের আপোক্ষক তাপ ধারকত্ব	333, 334	তাপগাতাবদ্যার এবন সূত্র জার প্রবন্ধ	307
গাঁও্যে চলা গাঁও	173	তাশ বার্থথ্য ক্রান্সিয় ইঞ্জিন	284
গড় বগ দু/তর বগমূল	329	তাশার হাঞ্জন ক্রান্সীয় প্রকার	313
গজ চাপ	253	তাগার গান্স হার	313
গলনাজ্য	286	তাপ কালকে বিদ্যান কিন্দ্রীয় মাত্র	279
গড়মুক্ত পথ	324, 335	তাপগাতাবদ্যার দ্বিতার সূত্র ক্রাক্ষান্দরিক ক্রেরপ	314
গলনের লানতাপ	290	তাৎক্ষাণক থবন ক্রাক্ষান্দ্র	74
গ্রহের গাত সংক্রান্ত কেপলারের সূত্রাবাল	184	তাৎক্ষাণক দ্রাত	45
গাড়য়ে চলাগাতর ক্ষেত্রে গাতশাস্ত মতিমানি	174	তাৎক্ষাণক বেগ কাল ইন্দিলনে ক্ষেত্ৰ	43
গাতশাস্ত	117	তাপ হাঞ্জনের পক্ষতা ক্রানীয় হায়্য	313
গ্যাসের গতায় তত্ত্ব ন	328	তাপার পাশ্য ভারতীয় প্রযাবন	304
2		তাপার প্রসারণ ক্রান্সিয় নীয়ন্দ্র	281
ঘাত	96	তাপার পাওঁন ক্রার্থের্নেট্রিয় প্রক্রিয়ায়ন্দ্র	284
ঘূণনগাতর গাতাবদ্যা	169	তাপগতার প্রাক্ররাসমূহ	310
ঘষণ	101	তাপগতার অবস্থার প্রাচল	309
ঘূণনগাতর স্থাতাবজ্ঞান -	167	তাপগাতাবদ্যা	3, 303
ঘূণন হ	142	তরজ্ঞা সাদ	371
		তরঙ্গের সমাকরণ	374
চালসের সূত্র	326	তরজা(দেখ)	372
চালক কম্পাঞ্জ	358	তরজ্ঞী (বহা	374
চূড়ান্ত শান্ত	238	তরজা	368

408

		~ ~	
তাপগতিবিদ্যার শূন্যতম সূত্র	305	নতিবিন্দু	238
ত্রিদশা বিন্দু	288	নতিপীড়ন	238
তাপ পরিবাহীতাঙ্ক	291	2	
তাপমাত্রার পরিমাপ	279	পরম স্কেলে তাপমাত্রা	280
তাপমাত্রার তাপগতীয় ব্যাখ্যা	329	প্রতিক্রিয়া সময়	51
তীক্ষতা	384	প্রায় স্থির প্রক্রিয়া	310, 311
তনুভবন	369	প্রাসের গতি	77
তরঙ্গের প্রতিফলন	378	প্রাস	77
তাৎপর্যপূর্ণ সংখ্যা	27	প্লাস্টিক বিকৃতি	238
তাপমাত্রা	279	প্লাস্টিকতা	235
21		পদার্থের আনবিক ধর্ম	323
	50	প্রাসের সর্বোচ্চ উচ্চতা	78
থামার দূরও	50	পাস্কালের সূত্র	252
ч		পথ দৈর্ঘ্য	40
দন্ডের বেঁকে যাওয়া	244	প্রাসের সঞ্চারপথ	78
দ্বিমাত্রিক সংঘর্ষ	131	পর্যাবৃত্ত বল	358
দ্বন্দ্ব	159	পর্যায়বৃত্ত গতি	342
দক্ষতা গুণাঙ্ক	314	পর্যায়কাল	342
দৃঢ়বস্তুর সাম্যবস্থা	158	প্লবতা বল	255
দৈর্ঘ্যের পরিমাপ	18	পাখা	356
দৃঢ়তা গুণাঙ্ক	242	পুনঃশিলীভবন	287
দৌলন	342	প্রতিফলিত তরঙ্গা	379
দোলন গতি	342	প্রতিসৃত তরঙ্গ	379
দশা কোণ	344	পরিস্করণ ক্রিয়া	269
দশা ধ্রবক	344	পরম শূন্য	280
দু-মুখ খোলা নল	382	পরিবহন	290
দৃঢ় বস্তু	141	পরিচলন	293
দুর্বল নিউক্লিয় বল	9	পরিমাপের ত্রুটি	22
দ্বিমাত্রিক আপেক্ষিক বেগ	76	প্রবাহীর চাপ	251
ধ		পরবশ কম্পাজ্জ	357
ধারাবাহিকতার সমীকরণ	257	পরবশ দোলন	357, 358
ধারারেখ প্রবাহ	257.258	পর্যায়বৃত্ত গতির কম্পাঙ্ক	342, 372
ধারারেখ	257, 258	প্রারম্ভিক দশা কোণ	372
ন		পরিবর্তনশীল বল দ্বারা কৃতকার্য	118
	01	পারমাণবিক ভর তরঙ্গা	21
ানড৫নের প্রথম গাতসূত্র কিউটকক জীকনীকক কর	91	প্রেরিত তরঙ্গা	379
ানড৫নের শাওলাকরণ সূত্র কিইনিনের সম্পর্কারনের	295	পৃষ্ঠশন্তি	265
ানড৫নের মহাকব সূত্র ক্রিটনের জ্রীয় প্রক্রিয়ন	185	পৃষ্ঠটান	265
।নভ ৫নের । ধতার গাওসূত্র নিটটেরের জ্লুহীয় প্র <u>ক্রিয় র</u>	93	পাড়ন	236
।নভ৫নের তৃতার গাতসূত্র বিজ্ঞান বিদ্যু	96	পাড়ন বিকৃতির লেখ	238
19-2718 1984	381	প্রত্যানয়ক বল	236, 350, 369
।শভাক্লার শাস্ত নির্বেশন করি	126	প্রত্যাবতী ইঞ্জিন	316, 317
ানগমন দ্রাত	259	প্রত্যাবতী প্রক্রিয়া	315

পদার্থবিদ্যা

প্রহার্য খকি	000	দ্দেকৰ গণ্য	151
এসাথ শাস্ত প্রহার্য কীদন্য	238	ভেস্তর সুশন জ্লেকর	151
এসাব গাড়ন প্রাক্তীয় বেগ	230	েন্ড গ্রহার ক্রেগ্রেরিসিটার	00
আতার বেগ	204	তেওঁটারাশতার জারহীনজো জারখন্য জারস্থা	200
ব		ভারহানতা ভারলূন্য অবস্বা স	197
বাষ্পীয়ভবনের লীনতাপ	290	ب	
বিস্তার ধ্রুবক	371	মাত্রা বিশ্লেষণ	32
বিকিরণ	294	মাত্রা	31
বাস্তব গ্যাস	326	মুক্তি দ্রুতি	193
বৈজ্ঞানিক পদ্ধতি	1	মুক্ত পতন	49
বিকৃতি	236	মেরু উপগ্রহ	196
বাণিজ্য বায়ু	294	মুক্ত বস্থু চিত্র	100
বিক্ষুব্ধ প্রবাহ	258, 259	মৌলিক বলসমূহ	6
বলের একত্রীকরণ	10	মহাকর্ষীয় ধ্রুবক	189
বাম্পীভবন	288	মহাকৰ্ষ বল	8, 192
বেগের বিস্তার	349	মহাকর্ষীয় স্থিতিশক্তি	191
বায়ুর বাধা	79	মোড়ানো / জড়ানো	244
বিস্তার	344, 372	মূলসুর	381
বায়ুমণ্ডলীয় চাপ	253	মানের ক্রম	28
বার্নৌলির নীতি	258	মোলার আপেক্ষিক তাপ ধারকত্ব	284
বয়েলের সূত্র	326	ম্যাক্সওয়েলের বন্টন	331
বল	94	ম্যাগনাস প্রভাব	261
ব্যাঙ্কিংযুক্ত রাস্তা	104	ম্যানোমিটার	254
ব্যারোমিটার	254	য	
বৃত্তীয় গতি	104	। মাহিক শকির মণ্ডরক্ষণ	101
ব্যাতিচার	377		121
3		2	
জ-কেন্দিক মাদেল	183	রুম্বতাপ প্রক্রিয়া	311, 312
ভূ দেশবে দ নতেওঁ। জে-সমালয় টেপগ্রহ	105	রক্তচাপ	276
ভূ গদগম তগদ্ ভেইবের সমতা	150 66	রাসায়নিক শক্তি	126
তেওঁলেন পান্ত। জন্মক্রির জন্সালে।	126	রৈখিক প্রসারণ গুণাঙ্ক	281
ভন নাওন তুল্টালা ভূরবেগের সংবক্ষণ	08	রেনল্ড সংখ্যা	264
	161	রমন ক্রিয়া	11
	101	রৈখিক প্রসারণ	281
ভন্নদেন্দ্র ভেক্টবের যোগ	67	রৈখিক সুসমঞ্জস্য স্পন্দক	349,351
ভেক্তরের মায়ন্থবিক মত্র	66	রৈখিক ভরবেগ	155
ভেক্তবের গান্ডায়ন সূথ ভেক্তবের গাণ	67	ল	
তেওঁলেন সু-। জনবেহা	02	লব্ধ একক	16
্রড়মন ভাবের পরিমাপ	90 01	ল্যাপলাসের সংশোধন	376
ত্রের বারিশাব ভামকের নীতি	21	লীনতাপ	289
দান্দেশ শাতি জেকবের বিজ্ঞাজন	100	লম্ব অক্ষসমূহের উপপাদ্য	165
ভেস্তরের রিয়োগ	67	লঘকরণ	200
তেন্তর মেধের <u>বিদ্যালয়</u>	67	_{' ২} ' ' ' লম্বন পদ্ধতি	18
ଅନ୍ୟ ଏ।(ଧଧା ାଗ୍ରଇଲ୍ଲ୍ୟୁର	66	■ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10

	\sim							
জাতব্য	1	~	ষ	×	4	3	λ	٢
		•						

1 86		সময়ের পরিমাপ	22
শ্বীকল জাপান		সাইনের সূত্র	72
শাতণ আবার শক্তি	117	স্তরিত প্রবাহ	258,264
"।।ও খকির মহাবিদ্ধান্দন হার	117	স্থিতিবিজ্ঞান	39
শাস্তর সমাবতাজন সূত্র স্থাকির মধ্রক্ষণ নীতি	332	সমচাপ প্রক্রিয়া	311, 312
শাস্ত্র সংরক্ষণ না।ত সার	128	সমআয়তন প্রক্রিয়া	311, 312
	375	সমোশ্ন	310
শংপের ধ্রাত সদরুর এখন নার নার্দ্র	375, 376	সমোষ্ণ প্রক্রিয়া	311
শব্দের আবল্যের থ্রাস-বৃাদ্ব	385	সরল দোলগতি	343
শব্দের দ্রাত সংক্রান্ত নিডিচনের সূত্র	377	স্কেলার গুণন	114
শূন্য ভেন্তর	68	স্কেলার	65
স		সরলরৈখিক গতি	39
সুস্পন্দ বিন্দু	381,382	স্পিন্দন	369
সুক্ষাতা	22	স্প্রিং-এর স্থিতিশক্তি	123
স্পৰ্শকোণ	267, 268	স্থিতিশস্তি	120
সিস্টেলিক চাপ	277	সুক্ষ্মতা	143
স্থায়ী বিকৃতি	238	সুর	384, 385
সান্দ্রতাজ্ঞ	262	স্বাভাবিক কম্পাঙ্ক	358
সংঘর্ষ	129	সমতলীয় গতি	72
সংনম্যতা	242, 243	স্থিতিস্থাপক গুণাঙ্ক	238
সংকোচন	368, 369, 374	সুরেলা যন্ত্রসমূহ	384
সংনমক পীড়ন	236, 243	স্বর	384
সংরক্ষণ সূত্রাবলি	12	সমান্তরাল অক্ষসমূহের উপপাদ্য	167
সংরক্ষী বল	121	সামঞ্জস্য	146
স্থির ত্বরণ	46,75	স্ফিগমোম্যানোমিটার	277
স্পাৰ্শ বল	100	স্প্রিং ধ্রুবক	352, 355
স্বরকম্পের কম্পাঙ্ক	383	স্থানু তরজা	380
স্বরকম্প	382, 383	স্থান তরজ্ঞা	382
স্ফুটনাঙ্ক	287	স্থির প্রবাহ	257
সরণ ভেক্টর	66	স্টেথোস্কোপ	281
সরণ	40	স্টোক্সের সূত্র	263
সাম্যবস্থান	341, 342, 353	সরল দোলক	343, 353
সমমেল কম্পাঙ্ক	380, 381	সাবানের বুদবুদ	268
সমমেল	380, 381	সনোগ্রাফী	387
সৌরকেন্দ্রিক প্রতিরূপ	183	সান্দ্রতা	262
স্থিতিস্থাপক সংঘর্ষ	129	সুষম বৃত্তীয় গতি	79
স্থিতিস্থাপক বিকৃতি	236, 238	সুষম গতি	41
স্থিতিস্থাপক সীমা	238	সুষম তরঙ্গাযুক্ত গতি	47
স্থিতিস্থাপক গুণাজ্ঞসমূহ	239	ত	
স্থিতিস্থাপকতা	235	ম	0.40
স্থিতিস্থাপক	239	<u> ২</u> ০১৩ চনেব মন	343
স্থির চাপে মোলার আপেক্ষিক তাপ ধারকত্ব	284, 308	খুনেশ্য সূ ল কিমায়ক	238
স্থির আয়তনে মোলার আপেক্ষিক তাপ ধারকজ	a 284, 308	えきごかく	313

Notes